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CHAPTER 6. MACHINE-LEARNING BASED REPRESENTATIONS

Abstract

Electronic friction theory allows to account for effects of electron-hole pair excita-

tion on the dynamics of molecules on metal surfaces in a computationally efficient

manner, given that continuous representations of the molecular-coordinate-dependent

electronic friction tensors are available. In general, those tensors can be anisotropic

and non-diagonal, which makes continuous representations more challenging than for

scalar quantities, like e.g. potential energy surfaces. In this chapter neural-network-

based machine learning models are developed and compared that account for symmetry

properties of molecule-surface systems to meet this challenge. First, a formalism is pre-

sented to describe symmetry properties of electronic friction tensors for molecules on

frozen metal surfaces. Two strategies result that allow these properties to be enforced

within machine learning algorithms: an “a priori” and an “a posteriori” method. For

the “a priori” method, different symmetry adapted input coordinates can affect the

fitting accuracy and computational efficiency. The elements of the tensor can either

be obtained by assigning a unique neural network to each element, or by constructing

a neural network with multiple outputs and subsequently arrange these outputs as a

tensor. Positive definite tensors can be enforced by generating a lower triangular tensor

that is subsequently squared. Comparing different methods shows that the best results

are obtained for an “a priori” method when including “asymmetric” contributions for

the symmetry adapted input coordinates using a single neural network for all tensor

elements and enforcing positive definiteness.

6.1 Introduction

Machine learning has become an ubiquitous technique in computational chemistry for

the construction of continuous representations of quantities that depend on a large

number of atomic coordinates based on first-principles calculations [11–1414]. In particular

potential energy surfaces (PESs) have received a lot of attention, usually in order to

perform molecular dynamics (MD) simulations at considerably reduced computational

cost [11, 55, 1010, 1212–1414]. One essential ingredient for all machine learning models is the
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representation of atomic coordinates, since it is the only way to rigorously enforce

(spatial) symmetries of the studied systems (molecules, solids and/or interfaces) in the

model [11, 55, 77, 1010, 1212, 1515]. When PESs are the target quantities, it is “only” the

invariance of these scalar quantities under the corresponding symmetry transformation

that needs to be directly accounted for. Forces that are calculated as the partial

derivatives with respect to the atomic coordinates from the machine learning model

for the PES automatically conform to the proper symmetries [11, 1515], but need more care

to be represented accurately [22, 33, 55, 1616]. On the other hand, making atomic forces the

primary target quantities requires constructing and incorporating the symmetry-related

invariance of vectors into a machine learning model, which is a much more difficult

challenge, that Chmiela et al. [1010, 1616] have mastered only recently. For tensors the

situation is even more challenging. In their recent work Grisafi et al. [66] have developed

a machine learning model that includes symmetries of an atomistically described system

for its “global” (intensive) property tensors (e.g. the 3× 3 polarizability tensor).

The focus here is on the construction of machine learning models for electronic

friction tensors. Given its computational efficiency, electronic friction theory [1717] is

the current workhorse for modeling the effect of electron-hole pair excitations in a

metal surface on molecules moving close to the latter [1818, 1919]. These so-called non-

adiabatic effects can considerably affect the vibrationally inelastic scattering of di-

atomic molecules [2020–2323] as well as their dissociation probabilities [2424], when the elec-

tronic friction calculations are based on electronic structure theory that in principle

allows them to be non-isotropic and non-diagonal (in their Cartesian representation)

[2525].

In that case, these so-called orbital-dependent friction (ODF) tensors are atom-

specific (extensive) quantities, i.e. the amount of elements and coordinate dependence

scales with the amount of atoms for which non-adiabatic effects are to be consid-

ered, which is a significant difference compared to the aforementioned work of [66]. At

present, the computational burden of evaluating electronic friction tensors practically

forbids including surface atom motion [2020], which is currently considered to not sig-

nificantly affect the non-adiabatic effects described by electronic friction.[2626] Machine
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learning models that capture the combined symmetry of diatomic molecules on highly-

symmetric low-index metal surfaces are therefore currently the only way to calculate

sufficiently many MD trajectories (based on a Langevin equation) as required to obtain

observables that can be compared with experimental data [2121–2424].

