
Asynchronous Programming in the Abstract Behavioural Specification
Language
Azadbakht, K.

Citation
Azadbakht, K. (2019, December 11). Asynchronous Programming in the Abstract Behavioural
Specification Language. Retrieved from https://hdl.handle.net/1887/81818
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/81818
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/81818


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/81818 holds various files of this Leiden University 
dissertation. 
 
Author: Azadbakht, K. 
Title: Asynchronous Programming in the Abstract Behavioural Specification Language 
Issue Date: 2019-12-11 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/81818
https://openaccess.leidenuniv.nl/handle/1887/1�


Part III

Enhancing Parallelism

This part consists of the following chapters:

Chapter 4 Asynchronous Actor-based software programming has gained increas-

ing attention as a model of concurrency and distribution. Many modern distributed

software applications require a form of continuous interaction between their compo-

nents which consists of streaming data from a server to its clients. In this chapter,

we extend the basic model of asynchronous method invocation and return in order

to support the streaming of data [13]. We introduce the notion of “future-based

data streams” by augmenting the syntax, type system, and operational semantics of

ABS. The application involving future-based data streams is illustrated by a case

study on social network simulation.

Chapter 5 In this chapter we introduce a new programming model of multi-

threaded actors which feature the parallel processing of their messages [15]. In

this model an actor consists of a group of active objects which share a message

queue. We provide a formal operational semantics, and a description of a Java-based

implementation for the basic programming abstractions describing multi-threaded

actors. Finally, we evaluate our proposal by means of an example application.

35


