
Asynchronous Programming in the Abstract Behavioural Specification
Language
Azadbakht, K.

Citation
Azadbakht, K. (2019, December 11). Asynchronous Programming in the Abstract Behavioural
Specification Language. Retrieved from https://hdl.handle.net/1887/81818

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/81818

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/81818

Cover Page

The handle http://hdl.handle.net/1887/81818 holds various files of this Leiden University
dissertation.

Author: Azadbakht, K.
Title: Asynchronous Programming in the Abstract Behavioural Specification Language
Issue Date: 2019-12-11

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/81818
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 5

Multi-Threaded Actors

5.1 Introduction

Object-oriented programs organize data and corresponding operations by means of

a hierarchical structure of classes. A class can be dynamically instantiated and as

such extends the concept of a module. Operations are performed by corresponding

method calls on class instances, namely objects. In most object-oriented languages,

like Java, method calls are executed by a thread of control which gives rise to a

stack of call frames. In a distributed setting, where objects are instantiated over

different machines, remote method calls involve a synchronous rendez-vous between

caller and callee.

It is generally recognized that asynchronous communication is better suited for

distributed applications. In the Actor-based programming model of concurrency [2]

actors communicate via asynchronous messages. In an object-oriented setting such

a message specifies a method of the callee and includes the corresponding actual

parameters. Messages in general are queued and trigger execution of the body of

the specified method by the callee, when dequeued. The caller object proceeds with

its own execution and may synchronize on the return value by means of futures [27].

In [64] JCoBox, a Java extension with an actor-like concurrency model based on

the notion of concurrently running object groups, the concept of coboxes is intro-

duced which integrates thread-based synchronous method calls with asynchronous

communication of messages in a Globally Asynchronous, Locally Sequential man-

ner. More specifically, synchronous communication of method calls is restricted to

objects belonging to the same cobox. Objects belonging to the same cobox share

control, consequently within a cobox at most one thread of synchronous method

calls is executing. Only objects belonging to different coboxes can communicate via

asynchronous messages.

Instead of sharing control, in this chapter we introduce an Actor-based language

which features new programming abstractions for parallel processing of messages.

The basic distinction the language supports is that between the instantiation of an

71

72 Multi-Threaded Actors

Actor class which gives rise to the initialization of a group of active objects sharing

a queue and that which adds a new active object to an existing group. Such a

group of active objects sharing a message queue constitutes a multi-threaded actor

which features the parallel processing of its messages. The distinction between

actors and active objects is reflected by the type system which includes an explicit

type for actors and which is used to restrict the communication between actors

to asynchronous method calls. In contrast to the concept of a cobox, a group of

active objects sharing a queue has its own distinct identity (which coincides with

the initial active object). This distinction further allows, by means of simple typing

rules, to restrict the communication between active objects to synchronous method

calls. When an active object fetches a message from the shared message queue,

the object starts executing a corresponding thread in parallel with all the other

threads. This basic mechanism gives rise to the new programming concept of a

Multi-threaded Actor (MAC) which provides a powerful Actor-based abstraction

of the notion of a thread pool, as for example, implemented by the Java library

java.util.concurrent.ExecutorService. We further extend the concept of a MAC with

a powerful high-level concept of synchronized data to constrain the parallel execution

of messages.

In this chapter we provide a formal operational semantics like Plotkin [61], and a

description of a Java-based implementation for the basic programming abstractions

describing sharing of message queues between active objects. The proposed run-time

system is based on the ExecutorService interface and the use of lambda expressions

in the implementation of asynchronous execution and messaging.

Related work Since Agha introduced in [2] the basic Actor model of concurrent

computation in distributed systems, a great variety of Actor-based programming

languages and libraries have been developed. In most of these languages and li-

braries, e.g., Scala [42], Creol [49], ABS [48], JCoBox [64], Encore [21], ProActive

[22], AmbientTalk [74], Rebeca [69], actors execute messages stored in their own mes-

sage queue. The Akka library for Actor-based programming however does support

sharing of message queues between actors. In this chapter we introduce a new cor-

responding Actor-based programming abstraction which integrates a thread-based

execution of messages with event-based asynchronous message passing.

Our work complements in a natural manner that of [64] which introduces groups

of actors sharing control. Another approach to extending the Actor-based concur-

rency model is that of Multi-threaded active objects (MAO) [44] and Parallel Actor

Monitors (PAM) [65] which allow the parallel execution of the different method in-

vocations within an actor. Another approach is followed in the language Encore

which provides an explicit construct for describing parallelism within the execution

of one method [35]. In contrast to these languages, we do allow the parallel execution

of different asynchronous method invocation inside a group of active objects which

provides an overall functionality as that of an actor, e.g., it supports an interface

Motivating Example 73

for asynchronous method calls and a unique identity. Further we provide a new

high-level language construct for specifying that certain parameters of a method are

synchronized, which allows a fine-grained parameter-based scheduling of messages.