The goal of this chapter is to formalize symmetry constraints for atom-specific ten-

sors and subsequently obtain a method for constructing continuous representations via

machine learning that incorporate the aforementioned symmetry - with a particular fo-

cus on ODF tensors for molecules interacting with frozen surfaces. Three key strategies

of the latter are considered here.

The first strategy is the most straightforward one, where the neural network (NN) is

expected to learn the symmetries from the presented data set. This approach can

easily be enhanced by using the relevant symmetry operators to extend the training

and test data sets. The subsequent fit will, however, not strictly obey the correct

symmetry behavior because of the fitting error which is arbitrarily different also for

symmetrically equivalent configurations. A further downside is that the training time

increases substantially since a much larger data set is required.

The second strategy is to perform a posteriori correction to a non-symmetric NN fit

in order to correct symmetry violations using an explicit symmetrization method. This

approach results in fitting errors that are also symmetrized. Although the overall result

is guaranteed to be exactly symmetric, the NN has to be evaluated multiple times at

symmetrically equivalent configurations. This results in both increased training and

evaluation times.

Finally, the third strategy, which is the most desirable, is to present an a priori

symmetry-adapted model to the machine learning algorithm. Non-scalar quantities

are the same at symmetrically equivalent configurations only after the appropriate

well-defined mathematical transformation. Here a pragmatic approach is provided

to construct the appropriate tensor transformations, which are validated by applying

the second approach to the postulated model and verifying that that no symmetry

violations were observed.

This chapter is structured as follows. First, symmetry properties of tensors are
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introduced using an abstract formalism, which allows to selectively incorporate the

aforementioned key strategies. Afterwards, this formalism is applied to construct NN-

based continuous representations of electronic friction tensors that have recently been

studied [2121, 2424]. Using the same reference data for training and test sets, the resulting

fits thus allow one to compare practical performance of these machine learning models.

6.2 Tensor Field Properties of Systems with Symmetry

Here a systematic approach is provided for obtaining symmetry-constrained represen-

tations of tensor fields. These symmetric representations are obtainable by considering

their behavior under coordinate transforms and impose this behavior on analytical

expressions, such as NN fits. Specifically, the focus is on the imposed behaviour on

tensor fields that transform in the same way as the electronic friction tensor, which has

previously been obtained NN fits [2121, 2424]. In order to obtain these coordinate transfor-

mations, it is necessary to define the configuration p that describes the location of all

atoms in the system. This p, while in principle an abstract object, can be expressed in

different coordinate systems. Two examples, which are commonly used in chemistry,

are a Cartesian coordinate system, where each atom is described by its three Cartesian

coordinates, and an internal coordinate system, where the center of mass (COM) of a

group of atoms is used in combination with some measure of the relative positioning

of the atoms in that group together with its orientation. Now let R and R′ denote

two such different coordinate systems where the atomic configuration p is expressed in

the respective coordinates as Rp and R′
p. Here the elements Ri

p and R′i
p of R and R′

then simply describe the same physical object in their respective different coordinate

systems. Moreover, assume that a forward mapping M̂R′Rp = R′
p and a backward

mapping M̂RR′
p = Rp exist, noting that these mappings would usually be non-linear.

Tensor field properties are then simply properties that are associated with a config-

uration p and that transform in a specific way when a different coordinate system is

chosen. Some such properties, like the PES V (p), do not have a transformation rule

and can thus also be considered scalar fields (V (p)). Other properties of the system,
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which are at least partially defined through a change in the configuration p, do have

associated transformation rules. Examples are velocities
[
vi (p)

]R
=

dRi
p

dt and forces[
Fi (p)

]
R

= − dV

dRj
p

. The elements of these properties are related to a change in the

configuration p expressed in a specific coordinate system Rp. It is convenient to be

able to transform the elements of these properties to allow expressing them in a differ-

ent coordinate system. Even though M̂R′ (and M̂R) in general do not describe linear

transformations in the context of chemical systems (e.g. typically internal coordinates

are given by distances and angles), the transformation of both the aforementioned

differential properties is given by a point-wise linear transformation i.e.[
vi (p)

