
Asynchronous Programming in the Abstract Behavioural Specification
Language
Azadbakht, K.

Citation
Azadbakht, K. (2019, December 11). Asynchronous Programming in the Abstract Behavioural
Specification Language. Retrieved from https://hdl.handle.net/1887/81818

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/81818

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/81818

Cover Page

The handle http://hdl.handle.net/1887/81818 holds various files of this Leiden University
dissertation.

Author: Azadbakht, K.
Title: Asynchronous Programming in the Abstract Behavioural Specification Language
Issue Date: 2019-12-11

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/81818
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 1

The ABS Language

1.1 Introduction

Over decades, execution of software has shifted from local computer programs with

low processing power to execution of many computationally-intensive programs with

massive data processing and transferring, which are physically distributed and inter-

connected. Execution of such programs demands efficient, rigorous software design

and implementation, and powerful underlying computing and communication re-

sources.

According to the Moore’s law for decades, hardware manufacturers could double

the number of transistors on a chip roughly every two years, which has been leading

to proportional speed-up in the processing of a sequence of instructions for a unicore

chip. Also in order to achieve the above speed-up, hardware manufacturers have

been trying for long to reduce the sizes of transistors and the distance between them.

However, the feasibility of such proportional speed-up has reached to its limit, mainly

because of physical restrictions. In [8], three main obstacles are discussed that

prevent the hardware manufacturers from sustaining the growing speed-up expected

by Moore’s law: first, the linear increase in clock frequency of a unicore chip gives

rise to quadratic energy consumption. Second, such a higher-frequency processor

generates more heat than the current cooling technologies can dissipate. Third,

the fine-granular parallelism gained from instruction-level parallelism (ILP) in the

streams of a single instruction seems to have reached its limit. A more fundamental

obstacle is, however, that the flow of information in a computer system with a

single computational core is ultimately limited to the speed of light. Therefore, the

continuous effort has reached to a threshold that the production of faster unicore

processors is no longer economically-viable.

Because of the above obstacles, the hardware manufacturers started prototyping

and producing multicore (and manycore) processors as a new computer architecture

around 2005 [71]. On these processors, there are multiple computational cores with

dedicated and shared caches that operate on a shared memory and can process

5

6 The ABS Language

multiple program instructions in parallel. However, a sequential program can be

executed on a unicore processor with a specific frequency as fast as on a multicore

processor with the same frequency, disregarding the number of cores.

The underlying idea of using a multicore processor is to improve performance

by harnessing the processing power of its constituent cores. To this aim, by parallel

programming, the workload is divided evenly in form of tasks which are assigned to

the cores. A common parallel program (beside, e.g., data-parallelism and graphics

processing) involves communication among the tasks (e.g., synchronization on a data

provided by another task). With the advent of chips with higher number of cores,

however, the programming means of parallelism and communication also needs to

scale. As an example, the multi-threading in Java can be applied to programs with

a few number of threads executed on the current multicore processors. However,

reasoning about the correctness of multi-threaded programs is notoriously difficult in

general [67], especially in the presence of a shared mutable memory which can result

in software errors due to data race and atomicity violations. The problem escalates

when the future multicore processors come into the picture, and thus the need for a

modeling language that enables scalable parallel and distributed programming still

persists.

Abstract Behavioural Specification (ABS) is a language for designing executable

models of parallel and distributed object-oriented systems [48], and is defined in

terms of a formal operational semantics which enables a variety of static and dynamic

analysis techniques for the ABS models, e.g., deadlock detection [14,39], verification

[30] and resource analysis [5]. Moreover, the ABS language is executable which

means the user can generate executable code and integrate it to production —

currently backends have been written to target Java, Erlang, Haskell [20] languages

and ProActive [46] library.

The ABS language originated from the Creol modeling language which is in-turn

influenced by SIMULA, the first object oriented language. The language is generally

regarded as a modeling language rather than a programming language with the aim

of software production. The main purpose of ABS is thus to construct a (usually

abstract) model of the system-to-be, whose different properties can be reasoned

about based on different techniques on the underlying formalism. Nevertheless, the

before-mentioned ABS backends provide libraries of data structures for the language,

and considering the executable nature of the ABS models (and the similarity to

Java), these models can be re-used as a starting point for the software production.

