
Asynchronous Programming in the Abstract Behavioural Specification
Language
Azadbakht, K.

Citation
Azadbakht, K. (2019, December 11). Asynchronous Programming in the Abstract Behavioural
Specification Language. Retrieved from https://hdl.handle.net/1887/81818

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/81818

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/81818

Cover Page

The handle http://hdl.handle.net/1887/81818 holds various files of this Leiden University
dissertation.

Author: Azadbakht, K.
Title: Asynchronous Programming in the Abstract Behavioural Specification Language
Issue Date: 2019-12-11

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/81818
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 4

Futures for Streaming Data

4.1 Introduction

Since the rapid growth in big data, data streaming is widely used in many distributed

applications, e.g., telecommunications, event-monitoring and detection, and sensor

networks. Data streaming is a client/server pattern which, in essence, consists of

a continuous generation of data by the server and a sequential and incremental

processing of the data by the client. Data streams are naturally processed differently

from batch data. Functions cannot operate on data streams as a whole, as the

produced data can be unlimited. Hence, new programming abstractions are required

for the continuous generation and consumption of data in the streams.

Data streaming is highly relevant in modern distributed systems. Actor-based

languages are specifically designed for describing such systems [1]. They provide

an event-driven model of concurrency where messages are communicated asyn-

chronously and processed by pattern matching mechanism [7]. Concurrent objects

generalize this model to programming to interface discipline by modeling messages

as asynchronous method invocations. The main contribution of this chapter is to

integrate data streaming mechanism with concurrent object systems.

In this chapter, we extend the ABS language in order to support the streaming

of data between a server and its clients. We introduce “future-based data streams”

which integrates futures and data streams, and which specifies the return type of

so-called streaming methods. Upon invocation of such a method a new future is

created which holds a reference to the generated stream of data. Data items are

added to the stream by the execution of a yield statement. Such a statement takes

as parameter an expression the value of which is added to the stream, without

terminating the execution of the method. The return statement terminates the

execution of a streaming method, and is used to signal the end of data streaming.

Even though no new data is produced, the existing data values in the stream buffer

can be retrieved by the consumers.

The values generated by the server (the streaming method) can be obtained

37

38 Futures for Streaming Data

incrementally and sequentially by a client by querying the future corresponding to

this method invocation. By the nature of data streaming, it is natural to restrict

the streaming to the asynchronous method calls. Therefore there is no support for

synchronous invocation of streaming methods.

In this chapter, we introduce two different implementations of streams tailored

to different forms of parallel processing of data streams. Obtaining data from a

destructive stream involves the removal of the data, whereas in a non-destructive

stream the data persists. Which of the implementation is used is determined by the

caller of the streaming method (the creator of the stream) which is not necessarily

the consumer of the data stream. The creator can then provide the consumers with

a reference to the stream. Both the streaming method (producer) and the consumers

which hold a reference to the data stream are not exposed to the underlying imple-

mentation of the stream, i.e., these different implementations are not represented by

different types of data streams. This allows for a separation of concerns between the

generation and processing of data streams, on the one hand, and their orchestration,

on the other hand. This also enables reusability of the implementation of producers

and consumers for both consumption approaches.

A preliminary discussion of the overall idea underlying this chapter is given

in [11]. As an extension, in this chapter we introduce the different implementations

of data streams, an operational semantics for both implementations of streams,

a new type system which formalizes the integration of futures and data streams,

and a proof of type-safety. Further, we show how the basic mechanism in ABS of

cooperative scheduling of asynchronously generated method invocations itself can

be used to implement data streams and the cooperative scheduling of streaming

methods.

As a proof of concept, exploiting a prototype implementation for supporting

future-based data streams on top of ABS, we present the usage of the above-

mentioned feature in the implementation of a distributed application for the gener-

ation of distributed PA (chapter 2 and 3). The notion of data streaming abstracts

from the specific implementation of ABS. In our case, we make use of the distributed

Haskell backend of ABS [20] for the case study on future-based data streams reported

in this chapter.

The overall contribution of this chapter is a formal model of streaming data in

the ABS language, which fully complies and generalizes the asynchronous model of

computation underlying the ABS language. Since ABS is defined in terms of a formal

operational semantics which supports a variety of formal analysis techniques (e.g.,

deadlock detection [39] and [14]), we thus obtain a general formal framework for

the modeling and analysis of different programming techniques for processing data

streams, e.g., map-reduce and publish-subscribe [34]. To the best of our knowledge,

our work provides a first formal type system and operational semantics for a general

notion of streaming data in a high-level actor-based programming language.

Future-Based Data Streams 39

Plan of the chapter This chapter is organized as follows: the notion of a future-

based data stream is specified as an extension of ABS in Section 4.2. In section 4.3,

it is shown that the well-typedness of a program in the extended ABS is preserved.

Section 4.4 discusses the usage of streams in a distributed setting. In section 4.5, an

implementation of data streams is given as an API written in ABS. In Section 4.6,

a case study on social network simulation is discussed, which uses the proposed

notion of streams. Related works are discussed in section 4.7. Finally we conclude

in section 4.8.

4.2 Future-Based Data Streams

In this section, we define future-based data streaming in the context of the ABS

language. A streaming method is statically typed, namely, the return type of the

method is followed by the keyword stream, specifying that the method streams

values of that type. As mentioned before, ABS features a programming to inter-

faces discipline. Therefore the caller can asynchronously call a streaming method,

provided that the interface of the callee includes the method definition.

Data streaming is defined as a stream of return values from a callee to the data

consumers of the stream in an asynchronous fashion. An invocation of a streaming

method creates a stream. The callee first create an empty stream, and then produces

and stores data to the stream buffer via the yield statement. The caller assigns

the invocation to a variable of type Stream<T> for the return type T stream of

the callee. The stream variable can be passed around. Therefore different variables

in multiple processes (a process is the execution of an asynchronous method call)

may refer to the same stream and retrieve data from it.

We distinguish between two different kinds of streams: destructive and non-

destructive streams. The kind of stream is determined by the caller upon the invo-

cation of the streaming method. In destructive streams, values are retrieved from a

FIFO queue which stores the data produced but not yet consumed. Querying avail-

ability of data values in an empty queue gives rise to a cooperative release of control

(further discussed below). Also an attempt to take a value from a stream where the

callee is terminated (and thus no further data streaming will take place) gives rise

to the execution of a block of statements specified by programmer for this reason,

thus avoiding the generation of a corresponding error (see below). Parallel processes

which have access to the same destructive stream compete for the different data

items produced. Consequently, the parallel processing of destructive data streams

gives rise to race conditions, in the sense that different order of requests to read from

a stream may correspondingly give rise to different data values. Note that at most

one process can destructively read a specific data value. On the other hand, a non-

destructive stream allows complete sharing of all the data produced which are only

read to be processed. As described in more detail below, non-destructive streams

maintain access by means of cursors at different positions of the buffer which allows

40 Futures for Streaming Data

for its asynchronous parallel processing.

Abstracting from the typing information, to be discussed in more detail below,

the syntax of our proposed extension of ABS, i.e., that of future-based data streams,

is specified in Figure 4.1, where e denotes an expression (i.e., a variable name, etc),

e denotes a sequence of expressions, x is a variable name, m is a method name, and

s denotes a sequence of statements.

s ::= s; s | x = [nd] e!m(e) | yield e | return | suspend |
await e? finished {s} | x = e.get finished {s}

Figure 4.1: Syntax

In the asynchronous invocation x = [nd] e!m(e) of a streaming method, the

optional keyword nd indicates the creation of a new non-destructive stream.

Execution of the yield statement, which can only be used in the body of a

streaming method, consist of queuing the value of the specified expression.

Execution of the return statement by a streaming method indicates termina-

tion of the data generation which is signaled to the consumers of the stream by

queuing the special value η.

The active process unconditionally releases control by suspend. The object is

then idle and can activate a suspended process. The await-finished statement

allows to check the buffer of the stream denoted by the expression e in the following

manner: if there is at least one proper value, different from the signal η, in the buffer,

the statement is skipped. In case the buffer is empty, the current process suspends

such that the object can activate another process. The statement s is executed in

case the buffer only contains the signal η.

The get-finished statement allows to actually retrieve (in case of a destruc-

tive stream) or read (in case of a non-destructive stream) a next data value. It

however blocks the whole object when the buffer is empty. As above, statement s is

executed when the buffer only contains the signal η.

In await-finished and get-finished, the keyword finished and its

following block can be omitted if the block is empty.

We next illustrate the difference in the behaviour of destructive and non-destructive

access to a stream by the following simple toy example. Consider the streaming

method m():

Int stream m() {
yield 1; yield 2; return;

}

This method adds 1 and 2, followed by a termination token to the resulting stream

buffer.

Future-Based Data Streams 41

The following snippet asynchronously calls the above method definition m()
on some object o which gives rise to two references r1 and r2 to the resulting

destructive stream.