]R′

=
dR′i

p

dt
=
∂R′i

p

∂Rj
p

dRj
p

dt
=
∂R′i

p

∂Rj
p

[
vj (p)

]R
(6.1)

for velocities and [
Fi (p)

]
R′

=
dV

dR′i
p

=
∂Rj

p

∂R′i
p

dV

dRj
p

=
∂Rj

p

∂R′i
p

[
Fj (p)

]
R

(6.2)

for forces. Here Einstein’s summation convention for implicitly summing over repeated

indices is used. A tensor field such as the velocity v (p) or force F (p) can thus

be defined invariant of the chosen coordinate system. Elements of these invariant

velocity
[
vi (p)

]R
and force

[
Fi (p)

]
R

tensors can then be expressed for a specific

coordinate system, this is indicated here explicitly using a bracket notation, as it will

later be necessary to keep track of the coordinate system for introducing symmetry

properties. Moreover, the elements of the force have a lower index to indicate that they

transform covariantly, i.e. in the same way as the tangent vector basis (linearized) of

the corresponding coordinate system, while the elements of the velocity have an upper

index to indicate that they transform contravariantly, i.e. in the same way as the dual

of the tangent vector basis.

Tensor fields can also describe properties that transform as a combination of co- and

contravariant elements. An example of this is when the partial derivatives in equation

6.26.2 are written as the Jacobian tensor

[
Jj
i (p)

]R
R′

=
∂Rj

p

∂R′i
p

=
∂
(
M̂RR′

p

)j
∂R′i

p

. (6.3)
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Here we focus on tensor fields that transform in the same way as the electronic

friction tensor: the doubly covariant tensor field
[
ηij (p)

]
RR

. The transformation rule

for the elements of this type of tensor field from coordinate system R to R′ is written

as

[
ηi′j′ (p)

]
R′R′

=
[
J i
i′ (p)

]R
R′

[
ηij (p)

]
RR

[
Jj
j′ (p)

]R
R′
, (6.4)

with indices i, j and i′, j′ denoting tensor elements in the R and R′ coordinate systems

respectively. Here and in the following, the use of the Einstein summation convention

for these tensor elements is limited to indices that appear exactly once covariantly and

once contravariantly, while they are expressed in the same basis.

Some systems also have symmetries, which means that there exist symmetrically

equivalent configurations that have equivalent tensors. Equivalent for tensor fields

however, does not mean that all the elements of the tensor are the same. For example,

if a mirror symmetry exists then the symmetrically equivalent configurations have the

same forces, except that the forces are additionally mirrored themselves, or equivalently,

the coordinate basis is mirrored and the same force is now found in this symmetry

coordinate system as illustrated in Figure 6.16.1. This can be elegantly expressed using

the above tensor field transformations.

Let ŝ be a symmetry operator that generates the symmetrically equivalent config-

uration pŝ of p and M̂ŝR be the mapping which obtains the concomitant symmetry

coordinate system of ŝ. Following the above reasoning, the elements of a symmetric

tensor field then must be the same at configurations p and pŝ if the latter is expressed

in the mapped coordinate system according to

ŝ
[
ηij (p)

]
RR

=
[
ηij (pŝ)

]
ŝRŝR

=
[
ηij (p)

]
RR

∀ ŝ ∈ G. (6.5)

This equivalence holds for all symmetry operators ŝ in the group G that together

describe the symmetry of the system. By making use of equation 6.46.4 it is possible to

write ŝη (p) expressed in the original coordinate system R according to

ŝ
[
ηij (p)

]
RR

=
[
J i′

i (pŝ)
]R
ŝR

[
ηi′j′ (pŝ)

]
RR

[
Jj′

j (pŝ)
]R
ŝR
, (6.6)
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ŝ = σ̂

x

yF (p)

R = {x, y}

x′

y′ F (pŝ)