In contrast, the more coarse-grained standard scheduling of methods as provided

by Java, PAM, and MAO, and JAC [43] in general only specify which methods can

run in parallel independent of the actual parameters. [77] also shows the notion

of Microsoft COM (Component Object Model)’s multi-threaded apartment. In this

model, calls to methods of objects in the multi-threaded apartment can be run on

any thread in the apartment. It however lacks the ability of setting scheduling strate-

gies (e.g. partial order of incoming messages in the next section). Multi-threaded

actors offer a higher level of abstraction to parallel programming and can be viewed

as similar to the OpenMP [25] specification for parallel programming in C, C++

and Fortran.

The rest of this chapter is organized as follows: In section 5.2, an application

example is established, by which we introduce the key features of MAC. Section 5.3

describes the syntax of MAC and the type system. Section 5.4 presents the opera-

tional semantics. In Section 5.5 we show the implementation of MAC in the Java

language and explain its features through an example. We draw some conclusions in

Section 5.6 where we briefly discuss extensions and variations describing static group

interfaces, support for the cooperative scheduling of the method invocations within

an actor (as described in for example [49]), synchronization between the threads of

a MAC, and encapsulation of the active objects belonging to the same actor.

5.2 Motivating Example

In this section, we explain an example which is used in the rest of the chapter to

show the notion of MAC. We also raise a challenge regarding this example which is

solved later in our proposed solution. We present a simple concurrent bank service

where the requests such as withdrawal, checking, and transferring credit on bank

accounts are supported. The requests can be submitted in parallel by several clients

of the bank. The system should respect the temporal order of the submitted requests

on the same accounts. For instance, checking the credit of an account should return

the amount of credit for the account after withdrawal, if there is a withdrawal

request for that account which precedes the check request. The requests can be

sent asynchronously. Therefore, respecting temporal order of two events means that

there is a happens-before relation between termination of the execution of the former

event and starting the execution of the latter.

Existing technologies are either not able to implement this property or they need

ad-hoc explicit synchronization mechanism which can be complicated and erroneous.

Using locks on accounts (e.g. synchronized block in Java) may cause deadlock or

violate the ordering, unless managed explicitly at the lower level, since two accounts

are involved in transferring credit. Another approach is to implement the scheduler

74 Multi-Threaded Actors

in PAM [65] to support such ordering which raises synchronization complexities.

The last alternative we investigate in this section is that to implement the service as

a thread pool (e.g. ExecutorService in Java), where the above ordering is respected

explicitly via passing the future variable corresponding to the previous task, to

the current one. The variable is then used to force the happens-before relation by

suspending the process until the future is resolved (e.g. get method in Java). One

challenge is that the approach requires that the submitter knows and has access

to the future variables associated to the previous task (or tasks in case the task

being submitted is a transfer). The other challenge is that, in a parallel setting

with multiple concurrent source of task submitters, how to provide such knowledge.

Last but not least, the approach first activates the task by allocating a thread and

then the task may be blocked which imposes overhead, while a desirable solution

forces the ordering upon the task activation. As shown in the rest of the chapter,

we provide the notion of MAC which overcomes this issue only via annotating the

parameters based on which we aim to respect the temporal order.

5.3 Syntax of MAC

Figure 5.1 specifies the syntax. A MAC program P defines interfaces and classes,

and a main statement. An interface IF has a name I and method signatures Sg. A

class CL has a name C, interfaces I that C implements (that specify the possible

types for its instances), formal parameters and attributes x of type T , and methods

M . A multi-threaded actor consisting of a group of active objects (a MAC) which

share a queue of messages of type I is denoted by Actor<I>. The type Fut<T>
denotes futures which store return values of type T . The fields of the class consist

of both its parameters and its attributes. A method signature Sg declares a method

with name m and the formal parameters x of types T with optional sync<l> modifier

which is used to indicate that the corresponding parameter contains synchronized

data. The user-defined label l allows to introduce different locks for the same data

type. Informally, a message which consists of such synchronized data can only be

activated if the specified data has not been locked.

Statements have access to the local variables and the fields of the enclosing

class. Statements are standard for sequential composition, assignment, if and while

constructs. The statement e.get, where e is a future variable, blocks the current

thread until x stores the return value. Evaluation of a right-hand side expression

new C (e) returns a reference to a new active object within the same group of the

executing object, whereas new actor C (e) returns a reference to a new actor which

forms a new group of active objects. By e.m(e) we denote a synchronous method

call. Here e is assumed to denote an active object, i.e., e is an expression of some

type I, whereas e!m(e) denotes an asynchronous method call on an actor e, i.e., e

is of some type Actor<I>.

Listing 5.1 contains an example of an actor bank which implements a bank

Syntax of MAC 75

T ::= Bool | I | Actor<I> | Fut<T>

P ::= IF CL {T x; s}
CL ::= class C[(T x)] implements I{T x;M}
IF ::= interface I{Sg}
Sg ::= [sync<l>] T m([sync<l>] T x)

M ::= Sg{T x; s}
s ::= x = e | s; s | e.get | if b{s1}else{s2} | while b{s}
e ::= null | b | x | this | new [actor] C[(e)] | e.m(e) | e!m(e)

b ::= e? | b | b ∧ b

Figure 5.1: Syntax

service. The services provided by a bank are specified by the interface IEmployee
which is implemented by the class Employee. A bank is created by a statement

Actor <IEmployee> bank = new actor Employee().