Stream<Int> r1 = o!m();
Stream<Int> r2 = r1;

The following code uses the above references, with the assumption that it is the

only process that consumes data items of the stream:

Int x, y, z;
(1) Int x = r1.get finished {x = -1};
(2) Int y = r2.get finished {y = -1};
(3) Int z = r1.get finished {z = -1};

Once the process corresponding to the method call m() on (possibly remote)

object o is executed and the results are provided to the stream, the values 1, 2,

and −1 are assigned to x, y and z, respectively. These values are consumed

from the stream and assigned to the variables incrementally as soon as they are

provided by m(). In the above code, the object possibly blocks on any of the three

statements, if a value (whether an integer or the terminating token) is not yielded

to the stream yet. The statement (1) destructively reads 1 from the stream via

r1 and assigns it to x. The statement (2) destructively reads 2 from the same

stream via the other reference r2 and assigns it to y. However, the statement (3)
runs the finished statement which assigns −1 to z, since it reads the terminating

token (i.e., the stream is already terminated). Any further get operations on every

variable referring to the stream also read the terminating token.

To show how a non-destructive stream works in the same setting, suppose we

use the following references r1 and r2 in the above code (note that the keyword

nd denotes that the resulting stream is non-destructive).

Stream<Int> r1 = nd o!m();
Stream<Int> r2 = r1;

With the same incremental production of values and blocking mechanism, in

this setting the values 1, 1, and 2 are assigned to x, y and z, respectively. The

statement (1) non-destructively reads 1 from the stream via r1 and assigns it to

x. The statement (2) non-destructively reads 1 from the same stream via the other

reference r2 (with its own cursor to the stream) and assigns it to y. Finally, the

statement (3) assigns 2 to z, since the cursor of r1 is already moved forward by

statement (1). Note that any number of further get operations on r1 will read the

terminating token. It is important to observe the role of cursors per each stream

variable that gives rise to such behaviour.

Note that the assignment of a non-destructive reference (r2 = r1) is different

from the standard ABS assignment in the sense that, in addition to the assignment

of the reference to stream, it also assigns the cursor. Based on this design, the

42 Futures for Streaming Data

copying is required as each stream variable represents a new access to the stream to

all data values from the position its cursor denotes.

4.2.1 Design Decisions

Integration of streams with ABS, where we enjoy the advantages of both, roots in the

ever-growing application of data streaming in different domains. The consumption

approaches of the stream (i.e., destructive or non-destructive) are not fixed in the

streams in form of different data types. Instead, the creator of the stream determines

the consumption approach of the stream instance, in order to maintain generality.

Note that the creator of the stream is not necessarily the consumer of the stream, and

by design, it can be considered as part of the producer process (e.g., using factory

method design pattern) that forces one of the above consumption approaches to the

consumers.

We support both destructive and non-destructive data streams, as they can be

naturally used to implement, respectively, one-of-n semantics (only one consumer

reads a given data as in, e.g., data parallelism model), and one-to-n message delivery

(a given data can be read by all such consumers as in, e.g., one-to-many trainer and

learners and publish/subscribe model). Also integration of data streaming and coop-

erative scheduling enables enhancing concurrency and parallelism on the consumer

side.

Note that the above two approaches allow for designing a third hybrid consump-

tion approach where, at the intra-object level, every access to the stream buffer

is via an object field (shared variable), and at the inter-object level, the cursor is

copied (i.e., via passing parameters in method invocations).

4.2.2 Example of Destructive Streams

The code example in Figure 4.2 illustrates the use of ABS destructive data streams

in modeling a parallel map-reduce processing of a data stream. The mapping step

maps each streamed data value of type T to a data value of type Int, and the

reduction step calculates the average of those integers.

An ABS program is a set of interface and class definitions, followed by the main

block of the program, which is an anonymous block at the end of the program.

The main block is the initial run-time process (similar to public static void
main in java). Each class implements at least one interface. The type of a ref-

erence variable to an object can only be an interface, and the object must be an

instance of a class that implements the interface. Every object instance is an active

object, namely, it features a dedicated thread of control, and can have (at most)

one active process among its processes. Each process of an object is initiated by an

asynchronous call of a method of the object.

Future-Based Data Streams 43

interface IMapper<T> { class Producer implements IProd<T>

Int stream map(Stream<T> s); {

} T stream streamer() {

// yields a seq of data of type T

interface IReducer<T> { return;

Pair<Int, Int> reduce(Stream<T> s); }

} }

interface IPar<T> { class Par implements IPar<T> {

Int start(Stream<T> s, Int num); Int start(Stream<T> s, Int num) {

} Int m = 1;

interface IProd<T> { Int sum = 0, avg = 0, count = 0;

T stream streamer(); List<Fut<Pair<Int, Int>>> l = Nil;

} while(m<=num) {

class Mapper() IMapper<T> p = new Mapper();

implements IMapper<T> { Stream<Int> s2 = p!map(s);

Int stream map(Stream<T> s) { IReducer<T> q = new Reducer();

Bool last = False; l = Cons(q ! reduce(s2), l);

while(last==False){ m=m+1;

T v = s.get finished {last=True}; }

if (last == False) { while (l != Nil) {

yield v.value(); Pair<Int,Int> pair = head(l).get;

} case (pair) {

} Pair(a, b) => {

return; sum = sum + a;

} count = count + b;

} }

class Reducer() }

implements IReducer<T> { l = tail(l);

Pair<Int, Int> reduce(Stream<Int> s) }

{ if (count > 0) return sum / count;

Bool last = False; else return 0;

Int count = 0; }

while(last==False){ }

Int v = s.get {// Main block

finished {last=True}; IProd<T> producer = new Producer();

if (last == False){ Stream<T> s = producer ! streamer();

count = count + 1; IPar<T> par = new Par();

sum = sum + v; Int average = par.start(s, 4);

} }

}

return Pair(sum, count);

}

}

Figure 4.2: Parallel data processing based on Map-Reduce data model

44 Futures for Streaming Data

The program is composed of four interfaces: IProd types a class with a stream-

ing method to stream the data values of type T to be processed. The interface

IPar types a class for spawning multiple chains of active objects for map-reduce

processing. Each chain is a pipeline processing of the data values retrieved from the

stream which is shared among the chains. The interfaces IMapper and IReducer
type the objects that form a pipeline chain. These interfaces are implemented by

four classes Producer, Par, Mapper and Reducer, respectively. The above defi-

nitions are followed by the main block of the program. As shown in the main block,

the general idea is that the data values of the stream s will be processed in parallel

by num computationally identical pipelines, and the aggregated result, which is the

average of those values, is returned as the final result. Runtime control and data

flow of the example are also illustrated in Figure 4.3, where each thread represents

a process created by an asynchronous method call.

Figure 4.3: Control and data flow

The asynchronous invocation of method streamer on producer in the main

block returns a reference s to a stream. The method start provided by IPar<T>
enables parallel processing of the stream by creating multiple chains (num) of two

active objects of type IMapper<T> and IReducer<T>, where the former retrieves

values from s, and yields a mapped value of type integer to an intermediate stream

s2, and the latter consumes those integers from s2 and reduces them to a pair which

is the sum and the count of those integers processed by one chain. The futures

Future-Based Data Streams 45

of the pairs resulting from calling reduce in different chains are stored in list l.

The elements of the list are then used as a synchronization means, namely, awaiting

until each process resolves the corresponding future by providing the return value.

Finally the average is calculated by the start from the reduced pairs.

Similar to parallel map-reduce transformations on streams in languages like

Scala, the following pseudo-code can be used as a simplified abstract replacement

for the code in 4.2:

s.par(num).map(_.value).average();

where a sequence of transformation methods (e.g., map and filter) followed by a

reduce method (e.g., count and average) can be executed in parallel by num threads

(modeled by active objects) on stream s.

Note that our implementation utilizes two ways of parallelism: 1) horizontal

parallelism, which is achieved by creating multiple chains of active objects, e.g., pi
and qi and intermediate streams si in Figure 4.3, and 2) vertical parallelism, which

is achieved by pipeline processing, e.g., the process map in pi that yields values to si
runs in parallel with reduce in qi that consumes the values immediately upon their

availability.

4.2.3 Example of Non-Destructive Streams

In the example specified in Fig. 4.4, we represent a basic means of publish/subscribe

communication via non-destructive streams in a social network such as Twitter. An

object of class Member denotes a member in the network that can follow and be

followed by multiple members. The main idea is to implement each member object

such that: 1) it can follow multiple members by reading their stream of posts 2)

its stream of posts can be read by multiple members that follow the member 3) it

can post new items to its stream. The object naturally needs to interleave these

tasks. To this aim, each member is modeled as an actor with a process to post new

items to its stream (share), a set of processes one per each member it follows, in

order to read their streams (follow), and a set of processes from other members

that request to follow the member (request). These processes can be interleaved

by the ABS cooperative scheduling. The active process can cooperatively release

control conditionally, e.g., the await statement in follow which checks whether

there is no new post to be read from a specific member, or unconditionally, e.g., the

suspend in share after posting a new item gives rise to unconditional release of

control. In both cases, other processes of the member object can be activated.

The method follow sends a request to a member denoted by the argument p.

The data (i.e., posts) can be retrieved from the resulting stream r of the member p
by the current member. In other words, the current member object follows object p.

