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Part III

Enhancing Parallelism

This part consists of the following chapters:

Chapter 4 Asynchronous Actor-based software programming has gained increas-

ing attention as a model of concurrency and distribution. Many modern distributed

software applications require a form of continuous interaction between their compo-

nents which consists of streaming data from a server to its clients. In this chapter,

we extend the basic model of asynchronous method invocation and return in order

to support the streaming of data [13]. We introduce the notion of “future-based

data streams” by augmenting the syntax, type system, and operational semantics of

ABS. The application involving future-based data streams is illustrated by a case

study on social network simulation.

Chapter 5 In this chapter we introduce a new programming model of multi-

threaded actors which feature the parallel processing of their messages [15]. In

this model an actor consists of a group of active objects which share a message

queue. We provide a formal operational semantics, and a description of a Java-based

implementation for the basic programming abstractions describing multi-threaded

actors. Finally, we evaluate our proposal by means of an example application.
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