New employees can be created on the fly by the addEmp method. The ac-

tual data of the bank is represented by the instances of the class Account which

implements the interface IAccount and which contains the actual methods for

transferring credit, checking and withdrawal. A simple scenario is the following:

(1) Fut<Int> f = bank!createAcc(...);
(2) Int acc1 = f.get;
(3) Fut<Bool> f3 = bank!withdraw(acc1, 50);
(4) Fut<Int> f2 = bank!check(acc1);

Line 1 models a request to create an account by an asynchronous method call.

The result of this call is a number of the newly created account. Lines 3 and 4

then describe a withdrawal operation followed by a check on this account by means

of corresponding asynchronous method calls. These calls are stored in the message

queue of the actor bank and dispatched for execution by its empoyees, thus allowing

a parallel processing of these requests. However, in this particular scenario such

a parallel processing of requests involving the same account clearly may give rise

to inconsistent results. For example a main challenge in this setting arises how to

ensure that the messages are activated in the right order, i.e., the order in which

they have been queued. Note that the execution of messages can be synchronized

by means of standard synchronization mechanisms, e.g., synchronized methods in

Java. Another approach is to use transactional memory to recover from inconsistent

states. However both approaches do not guarantee in general that the messages

are activated in the right order because they do not provide direct control of their

activation.

76 Multi-Threaded Actors

By declaring in Listing 5.1 all the parameters of the methods of the interface

IEmployee which involve account numbers as synchronized by means of a single

lock ”a” we ensure mutual exclusive access to the corresponding accounts. More

specifically, the selection for execution of a queued message which contains a request

to withdraw a certain amount for a specified account, for example, requires that (1)

no employee is currently holding the lock ”a” on that account and (2) no preceding

message in the queue requires the lock ”a” on that account. Similarly, a message

which contains a transfer request, which involves two accounts, requires that (1) no

employee is currently holding the lock ”a” on one of the specified accounts and (2)

no preceding message in the queue requires the lock ”a” on one of these accounts.

The formal details of this synchronization mechanism is described in the following

section.

Listing 5.1: Syntax Example
interface IEmployee {

IAccount createAcc(...);
Bool transfer(sync<a> Int accNum1, sync<a> Int accNum2, Int amount);
Bool withdraw(sync<a> Int accNum, Int amount);
Int check(sync<a> Int acc);

}

interface IAccount {
Bool transfer(IAccount acc2, Int amount);
Bool withdraw(Int amount);
Int check();

}

class Employee implements IEmployee {
Int createAcc(){

Int accNum = ...;
IAccount acc = new Account(accNum, ...); \\account creation
return accNum;

}
Bool transfer(Int accNum1, Int accNum2, Int amount){

IAccount acc1 = getAccount(accNum1);
IAccount acc2 = getAccount(accNum2);
acc1.transfer(IAccount acc2, Int amount);...

}
Bool withdraw(Int acc, Int amount){

IAccount acc1 = getAccount(acc1);
acc.withdraw(Int amount);...

}
Int check(Int accNum){

IAccount acc = getAccount(accNum);
acc.check();...

}
Unit addEmp(){ ...

IEmployee emp = new Employee();
}
IAccount getAccount(Int accNum){...}

}

class Account(Int acn, ...) implements IAccount {
...

}

Operational Semantics 77

5.4 Operational Semantics

Runtime concepts We assume given an infinite set of active object and future

references, with typical element o and f , respectively.

We assume distinguished fields myactor, I, and L which denote the identity of

the actor, the type of the active object, and the set of pairs of synchronized entries

locked by the active object, respectively. A local environment τ assigns values to the

local variables (which includes the distinguished variables this and dest, where the

latter is used to store the future reference of the return value). A closure c = (τ, s)

consists of a local environment τ and a statement s. A thread t is a sequence (i.e.,

a stack) of closures. A process p of the form (o, t) is a runtime representation of an

active object o with an active thread t. An actor a denotes a pair (o, P) consisting

of an object reference o, uniquely identifying the actor as a group of active objects,

and a set of processes P . A set A denotes a set of actors. By e we denote an event

m(v̄) which corresponds to an asynchronous method call with the method name

m and values v. For notational convenience, we simply assume that each event

also includes information about the method signature. A queue q is a sequence of

events. A (global) context γ consists of the following (partial) functions: γh, which

denotes for each existing object its local state, that is, an assignment of values to

its fields; γq, which denotes for each existing object identifying an actor its queue of

events, and, finally, γf , which assigns to each existing future its value (⊥, in case it

is undefined).