Further, a followed member returns a reference to the same data stream for all the

followers, denoted by r in the the class Member. Each follower uses its corresponding

46 Futures for Streaming Data

cursor to read from the stream belonging to the followed member. Note the difference

between the return types of share and request. The former is a streaming

method that creates and populates a stream, and can only be called asynchronously

with the return type Stream<Post>, whereas the latter is a non-streaming method

that returns a reference to an existing stream, and returns Stream<Post> or

Fut<Stream<Post>>, respectively, depending on being called synchronously or

asynchronously.

interface IMem { Unit follow(IMem p) {

Unit run(); Fut<Stream<Post>> f =

Unit follow(IMem p); p ! request();

Stream<Post> request(); await f?;

} Stream<Post> r = f.get;

Bool last = False;

class Member implements IMem while(last = False) {

{ await r? finished

Stream<Post> r; {

// r is a stream of //probably p left!

// posts for followers last = true;

}

Unit run() { Post post = r.get;

if (r == null) // consume post

r = nd this!share(); }

} }

Post stream share() { Stream<Post> request() {

Post post; // accept as a follower

while(True) { return r;

// Next post is ready }

yield post; }

suspend;

}

return;

}

Figure 4.4: Parallel data processing based on publish/subscribe pattern

By await statement, a follow process queries the availability of the next post

that is new from the perspective of the non-destructive stream variable r, denoted

by the variable cursor. If the new post is available it is retrieved and consumed.

Otherwise the process is suspended so that another enabled process is activated.

As such, the member receives posts from all the members it follows, processes the

Future-Based Data Streams 47

follow requests of other members, and posts new data. The stream corresponding

to a followed member can signal the termination. In such case, the follow process

in the follower object which corresponds to a followed member terminates after

retrieving the remaining posts, as the finished block of the await statement falsifies

the loop condition. The process that instantiates a new member (not mentioned

here) also initiates the member by calling the run which itself calls the share
method which returns a new stream and continuously adds new posts to it.

4.2.4 Type System

The ABS type system is presented in [48]. An extension of the type system is

specified below using the same notation, which types the streams and the statements

that use them (Figure 4.5). A typing context Γ is a mapping from names to types,

where the names can be variables, constants and method names. A type lookup is

denoted by Γ(x), which returns the type of the name x. By Γ[x 7→ T] we denote

the update of Γ such that the type of x is set to T . Then Γ[x 7→ T](x) = T and

Γ[x 7→ T](y) = Γ(y) if x 6= y. An over-lined e denotes a sequence of syntactic

entities e.

The basic idea underlying the typing rules regarding streams in Figure 4.5 is

that the type stream〈T 〉 of streams of data items of type T itself cannot be defined

as a subtype of fut〈T 〉, since for a future variable x, a query x? gives rise to a

Boolean guard whereas for a stream variable x, the query x? is not a Boolean guard

because it not only checks whether the stream is empty or not but also whether it

has terminated. On the other hand, the type fut〈T 〉 of futures that refer to return

values of type T itself can be defined as a sub-type of stream〈T 〉 (as specified by

the rule T-FutureStream), where the stream buffer is either empty (denoted by a

sentinel ⊥) or contains an infinite sequence of the particular return value. For such

streams the finished statement never executes, as there is no termination token.

Note also that for such infinite streams there is no difference between destructive or

non-destructive reads.

We proceed with a brief explanation of the typing rules. A streaming method

is well-typed by T-StreamMethod, if its body s is well-typed in the typing context

extended by the parameters, local variables, and the return stream. The destiny

variable in ABS is a local variable which holds a reference to the return stream (or

future). A regular (non-streaming) method is similarly well-typed by T-Method in

core ABS.

By T-AsyncCall, an asynchronous method call to a non-streaming method has

type fut〈T 〉, if its corresponding synchronous call has type T . Whereas by T-AsyncStream

the type of an asynchronous call of a streaming method is of type stream〈T 〉, if the

interface T ′ of the callee includes the streaming method. As in ABS, by T-SyncCall,

a call to a method m has type T if its actual parameters have types T and the sig-

nature T → T matches a signature for m in the known interface of the callee (given

48 Futures for Streaming Data

by an auxiliary function match). The rule does not allow synchronous call on a

streaming method (note the difference between how the function match is used in

T-AsyncStream and T-SyncCall).

The yield statement is well-typed in a streaming method by T-Yield, if the

type of e is T and the enclosing method is a streaming method of type T . return
statement without parameter is only used in a streaming method to signal the

termination of streaming and the method, and is well-typed by T-ReturnStream.

The T-Return forces that the expression e of the return statement in a non-

streaming method is of type T , the return type of the enclosing method.

The await-finished is well-typed by T-AwaitStream, if a stream of some

type T is awaited and if the statement s is also well-typed. It is not difficult to see

how the statement get-finished is well-typed by T-GetStream.

(T-FutureStream)

Γ ` e : fut〈T 〉 T 4 T ′

Γ ` e : stream〈T ′〉

(T-Method)

Γ′ = Γ[x 7→ T , x′ 7→ T ′]

Γ′[destiny 7→ fut〈T ′′〉] ` s
Γ ` T ′′ m (T x){T ′ x′; s}

(T-StreamMethod)

Γ′ = Γ[x 7→ T , x′ 7→ T ′]

Γ′[destiny 7→ stream〈T ′′〉] ` s
Γ ` T ′′ stream m(T x) {T ′ x′; s}

(T-ReturnStream)

Γ(destiny) = stream〈T 〉
Γ ` return

(T-AsyncCall)

Γ ` e.m(e) : T

Γ ` e!m(e) : fut〈T 〉

(T-SyncCall)

Γ ` e : T ′ Γ ` e : T

match(m,T → T, T ′)

Γ ` e.m(e) : T

(T-Return)

Γ ` e : T

Γ(destiny) = fut〈T 〉
Γ ` return e

(T-AsyncStream)

Γ ` e : T ′ Γ ` e : T

match(m,T → T stream, T ′)

Γ ` [nd] e!m(e) : stream〈T 〉

(T-Yield)

Γ ` e : T Γ(destiny) = stream〈T 〉
Γ ` yield e

(T-AwaitStream)

Γ ` e : stream〈T 〉 Γ ` s
Γ ` await e? finished {s}

(T-GetStream)

Γ ` e : stream〈T 〉 Γ ` s Γ ` x : T

Γ ` x = e.get finished {s}

Figure 4.5: Type system

4.2.5 Operational Semantics

The operational semantics of the proposed extension is presented below as a tran-

sition system in SOS style [61]. First we extend the ABS run-time configuration

and then present those rules in the transition system that involve destructive and

non-destructive streams.

Future-Based Data Streams 49

Runtime Configuration

The runtime syntax of ABS is extended by the notion of stream is illustrated in Fig-

ure 4.6. Configurations cn consist of objects (object), invocation messages (invoc),

futures (fut), and data streams (stream). The commutative and associative compo-

sition operator on configurations is denoted by whitespace. The empty configuration

is denoted by ε.

cn ::= ε | fut | stream |
object | invoc | cn cn

object ::= ob(o, a, p, q)

fut ::= fut(f, value)

stream ::= stream(f, u)

process ::= {a | s} | error
q ::= ε | process | q q

invoc ::= invoc(o, f,m, v)

p ::= process | idle
a ::= T x v | a, a

value ::= v | ⊥
u ::= u.u | v | η | ⊥
v ::= o | f | t | (f, n)

Figure 4.6: Runtime configuration

The term ob(o, a, p, q) represents an object where o is the object identifier, a as-

signs values to the object’s fields, p is an active process (or idle), and q represents

a set of suspended processes.

The term invoc(o, f,m, v) represents an invocation message, where o is the callee

object, f is the identifier of a rendezvous for the return value(s) of the method

invocation which can be a stream or a future, depending on the invoked method

being a streaming method or not, m is the name of the invoked method, and v are

its arguments.

A process {a | s} consists of an assignment a of values to the local variables,

and a statement s. A process results from the activation of a method invocation in

a callee with actual parameters, and an associated future or stream. An error is

a process where the binding of such method invocation does not succeed.

A future is represented by fut(f, value), where f is the future identifier and value

denotes its current value which can either be the actual value returned or ⊥ which

denotes the absence of a return value.

Both destructive and non-destructive streams are semantically represented by

stream(f, u), where f is the stream identifier, and u denotes its buffer. Nevertheless,

the stream variables referring to destructive streams just hold the stream id, whereas

the value of a stream variable referring to a non-destructive stream is a pair (f, n),

where n denotes the associated position in the stream.

The buffer u is a FIFO queue, which contains a sequence of values v, and a

special symbol, either ⊥ which is a sentinel denoting end of buffer, or η which

denotes termination of streaming. The ⊥ is replaced by η after adding the last valid

50 Futures for Streaming Data

value to the queue when the streaming method terminates. The u = v.u′ denotes

the head v of the queue u, and its tail u′. In u′ = u.v, enqueuing the value v to the

end of the queue u forms the updated queue u′. The auxiliary function elem(u, n)

returns the content at the position n of the sequence u starting from 0.