ABS at the data layer is a purely functional programming language, with support

for pure functions (i.e., functions that disallow side-effects), parametrically poly-

morphic algebraic datatypes (e.g., Maybe<A>) and pattern matching over those

types. At the object layer sits the imperative layer of the language with the Java-

reminiscing class, interface, method and attribute definitions. It also attributes the

notion of concurrent object group (cog), which is essentially a group of objects which

share control.

ABS and Other Languages 7

Therefore the language is comprised of two layers: 1) the concurrent object layer,

an imperative object oriented language that captures the concurrency model, com-

munication, and synchronization mechanisms of the ABS, and 2) the functional

layer, a functional language which is used for modeling data.

From another perspective, ABS adheres to the Globally Asynchronous Locally

Sequential model of computation. A cog forms a local computational entity, which

is based on synchronous internal method activations. All objects inside a cog, which

share a thread of control, can synchronously call the methods of objects inside the

same group. However communication between the objects of different cogs is, in

principle, asynchronous. The behavior of a cog is thus based on cooperative multi-

tasking of external requests sent to the constituent objects.

1.2 ABS and Other Languages

The actor model has gained attention as a concurrency concept since, in contrast to

thread-based concurrency, it encapsulates control flow and data. Prominent exam-

ples are Erlang [6] based on a functional programming paradigm and Akka actors 1

integrated into a modern object oriented language.

ABS, unlike the general notion of actors as in, e.g., Erlang and Akka Actors,

is statically typed and supports a programming to interface discipline. Therefore a

message, which represents an asynchronous method invocation, is statically checked

if the called method on an object is supported by the interface that is implemented

by the corresponding class, which gives rise to a type safe communication mechanism

that is compatible with standard method calls. This also forces the fields of an object

to be private, thus avoiding the incidents of reference aliasing. Unlike Java, objects

in ABS are typed exclusively by interface with the usual nominal subtyping relations

— ABS does not provide any means for class (code) inheritance.

In contrast to the run-to-completion mode of method execution, e.g., in Re-

beca [69] and Akka Actors, ABS further provides the powerful feature of cooperative

scheduling which allows an object to suspend in a controlled manner the current ex-

ecuting method invocation (also known as process) and schedule another invocation

of one of its methods. This novel mechanism enables combining active and reactive

behaviors within an object, and avoiding a common scenario where waiting for the

resolution of certain messages requires the actor to be completely blocked for other

activities, thus enhancing the potential concurrency and parallelism.

1.3 Model of Concurrency

The model of execution in ABS is based on the actor model [47] which is a model

of concurrency with the following characterization: 1) an actor has an identity

1https://akka.io

8 The ABS Language

and encapsulates its constituent data and a single thread of control, and 2) the

communication between actors are via asynchronous message passing. The receiving

messages are queued in the mailbox of the actor. The thread activates messages

from the mailbox, i.e., dequeues the message and executes an internal computation

correspondingly.

The identity of an actor is shared either with its creator upon creation , or it

is explicitly sent as a parameter of a message. Also, there is no pre-defined global

ordering where a sending actor can prioritize its message over the ones of other

actors.

Active objects [55,78] are descendants of actors where messages are asynchronous

method invocations and the operations of an object are defined in terms of methods

that are encapsulated and exposed via interfaces. The notion of active object is an

alternative to the traditional object’s built-in mechanisms for multi-threaded and

distributed programming, where support for structuring and encapsulation of the

state space, higher-level communication mechanisms and a common model for local

and distributed concurrency is missing [63].

In addition to the above, ABS active objects feature synchronization on futures

and cooperative scheduling of internal processes, which are elaborated as follows:

Synchronization on futures A future of a specific type is used as a unique

reference to the return value of an asynchronous method call with the same return

type. The future is unresolved if the corresponding return value is not yet available.

It is resolved otherwise and stores the value. The query to retrieve the value of a

future (via get operation) synchronizes the active object on the resolution of the

future, namely, the active object is blocked until the future is resolved. The value

is then retrieved.

