
Asynchronous Programming in the Abstract Behavioural Specification
Language
Azadbakht, K.

Citation
Azadbakht, K. (2019, December 11). Asynchronous Programming in the Abstract Behavioural
Specification Language. Retrieved from https://hdl.handle.net/1887/81818
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/81818
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/81818


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/81818 holds various files of this Leiden University 
dissertation. 
 
Author: Azadbakht, K. 
Title: Asynchronous Programming in the Abstract Behavioural Specification Language 
Issue Date: 2019-12-11 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/81818
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 3

Preferential Attachment on

Distributed Systems

3.1 Introduction

Massive social networks are structurally different from small networks synthesized

by the same algorithm. Furthermore there are many patterns that emerge only in

massive networks [56]. Analysis of such networks is also of importance in many areas,

e.g. data-mining, network sciences, physics, and social sciences [16]. Nevertheless,

generation of such extra-large networks necessitates an extra-large memory in a

single server in the centralized algorithms.

The major challenge is generating large-scale social networks utilizing distributed-

memory approaches where the graph, generated by multiple processes, is distributed

among multiple corresponding memories. Few existing methods are based on a

distributed implementation of the Preferential Attachment model (PA, chapter 2)

among which some methods are based on a version of the PA model which does not

fully capture its main characteristics. In contrast, we aim for a distributed solution

which follows the original PA model, i.e., preserving the same probability distribu-

tion as the sequential one. The main challenge of a faithful distributed version of PA

is to manage the complexity of the communication and synchronization involved.

In a distributed version, finding a target node in order for the new node to

make connection with may cause an unresolved dependency, i.e., the target itself

is not yet resolved. However this kind of dependencies must be preserved and the

to-be-resolved target will be utilized when it is resolved. How to preserve these

dependencies and their utilization give rise to low-level explicit management of the

dependencies or, by means of powerful programming constructs, high-level implicit

management of them.

The main contribution of this chapter is a new distributed implementation of

an ABS model of PA. In this chapter, we show that ABS can be used as a pow-

erful programming language for efficient implementation of cloud-based distributed

25



26 Preferential Attachment on Distributed Systems

applications.

This chapter is organized as follows: Section 3.2 elaborates on the high-level pro-

posed distributed algorithm using the notion of cooperative scheduling and futures.

In Section 3.3, implementation-specific details of the model are presented. Finally,

Section 3.4 concludes the chapter.

Related Work. In chapter 2 (section 2.4) the existing related work for sequential

and parallel implementations of PA is presented. The work in this chapter is inspired

by the work in [4] where a low-level distributed implementation of PA is given in

MPI: the implementation code remains closed source (even after contacting the

authors) and, as such, we cannot validate their presented results (e.g, there are

certain glitches in their weak scaling demonstration), nor compare them to our own

implementation.

Since efficient implementation of PA is an important and challenging topic, fur-

ther research is called for. Moreover, our experimental data are based on a high-level

model of the PA which abstracts from low-level management of process queues and

corresponding synchronization mechanism as used in [4].

In [68], a high-level distributed model of the PA in ABS has been presented

together with a high-level description of its possible implementation in Java. How-

ever, as we argue in Section 3, certain features of ABS pose serious problems to

an efficient distributed implementation in Java. In this chapter, we show that these

problems can be solved by a run-time system for ABS in Haskell and a corresponding

source-to-source translation. An experimental validation of a scalable distributed

implementation based on Haskell is presented in [10].

3.2 Distributed PA

In this section, we present a high-level distributed solution for PA which is similar

to the ones proposed for multicore architectures in [12] (chapter 2) and distributed

architectures in [4, 68], in a sense that they adopt copy model introduced in [54]

to represent the graph. The main data structure used to model the graph which

represents the social network is given in section 2.3.1. We use the same data structure

for distributed PA as well.

The sequential algorithm of PA based on copy model is fairly straightforward

and the unresolved slots of the array are resolved from left to right. The distributed

algorithms however introduce more challenges. First of all, the global array should

be distributed over multiple machines as local arrays. The indices of the global array

are also mapped to the ones in the local arrays according to the partitioning policy.