ŝR = {x′, y′}

[
Fi (pŝ)

]
ŝR

=
[
Fi (p)

]
R

Figure 6.1: Schematic explanation of the behavior of tensors (force F (p)) if a mirror

symmetry (indicated by the dashed black line) σ̂ can be identified. On the right hand

side of the mirror, the original configuration p is indicated together with the force

F (p) and Cartesian coordinate system R = {x, y}. The left hand side shows the

symmetrically equivalent configuration pŝ which has the mirrored force F (pŝ) that

has the same elements as F (p) if they are expressed in the symmetry coordinate

system ŝR = {x′, y′} and the Cartesian coordinate system R respectively.

where if R is taken in cartesian coordinates then the resulting Jacobian tensor J (pŝ)

is independent of p and equal to the appropriate transformation matrix describing the

symmetry operator ŝ.

A continuous representation of a tensor field ηcont (p) can thus be symmetrized a

posteriori by taking the average over the h symmetrically equivalent configurations

under the symmetry operators in G, represented in the appropriately rotated basis,

according to[
ηpost
ij (p)

]
RR

=
1

h

∑
ŝ∈G

ŝ
[
ηcont
ij (p)

]
RR

=
1

h

∑
ŝ∈G

[
ηcont
ij (pŝ)

]
ŝRŝR

. (6.7)

The other way round, equation 6.76.7 also provides a test for a candidate tensor

construction ηcand (p) which is intended to already have the correct symmetry behavior.

If it can be shown that this test is passed based on analytical arguments then this is

considered an a priori symmetrized tensor ηpriori (p). In practice, this can also be

verified by a numerical test on a sufficiently large grid of configurations, or be used

as an estimate of how large the violation of symmetry is (e.g. in comparison with the

fitting error of ηcand (p)).
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A special case exists when a configuration exists that is invariant under one of

the symmetry operators ŝ such that independent of the chosen coordinate system it is

found that Rp = ŝRp = Rpseam . Example of such configurations are the fixed points

(as present on the dashed line in Figure 6.16.1) on a mirror plane. These configurations

consist along what is defined here as the symmetry seam, which would in the case of

a mirror plane be the entire mirror plane, and have additional constraints on their

elements. The constraints on the elements can be found by using the relevant ŝ in

equation 6.56.5 as [
ηij (p

seam)
]
RR

=
[
ηij (p

seam)
]
ŝRŝR

, (6.8)

and realize that the constraints are now imposed due to the equivalence being required

for the exact same configuration, i.e. the same tensor is required to be the same in two

(or more) coordinate systems. These symmetry constraints are automatically satisfied

for both a priori and a posteriori tensor constructions.

6.2.1 a priori Symmetric Coordinate Systems and Mappings

There are several methods to obtain an a priori symmetric tensor field ηpriori (p) by

choosing an appropriate coordinate system and concomitant mapping from and to

Cartesian coordinates. The general idea is to obtain the tensor elements in a coordinate

system Rsym which for symmetry equivalent configurations pŝ yields the same elements

in the representation of that coordinate system i.e. (Rsym)ipŝ
= (Rsym)ip. After this

representation is obtained (e.g. through fitting a NN) it can then be transformed to

the required coordinate system R using Eq. 6.46.4. For fitting it is not strictly necessary

to have a well defined backwards mapping because forward mapping in combination

with back-propagation (as implemented automatically in TensorFlow) can circumvent

the need to transform the fitting data into the Rsym representation.

Reduced Dimensional Mapping

By choosing a reduced dimensional dependence on the configuration it is possible to

avoid some of the symmetry considerations, although at the cost of having a lower
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fitting accuracy. This can be done by defining a reference configuration pref to be the

same as the actual configuration p except for one (or possible multiple) direction(s)

of a certain coordinate system Rref being a reference constant. A tensor can then be

expressed in a different coordinate system R but including the imposed reduction in

dependence in the reference coordinate system according to

[
ηref
ij (p)

]
RR

=
[
Jk
i (p)

]Rref

R

[
Jm
k

(
pref)]R

Rref︸ ︷︷ ︸[
Tm
i (p,pref)

]R
R

[
ηref
mn

(
pref)]

RR

[
Jn
l

(
pref)]R

Rref

[
J l
j (p)

]Rref

R
.