A value v can be an object identifier, a future or stream identifier, a term t which

is a value of a primitive type, or a pair (f, n) which is a value of a variable referring

to a non-destructive stream.

Note that all the identifiers in a configuration are unique and terminal: o is used

for object, and f both for future and stream identifiers.

The rules of Figure 4.8 and 4.9 operate on the elementary configurations. To

have the rules to apply to full configurations, we need the following rule as well:

cn′ → cn′′

cn cn′ → cn cn′′

We also use the reduction system proposed in the ABS formal model to evaluate

expressions, e.g., f = [[e]]cna◦l in the active process of ob(o, a, {l|s}, q) holds if the ex-

pression e evaluates to the stream identifier f , in an assignment composed of a and l,

where the configuration cn ob(o, a, {l|s}, q) is given, and cn contains stream(f , u).

By definition, a ◦ l(x) = l(x) if x ∈ dom(l) or a ◦ l(x) = a(x) otherwise.

The following rule Async-Call represents asynchronous method invocation in

core ABS extended with a check that it is not a streaming method:

(Async-Call)

o′ = [[e]](a◦l) v = [[e]](a◦l) fresh(f) ¬streamer(o′.m(v))

ob(o, a, {l|x = e!m(e); s}, q)
→ ob(o, a, {l|x = f ; s}, q) invoc(o′, f,m, v) fut(f,⊥)

where it sends an invocation message to object o′ with the method name m, the

future f and the actual parameters v. The return value of f is undefined (i.e., ⊥).

Note that, based on Figure 4.6, the definition of v also includes the values f and (f, n)

for destructive and non-destructive streams in the extended semantics. Therefore

streams can be passed as actual parameters and assigned to formal parameters.

Also for the chapter to be self-contained, the following rules from the core ABS

[48] are mentioned. Rules Assign-Local and Assign-Field assign value of expression

e to the variable in, respectively, environment l for local variables or environment

a for fields of object a. Rule Suspend suspends the active process unconditionally.

Rule Activate activates a process p that is ready to execute for the idle object o

from the set q of its suspended processes.

Future-Based Data Streams 51

(Assign-Local)

x ∈ dom(l) v = [[e]](a◦l)
ob(o, a, {l|x = e; s}, q)
→ ob(o, a, {l[x 7→ v]|s}, q)

(Assign-Field)

x ∈ dom(a) v = [[e]](a◦l)
ob(o, a, {l|x = e; s}, q)
→ ob(o, a[x 7→ v], {l|s}, q)

(Suspend)

ob(o, a, {l|suspend; s}, q)
→ ob(o, a, idle, q ∪ {l|s})

(Activate)

p = select(q, a)

ob(o, a, idle, q)→ ob(o, a, p, q\p)

The auxiliary method select(q, a, l) selects the ready process by ensuring the

process will not be immediately re-suspended based on the states of a and l. Note

that we abstract from the notion of the ABS concurrent object group cog in the

rule. Also dom(a) denotes the set of variables in the environment a.

In the rest of this section, we present the semantic rules of the extended ABS,

where a data stream is involved. Given in Figure 4.7, the rules for the callee side,

which only write to the stream, are independent from how the stream is read (i.e.,

destructively or non-destructively). In the rule Yield, the active process, which is a

streaming method, enqueues the value v to the buffer of the stream f , followed by

the sentinel ⊥. The rule ReturnStream enqueues the value η to the buffer of the

stream f , which is a token denoting termination of streaming values in the buffer.

(Yield)

v = [[e]]cna◦l l(destiny) = f
ob(o, a, {l|yield e; s}, q) stream(f, u.⊥)
→ ob(o, a, {l|s}, q) stream(f, u.v.⊥)

(ReturnStream)

l(destiny) = f
ob(o, a, {l|return; s}, q) stream(f, u.⊥)
→ ob(o, a,idle, q) stream(f, u.η)

Figure 4.7: Operational semantics of streams on the callee side

In the following, the rules for destructive and non-destructive access to the data

stream are given. Note that the D and ND are prefixed to the rule names, which

stand for the destructive and non-destructive streams, respectively.

Semantics of Destructive Streams

In the rule D-AsyncCall, the object o calls asynchronously a streaming method m

with arguments v on object o′. The return stream is destructive with the fresh iden-

52 Futures for Streaming Data

tifier f as the access mode to the return stream of a streaming method is destructive

by default. We also use two auxiliary functions in this rule as follows: the function

streamer(o.m(v)) checks if the method m(v) of the object o is a streaming method.

The function fresh(f) guarantees that the newly introduced name f is not already

used in the system.

(D-AsyncCall)

o′ = [[e]]cna◦l v = [[e]]cna◦l fresh(f) streamer(o′.m(v))
ob(o, a, {l|x = e!m(e); s}, q)→

ob(o, a, {l|x = f ; s}, q) invoc(o′, f,m, v) stream(f,⊥)

(D-AwaitTrue)

f = [[e]]cna◦l
ob(o, a, {l|await e? finished {s1}; s2}, q) stream(f, v.u)→

ob(o, a, {l|s2}, q) stream(f, v.u)

(D-AwaitFalse)

f = [[e]]cna◦l
ob(o, a, {l|await e? finished {s1}; s2}, q) stream(f,⊥)→

ob(o, a, {l|suspend;await e? finished {s1}; s2}, q) stream(f,⊥)

(D-AwaitTerminate)

f = [[e]]cna◦l
ob(o, a, {l|await e? finished {s1}; s2}, q) stream(f, η)→

ob(o, a, {l|s1; s2}, q) stream(f, η)

(D-GetTrue)

f = [[e]]cna◦l
ob(o, a, {l|x = e.get finished {s1}; s2}, q) stream(f, v.u)→

ob(o, a, {l|x = v; s2}, q) stream(f, u)

(D-GetTerminate)

f = [[e]]cna◦l
ob(o, a, {l|x = e.get finished {s1}; s2}, q) stream(f, η)→

ob(o, a, {l|s1; s2}, q) stream(f, η)

Figure 4.8: Operational semantics of destructive streams

The await statement in rule D-AwaitTrue is skipped as there exists a data value

v in the buffer. By rule D-AwaitFalse, the process querying the empty (but not-yet-

terminated) stream f will be suspended. To this aim, the statement suspend for

unconditional suspension is added to the beginning of the sequence of the statements

of the process. According to the standard ABS, the suspend then suspends the

Future-Based Data Streams 53

active process, namely, it adds the process to q, where the active object is idle

and ready to activate a suspended process from q. In rule D-AwaitTerminate, the

finished block s1 of the statement is selected for execution, since the streaming is

terminated, i.e., the head of the buffer of the stream f is equal to the terminating

token η.

The rule D-GetTrue assigns the value v from the head of the stream buffer to the

variable x destructively, i.e., v is removed from the buffer. By D-GetTerminate, the

finished block s1 of the statement is executed followed by s2, as the terminating

token is observed at the head of the buffer. Note that the state of x remains the

same. There is no rule for the get-finished statement when the buffer is empty

which implies that the active process (and the object) is blocked until the buffer

contains an element.

Semantics of Non-Destructive Streams

The operational semantics of ABS for those rules that involve non-destructive future-

based streams is given in Fig. 4.9. In ND-AsyncCall, an asynchronous call to a

streaming method m in o′ is given with the actual parameters v, that results in a

reference to a non-destructive stream. The keyword nd denotes the non-destructive

access to the resulting stream. Therefore, the return reference to the newly created

stream with identifier f is a pair of f and a cursor which is initialized to 0, denoting

the first position in the buffer which is initially ⊥.

Note that by the before-mentioned Assign-Local and Assign-Field, an assignment

x = y, where the variable y referring to a non-destructive stream f (i.e., (f, n) =

[[y]]cna◦l), the variable x also refers to the same stream and the cursor of x is initialized

to the same position in the buffer as the one of y (i.e., (f, n) = [[x]]cna◦l as well).

The await statement in rule ND-AwaitTrue is skipped because there is a value v

(which is not η) in the buffer of the stream f at the position determined by the cursor

of x. By rule ND-AwaitFalse, the process querying the stream f will be suspended

since the cursor of f denotes the empty position in the buffer (denoted by ⊥). By

the semantics, it is not difficult to see that this position will contain either a value

v or the termination token η. By the rule ND-AwaitTerminate, the finished block

s1 is selected for execution, as the cursor of f points at a position which contains η.

The rule ND-GetTrue assigns to the variable x the value v (which is not η) in the

stream buffer from the position determined by the cursor of y, and increments the

cursor. By ND-GetTerminate, the finished block s1 of the statement is selected

for execution followed by s2, as the cursor of variable y points at the terminating

token η in the buffer. Note that the state of x and the cursor are not modified.

There is no rule for the get-finished statement when the cursor denotes the

empty position in the buffer (i.e., ⊥) which implies that the active process (and the

object) is blocked.