Some auxiliary functions and notations. By γ[o ← σ] we denote the assign-

ment of the local state σ, which assigns values to the fields of o, to the object o

(affecting γh); by γ[o.x ← v] we denote the assignment of the value v to the field

x of object o (affecting γh); by γ[o ← q] we denote the assignment of the queue

of events q to the object reference o (affecting γq); and, finally, by γ[f ← v] we

denote the assignment of value v to the future f (affecting γf). By act-dom(γ) and

fut-dom(γ) we denote the actors and futures specified by the context γ. We assume

the evaluation function valγ,τ (e). The function sync-call(o,m, v) generates the clo-

sure corresponding to a call to the method m of the actor o with the values v of the

actual parameters. The function async-call(o,m, v) returns the closure correspond-

ing to the message m(v), where v̄ includes the future generated by the corresponding

call (which will be assigned to the local variable dest), o denotes the active object

which has been scheduled to execute this method. In both cases we simply assume

that the class name can be extracted from the identity o of the active object (to

retrieve the method body). The function init-act(o, v, o′) returns the initial state of

the new active object o. The additional parameter o′ denotes the the actor identity

which contains o, which is used to initialize the field myactor of o. The function

sg(m(v)) returns the signature of the event m(v). Finally, syncm(v̄) returns the

synchronized arguments of event m(v̄) together with their locks (i.e., the arguments

78 Multi-Threaded Actors

specified by sync<l> modifier in the syntax where l is the lock).

The Transition Systems Figure 5.2 gives a system for deriving local transition

of the form: γ, (o, t) → γ′, (o, t′) which describes the effect of the thread t in the

context of γ. Rules (ASSIGN-LOCAL) and (ASSIGN-FIELD) assign the value

of expression e to the variable x in the local environment τ or in the fields γh(o
′),

respectively. o′ is the identity of the active object corresponding to the current

closure. Rules (COND-TRUE) and (COND-FALSE) evaluate the boolean expression

and branch the execution to the different statements depending on the value from

the evaluation of boolean expression e. Rule (SYNC-CALL) addresses synchronous

method calls between two active objects. A synchronous call gives the control to the

callee after binding the values of actual parameters to the formal parameters and

forming a closure corresponding to the callee. The closure (τ0, s0), which represents

the environment and the statements of the called method, is placed on top of the

stack of closures. Rule (SYNC-RETURN) addresses the return from a synchronous

method call. We assume that return is always the last statement of a method

body. Therefore, the rule consists of obtaining the value v of the return expression

e, updating the variable which holds the return value on the caller side with v, and

removing the closure of the callee from the stack. Rule (NEW-ACTOB) creates a new

active object in the same actor by allocating an identity to the new active object

and extending the context γh with the fields of the active object.

Rule (READ-FUT) blocks the active object o until the expression e is resolved,

i.e., if e is evaluated to a future which is equal to ⊥ then the active object blocks.

Rule (NEW-ACTOR) creates a new actor o′ and sends the special event init

to it with the class name C and the values v obtained by evaluating the actual

parameters of the constructor. This event will initialize the actor with one active

object of type C with the parameters v. Rule (ASYNC-CALL) sends a method

invocation message to the actor o′ with the new future f , the method name m, and

the values v obtained by evaluating the expressions e of the actual parameters. The

rule updates γ to place the message in the queue of the target actor o′ and also to

extend the set of futures with f with the initial value ⊥.

Rule (SCHED-MSG) addresses the activation of idle objects of an actor. The

rule specifies scheduling a thread for the idle object o by binding an event from the

queue of the actor o′ to which the active object o belongs, and removing the event

from the queue. The q\m(v) removes the first occurrence of message m(v̄) from the

queue.

Operational Semantics 79

ASSIGN-LOCAL
v = valγ,τ (e)

γ, (o, t.(τ, x = e; s))

→ γ, (o, t.(τ [x← v], s))

(ASSIGN-FIELD)
o′ = τ(this) v = valγ,τ (e)

γ, (o, t.(τ, x = e; s))

→ γ[o′.x← v], (o, t.(τ, s))

(COND-FALSE)
valγ,τ (e) = False

γ, (o, t.(τ, if e then {s1} else {s2}; s))
→ γ, (o, t.(τ, s2; s))

(SYNC-CALL)
o′ = valγ,τ (e) v = valγ,τ (e)

(τ0, s0) = sync-call(o′,m, v)

γ, (o, t.(τ, x = e.m(e); s))

→ γ, (o, t.(τ, x =?; s).(τ0, s0))

(COND-TRUE)
valγ,τ (e) = True

γ, (o, t.(τ, if e then {s1} else {s2}; s))
→ γ, (o, t.(τ, s1; s))

(SYNC-RETURN)
v = valγ,τ (e)

γ, (o, t.(τ, x =?; s).(τ0, return e))→
γ, (o, t.(τ, x = v; s))

(READ-FUT)
valγ,τ (e) 6=⊥

γ, (o, t.(τ, e.get; s))

→ γ, (o, t.(τ, s))

(ASYNC-RETURN)
v = valγ,τ (e) f = τ(dest)

γ, (o, (τ, return e))

→ γ[f ← v, o.L← ∅], (o, ε)