(6.9)

For this approximation to work, the dependence of the tensor on the coordinate direc-

tion that is kept constant must be sufficiently small.

Piece-Wise Mapping

A piece-wise mapping is obtained by defining a region of the configuration space, the

irreducible wedge, that has the property that starting from that region it is possible

to access the entire configuration space by only applying consecutive symmetry opera-

tions. The piece-wise mapping is then constructed to map any configuration p to the

irreducible wedge pirr. In practice this can be done by applying consecutive symme-

try operations until a configuration within the irreducible wedge is found. The tensor

only needs to be fitted within this irreducible wedge and if the queried configuration is

outside the irreducible wedge then the tensor can be unfolded using Equation 6.46.4.

While this method does obtain the correct symmetry of the system, there is no

a priori reason for the behavior at the symmetry seam (which coincides with the

boundary of such a irreducible wedge) to be correct. This becomes immediately clear by

using the example of mirror symmetry in Figure 6.16.1. A piece-wise mapping procedure

would assign an identity rotation when the configuration is still in the irreducible wedge

and an infinitesimally small distance from the mirror plane while it would assign a

mirror if it is an infinitesimally small distance on the other side of the mirror plane.

This imposes, in this particular case, that the x component of the force tensor is exactly

zero. If this is not the case then a discontinuity occurs, as in, the x component of the
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force tensor would be positive on one side of the mirror plane and negative on the other

side. Doubly covariant tensors would e.g. have such discontinuities in the off-diagonal

xy and yx components in this case.

The symmetry seam is only a small region and the violation can be kept under

control by appropriately generating the data for a fitting procedure (i.e. provide enough

data at the symmetry seam) and as such this method can still be effectively used in

practice when proper care is taken.

Symmetry Adapted Coordinate Mapping

It is also possible to obtain a continuous mapping that can take into account the correct

symmetry behavior. Let us assume a coordinate system Q exists that is invariant to any

choice of symmetrically equivalent configuration pŝ such that Qi
pŝ

= Qi
p for all p and

ŝ. Examples of such coordinates are symmetry adapted coordinates[2727], permutation

invariant polynomials [1212] and the atom centered symmetry functions of Behler and

Parinello [1515].

If the tensor ηsym (p) is expressed in this Q and its dependence on p is additionally

constrained to yield the same tensor at configurations that are expressed the same

in Q (i.e. ηsym (Qp)) it automatically becomes an a priori symmetric tensor in any

coordinate system R. This is verified using Equation 6.46.4 to express ηsym (Qp) as the

candidate tensor in Equation 6.76.7 according to[
ηsym

ij (p)
]
RR

=
1

h

∑
ŝ∈G

[
J i′

i (pŝ)
]Q
ŝR

[
ηi′j′ (Qp)

]
QQ

[
Jj′

j (pŝ)
]Q
ŝR
,︸ ︷︷ ︸[

ηsym
ij(pŝ)

]
ŝRŝR

(6.10)

where ŝQ has been substituted with Q since they are the same by definition (Qpŝ
=

Qp). Since the elements of
[
J i′

i (pŝ)
]Q
ŝR

are the same for any ŝ due to substitution (see

Equation 6.36.3), all terms in the sum are equivalent and ηsym (p) passes the symmetry

test.

Here at symmetry equivalent configurations p and pŝ, the evaluation of η in the

Q basis is the same, however, while Qi
pŝ

= Qi
p, the Jacobian tensor (and thus the

partial derivatives) are not. In fact, this exactly accounts for the transformation that
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is expected to occur on the tensor after a symmetry operation.

The gain of using this method is that the tensor needs to be evaluated only once

and not for every symmetry operator as would be the case for the a posteriori method,

speeding up the evaluation by a factor equal to the number of available symmetries.

