
Asynchronous Programming in the Abstract Behavioural Specification
Language
Azadbakht, K.

Citation
Azadbakht, K. (2019, December 11). Asynchronous Programming in the Abstract Behavioural
Specification Language. Retrieved from https://hdl.handle.net/1887/81818
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/81818
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/81818


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/81818 holds various files of this Leiden University 
dissertation. 
 
Author: Azadbakht, K. 
Title: Asynchronous Programming in the Abstract Behavioural Specification Language 
Issue Date: 2019-12-11 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/81818
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 2

Preferential Attachment on

Multicore Systems

2.1 Introduction

Social networks in the real world appear in various domains such as, among others,

friendship, communication, collaboration and citation networks. Social networks

demonstrate nontrivial structural features, such as power-law degree distributions,

that distinguish them from random graphs. There exist various network generation

models that synthesize artificial graphs that capture properties of real-world so-

cial networks. Some existing network generative models are the Erdos-Renyi (ER)

[33] model of random graphs, the Watts-Strogatz (WS) [75] model of Small-world

networks, and the Barabasi-Albert model of scale-free networks. Among these mod-

els, Barabasi-Albert model, which is based on Preferential Attachment [18], is one

of the most commonly used models to produce artificial networks, because of its

explanatory power, conceptual simplicity, and interesting mathematical properties

[73]. The need for efficient and scalable methods of network generation is frequently

mentioned in the literature, particularly for the preferential attachment process

[4, 9, 19, 23, 41, 58–60, 73, 79]. Scalable implementations are essential since massive

networks are important; there are fundamental differences between the structure of

small and massive networks even if they are generated according to the same model,

and there are many patterns that emerge only in massive networks [56]. Analysis of

the large-scale networks is of importance in many areas, e.g. data-mining, network

sciences, physics, and social sciences [16]. The property that we have focused on in

this chapter is the degree of the nodes and by preferential attachment (PA) we mean

degree-based preferential attachment. In PA-based generation of the networks, each

node is introduced to the existing graph preferentially based on the degrees of the ex-

isting nodes, i.e., the more the degree of an existing node, the higher the probability

of choosing it as the target of a new connection.

The PA-based parallel and distributed versions of generating the scale-free graphs

15



16 Preferential Attachment on Multicore Systems

are based on a partitioning of the nodes and a parallel process for each partition

which adds edges to its nodes. The edges are generated by random selection of

target nodes. The data structure prescribed in the Copy Model [54] guarantees that

the selection of the target is done consistently, e.g., the probability distribution of

selecting the target nodes in the parallel version should remain the same as the

distribution in the sequential one. However, from the point of view of the control

flow, the following main problem arises: random selection of the target node requires

synchronization between the parallel processes. The process that hosts the randomly

selected target node has possibly not determined the node yet. However the process

hosting the source node must be informed about the target node in the future once

it is determined.

random selection requires synchronization between the parallel processes, i.e.,

the target nodes are not resolved yet. and the need for conflict resolution, namely,

the selection of a node which has already been selected as a target of the given

source node.

The main contribution of this chapter is a high-level Actor-based model for

the PA-based generation of networks which avoids the use of low-level intricate

synchronization mechanisms. A key feature of the Actor-based model itself, so-called

cooperative scheduling, however, poses a major challenge to its implementation. In

this chapter, we discuss the scalability of a multicore implementation based on

Haskell which manages cooperative scheduling by exploiting the high-level and first-

class concept of continuations [62]. Continuations provide the means to “pause”

(part of) the program’s execution, and programmatically switch to another execution

context; the paused computation can be later resumed. Thus, continuations can

faithfully implement cooperative scheduling in a high-level, language-builtin manner.

The rest of the chapter is organized as follows. The description of the Actor-based

modeling framework which is used to model the PA-based generation of massive

networks is given in section 2.2. Section 2.3 elaborates on parallelizing the PA

model. Section 2.4 mentions the related works. Finally we conclude in section 2.5.