(NEW-ACTOB)
o′ 6∈ dom(γh)

γ, (o, t.(τ, x = new C(e); s))→
γ[o′ ← init-act(o′, val(γ,τ)(e), γh(o.myactor))], (o, t.(τ [x← o′], s))

(NEW-ACTOR)
o′ 6∈ act-dom(γ) v = valγ,τ (e)

γ, (o, t.(τ, x = new actor C(e); s))→ γ[o′ ← init(C, v)], (o, t.(τ [x← o′], s))

(ASYNC-CALL)
f /∈ fut-dom(γ) v = valγ,τ (e) o′ = valγ,τ (e) γq(o

′) = q

γ, (o, t.(τ, x = e!m(e); s))→ γ[f ←⊥, o′ ← q.m(v, f)], (o, t.(τ, x = f ; s))

(SCHED-MSG)
o′ = γh(o.myactor)

γq(o
′) = q m(v) = select(γh(o.I), lock(γ, o′), q) (τ, s) = async-call(o,m, v)

γ, (o, ε)→ γ[o′ ← q\m(v), o.L← syncm(v)], (o, (τ, s))

Figure 5.2: Operational Semantics at the Local Level

80 Multi-Threaded Actors

The event selection mechanism is underspecified, provided that it respects the

temporal order of events in the queue that use the same synchronized data with

the same locks. For instance, suppose given events with the order m1, m2, m3,

m4 and m5 in the queue of an actor with the required set of pairs of lock and

data: {(l, v1)}, {(l’, v1)}, {(l, v1), (l, v2)}, {(l, v2)}, and {(l, v3)} for the events

respectively (Recall that each synchronized entry is a pair consisting of a data value

and a user-defined lock which is specified in the program by the sync<l> modifier

on the method parameters). The actor also contains more than one active object. If

event m1 is activated then event m2 can be scheduled in parallel since the required

lock for v1 is different. However, m3 cannot be scheduled unless m1 is terminated.

Event m4 also cannot be activated in parallel with m1, even though v2 is free, since

m3 which requires v2 precedes m4 in the queue. However m5 can be activated in

parallel with m1. The semantics of the select function is defined as follows:

select(I, L,m(v̄).q) =

{
m(v̄) in case L ∩ syncm(v̄) = ∅ ∧ Sg(m(v̄)) ∈ I
select(I, L ∪ syncm(v̄), q) otherwise

where L ⊆ Labels × Data and select(I, L, ε) =⊥ (where ⊥ stands for undefined).

The signature of selected method requires to be supported by the active object

type, I. The set of synchronized entries of the message, syncm(v̄), also requires

to be mutually disjoint with the union of synchronized entries of the actor and the

synchronized arguments of the messages preceding to the message in the queue. The

binding proceeds then by assigning the set of synchronized entries of the method

to the field L of the object. Lock(γ, o) =
⋃
{o′.L|γh(o′.myactor) = o} returns the

synchronized entries of the actor o, that is, the union of synchronized entries of its

objects, represented by field L of each object.

Rule (ASYNC-RETURN) evaluates the expression e and assigns the resulting

value v to the future f associated to the method call. The return statement belongs

to an asynchronous method invocation if there is only one closure in the thread stack

(i.e., the closure generated by (SCHED-MSG)). The set L of synchronized entries

associated to the invocation are also released by assigning ∅ to the field L of the

active object. Then the closure is removed and the active object o becomes idle.

Figure 5.3 gives the rules for the second level, the actor level. Rule (PROCESS-
UPDATE) specifies that if the domain of the heap remains the same then only the

current process is updated. Rule (PROCESS-CREATE), on the other hand, shows

that if the domain of the heap has been extended with a new active object o′ then

a new idle process p′′ for the active object o′ is introduced to the processes of the

actor.

Figure 5.4 gives the rules for the third level, the system level. Rule (ACTOR-
UPDATE) specifies that if the domain of γ remains the same then only the current

actor is updated. Rule (ACTOR-CREATE), on the other hand, shows that if the

domain of γ has been extended then a corresponding new actor configuration a′′ is

added to the system. Note that this actor is identified by the reference which has

Operational Semantics 81

been added to γ. This reference is also used to identify the initial active object of

the newly created actor.

(PROCESS-UPDATE)
γ, p→ γ′, p′

dom(γh) = dom(γh′)

γ, (o, P ∪ {p})→ γ′, (o, P ∪ {p′})

(PROCESS-CREATE)
γ, p→ γ′, p′

o′ ∈ dom(γh′)\dom(γh) p′′ = (o′, ε)

γ, (o, P ∪ {p})→ γ′, (o, P ∪ {p′, p′′})

Figure 5.3: Operational Semantics at the Actor Level

We have the following the description of the initial state for the operational

semantics in the local, actor, and system level respectively:

p0 = (, (τmain, smain)) a0 = (, {p}) A0 = {a}

The p0 represents a process with the context τmain for the main body and its state-

ment smain. The process is considered to be an active object with the anonymous

identity which is denoted by underscore. The a0 represents an anonymous actor

with the underscore identity in the system and the process p0 in the process set.