Naively, one may expect to be able to fit any tensorfield using this method, however

this is not true for tensors of order two or higher. In those cases, the tensorfields

transform as products of lower order tensorfields and thus also allow for asymmetric

contributions when the product is again symmetric. Thus using only a symmetric

mapping yields to the following problem. If the partial derivative ∂Qi(R)
∂Rj

= 0 for

any element, which always occurs exactly where the space is symmetric since moving

from such a symmetry seam yields the same value for Q in either direction (yielding

zero derivatives), a cross like shape of zeros is formed in a second order tensor due

to multiplying from both sides with a Jacobian which has a row of zeros. However,

non-zero values are allowed at the crossings of these rows and columns of zeros if one

also includes the product of asymmetric contributions. As a consequence, this method

is not able to fit all possible tensorfields. It is important to note that these crosses

of zeros only appear if some index of the tensor is along the same direction as the

partial derivative, otherwise, they are hidden as a linear dependence of two (or more)

such directions. In those cases, they still prevent this method from fitting all possible

tensors. This issue can be solved using asymmetric transformations.

Symmetry Adapted Coordinate Mapping with Asymmetric Transformations

To solve the issue for tensors of order two or higher, following solution is proposed.

Assume that a set of n tensor fields
{
JA,B,C,..(p)

}
exists such that any symmetry

operator ŝ only creates a permutation of the set and that at any p, for any element

ij, at least one tensor element of the tensors in this group is non zero. Moreover, the

sum of these tensor fields are required to yield a tensor field that imposes the same

constraints as the Jacobian tensor field in the symmetry adapted coordinate mapping

does.

We can now define a tensor, for which we will check whether it is invariant under
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the symmetrisation procedure

[
ηtest

ij (p)
]
RR

=
1

n

A,B,C,..∑
a

[
Jai′

i (p)
]Q
R

[
ηi′j′ (Qp)

]
QQ

[
Jaj′

j (p)
]Q
R
. (6.11)

Now since the symmetry operator ŝ permutes only the terms of the sum in eq. 6.116.11,

the test tensor is invariant under the symmetrisation and is thus already symmetric.

The asymmetric tensor model thus consists of asymmetric terms that after addition

form a symmetric model even when symmetry operators are applied. It should be

noted here that the individual assymetric terms are technically not tensors themselves

as only the sum of all terms transforms as a tensor.

6.3 Machine Learning Models for Orbital-Dependent Fric-

tion Tensors

This section describes the details on how to implement the a priori and a posteriori

symmetric tensor fields in a machine-learning framework.

Neural Network architectures for tensor fields that reproduce the correct symmetry

behaviour result in complex designs. First the hidden layer, which contains all the

fitting parameters is explained. Then two different ways to obtain a order two tensor

from such a hidden layer are shown. Next, a method is given to obtain a symmetric

order two tensor (this is not the same as a tensor field with the correct symmetry

behaviour), i.e. the two indices permute ηij = ηji. Finally, the correct symmetry

behaviour is obtained by either using a priori or a posteriori architectures.

In this chapter, neural networks are a part of the building blocks used to design the

algorithms for continuous representations of tensors. As such, these building blocks are

henceforth refered to as hidden networks. The hidden networks used in this chapter

(see Figure 6.26.2c) are constructed from L hidden layers (see Figure 6.26.2b) Ll labeled

with l together with an output layer Lout. Each layer consists of Nl nodes (see Figure

6.26.2a) Nl
nl

where the output of the nlth node defines the nlth output of the lth layer.

The number of inputs (Ml) in each layer is equal to the number of outputs from the
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Nl
nl

...
∑
lbnl

×lwnl
1

×lwnl
2

×lwnl

Ml

··· ··· Ll... ... .
.
.

.

.

.

Nl
1

...

Nl
2

...

Nl
Nl

...

···

H... ... Ll... ... Lout... ...