54 Futures for Streaming Data

(ND-AsyncCall)

o′ = [[e]]a◦l v = [[e]]a◦l
fresh(f) streamer(o′.m(v))

ob(o, a, {l|x = nd e!m(e); s}, q)
→ ob(o, a, {l|x = (f, 0); s}, q) invoc(o′, f,m, v) stream(f,⊥)

(ND-AwaitTrue)

(f, n) = [[x]]cna◦l v = elem(u, n)
ob(o, a, {l|await x? finished {s1}; s2}, q) stream(f, u)

→ ob(o, a, {l|s2}, q) stream(f, u)

(ND-AwaitFalse)

(f, n) = [[x]]cna◦l ⊥ = elem(u, n)
ob(o, a, {l|await x? finished {s1}; s2}, q) stream(f, u)
→ ob(o, a, {l|suspend;await x? finished {s1}; s2}, q)

stream(f, u)

(ND-AwaitTerminate)

(f, n) = [[x]]cna◦l η = elem(u, n)
ob(o, a, {l|await x? finished {s1}; s2}, q) stream(f, u)

→ ob(o, a, {l|s1; s2}, q) stream(f, u)

(ND-GetTrue)

(f, n) = [[y]]cna◦l v = elem(u, n)
ob(o, a, {l|x = y.get finished {s1}; s2}, q) stream(f, u)
→ ob(o, a, {l|x = v; y = (f, n+ 1); s2}, q) stream(f, u)

(ND-GetTerminate)

(f, n) = [[y]]cna◦l η = elem(u, n)
ob(o, a, {l|x = y.get finished {s1}; s2}, q) stream(f, u)

→ ob(o, a, {l|s1; s2}, q) stream(f, u)

Figure 4.9: Operational semantics of non-destructive streams

Future-Based Data Streams 55

(F-AwaitTrue)

f = [[e]]cna◦l
ob(o, a, {l|await e? finished {s1}; s2}, q) fut(f, v)

→ ob(o, a, {l|s2}, q) fut(f, v)

(F-AwaitFalse)

f = [[e]]cna◦l
ob(o, a, {l|await e? finished {s1}; s2}, q) fut(f,⊥)

→ ob(o, a, {l|suspend;await e? finished {s1}; s2}, q) fut(f,⊥)

(F-GetTrue)

f = [[e]]cna◦l
ob(o, a, {l|x = e.get finished {s1}; s2}, q) fut(f, v)

→ ob(o, a, {l|x = v; s2}, q) fut(f, v)

Figure 4.10: Semantics of futures as streams

Semantics of Futures as Streams

The type of the value of any expression in ABS at runtime is a subtype of the

static type of the expression. The await and get without finished clause

can only be applied to futures and Boolean guards, and does exclude the streams.

This is guaranteed because Stream<T> is not a subtype of Fut<T> (discussed in

section 4.2.4). Recall that an await without finished clause on a stream is only

a syntactic sugar for the one with the clause where the following block is empty.

Different operational semantics of destructiveness and non-destructiveness does not

affect the type system.

In order to support the subtyping relation between stream〈T 〉 and fut〈T 〉 in the

operational semantics, as reflected in the type system, we need an extra set of seman-

tic rules, where a future variable appears as the parameter of await-finished
and get-finished statements. This set is presented in Figure 4.10. In these

rules, only the cases are specified where the future contains a value v or not (empty

stream). A resolved future is treated as an infinite stream of the same value v.

Therefore, termination of future is not defined. The rule names are prefixed with F
to denote that future appears as a stream.

We can prove on the basis of the operational semantics in a standard manner

that all program executions are type-safe, and in our case this additionally ensures

proper use of the data streams. This additionally amounts to ensuring that the

await-finished and get-finished constructs are applied at runtime only to

the data streams (and futures) and that the yield operation is only applied to the

context of a streaming method.

56 Futures for Streaming Data

4.2.6 Discussion on Buffer Size and Garbage Collection

The buffer of streams can grow indefinitely according to the above semantics. For

practical purposes, however, we must take into consideration the finite nature of

computer memory. This can be addressed by a different definition of the buffer which

is bounded to a maximum size m. The semantics of a successful write operation to

a bounded buffer requires a new premise where the buffer size is strictly less than

m. If the buffer is full, on the other hand, different design decisions can be made.

For instance writing to a full buffer can be blocking, i.e., the process is blocked until

the buffer size is less than m, or it is non-blocking but signals the process about

the failure. A successful destructive read operation, on the other side, decrements

the buffer size allowing the buffer to shrink. However this is not the case for non-

destructive streams, as the non-destructive read cannot change the buffer size since

the data will possibly be read by other cursors. Hence, we need a garbage collection

mechanism (GC) for non-destructive streams.

By definition, destructive streams do not cause any garbage. However, we can

have a definition of garbage for non-destructive streams. In this section, garbage

means a data element in the buffer of a non-destructive stream, which is read by all

the existing cursors. In what follows, we define a GC that is executed periodically.

It first obtains all the existing cursors in the system and then collects the garbages

accordingly. Some of the cursors can be obtained from the immediate value of a

variable, while other cursors can be wrapped with an outer future or stream in a

nested way. For instance, if the future variable x : fut〈stream〈T 〉〉 is resolved can

possibly contain a cursor. To include these cursors in the GC, first we need some

definitions. Let type T denote either a primitive type P (a type that is not a future

nor a stream) or a non-primitive type N as follows:

T ::= P | N
N ::= stream〈T 〉

For notational convenience we rewrite the type fut〈T 〉 to stream〈T 〉. We also rewrite

a run-time future object to a destructive stream with at most one element so that it

can be typed as a stream. Therefore a future fut(f,⊥) is rewritten to stream(f,⊥)

and fut(f, v) to stream(f, vη) in cn. The following algorithm obtains the set of all

cursors in the system, based on which it marks the garbage:

1. for each object (o, a, {l0|s0}, {{l1|s1}, .., {lk|sk}}) in the system, the set of cur-

sors that can be obtained in object o: cursor o = {cursor o([[x]]cna◦l : T) | x ∈

a ∪
k⋃
i=0

li} where cursor o(v : T) returns all the existing cursors obtained from

value v of type T in object o. The set of all the cursors existing in the system:

cursors =
⋃

cursor o. Note that for simplicity we assume there is no name

conflict of variable names in the mappings.

Future-Based Data Streams 57

2. for each stream identity f in the system, minf = min({n | (f, n) ∈ cursors}),
where min(S) returns the smallest number in a set S of numbers.

3. for each stream(f, u) in the system, all the data elements in u with the index

less than minf are garbage and must be collected.

For simplicity we use v : T for typing value v instead of using the formal run-time

type system. Below we define cursorno (v : T) inductively, where n is the number of

times the term stream appears in the type T of the value v, e.g., n is 0, 1, and 2 for

the type P , stream〈P 〉 and stream〈stream〈P 〉〉, respectively. Note that n is finite, as

the type of a variable is a string with a finite length.

Base case: a cursor can neither be obtained from a value with a primitive type

(step 0), nor a value that refers to a destructive stream or a future of a primitive

type P (step 1). Whereas one cursor can be obtained from a value that refers to a

non-destructive stream of a primitive type P (step 1).

cursor 0
o(v : P) = ∅

cursor 1
o(f : stream〈P 〉) = ∅ where stream(f, u) ∈ cn

cursor 1
o((f, n) : stream〈P 〉) = {(f, n)} where stream(f, u) ∈ cn

Inductive step: the induction hypothesis is that cursorno (v : N) returns all the

cursors obtained from the value v of type N where n = k. Below we show how we

obtain the cursors obtained from a value for n = k + 1 using the hypothesis:

cursork+1
o (f : stream〈N〉) =

⋃
vi∈sn(u)

cursorko(vi : N)

where stream(f, u) ∈ cn

cursork+1
o ((f, n) : stream〈N〉) =

⋃
vi∈sn(u)

cursorko(vi : N) ∪ {(f, n)}

where stream(f, u) ∈ cn

where sn(u) denotes a set of elements in the buffer u of stream(f , u) with index

greater or equal to n, except special elements ⊥ and η.

In order for the above algorithm to work, every data element in the buffer u must

have an absolute index starting from zero for the first element added to the buffer.

Recall that, by the semantics of ABS, every synchronous and asynchronous method

call forms a (suspended or active) process in the called object which is denoted by

{li|si}. Hence, the step 1 covers all the variable assignments in an object (cursor o)

and subsequently in the whole system (cursors). Also note that there is no need to

distinguish the cursors by their variable names or their processes or objects. The

58 Futures for Streaming Data

(T-Stream)

∆(f) = stream〈T 〉
∀i ∈ [1..n].(vali 6∈ {⊥, η} ⇒ ∆(vali) = T)

∆ `R stream(f, (val1, ..., valn)) ok

(T-StateStream)

∆(val) = (stream〈T 〉,Nat)
∆ `R v : stream〈T 〉

∆ `R stream〈T 〉 v val ok

(T-InvocStream)

∆(f) = stream〈T 〉 ∆(v) = T match(m,T → stream〈T 〉,∆(o))

∆ `R invoc(o, f,m, v)

Figure 4.11: The typing rules of streams for run-time configurations

only relevant aspect of the cursor for GC is that there exists at least one cursor that

points at a specific index of the buffer.