The gamma is initialized as the following,

γ[← {myactor ← }]

as the active object state for p0. Any object which is created in the main body is a

free object, an active object that belongs to the anonymous actor. All the objects

which are created by a free object are also free objects. The field myactor of all the

free objects is equal to underscore. The anonymous actor does not receive any event

as it has no identity in the program.

We conclude this section with the following basic operational property of syn-

chronized data:

Theorem 2. First, let Object(a) = {o | (o, t) ∈ P, for some process p} denote the

set of objects in a which contains the set processes P . For every configuration A

(ACTOR-UPDATE)
γ, a→ γ′, a′

act-dom(γ) = act-dom(γ′)

γ,A ∪ {a} → γ′, A ∪ {a′}

(ACTOR-CREATE)
γ, a→ γ′, a′ o ∈ act-dom(γ′)\act-dom(γ)
γ′q(o) = q.init(C, v) a′′ = (o, {(o, ε)})

γ,A ∪ {a} →
γ′[o← q, o← init-act(o, v, o)], A ∪ {a′, a′′}

Figure 5.4: Operational Semantics at the System Level

82 Multi-Threaded Actors

Table 5.1: The interface for group management

poolSize()
Returns the number of threads in the actor’s
pool of suspended threads.
groupSize()
Returns the number of internal actors in the
group.
groupThreadNumber()
Returns the number of threads (active and
suspended) in the group.

reachable from the initial configuration A0 we have o.L ∩ o′.L = ∅ for any o, o′ ∈
Object(a) (o 6= o′)

This invariant property follows immediately from the definition of the select

function. It expresses that at run-time there are no two distinct asynchronous

method invocations which require the same synchronized data.

5.5 Experimental Methodology and Implementa-

tion

In this section we present the implementation of the MAC in a widely used, main-

stream programming language, the Java language. The implementation has to take

into account the transparency of parallel computation from the user’s perspective

and the functions that are exposed by the abstract class. The outline of the imple-

mentation is presented in Listing 5.4.

As shown in the operational semantics in section 5.4, the default policy schedules

the idle objects non-deterministically. However, there is the possibility to overload

the policy using the runtime information to allow a preferential selection of the

active objects. Furthermore, the current selection method presented is minimal,

in the sense that it can be overloaded with different arguments to provide more

selection options based on application specific requirements.

To this aim, each new actor in a group is a subclass of class Group which provides

an interface S that can be used for specifying different scheduling policies (e.g.

addressing load balancing concerns). The internal actors can call the methods in S

synchronously. Table 5.1 describes the methods in the S.

5.5.1 Actor Abstract Class

The Java module creates an abstract class, Actor, that provides a runtime sys-

tem for queuing and activation of messages. It exposes two methods to the outside

Experimental Methodology and Implementation 83

world for interaction, namely send(Object message) and getNewWorker(Object... pa-

rameters). This layout is used to allow a clear separation between internal object

selection, message delivery and execution. This class is the mediator between the

outside applications and the active objects defined by the internal interface Ac-

tiveObject. These Active Objects will be assigned execution of the requests sent

to the actor. Our abstract class contains a queue of availableWorkers and a set

of busyWorkers separating those objects that are idle from those that have been

assigned a request. Parallel execution and control is ensured through a specific Java

Fork Join Pool mainExecutor that handles the invocations assigned to the inter-

nal objects and is optimized for small tasks executing in parallel. The class uses a

special queue, named messageQueue, that is independent of the thread execution.

It is used to store incoming messages and model the shared queue of the group.

This message queue is initialized with a comparator(ordering function) that selects

the first available message according to the rule (SCHED-MSG) specified in Section

5.4. To use this abstract class as a specific model, it needs to be extended by each

interface defined in our language in order to be initialized as an Actor.

The default behavior of the exposed method getNewWorker(Object... parame-

ters) is to select a worker from the availableWorkers queue. The workers are in-

serted in a first-in-first-out(FIFO) order with a blocking message delivery if there is

no available worker (i.e. the availableWorkers queue is empty). While the behavior

of this method is hidden from the user, it needs to be exposed such that the user

has a clear view of the selection, before sending a request.

An interesting observation here is that the Actor interface extends the Com-

parable such that once the abstract class is extended a specific or a natural or-

dering of the workers can be made in the queue. When overriding the getNew-

Worker(Object... parameters), additional arguments can be processed to offer an

ActorGroup with several types of Actors available for selection and concurrency

control. For this implementation example, our abstract class offers the signature

getNewWorker(Object... parameters) with a simple non-deterministic selection.

The second exposed function, send(Object message, Set<Object> data, takes the

first argument in the form of a lambda expression, that models the request. The

format of the lambda expression must be

() -> (getNewWorker()).m()

The second argument specifies a set of objects that the method m() needs to lock

and maintain data consistency on. Therefore when a request is made for a method

m() the runtime system must also select an Active Object from the availableWorkers

queue to be assigned the request, as well a set of data that needs concurrency control.