L

×... ...
∑

... ... ...

a) b)

c) d) e) f)

Figure 6.2: Schematic representation of the structure of a hidden network. a) Shows

the inner structure of a node. b) Shows how nodes make up a layer. c) Shows how

consequetive hidden and output layers make up a hidden network. d) Multiplication

operator: multiplies two numbers. e) Sum operator that takes any amount of inputs

and yields the sum. f) Activation function F (l).

previous layer Ml = Ml−1 except for the first layer which uses the N0 inputs to the

hidden network. Inputs of layer l are used for each node Nl in that layer and are first

multiplied (see Figure 6.26.2d) with the weights lwnl
ml

after which the result is summed

(see Figure 6.26.2e) and added to the bias lbnl . Finally this sum is used as the argument

of an activation function (see Figure 6.26.2f) F l according to

ynl
= F l

(
lbnl +

Ml∑
ml

lwnl
ml
xml

)
. (6.12)

The activation function F l(x) is chosen as the hyperbolic tangent tanh(x) for all hidden

layers and as the linear function f(x) = x for the output layer. Only the weights and

biases are optimized during the training routine and not the architecture itself.

In order to obtain the 21 independent elements of an electronic friction tensor (in

6D), it is necessary to either fit one hidden network with 21 outputs or 21 hidden
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networks with 1 output as is shown by the choice between option 1a and 1b in Figure

6.36.3. Once the 21 independent elements are obtained, they have to be arranged either as

a symmetric tensor directly or as a lower triangular tensor and subsequently multiplied

with its transpose. The latter method yields a positive-definite tensor which ensures

that for any velocity (direction and magnitude) a net energy loss is obtained.

6.3.1 Reduced Dimensional Mapping

A reduced dimensional mapping has been shown to work [2121, 2424] previously for H2 on

Cu(111) and N2 on Ru(0001). Here the Cartesian coordinates of the two atoms A and

B with coordinates XA, YA, ZA and XB , YB , ZB are transformed first to the molecular

coordinate system Rsph = {X,Y, Z, d, θ, ϕ} , where

X =
mA

M
XA +

mB

M
XB , (6.13a)

Y =
mA

M
YA +

mB

M
YB , (6.13b)

Z =
mA

M
ZA +

mB

M
ZB , (6.13c)

d =

√
(XB −XA)

2
+ (YB − YA)

2
+ (ZB − ZA)

2
, (6.13d)

θ = arccos

(
ZB − ZA

d

)
, (6.13e)

ϕ = 2πH (YA − YB) + sign (YB − YA) arccos

 XB −XA√
(XB −XA)

2
+ (YB − YA)

2

 ,

(6.13f)

where H (x) is the heaviside step function and sign (x) yields the sign of x. Note

that for H2, N2 and other homo-nuclear diatomic molecules X2 consisting of identical

isotopes the mass fractions are always one half since the mass of atom A and B are

equal (mA = mB = m) and the total mass M is thus equal to 2m. Figure 6.46.4 shows

how the Cartesian coordinates in X are transformed to the molecular coordinates in

Q. Next the reference molecular coordinate is computed by setting both angles to

θref = ϕref = 90◦. The Jacobian is then computed for both the reference and original

coordinate and the matrix product of these two Jacobians yields a transformation
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Symmetric
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a) b)

c)

e)

d)option 1a

option 1b

option 2a

option 2b

Figure 6.3: Schematic representation of how to use a hidden network for fitting a

tensor field. a) Input vector to the NN(e.g. Cartesian coordinates). b) Multiplies a

lower triangular matrix with its transpose. c) A tensor field is obtained by making two

choices. First, the independent elements can be obtained using (1a) one hidden network

with as many outputs as required elements or (1b) an hidden network with one output

is used for every independent element. Second, the elements can be arranged directly

in a symmetric fashion (2a) or a lower triangular can be obtained which is subsequently

multiplied with its transpose to obtain a symmetric positive-definite tensor (2b). d)

Shows the direct symmetric arrangement. e) Shows the lower triangular arrangement.
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...

...

...

Q... ...
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Qref
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Jref...
...