2.2 The Modeling Framework

We propose an Actor-based modeling framework that supports concurrency and

synchronization mechanisms for concurrent objects. It extends the ABS language

and, apart from the ABS functional layer which includes algebraic data types and

pattern matching, it additionally features global arrays as a mutable data structure

shared among objects. This extension fits well in the multicore setting to decrease

the amount of costly message passing, and also to simplify the model. In general, this

feature can cause complicated and hard-to-verify programs. Therefore the model

only allows using this feature in a disciplined manner, which restricts the array

to initially unresolved slots with single-write access (also known as promises in



Parallel Model of the PA 17

languages like Haskell and Scala1), to avoid race conditions. In this chapter, and

chapter 3 and 4 the initial value 0 denotes the unresolved state of a slot.

2.3 Parallel Model of the PA

In this section we present the solution for the PA problem utilizing the idea of

active objects cooperating in a multicore setting. For the solution we adopt the

copy model, introduced in [54]. We first introduce the main data structure of the

proposed approach which is based on the graph representation in copy model. Next

we present the basic synchronization and communication mechanism underlying our

solution and its advantages over existing solutions.

2.3.1 The Graph Representation

We introduce one shared array, arr, as the main data structure that holds the

representation of the graph. The array consists of the edges of the graph. Each

(i, j) where i, j > 0 and j = i + 1, and j mod 2 = 0 shows an edge in the graph

between arr[i] and arr[j] (Figure 2.1(a)).

According to the PA, each node is added to the existing graph via a constant

number of edges (referred to as m) targeting distinct nodes. There is also an initial

clique, a complete graph with the size of m0 where (m0 > m), which is stored at

the beginning of the array. Therefore the size of the array is calculated based on

the number of nodes, num, and the number of edges that connect each new node to

the existing distinct nodes, m. The connections of a new node are established via

a probability distribution of the degrees of the nodes in the existing graph, that is,

the more the degree of the existing node, the more the probability of choosing it as

the target. For instance, if the node n is the new node to be added to the graph

with the existing graph with [1..n − 1] nodes then, according to equation 2.1, the

probability distribution of choosing the existing nodes is [p1..pn−1]. (deg(i) gives the

degree of the node i in the existing graph)

pi =
deg(i)∑n−1
j=1 deg(j)

n−1∑
i=1

pi = 1 (2.1)

As mentioned, the connections for the new node should be distinct. Therefore if

a duplicate happens the approach retries to make a new connection until all the

connections are distinct. This graph representation provides the above mentioned

probability distribution since the number of occurrences of each node in the array

is equal to its degree. Figure 2.1(b) represents the position of node n in the graph

array, where m = 3. In order to add node n to the existing graph containing n− 1

nodes, with the assumption that m = 3, targets are selected randomly from the slots

1https://docs.scala-lang.org/sips/completed/futures-promises.html



18 Preferential Attachment on Multicore Systems

that are located previous to the node n (with the principle shown in Figure 2.2). It

is obvious that self-loop cannot happen, i.e., an edge whose source and target are

the same. Figure 2.1(c) illustrates an optimization on the array so that the array

only contains the targets of the edges since the sources for each node are calculable.

The array is half size as the one in Figure 2.1(b). Each slot in the array can have

one of two states: resolved or unresolved. In the former case it contains the node

number which is greater than zero, and in the latter it contains zero.

A sequential solution for the generation of such graphs consists of processing the

array from left to right to resolve all the slots. The parallel alternative, on the other

hand, is to have multiple active objects processing partitions of the array in parallel.

As shown in the following equations, we distinguish between the following uses of

indices. At the lowest level we have the indices of the slots. The next level is the id

of the nodes. Each node contains a sequence of slots. Finally at the top level we have

the id of the partitions. Each partition contains nodes and consequently slots. In

the proposed approach the partitions satisfy the following equations which express

that the sets of indices of the partitions are mutually disjoint (equation 2.3); that

their union is equal to the whole array (equation 2.2); furthermore, the sequence

of slots of each node must be placed in one partition (equation 2.4) so that one

active object resolves the new node and race conditions are avoided for the checking

duplicates:

w⋃
i=1

pari = G (2.2)

∀(1 ≤ (i 6= j) ≤ w).pari ∩ parj = ∅ (2.3)

∀i, j ∈ G.(node(i) = node(j))→ (par(i) = par(j)) (2.4)

where G is the global set containing all the indices of the shared array, w holds the

number of partitions, pari is the set which holds the indices of the ith partition of

the array, node(i) is a function that returns the node id to which the slot of the

array with index i belongs, and par(i) is a function that returns the partition id to

which the index i belongs. Note that indices that belong to a specific node differ

from the occurrences of that specific node in the array. The former indices are the

slots that represents the edges that are created during introducing the new node to

the graph, which its size is constant (denoted by m), while the latter changes during

the graph generation.