4.3 Subject Reduction for the Extended ABS

A run is a sequence of transitions from an initial state based on the rules of the op-

erational semantics, where initial state consists of ob(start, ε, p, ∅), an initial object,

start, with only one process p that corresponds to the main block of the program.

The subject reduction for ABS is already proven in [48], namely, it is shown that a

run from a well-typed initial configuration will maintain well-typed configurations,

particularly, the assignments preserve well-typedness and method bindings do not

give rise to the error process. In this section, we aim to extend the proof for the

ABS subject reduction theorem to also include the notion of stream as specified in

this chapter.

The typing context for the run-time configurations ∆ extends the static typ-

ing context Γ with typing dynamically created values (entities created at run-time),

namely, object and future identifiers. Let ∆ `R cn ok express that the configuration

cn is well-typed in the typing context ∆. The typing rules for run-time configura-

tions are defined for ABS and extensively discussed in [48]. The newly added rules

for typing streams are shown in Figure 4.11. By T-Stream, the stream f is of type

stream〈T 〉 if the buffer only contains values of type T or the special tokens η and

⊥. By T-StateStream, a variable v that refers to a stream val and provide non-

destructive access to it is well-typed. Nat denotes the type of natural numbers. The

type of val is a pair of the stream type and a Nat that holds the cursor to the

stream. The rule T-InvocStream allows the return type of an asynchronous method

invocation to be a stream as well.

In [48] (1) it is proven that the initial object corresponding to the main block of

a well-typed program is well-typed and also (2) it is shown that the well-typedness

of runtime configuration is preserved by reductions (Theorem 1). The proof for (1)

also applies here. We only need to extend the proof for (2) with respect to the new

transition rules introduced in section 4.2 as follows.

Subject Reduction for the Extended ABS 59

Theorem 1 (Subject Reduction). If ∆ `R cn ok and cn→ cn′, then there is a ∆′

such that ∆ ⊆ ∆′ and ∆′ `R cn′ ok.

Proof. The proof is by induction over the defined transition rules in the opera-

tional semantics. We assume objects, futures, streams and messages not affected

by a transition remain well-typed, and are ignored below. The auxiliary function

match(m,T → stream〈T 〉, T ′) checks if a method m with T → stream〈T 〉 is provided

by the interface T ′.

• Process Suspension. It is immediate that the rules D-AwaitTrue,

ND-AwaitTrue,F-AwaitTrue, D-AwaitFalse, ND-AwaitFalse, F-AwaitFalse

D-AwaitTerminate, ND-AwaitTerminate, D-GetTerminate and

ND-GetTerminate preserve the well-typedness.

• Yield. By assumption, we have ∆ `R ob(o, a, {l|yield e; s}, q) ok, [[e]]a◦l = v

and ∆ `R stream(f, u.⊥) ok. Obviously, ∆ `R ob(o, a, {l|s}, q) ok. Since

l(destiny) = f and l is well-typed, we know that ∆(destiny) = ∆(f). Let

∆(f) = stream〈T 〉. By T-Yield, ∆ `R e : T and subsequently ∆(v) = T , so

∆ `R stream(f, u.v.⊥) ok.

• ReturnStream. By assumption, we have ∆ `R ob(o, a, {l|return; s}, q) ok,

and ∆ `R stream(f, u.⊥) ok. Obviously, ∆ `R ob(o, a, {l|s}, q) ok and ∆ `R
stream(f, u.η) ok.

• D-AsyncCall. Let ∆ `R ob(o, a, {l|x = e!m(e); s}, q) ok. We first consider

the case e 6= this. By T-AsyncStream, we may assume that ∆ ` e!m(e) :

stream〈T 〉 and by T-Assign that ∆(x) = stream〈T 〉. Therefore, ∆ ` e : T ′

and ∆ ` e : T such that match(m,T → T stream, T ′). Assume that [[e]]a◦l =

o′ and let ∆(o′) = C for some class C. Based on [48], there is a ∆′ such

that ∆′ `R [[e]]a◦l : T ′ and ∆′(o′) = C, so C � T ′. By assumption class

definitions are well-typed, so for any class C that implements interface T ′ we

have match(m,T → T stream, C). Also [[e]]a◦l similarly preserves the type of

e. Let ∆′′ = ∆′[f 7→ stream〈T 〉]. Since fresh(f) we know that f 6∈ dom(∆′),

so if ∆′ `R cn ok, then ∆′′ `R cn ok. Since ∆′ ` e!m(e) = ∆′′(f), we get

∆′′ `R ob(o, a, {l|x = f ; s}, q) ok. Furthermore, ∆′′ ` invoc(o′, f,m, v) ok and

∆′′ `R stream(f,⊥) ok. The case e = this is similar, but uses the class of

this directly for the match (so internal methods are also visible).

• ND-AsyncCall. Let ∆ `R ob(o, a, {l | nd x = e!m(e); s}, q) ok. The argument

is similar to the above case, but we get ∆′′ `R ob(o, a, {l|x = (f, 0); s}, q) ok
as the consequence, in addition to ∆′′ ` invoc(o′, f,m, v) ok and ∆′′ `R
stream(f,⊥) ok.

• D-GetTrue. By assumption, ∆ `R ob(o, a, {l|x = e.get finished{s1};
s2}, q) ok, ∆ `R stream(f, v.u) ok, and [[e]]a◦l = f . Let ∆(f) = stream〈T 〉.

60 Futures for Streaming Data

Consequently, ∆ `R e.get finished{s1} : T and ∆(v) = T , so ∆ ` x =

v, ∆ `R ob(o, a, {l|x = v; s}, q) ok and ∆ `R stream(f, u) ok. A similar

argument applies for F-GetTrue where f is the identity of a future object

fut(f, v).

• ND-GetTrue. By assumption, ∆ `R ob(o, a, {l|x = y.get finished{s1};
s2}, q) ok, ∆ `R stream(f, u) ok, [[y]]a◦l = (f, n) and elem(u, n) = v. Let

∆(f) = stream〈T 〉. Consequently, ∆ `R y.get finished{s1} : T and

∆(v) = T , so ∆ ` x = v, ∆ `R ob(o, a, {l|x = v; s}, q) ok, and ∆ ` y =

(f, n+ 1) ok.

4.4 Data Streams in Distributed Systems

In [10] a scalable distributed implementation of the ABS language is described. In

this section we adapt our proposed notion of data streams in ABS to reduce the

possible overhead of data steaming in a distributed setting.

To this aim, each streaming method is enabled to package the return values,

that is, the method populates its return stream buffer possibly not once per value,

but once per sequence of values. The package size can be specified explicitly as a

parameter or can be selected based on the underlying deployment, e.g., it can be

equal to the packet size of the TCP/IP technology involved. As such the number of

packets to be transferred through the network is minimized.

There are two conditions when the package is streamed before its size is equal to

the pre-specified package size: 1) when the streaming method terminates; 2) when

the streaming method cooperatively releases control. The first condition is obvious,

while the second prevents a specific kind of deadlock configuration. In general, ABS

programs may give rise to deadlocks (see [39] for a discussion of deadlock analysis

of ABS programs). However the notion packaging data streams should not give rise

to additional deadlock possibilities.

The above second condition prevents the following kind of deadlock situation. Note

that package size = n means that the number of yielded values needs to be equal

to n, so that they are streamed as a package, except for the last package where the

size may be less than n. Suppose there are two objects o1 and o2 in the run-time

configuration where o1 executes an active process which corresponds to method m1

given by

m1(){r=o2!m2();await r?;o2!satisfier();}

and the specification of the streaming method m2 is an active process p in object o2

given by

m2(){yield x; await e; yield y; }

Implementation 61

Furthermore, suppose the method satisfier in o2 changes the object state so that

the expression e (which is False initially) evaluates to True. It is not difficult

to see that for all n > 2, where n is the package size of the stream, the run-

time configuration is deadlocked. The reason is that the first yielded value is not

streamed before p releases control, as the package size is smaller than n. The

deadlock possibility can be generalized to a category of programs where a streaming

method releases control before it communicates the values which are yielded. The

solution is that the package with the size smaller than n is streamed, before the

process cooperatively releases control or blocks.

4.5 Implementation

In this section, we present a prototype implementation of future-based data streams

as an API written in ABS. This API (see Figure 4.12) can be used to simulate the

semantics of data streaming in ABS itself. The implementation details of the API

can be found online1.

As discussed in section 4.2, the Stream<T> datatype is parametrically poly-

morphic in its contained values of type T . The original ABS specification, however,

offers besides parametric polymorphism also subtype polymorphism, through its in-

terface types. In general, when defining and implementing languages with support

for subtype-polymorphism, often the issue of variance arises: where in the code it

is allowed (i.e. type-safe) to upcast to a supertype or downcast to a subtype. For

example, given a subtype relation (T is subtype of U), a structure S is called covari-

ant if S<T> is safe to “upcast” to S<U>; contraviarant if safe to “downcast” S<U>
to S<T>; invariant if none of the above two hold, i.e. subtype polymorphism cannot

be used for this structure, but other methods of polymorphism (e.g. parametric)

perhaps can. In practice, the “rule of thumb” suggests that structures which are

exclusively read-only (i.e. immutable) are allowed to be covariant, structures that

are written-only (e.g. log files) contravariant, and structures that are read-write

must be invariant.