Execution is then forwarded to the mainExecutor which returns a Java Future to

the user for synchronization with the rest of the application outside the actor. The

selection of the ActiveObject is important to form the lambda expression that saves

the application from having a significant number of suspended threads if the set of

data that is required is locked.

84 Multi-Threaded Actors

The application outside of the Actor sends requests asynchronously and must

be free to continue execution regardless of the completion of the request. To this

end we provide the class Message illustrated in Listing 5.2 which creates an object

from the arguments of the send method and initializes a future from the lambda

expression.

Listing 5.2: Message Class in Java
import java.util.Set;

import java.util.concurrent.Callable;

import java.util.concurrent.ForkJoinTask;

import java.util.concurrent.atomic.AtomicInteger;

public class Message {

static final AtomicInteger queuePriority = new AtomicInteger(0);

String name;

Object lambdaExpression;

Set<Object> syncVariables;

ForkJoinTask<?> f;

AtomicInteger preemptPriority;

int priority = 0;

public Message(Object message, Set<Object> variables, String name) {
this.lambdaExpression = message;

this.syncVariables = variables;

this.name = name;

this.preemptPriority = new AtomicInteger(0);

priority = queuePriority.getAndAdd(1);

f = null;

if (message instanceof Runnable)

f = ForkJoinTask.adapt((Runnable) message);

if (message instanceof Callable<?>)

f = ForkJoinTask.adapt((Callable<?>) message);

}

public Message(Message m) {
this(m.lambdaExpression, m.syncVariables, m.name);

this.preemptPriority.set(m.preemptPriority.get());

}

@Override

public String toString() {
return name + ” ” + syncVariables + ” :< ” + priority + ”,”

+ preemptPriority + ” >”;

}
}

This class contains the specific parts of a message which are the lambdaExpres-

sion, the syncData on which the request need exclusive access and the Future f

which captures the result of the request. To maintain a temporal order on messages

synchronize on the same messages the class also contains a static field queuePriority

which determines a new message’s priority upon creation and insertion in the queue.

The Actor runs as a process that receives requests and runs them in paral-

lel while maintaining data-consistency throughout its lifetime. The abstraction is

data-oriented as it is a stateful object maintaining records of all the data that its

workers are processing. It contains a set of busyData specifying which objects are

Experimental Methodology and Implementation 85

currently locked by the running active objects. An internal method, named re-

portSynchronizedData is defined to determine if a set of data corresponding to a

possible candidate message for execution is intersecting with the current set of busy-

Data. This method is used as part of the comparator defined in the messageQueue

to order the messages based on their availability. The main process running the

Actor is then responsible to take the message at the head of the queue and schedule

it for execution and add the data locked by the message to the set of busyData. It

is possible that at some point during execution, all messages present in the mes-

sagesQueue are not able to execute due to their data being locked by the requests

that are currently executing. To ensure that our Actor does not busy-wait, we

forward all the messages into a lockedQueue such that the Actor thread suspends.

The Actor is a solution that makes parallel computation transparent to the user

through the internal class implementation of its worker actors. These objects are

synchronized and can undertake one assignment at a time. Each request may have

a set of synchronized variable to which it has exclusive access while executing. At

the end of the execution, the active object calls the freeWorker(ActiveObject worker,

Object ... data) method that removes itself from the busyWorkers set and becomes

available again by inserting itself in the availableWorkers queue. At this point,

the lockedQueue is flushed into the messageQueue such that all previously locked

messages may be checked as candidates for running again. All of the objects that

were locked by this ActiveObject are also passed to this method such that they

can be removed from the busyData set and possibly release existing messages in

the newly filled messageQueue for execution. This control flow is illustrated in an

example in the next section, however our motivation is to modify this module into

an API and use it as a basis for a compiler from the modeling language to Java.

5.5.2 Service Example and Analysis

Listing 5.3 shows the implementation of a Bank service as an Actor. As a default

behavior, whenever a new concrete extension of an Actor is made, the constructor

or the addWorkers method may create one or more instances of the internal Active

Object. The behavior of getNewWorker(Object... parameters) is overridden to en-

sure the return of a specific internal Active Object with exposed methods, in this

case the BankEmployee. This internal class implements the general Active Object

interface and exposes a few simple methods of a general Bank Service. The methods

withdraw, deposit, transfer and checkSavings all perform their respective operations

on one or more references of the internal class Account a reference which is made

available through the method createAccount. The MAC behavior is inherited from

the Actor and only the specific banking operations are implemented.