Secondly, there is the challenge of unresolved dependencies, a kind of dependency

where the target itself is not resolved yet since either the process responsible for the

target has not processed the target slot yet or the target slot itself is dependent on

another target slot (chain of dependencies). Synchronization between the processes



Distributed PA 27

to deal with the unresolved dependencies is the main focus of this chapter. Next

we present the basic synchronization and communication mechanism underlying our

distributed approach and its advantages over existing solutions.

3.2.1 The Distributed ABS Model of PA

Two approaches are represented in Figure 3.1 which illustrate two different schemes

of dealing with the unresolved dependencies in a distributed setting. In order to

remain consistent with the original PA, both schemes must keep the unresolved

dependencies and use the value of the target when it is resolved. Scheme A (used

in [4]) utilizes message passing. If the target is not resolved yet, actor b explicitly

stores the request in a data structure until the corresponding slot is resolved. Then

it communicates the value with actor a. Actor b must also make sure the data

structure remains consistent (e.g., it does not contain a request for a slot which is

already responded).

In addition to message passing, scheme B utilizes the notion of cooperative

scheduling. Instead of having an explicit data structure, scheme B simply uses the

await statement on (target 6= 0). It suspends the request process until the target is

resolved. The value is then communicated through the return value to actor a. Also

await f? is skipped if the future f is resolved, and suspends the current process

otherwise. This statement is used to synchronize on the return value of a called

method. The above-mentioned await constructs eliminates the need for an explicit

user-defined data structure for storing and retrieval of the requests. The following

section describes an ABS implementation of the scheme B.

An ABS-like pseudo code which represents scheme B in the above section is given

in Figure 3.2. The full implementation of the model is provided online1. The main

body of the program, which is not mentioned in the figure, is responsible to set up

the actors by determining their partitions, and sending them other parameters of the

problem, e.g., n and m. Each actor then processes its own partition via run method.

The function whichActor calculates and returns the index of the actor containing the

target slot, based on n, m and the partitioning method. The request for the slot is

then sent asynchronously to the actor and the future variable is sent as a parameter

to the delegate function where the future value is obtained and checked for conflict.

If there is no conflict, i.e., the new target is not previously taken by the source, then

the slot is written with the target value. Recall that the one global array is divided

into multiple local arrays, one per actor. Based on the partitioning method, n and m

there is a mapping from the global indices to the local ones. The function whichSlot

maps an index of the global array to the index of a local array. The request method

is responsible to map the global index of the target to the local index function (via

whichSlot) and awaits on it and returns the value once the slot is resolved. Note

that, based on the same optimization of the array size discussed in chapter 2, the

1https://github.com/kazadbakht/PA/blob/master/src/DisPA.abs



28 Preferential Attachment on Distributed Systems

(a) Simple message passing

(b) Message passing with futures and cooperative scheduling

Figure 3.1: The process of dealing with unresolved dependencies in an actor-based
distributed setting



Distributed PA 29

method result(arr, target) checks if the value for the index target is calculable then

it returns the calculated value. Otherwise it checks the corresponding array index

in the array and returns the value.

1: Each actor O executes the following in parallel
2: Unit run(...)
3: for each node i in the partition do
4: for j = 1 to m do step
5: target← random[1..(i− 1)2m]
6: current = (i− 1)m+ j
7: x = whichActor(target)
8: Fut < Int > f = actor[x] ! request(target)
9: this ! delegate(f, current)

10:

11:

12: Int request(Int target)
13: localTarget = whichSlot(target)
14: await (result(arr, localTarget) 6= 0)
15: . At this point the target is resolved
16: return result(arr, localTarget)
17:

18:

19: Unit delegate(Fut < Int > f, Int current)
20: await f?
21: value = f.get
22: localCurrent = whichSlot(current)
23: if duplicate(value, localCurrent) then
24: target = random[1..(current/m)2m]
25: . Calculate the target for the current again
26: x = whichActor(target)
27: Fut < Int > f = actor[x] ! request(target)
28: this.delegate(f, current)
29: else
30: arr[localCurrent] = value . Resolved

31:

32:

33: Boolean duplicate(Int value, Int localCurrent)
34: for each i in (indices of the node to which localCurrent belongs) do
35: if arr[i] == value then
36: return True
37: return False

Figure 3.2: The sketch of the proposed approach



30 Preferential Attachment on Distributed Systems

3.3 Implementation

The distributed algorithm of Figure 3.2 is implemented directly in ABS, which is sub-

sequently translated to Haskell code [10], by utilizing the ABS-Haskell [20] transcom-

piler (source-to-source compiler). The translated Haskell code is then linked against

a Haskell-written parallel and distributed runtime API. Finally, the linked code is

compiled by a Haskell compiler (normally, GHC) down to native code and executed

directly.

The performance results of an experimental validation of the proposed approach

in ABS-Haskell transcompiler is presented in [10]. The parallel runtime treats ABS

active objects as Haskell’s lightweight threads (also known as green threads), each

listening to its own concurrently-modifiable process queue: a method activation

pushes a new continuation to the end of the callee’s process queue. Processes await-

ing on futures are lightweight threads that will push back their continuation when

the future is resolved; processes awaiting on boolean conditions are continuations

which will be put back to the queue when their condition is met. The parallel run-

time strives to avoid busy-wait polling both for futures by employing the underlying

OS asynchronous event notification system (e.g. epoll, kqueue), and for booleans

by retrying the continuations that have part of its condition modified (by mutating

fields) since the last release point.

For the distributed runtime we rely on Cloud Haskell [32], a library framework

that tries to port Erlang’s distribution model to the Haskell language while adding

type-safety to messages. Cloud Haskell code is employed for remote method acti-

vation and future resolution: the library provides us means to serialize a remote

method call to its arguments plus a static (known at compile time) pointer to the

method code. No actual code is ever transferred; the active objects are serialized

to unique among the whole network identifiers and futures to unique identifiers

to the caller object (simply a counter). The serialized data, together with their

types, are then transferred through a network transport layer (TCP,CCI,ZeroMQ);

we opted for TCP/IP, since it is well-established and easier to debug. The data are

de-serialized on the other end: a de-serialized method call corresponds to a contin-

uation which will be pushed to the end of the process queue of the callee object,

whereas a de-serialized future value will wake up all processes of the object awaiting

on that particular future.

The creation of Deployment Components is done under the hood by contacting

the corresponding (cloud) platform provider to allocate a new machine, usually

done through a REST API. The executable is compiled once and placed on each

created machine which is automatically started as the 1st user process after kernel

initialization of the VM has completed.

The choice of Haskell was made mainly for two reasons: the ABS-Haskell back-

end seems to be currently the fastest in terms of speed and memory use, attributed

perhaps to the close match of the two languages in terms of language features:



Implementation 31

Haskell is also a high-level, statically-typed, purely functional language. Secondly,

compared to the distributed implementation sketched in Java [68], the ABS-Haskell

runtime utilizes the support of Haskell’s lightweight threads and first-class continu-

ations to efficiently implement multicore-enabled cooperative scheduling; Java does

not have built-in language support for algebraic datatypes, continuations and its

system OS threads (heavyweight) makes it a less ideal candidate to implement co-

operative scheduling in a straightforward manner. On the distributed side, layering

our solution on top of Java RMI (Remote Method Invocation) framework was de-

cided against for lack of built-in support for asynchronous remote method calls and

superfluous features to our needs, such as code-transfer and fully-distributed garbage

collection.