There are different approaches to partition the array so that they hold the above

equations, such as Consecutive and Round Robin Node Partitioning (CSP and RRP

respectively). As it is shown in [4], RRP is more efficient and it is observed a better

load balancing among processors as well as less unresolved chains of dependencies

which leads to less computational overhead. Therefore we have utilized RRP to

partition the array among active objects.



Parallel Model of the PA 19

(a) The array which represents the
graph

(b) The nth node and its connections
to the existing graph with n− 1 nodes

(c) A memory usage optimization to
the array based on copy model

Figure 2.1: The array representing the graph

2.3.2 Synchronization of Chains of Unresolved Dependen-

cies

Each active object only resolves (i.e. writes to) the slots which belong to its own

partition . Nevertheless it can read all the slots throughout the array. In the parallel

solution, an active object may select a slot as the target which is not resolved

yet since either the other active object responsible for the target slot has not yet

processed it or the target slot may wait for another target itself (see dependency

chains in figure 2.2). The way waiting for unresolved slots is managed is crucial

for the complexity of the model and its scalability. Next we describe the two main

approaches to deal with unresolved dependencies (Figure 2.3):

Synchronization by communication: Active object A processes its own partition

of the array and for each randomly selected, unresolved slot it sends a request to the

object B responsible for the target. When object B processes the request, it checks

whether the slot is resolved. If it is not then it stores the information of the request

(e.g. the sender id, the slot requiring the value of the target) in a corresponding

data structure. Because B is the only object which writes to the target slot when it

Figure 2.2: An example of the general sketch of dependencies (right to left) and
computations (left to right)



20 Preferential Attachment on Multicore Systems

(a)

(b)

Figure 2.3: Two different solutions for the PA problem (the second one is the pro-
posed approach)

is resolved, it suffices that B answers all the stored requests waiting for the resolved

target by broadcasting the value of the slot. As such this approach exploits the

wait-notify pattern rather than busy-wait polling, and it can be efficient depending

on how the programmer implements the data structure. However, this approach

involves a low-level user-defined management of the requests through the explicit

user-defined implementation of the storage and retrieval of the requests. Note that

in this approach there are exactly two messages that have to be passed for each

request for an unresolved slot (Figure 2.3(a)).

Synchronization by Cooperative Scheduling : Active object A processes its own

partition of the array and for each unresolved randomly selected slot it sends an

asynchronous self request called “request” for the target value. When object A

schedules and processes the request “request” it checks whether the slot is resolved

or not (by a Boolean condition) and if not it awaits on this condition. This means



Parallel Model of the PA 21

that the request process is suspended. It is notified when the boolean condition

evaluates to true and stored back in the object’s queue of active processes (Figure

2.3(b)). This approach also avoids busy-waiting and follows the wait-notify pattern.

However, the key feature in this approach is the use of cooperative scheduling in

which the executing process of an active object can release conditionally the control

cooperatively so that another process from the queue of the object can be executed.

The continuation of the process which has conditionally released the control will

be stored into a separate queue of suspended processes. These processes are stored

again in the object’s queue for execution when they are notified. The Haskell im-

plementation of this mechanism takes care of the low-level storage, execution and

suspension of the processes generated by asynchronous messages. The ABS code

itself, see below, remains high-level by means of its programming abstractions de-

scribing asynchronous messaging and conditional release of control.