The extension of ABS with stream that we describe in this chapter, strictly sep-

arates at the syntax level the role of the producer of values (write to the stream

structure) with the role of the consumer (read from the stream). Since the producer

can only append (produce) new values to the stream and not alter (mutate) past val-

ues, from the sole point of the consumer the stream structure seems as “immutable”

(covariant). In this sense, a consumer holding a variable of type Stream<T> should

be allowed to upcast it to type Stream<U>. Conversely, the producer is allowed to

yield values of subtype T, if the method call’s return type is typed as Stream<U>.

As such, at the surface level (syntax and type system) it is acceptable for the Stream
structure to be treated as covariant; however, at the implementation level it still re-

1https://github.com/kazadbakht/ABS-Stream/blob/master/lib/Streams.abs

62 Futures for Streaming Data

mains a challenge on how to guarantee type safety at the host language (in our case,

Haskell).

The Haskell language has parametric polymorphism but lacks built-in support for

subtype polymorphism; for this reason, the ABS-Haskell backend compiler generates

dynamic “upcasting” function calls where needed. However, this technique cannot

be applied as well with Haskell’s builtin vector datatype, which is a low-level built-in

structure that cannot be made covariant or contravariant since it has been fixed-

byte allocated in memory heap upon creation. For this reason, and also the fact

that arrays are in general a mutable (read-write) data structure, the vectors in

ABS (borrowed from Haskell) are treated as invariant. Since the implementation of

streams in ABS relies currently on vectors, there is the practical limitation of having

the Buffer type to be invariant. Similarly the Stream and Fut datatypes are

treated as invariant, because the ABS-Haskell backend treats each future Fut<T>
as a pointer to a vector size-1 stored in the heap that holds the value of T. Based

on this practical limitation, the Stream<T> datatype introduced in this extension

to ABS is treated as subtype-invariant, with support for parametric polymorphism.

The API is semantically compliant with the semantics of data streams defined in

this chapter: The method that yields to a stream is separated from the access mode

of readers to the stream (i.e., either destructive or non-destructive). Every reader

has access to a stream via an instance of either Dref or NDref for destructive

or non-destructive access mode, respectively. Furthermore a stream variable (that

refers to an instance of Dref or NDref) is only typed by the Stream interface,

abstracting from the underlying access mode.

The interface Buffer<T> is implemented by the class CBuffer. The FIFO

buffer (an instance of CBuffer) is implemented by a vector whose elements are of

type Maybe<T>, namely, each of which contains either a value (Just(v) where v

is of type T) or Nothing. A position in the vector can have three different states:

It contains Just(v) (a value v that can be read), Nil (the position is empty and

will be filled), and Nothing (a token of type Maybe<T>) that denotes termina-

tion of the stream. The interface Buffer<T> provides the methods yield() and

terminate() to the streaming method in order to write to the buffer and to ex-

plicitly terminate the stream of data values, respectively. The termination enqueues

Nothing to the buffer and is meant to be the last statement in the definition of

the streaming method (to simulate the terminating return). A stream maintains

a global index wrt to the buffer which denotes the position where the next yielded

value is written. It is incremented by every time calling yield. In destructive read,

the CBuffer maintains a global index (i.e., rd) to the buffer for all the readers

of the stream, whereas in non-destructive read, every reader (i.e., NDref instance)

maintains a local index (i.e., cursor) to the buffer.

The reader can read from a stream by asynchronously calling pull() on the

Stream object that returns a future representing the next data value, whether

resolved or not. The operation pull is overridden in Dref and NDref for de-

Implementation 63

Figure 4.12: Class diagram of ABS Stream library

(1) Maybe<T> dread() {
(2) Int temp = rd;
(3) rd = rd + 1;
(4) await (buffer[temp] != Nil);
(5) return buffer[temp]; // is not null
(6) }

(7) Maybe<T> ndread(cursor) {
(8) await (buffer[cursor] != Nil);
(9) return buffer[cursor]; // is not null
(10)}

Figure 4.13: Destructive and non-destructive read in CBuffer

structive and non-destructive read from the buffer, respectively. The former calls

dread() method of the Buffer which returns the first valid element in the vector,

indicated by the index rd in buffer, and increments rd. Whereas the latter calls

ndread(cursor) of the Buffer where the cursor is a field of the NDref, which

returns the element indicated by the index cursor in the vector. The implementa-

tion of dread() and ndread(cursor) is given in Figure 4.13 where await at

lines (4) and (8) cooperatively release control until the condition (indicating whether

the buffer element has been produced) holds.

Also the method clone is used to copy a non-destructive stream object, a

new instance of NDref which has a reference to the same stream but a new cursor

which is initialized with the value of the cursor of the original object. For destructive

streams, the method only returns the reference to this which is of type Dref.

64 Futures for Streaming Data

Awaiting the future resulting from calling pull() queries the availability of

next data value. Therefore, statement await r? finished {S} is expressed in

the library as follows:

(1) f = r!pull(); // a future f to the target data value
(2) await f?; // awaits if the future f is not resolved yet
(3) m = f.get; // gets the resolved data value
(4) if (m == Nothing) // Nothing is the special token denoting the termination
(5) {S}

where r is a reference to a stream object and S is a block of statements. This can

either give rise to the release of control in case the data is not available (line 2) or

to skip otherwise. The variable m is of type Maybe<T> which contains either the

value v, denoted by Just(v), where v is of type T, or Nothing.

Similarly, statement x = r.get finished {S} can be expressed using the

library as follows:

(1) f = r!pull(); // a future to the target data value
(2) m = f.get; // gets the resolved data value
(3) case (m) {
(4) Nothing => {S} // "Nothing" is the special token denoting the termination
(5) Just(v) => {x = v} // the value v is assigned to x
(6) }

In line 2, the object running this process blocks until the the data value is written

to the future f.

The keyword nd is implemented in the API by a Boolean argument passed to

the called streaming method. The argument specifies whether the return object of

the streaming method to be an object of class Dref or class NDref.

The following snippet shows how the library is used to stream integer data

values. The streaming method m instantiates a stream, delegates yielding values to

the stream asynchronously to an auxiliary method m2, and returns the stream to

the caller. Note that m sends the same list of parameters it receives to m2.

// caller :
// False means the return stream is non-destructive
Fut<Stream<Int>> f = o!m(False, ...);
Stream<Int> r = f.get; // r is a reference to the stream
// reading from the non-destructive stream r
...

// callee
Stream<Int> m(Bool isDestr, ...){

Buffer<Int> b = new Cbuffer();
// b is the return stream which is filled by m2
this!m2(b, ...);
// isDestr determines the access mode to the stream
// i.e., destructively or non-destructively
if (isDestr)

return new Dref<Int>(b);
else

return new NDref<Int>(b, 0);
}

// the implementation of the callee
Unit m2(Buffer<Int> b, ...) {

Implementation 65

Int x ;
...
b!yield(x); // yield a value
...
b!terminate(); // termination token

}

Remark. In the above-mentioned API, having multiple readers for one stream

may result in a performance bottleneck, as the buffer object itself queries the avail-

ability of data item to be returned for every pull request (via dread or ndread).

Alternatively, such availability check can be delegated to the reader’s pull method

itself. However in the current design, doing the checks of line (4) and (8) in Figure

4.13 in their corresponding pull definitions give rise to busy-wait polling. The key

feature that enables delegating the check without busy-wait polling is the data type

Promise<T>. A promise is of this type is either contains a data value of type T
(resolved) or not. An unresolved promise p can be resolved by p.give(v) with some

data value v. Similar to futures, get and await operations can also be applied to

promises.

By converting the type of the buffer vector from Maybe<T> to

Promise<Maybe<T>>, the methods dread and ndread can immediately return

to the reader’s pull request the promise object in the vector that holds the expected

value, which is either already resolved and can be retrieved or will be resolved in

the future. In this new design, the ndread in CBuffer only returns the promise

without availability check as follows:

(1) Promise<Maybe<T>> ndread(cursor) {
(2) return buffer[cursor];
(3) }

And pull method in NDref which checks the availability is given as follows:

(1) Maybe<T> pull() {
(2) Fut<Promise<Maybe<T>>> f = b!ndread(cursor); // cursor is a field in NDref
(3) Promise<Maybe<T>> p = f.get;
(4) await p?; // availability check is moved to pull
(5) Maybe<T> result = p.get;
(6) case (result) {Just(v) => cursor = cursor + 1;}
(7) return result;
(8) }

In line (6), if result is equal to Nothing then cursor is not incremented,

such that the next pull requests to this object result in Nothing. Similar changes

apply to pull in Dref and dread() in CBuffer for destructive read, except the

index rd which is updated in dread.