To test the functionality, as well as the performance of the MAC we implement a

simple scenario that creates a fixed number of users each operating on their own bank

account. We issue between 100 and 1 million requests distributed evenly over the

86 Multi-Threaded Actors

Listing 5.3: Bank Class in Java
public class Bank extends Actor {

public void addWorkers(int n){
for (int i = 0; i < n; i++) {

availableWorkers.add(new BankEmployee());
}

}

@Override
public BankEmployee getNewWorker(Object... parameters) {

BankEmployee selected worker = null;
try {

selected worker = (BankEmployee) availableWorkers.take();
busyWorkers.add(selected worker);

} catch (InterruptedException e) {
e.printStackTrace();

}
return selected worker;

}

class BankEmployee implements ActiveObject {

public Account createAccount() {
Account a = new Account();
Bank.this.freeWorker(this);
return a;

}

public boolean withdraw(Account n, int x) {
boolean b = n.withdraw(x);
Bank.this.freeWorker(this, n);
return b;

}

protected boolean deposit(Account n, int x) {
boolean b = n.deposit(x);
Bank.this.freeWorker(this, n);
return b;

}

public boolean transfer(Account n1, Account n2, int amount) {
boolean b = n1.transfer(n2, amount);
Bank.this.freeWorker(this, n1, n2);
return b;

}

public int checkSavings(Account n) {
int res = n.checkSavings();
Bank.this.freeWorker(this, n);
return res;

}

class Account {
//Acount processing methods

} } } }

fixed number of accounts. To ensure that some messages have to respect a temporal

order and forced await execution of prior requests on the same account we issue sets

of 10 calls for each account. This also ensures that the selection rule (SCHED-MSG)
does not become too large of a bottleneck as in the case of issuing all operations

for one bank account at a time. We measure the time taken to process the requests

based on a varying number of Active Objects inside in the Bank Service. The

performance figures for a MAC with 1,2 and 4 available Active Objects is presented

in Figure 5.5

The results validate our solution in the sense that the time:message ratio is

almost linear with very little overhead introduced by the message format and the

selection function. Furthermore the benefit of parallelism is maintained with the

increasing volume of request issued to the service. To emphasize this we computed

Conclusion and Future Work 87

Figure 5.5: Performance Times for processing 100-1M messages

Figure 5.6: Throughput for processing 1M messages

the throughput of the service in relation to the number of Active Objects running

and present it in Figure 5.6. From these results we can infer the scalability of the

MAC for parallel computation.

5.6 Conclusion and Future Work

In this chapter we have introduced the notion of multi-threaded actors, that is, an

actor-based programming abstraction which allows to model an actor as a group

of active objects which share a message queue. Encapsulation of the active objects

which share a queue can be obtained by simply not allowing active objects to be

passed around in asynchronous messages. Cooperative scheduling of the method

invocations within an active object (as described in for example [49]), can be ob-

tained by introduction of a lock for each active object. In general, synchronization

mechanisms between threads is an orthogonal issue and as such can be easily in-

tegrated, e.g., lock on objects, synchronized methods (with reentrance), or even

synchronization by the compatibility relationship between methods as defined in

[43] and [44]. Other extensions and variations describing dynamic group interfaces

can be considered along the lines of [50].

88 Multi-Threaded Actors

Future work will be dedicated toward the development of the compiler which

allows importing Java libraries, and further development of the runtime system, as

well as benchmarking on the performance. Other work of interest is to investigate

into dynamic interfaces for the multi-threaded actors and programming abstractions

for application-specific scheduling of multi-threaded actors.

Conclusion and Future Work 89

Listing 5.4: Actor Abstract Class in Java
public abstract class Actor implements Runnable {

protected ForkJoinPool mainExecutor;
protected PriorityBlockingQueue<Message> messageQueue;
protected ConcurrentLinkedQueue<Message> lockedQueue;
protected PriorityBlockingQueue<ActiveObject> availableWorkers;
protected Set<ActiveObject> busyWorkers;
protected Set<Object> busyData;

public Actor() {
//initialization of internal data structures

}

@Override
public void run() {

while (true) {
try {

Message message = messageQueue.take();
if (reportSynchronizedData(message.syncData)) {

synchronized (busyData) {
busyData.addAll(message.syncData);

}
mainExecutor.submit(message.f);

} else {
this.lockedQueue.offer(newM);

}
} catch (InterruptedException e) {

e.printStackTrace();
}

}}

// message format: ()−>getWorker().m()
public <V> Future<V> send(Object message, Set<Object> data) {

Message m = new Message(message, data, name);
messageQueue.put(m);
return (Future<V>) m.f;

}

public ActiveObject getNewWorker(Object... parameters) {
ActiveObject selected worker = null;

try {
selected worker = availableWorkers.take();
busyWorkers.add(selected worker);

} catch (InterruptedException e) {
e.printStackTrace();

}

return selected worker;
}

private boolean reportSynchronizedData(Set<Object> data) {
Set<Object> tempSet = new HashSet<Object>();

synchronized (busyData) {
tempSet.addAll(busyData);
tempSet.retainAll(data);

if (tempSet.isEmpty()) {
return true;

}
return false;

} }

protected void freeWorker(ActiveObject worker, Object... data) {

synchronized (busyData) {
busyWorkers.remove(worker);
availableWorkers.offer(worker);

messageQueue.addAll(lockedQueue);
lockedQueue.clear();

for (Object object : data) {
busyData.remove(object);

} } }

public interface ActiveObject extends Comparable<ActiveObject> {
// the active objects in charge of requests

}
}

90 Multi-Threaded Actors