Cooperative scheduling ABS also features cooperative scheduling, where the

active process of an object can deliberately yield control such that a process from

the set of suspended processes of the object can be activated, i.e., explicit coopera-

tion in contrast to the common mechanisms of thread preemption. The “release of

control” happens in explicit places of the ABS model, where the potential concurrent

interleavings of different processes are defined. These places are specified by await
and suspend statements, for conditional and unconditional release, respectively.

1.4 Language Definition

In the following, the ABS syntax of Concurrent Object layer of Core ABS is given.

We also briefly describe semantics of each syntactic structure. The syntax and

semantics for the functional layer is omitted as it is not the focus of this thesis. In

[48], the full formal definition of Core ABS is given.

Language Definition 9

Syntactic categories

C, I,m in Names

g in Guard

s in Statement

Definitions

P ::= Dd F IF CL {T x; s}
IF ::= interface I {Sg }
CL ::= classC [(T x)] [implements I] {T x; M}
Sg ::= T m (T x)

M ::= Sg {T x; s }
g ::= b | e? | g ∧ g
s ::= s; s | x = rhs | suspend | await g | skip

| if b {s} [else {s}] | while b {s} | return e

rhs ::= e | new [local] C [(e)] | e!m(e) | e.m(e) | x.get

Figure 1.1: Core ABS syntax for the concurrent object level [48]

The Concurrent Object Layer of Core ABS is given in Figure 1.1. In this

grammar, an overlined entity v denotes a list of v. The IF denotes an interface.

Each interface has a name I and a list of method signatures Sg . A class CL has

a name C, interfaces I, formal parameters and state variables x of types T , and

methods M . (The fields of the class are both its parameters and state variables).

When the class is instantiated, the number, order and type of actual parameters

must match those of formal parameters. This also applies to the synchronous and

asynchronous method invocations. In ABS the object references are typed only with

interfaces (i.e., programming to interfaces). A reference variable with type I, where

I is an interface name, can hold a reference to an instance of a class C, provided

that C implements I.

A method signature Sg declares the return type T of a method with name m

and formal parameters x of types T . M defines a method with signature Sg , local

variable declarations x of types T , and a statement s. Statements can have access to

the fields of the current class, local variables, and the method’s formal parameters.

The state of a method is its local variables and the fields of the class it belongs to.

A program’s main block is a method body {T x; s}.
Right-hand side expressions rhs include object creation within the same cog

(written “new local C(e)”) and in a fresh cog (written “new C(e)”), method

invocations, and expressions e. Statements are standard for sequential composition,

assignment, skip, if, while, and return constructs. The statement suspend
unconditionally releases the processor, suspending the active process. In await g,

the guard g controls processor release and consists of Boolean conditions b and

return tests x? (see below). If g evaluates to false, the processor is released and the

process suspended. When the processor is idle, any enabled process from the object’s

pool of suspended processes may be scheduled. Consequently, explicit signaling is

redundant in ABS.

Besides the common synchronous method calls to passive objects e.m(ē), ABS

introduces the notion of concurrent objects (also known as active objects). These

concurrent objects interact primarily via asynchronous method invocations and fu-

10 The ABS Language

tures. An asynchronous method invocation is of the form of x = e!m(e), where e

is an object expression (i.e., an expression typed by an interface), and x is a future

variable used as a reference to the return value of the asynchronous method call m,

and thus the caller can proceed without blocking on the call. The method invoca-

tion itself will generate a process which is stored in the mailbox (process queue) of

the object e. Futures can be passed around and can be queried for the value they

contain.

There are two operations on a future expression e for synchronization on external

processes in ABS. The operation x = e.get blocks the execution of the active object

until the future expression e is resolved, where its value is assigned to x. On the

other hand, the statement await e? results in releasing control by the process,

where the future expression e is unresolved. This allows for scheduling another

process of the same active object and as such gives rise to the notion of cooperative

scheduling : releasing the control cooperatively so another enabled process can be

(re)activated. ABS provides two other forms of releasing control: the await b

statement which will only re-activate the process when the given boolean condition

b becomes true (e.g. await this.x == 3), and the suspend statement which will

unconditionally release control to the active object. Note that the ABS language

specification does not fix a particular scheduling strategy for the process queue of

active objects as the ABS analysis and verification tools will explore many (if all)

schedulability options; however, ABS backends commonly implement such process

queues with FIFO ordering.