An implementation similar to the example in Figure 4.2 using the above API

is provided online2. We also ran the implementation on a PC which was an Intel

Core i7-5600U 2.60GHz × 4 with 12GB RAM, and 64-bit Ubuntu 16.04 LTS as the

2https://github.com/kazadbakht/ABS-Stream/blob/master/Examples/map\
_reduce.abs

66 Futures for Streaming Data

Figure 4.14: Execution time of parallel map-reduce program for 106 data values

operating system. In Figure 4.14, we represent the time measured for execution of

the program for different number of parallel processors in 5 runs. On average for this

specific implementation, we observed that for two cores we achieve 1.59× speedup

compared to one core, and for four cores 1.13× speedup compared to two cores.

Lower speedup achieved for higher number of processors, among other reasons,

stems from the fact that a stream is a shared resource where parallel access and

yielding values to it in a safe manner is limited. This is confirmed experimentally,

by adding more workload on the reader per data value that it reads from the stream.

As such, the access rate to the stream becomes low enough such that the stream is

not a performance bottleneck. With this modification, we could achieve up to 1.41

speedup for four cores compared to two cores.

The current implementation does not feature garbage collection of streams: pro-

duced data values are stored in a vector which dynamically (at-runtime) grows

indefinitely (until memory exhaustion). This choice was made for a separation of

concerns. This orthogonal issue of garbage collection can be trivially solved in the

case of destructive streams: all produced values before the global index can be con-

sidered as garbage. A future implementation should automatically reclaim the space

for such values and appropriately resize (shrink) the vector. In the case, however, of

non-destructive streams, some extra bookkeeping and communication is involved to

have safe, distributed garbage collection of streams. One possible implementation

would require storing at the producer’s side a global (system-wide) minimum of all

the readers’ local cursors. Besides this bookkeeping of the producer, once a reader

forwards a Stream<T> to another ABS process (local or remote), it involves notify-

ing the producer about the local minimum of the new reader process. Furthermore,

in case of a real distributed system, the producer should monitor the quality of the

network connection to every reader, otherwise it runs the risk of memory leaking

from a dropped connection to a reader.

Case Study 67

Figure 4.15: Resolving dependencies in Distributed PA using cooperative scheduling

4.6 Case Study

In this section, we use data streams in the ABS model of the distributed PA pro-

posed in chapter 3. Figure 4.15 illustrates the high-level scheme for the unresolved

dependencies proposed in chapter 3, using the notion of an active object, future,

and cooperative scheduling in ABS.

In above scheme, the current, unresolved slot which belongs to the active object a

requires the value of the unresolved target slot which belongs to the the active

object b. To this aim, the object a asynchronously calls the request method of the

object b, and delegates the resulting future as a suspended process in its queue, so

that the active process continues with the rest of its partition. On the other side,

the request awaits on a Boolean condition which checks if the target is resolved and

returns the value. Finally, the delegate method which awaited on the future, gets

the future value and processes it.

4.6.1 Incorporating Data Streams

The generation of distributed PA-based graphs as described above is fairly high-level

and intuitive at the modeling level. However, the number of messages and return

values communicated among the active objects poses a considerable overhead. Pack-

aging the requests and the corresponding return values can considerably improve the

performance of the run-time system.

In the distributed scheme in Figure 4.15, the request is sent per each required

target slot, which is too fine-grained. Instead, we propose a modification of the

algorithm so that the requests for the target values located on the same active object

are sent together as a package of requests via one message, and the returning values

are received via a stream with packaging capability. An experimental validation of a

scalable distributed implementation of our model that utilizes streams is presented

in [11] which is based on Haskell. It shows a significant performance improvement

for the model compared the one presented in [10] (chapter 3).

Resolving the dependencies in the modified approach is shown in Figure 4.16. For

68 Futures for Streaming Data

Figure 4.16: The modified approach using destructive streams

all i ∈ [1, p], each pair (si, ti) represents a request from object a to object b, where

si represents the index of an unresolved slot belonging to the partition hosted by a,

and ti represents its corresponding slot belonging to the partition hosted by b. The

value obtained from each ti is used to resolve the unresolved slot si. Assuming p is

the package size, the list [t1, .., tp] is sent to b as a package of requests, and the

requests process returns corresponding values per each ti via a stream r (e.g., yield

array[ti]). Figure 4.17 illustrates abstract ABS code for requests which streams the

values, and for delegates which receives them.

4.7 Related Work

There already exists a variety of different programming constructs for streaming

data in different programming languages like Java, and software frameworks for

processing big data like Apache Hadoop and Spark.

Asynchronous generators specified in [66] enable the streaming of data in an

asynchronous method invocation. This includes, on the callee side, yielding the

data, and on the caller side receiving them as an asynchronous iterator or raising

an exception if there is no further yielded data. These generators are defined in the

context of the multi-threaded model of concurrency, where asynchrony is provided

by spawning a thread for a method call.

Akka Streams [70] provides an API to specify a streaming setup between actors

which allows to adapt behavior to the underlying resources in terms of both memory

and speed.

There are also languages which utilize the notion of channel as a means of com-

munication, inspired by the model of Communicating Sequential Processes (CSP).

For instance, Go language and JCSP [76], which is a library in Java, provide CSP-

like elements, e.g., processes (referred to as Goroutines in Go) that communicate via

channels by means of read and write primitives. Buffered channels in Go provide

asynchronous read (cf. write) when the buffer is not empty (cf. not full). Otherwise

the primitives are blocking.

Similarly to asynchronous generators, streaming data as proposed in this chapter

Related Work 69

1: Each actor o executes the following in parallel
2: Unit run(...)
3: while the whole partition is not yet processed do
4: /*

Resolve the slots. Next pack of unresolved sources = [s1, .., sp] from
the partition belonging to this object, and its corresponding targets =
[t1, .., tp] whose owning partition hosted by some object w are calculated

5: */
6: Stream<Int> f = w ! requests(targets);

. The stream f is destructive by default
7: this ! delegates(f, sources);

8:

9: Int stream requests(List<Int> targets)
10: while targets is not nil do
11: Int tar = head(targets);
12: targets = tail(targets);
13: await (arr[tar] 6= 0);

. At this point the target is resolved
14: yield arr[tar];

15:

16: Unit delegate(Stream<Int> r, Int sources)
17: while True do
18: Int val;
19: await r? finished {break;}

. Quit the while if r is terminated
20: val = r.get;
21: Int src = head(sources);
22: sources = tail(sources);
23: // Use val to resolve arr[src]

Figure 4.17: The sketch of the data streaming in the modified approach

is fully integrated with asynchronous method invocation, i.e., it is not a separate

orthogonal concept like channels are. But its integration with the ABS language

allows for an additional loose coupling between the producer and consumer of data

streams: by means of cooperative scheduling of tasks the consumption of data can

be interleaved with other tasks on demand.

The distributed shared memory (DSM) paradigm [34, 57, 72] enables access to

a common shared space across disjoint address spaces, where communication and

synchronization between processes are enforced through operations on shared data.

The notion of tuple space was originally integrated at the language level in Linda

[37]. The processes communicate via insertion/read/removal of tuples into/from the

tuple: out() to write a tuple into a tuple space, in() to retrieve (and remove),

70 Futures for Streaming Data

and read() to read (without removing) a tuple from it.

Similarly to tuple spaces, the interaction model of streams proposed in this chap-

ter provides time and space decoupling, namely, data producers and consumers can

remain anonymous with respect to each other, and the sender of a data needs no

knowledge about the future use of that data or its destination (the reference to a

stream can be passed around). Also producer-side synchronization decoupling is

guaranteed, whereas, the consumer-side decoupling is not provided in tuple-spaces,

as the consumers synchronously pull the data. In ABS streams, however, the decou-

pling is provided at the consumer object level, thanks to the notion of cooperative

scheduling. Similarly to tuple space in-based and read -based communication, the

destructive and non-destructive data streams, respectively, can be naturally used to

implement one-of-n semantics (only one consumer reads a given data), and one-to-n

message delivery (a given data can be read by all such consumers).

4.8 Future work

We focused on extending the main asynchronous core of ABS with data streams.

Other main features of the ABS like concurrent object groups (cogs) and deployment

components are orthogonal and compatible with this extension. As an example,

ABS features cog that, in principle, shares a thread of control among its constituent

objects, which enables internal synchronous calls. By the nature of data streaming,

it is natural to restrict the streaming to the asynchronous method calls.

Another interesting line of work consists of investigating a more efficient GC for

non-destructive streams. The approach proposed in this chapter involves a periodic

execution of GC that requires gathering information from all actors in the system

synchronously which can in practice give rise to a bottleneck. Alternatively, a more

efficient GC can be investigated where each stream maintains a table counting the

number of cursors to each data element in the buffer.

The ABS with Haskell backend supports real-time programming techniques which

allows for specifying deadlines with method invocations. This provides an interest-

ing basis to extend ABS with real-time data streaming which may, as an example,

involve timeout on read operations. We also need to extend the various formal

analysis techniques (e.g., deadlock detection, general functional analysis based on

method contracts) currently supported by the ABS to the ABS model of streaming

data discussed in this chapter.