2.3.3 The Actor-based Model of PA

The main part of the encoding of our proposed approach is depicted as a pseudo-code

in Figure 2.4. The full implementation of the model is provided online2. The worker

objects are active objects which resolve their corresponding partitions. To this aim,

each worker goes through its own partition and it checks a randomly selected target

for each of its slots (note that m denotes the number of connections, or slots in the

array, per node). Since we use the optimized array representation (shown in Figure

2.1(c)), half of the array that corresponds to sources of the edges are not part of the

array and the values (i.e., node numbers) are calculable from the index. However

those indices can be targeted. The auxiliary function result(arr, target) checks the

target index. If it is calculable, then it calculates and returns the value without

referring to the array. Otherwise, the value of the index should be retrieved from

the array. In such case, if the target slot is already resolved then the worker takes

the value and resolves the slot of the current index in case there is no conflict. If

it is not resolved yet then it calls the request method asynchronously. The request

method awaits on the target until it is resolved. Then it uses the value of the resolved

target to resolve the current slot, if there is no duplicate. In case of a duplicate, the

algorithm selects another target randomly in the same range as the previous one.

Note that the calls to the request method in lines 8 and 22 are asynchronous (de-

noted by exclamation mark) and synchronous (denoted by dot) respectively. The

asynchronous call is introduced so as to spawn one process per each unresolved

dependency. In the synchronous call, however, there is no need to spawn a new

process since the current process is already introduced for the corresponding unre-

solved dependency. Note that suspension of such a process thus involves in general

an entire call stack, which poses one of the major challenges to the implementation

of ABS, but which is dealt with in Haskell by the high-level and first-class concept

2https://github.com/kazadbakht/PA/blob/master/src/ParProRR.abs



22 Preferential Attachment on Multicore Systems

of continuations (described in more detail below).

1: Each active object O executes the following in parallel
2: run(...) : void
3: for each Node i in the partition do
4: for j = 1 to m do
5: target← random[1..(i− 1)2m]
6: current = (i− 1)m+ j
7: if result(arr, target) = 0 then
8: this ! request(current, target)
9: else if duplicate(result(arr, target), current) then

10: j = j − 1 . Repeat for the current slot j
11: else
12: arr[current] = result(arr, target) . Resolved

13:

14:

15: request(target : Int, current : Int) : void
16: await (result(arr, target) 6= 0)
17: . At this point the target is resolved
18: value = result(arr, target)
19: if duplicate(value, current) then
20: target = random[1..(target/m)2m]
21: . Calculate the target for the current again
22: this.request(target, current)
23: else
24: arr[current] = value . Resolved

25:

26:

27: duplicate(target : Int, current : Int) : Boolean
28: for each i in (indices of the node to which current belongs) do
29: if arr[i] == value then
30: return True
31: return False

Figure 2.4: The sketch of the proposed approach

2.4 Related Work

There exist some attempts to develop efficient implementations of the PA model

[4, 9, 19, 41, 58, 59, 73, 79]. Some existing works focus on more efficient implemen-

tations of the sequential version [9, 19, 73]. Such methods propose the utilization

of data-structures that are efficient with respect to memory consumption and time

complexity. Few existing methods are based on a parallel implementation of the PA



Conclusion and Future Work 23

model [4, 59, 79], among which some methods [59, 79] are based on a version of the

PA model which does not satisfy its basic criteria (i.e., consistency with the original

model). The approach in [4] requires complex synchronization and communication

management and generates considerable overhead of message passing. This stems

from that this latter approach is not developed for a multicore setting but for a dis-

tributed one. However our focus is to have a high-level parallel implementation of

the original PA model utilizing the computational power of multicore architectures

[12].

2.5 Conclusion and Future Work

We showed that the PA-based generation of networks allows a high-level multicore

implementation using the ABS language and its Haskell backend that supports coop-

erative multitasking via continuations and multicore parallelism via its lightweight

threads. An experimental validation of a scalable distributed implementation of our

model based on Haskell is presented in [12].

Future work will be dedicated toward optimizations of the Haskell runtime sys-

tem for the ABS. Other work of interest is to formally restrict the use of shared

data structures in the ABS to ensure encapsulation. One particular approach is to

extend the compositional proof-theory of concurrent objects [31] with foot-prints

[28] which capture write accesses to the shared data structures and which can be

used to express disjointness of these write accesses.



24 Preferential Attachment on Multicore Systems