3.3.1 Implementing Delegation

The distributed algorithm described in Section 3 uses the concept of a delegate

for asynchronicity: when the worker actor demands a particular slot of the graph

array, it will spawn asynchronously an extra delegate process (line 9) that will

only execute when the requested slot becomes available. This execution scheme

may be sufficient for preemptive scheduling concurrency (with some safe locking

on the active object’s fields), since every delegate process gets a fair time slice

to execute; however, in cooperative scheduling concurrency, the described scheme

yields sub-optimal results for sufficient large graph arrays. Specifically, the worker

actor traverses its partition from left to right (line 3), spawning continuously a new

delegate in every step; all these delegates cannot execute until the worker actor has

released control, which happens upon reaching the end of its run method (finished

traversing the partition). Although at first it may seem that the worker actors do

operate in parallel to each other, the accumulating delegates are a space leak that

puts pressure on the Garbage Collector and, most importantly, delays execution by

traversing the partitioned arrays “twice”, one for the creation of delegates and one

for “consuming them”.

A naive solution to this space leak is to change lines 8,9 to a synchronous in-

stead method call (i.e. this.delegate(f,current)). However, a new problem

arises where each worker actor (and thus its CPU) continually blocks waiting on the

network result of the request. This intensely sequentializes the code and defeats the

purpose of distributing the workload, since most processors are idling on network

communication. The intuition is that modern CPUs operate in much larger speeds

than commodity network technologies. To put it differently, the worker’s main cal-

culation is much faster than the round-trip time of a request method call to a remote

worker. Theoretically, a synchronous approach could only work in a parallel setting

where the workers are homogeneous processors and requests are exchanged through

shared memory with memory speed near that of the CPU processor. This hypothesis

requires further investigation.



32 Preferential Attachment on Distributed Systems

1: Unit run(...)
2: for each node i in the partition do
3: for j = 1 to m do step
4: target← random[1..(i− 1)2m]
5: current = (i− 1)m+ j
6: x = whichActor(target)
7: Fut < Int > f = actor[x]! request(target)
8: aliveDelegates = aliveDelegates + 1
9: this! delegate(f, current)

10: if aliveDelegates = maxBoundWindow then
11: await aliveDelegates <= minBoundWindow

Figure 3.3: The modified run method with window of delegates.

We opted instead for a middle-ground, where we allow a window size of dele-

gate processes: the worker process continues to create delegate processes until their

number reaches the upper bound of the window size; thereafter the worker process

releases control so the delegates have a chance to execute. When only the number of

alive delegate processes falls under the window’s lower bound, the worker process is

allowed to resume execution. This algorithmic description can be straightforwardly

implemented in ABS with boolean awaiting and a integer counter field (named

this.aliveDelegates). The modification of the run is shown in Figure 3.3; Similarly

the delegate method must be modified to decrease the aliveDelegates counter

when the method exits.

Interestingly, the size of the window is dependent on the CPU/Network speed

ratio, and the Preferential Attachment model parameters: nodes (n) and degree

(d). In [10], the performance results of the PA model presented in this chapter

in the Haskell backend are given. We empirically tested and used a fixed window

size of [500, 2000]. Finding the optimal window size that keeps the CPUs busy

while not leaking memory by keeping too much delegates alive for a specific setup

(cpu,network,n,d) is planned for future work.

3.4 Conclusion and Future Work

In this chapter, we have presented a high-level distributed-memory algorithm that

implements synthesizing artificial graphs based on Preferential Attachment mecha-

nism. The algorithm avoids low-level synchronization complexities thanks to ABS,

an actor-based modeling framework, and its programming abstractions which sup-

port cooperative scheduling. The experimental results for the proposed algorithm

presented in [10] suggest that the implementation scales with the size of the dis-

tributed system, both in time but more profoundly in memory, a fact that permits

the generation of PA graphs that cannot fit in memory of a single system.



Conclusion and Future Work 33

For future work, we are considering combining multiple request messages in

a single TCP segment; this change would increase the overall execution speed by

having a smaller overhead of the TCP headers and thus less network communication

between VMs, and better network bandwidth. In another (orthogonal) direction,

we could utilize the many cores of each VM to have a parallel-distributed hybrid

implementation in ABS-Haskell for faster PA graph generation.