When executed between objects in different cogs, then the statement sequence

x = o!m(e); v = x.get amounts to a blocking, synchronous call and is abbreviated

v = o.m(e). In contrast, synchronous calls v = o.m(e) inside a cog have the reentrant

semantics known from, e.g., Java method invocation. The statement sequence x =

o!m(e); await x?; v = x.get codes a non-blocking, preemptable call, abbreviated

await v = o.m(e). In many cases, these method calls with implicit futures provide

sufficiently flexible concurrency control to the modeler.

1.5 Distributed ABS

The ABS also supports distributed models at the implementation level, a cloud

extension to the ABS standard language, as implemented in [20]. This extension

introduces the Deployment Component (DC), which abstracts over the resources

for which the ABS program gets to run on. In the simplest case, the DC corre-

sponds to a Cloud Virtual Machine executing some ABS code, though this could

be extended to include other technologies as well (e.g. containers, microkernels).

The DC, being a first class citizen of the language, can be created (DC dc1 = new
AmazonDC(cpuSpec,memSpec)) and called for (dc1 ! shutdown()) as any

other ABS concurrent object. The DC interface tries to stay as abstract as possible

by declaring only two methods shutdown to stop the DC from executing ABS code

Example 11

while freeing its resources, and load to query the utilization of the DC machine

(e.g. UNIX load). Concrete class implementations to the DC interface are (cloud)

machine provider specific and thus may define further specification (CPU, memory,

or network type) or behaviour.

Initially, the Deployment Component will remain idle until some ABS code is

assigned to it by creating a new object inside using the expression o = [DC: dc1]
new Class(...), where o is a so-called remote object reference. Such references

are indistinguishable to local object references and can be normally passed around

or called for their methods. The ABS language specification and its cloud extension

do not dictate a particular Garbage Collection policy, but we assume that holding

a reference to a remote object or future means that the object is alive, if its DC is

alive as well.

1.6 Example

In Figure 1.2 we show a model of a thread pool in ABS with a given interface and a

fixed number of threads. The thread pool retrieves and executes tasks (asynchronous

method invocations) that are stored in its queue and returns their corresponding

futures. Once a thread terminates the execution of a task, it is assigned another

task from the queue if the queue is not empty, or remains idle otherwise.

The thread pool consists of a set of active objects (i.e., instances of Member)

that represent the threads, and one manager (i.e., an instance of Threadpool)

that manages the thread pool. Both the manager and the members provide the

same interface Service, which denotes the methods that can be executed by the

thread pool. In this example, Service provides two method signatures m1 and

m2. The intended behaviour of these methods is implemented in Member. The

implementation of the methods with the same signatures in Threadpool, however,

involves relegating the call to an available member’s corresponding method. It also

consistently updates the list of available members. For instance, m1 in Threadpool
awaits the availability of a Member instance, removes the member from the list of

available members, calls the corresponding m1 on the member, awaits on the future

resulting from the call, and finally adds the member to the list of available members

again as the task is finished.

12 The ABS Language

module threadpool;

interface Service
{

T1 m1(...);
T2 m2(...);
...

}

class Member implements Service {
T1 m1(...)
{

// implementation of m1
}
T2 m2(...)
{

// implementation of m2
}
...

}

class Threadpool(Int count) implements Service{

List<Service> available = Nil;

{
Int i = 1;
while(i<=count) {

Service thread = new Member();
available = cons(thread, available); i = i + 1;

}
}

T1 m1(...)
{

Service thread = this.getThread();
Future<T1> f = thread!m1(p1);
// p1 is a list of arguments received by m1
await f?;
available = cons(thread, available);
return f.get;

}

T2 m2(...)
{

Service thread = this.getThread();
Future<T2> f = thread!m2(p2);
// p2 is a list of arguments received by m2
await f?;
available = cons(thread, available);
return f.get;

}

...

Service getThread() {
await available != Nil;
Service thread = head(available);
available = tail(available);
return thread;

}
}

{ // main block
Service threadpool = new Threadpool(numberOfThreads);
Future<T1> f = threadpool!m1(...);
...

}

Figure 1.2: A model of thread pool