×

H ...... ...
2

Figure 6.4: Schematic representation of the reduced dimensional mapping model used

in Chap. 44 and Chap. 55 [2121, 2424]

.

tensor T (p,pref). Finally T (p,pref) is used to transform the output of the hidden

network and subsequent positive definite arrangement. This transformation in this

particular case is the same as taking the friction elements along the bond (d) of the

molecule to be constant regardless of the chosen angular orientation. The coordinates

that are given to the hidden network are Q5...8 from Eq. 6.156.15 (vide infra) to also

account for periodicity.

6.3.2 Piece-wise Mapping

Jiang and co-workers [2222, 2323] have shown that it is possible to obtain an accurate fit

using a piece-wise mapping model. They have described this as applying subsequent

symmetry operations until the mapping to the irreducible wedge is found. Here a

slightly different approach is taken that yields the same result for a homonuclear-

diatomic molecule X2 consisting of identical isotopes.

To perform the mapping procedure, we first find the surface atom closest to the

X2 COM position and translate X2 such that all molecules and up near the same

surface atom. Secondly, the angle αmap is defined as the angle between the x-axis and

the axis going through the formar surface atom and the X2 COM projected on the

surface plane. The X2 molecule and concomitant friction tensor is then transformed
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according to the symmetry operator ŝ? defined by the following case statement:

ŝ? =



Ê for − 1
6π < αmap ≤ 1

6π,

σ̂4 for 1
6π < αmap ≤ 3

6π,

Ĉ1
3 for 3

6π < αmap ≤ 5
6π,

σ̂2 for 5
6π < αmap ≤ − 5

6π,

Ĉ2
3 for − 3

6π < αmap ≤ 1
6π,

σ̂3 for − 5
6π < αmap ≤ − 3

6π.

(6.14)

These boundaries assign a different symmetry operator ŝ? depending at which of the

6 irreducable wedges (of the hexaganol surface) the X2 COM is located. Applying the

symmetry operator ŝ? then always maps the X2 COM to the same irreducable wedge,

namely the irreducable wedge that gets assigned the identy operator Ê.

Jiang and co-workers also apply a permutation to the friction tensor of the coordi-

nates associated with atom A and B if ZA > ZB . This method in principle takes care of

the permutation symmetry, however, not correctly when the molecule is perpendicular

to the surface. In practice, this is not a big issue for performing dynamics since the

probability of being exactly perpendicular is very small. For the training set however,

a significant amount of configurations where the molecule was exactly perpendicular

was used thus amplifying this issue. The strategy of Jiang and co-workers has been

adapted in this thesis by finding the Cartesian direction along which the separation be-

tween the two atoms is largest, and apply the permutation selection to that Cartesian

direction instead of always along Z. This method is denoted as IW (irreducible wedge)

henceforth. Additionally, a more simplified piece-wise mapping scheme has been used

where the X2 molecule is always mapped to a single unit cell (SUC). Using this method,

the a posteriori method only requires a sum over all C3v and permutation symmetries

and not the translational symmetries (as those are included in the mapping). Note

that a purely translational mapping does not introduce a transformation of the tensor,

tensors elements are invariant under this operation.
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2

Figure 6.5: Schematic representation of the piece-wise mapping method.

6.3.3 Symmetry Adapted Coordinate Mapping

For the symmetry adapted coordinate mapping used in this thesis, the following sym-

metry adapted coordinates [2727] are used

Q1 =
1

2

[
exp

(
ZA

2

)
· g1 (XA, YA) + exp

(
ZB

2

)
· g1 (XB , YB)

]
(6.15a)

Q2 = exp

(
ZA

2

)
· g1 (XA, YA) · exp

(
ZB

2

)
· g1 (XB , YB) (6.15b)

Q3 =
1

2

[
exp

(
ZA

2

)
· g2 (XA, YA) + exp

(
ZB

2

)
· g2 (XB , YB)

]
(6.15c)

Q4 = exp

(
ZA

2

)
· g2 (XA, YA) · exp

(
ZB

2

)
· g2 (XB , YB) (6.15d)

Q5 = exp

(
Z

2

)
· g1 (X,Y ) (6.15e)

Q6 = exp

(
Z

2

)
· g2 (X,Y ) (6.15f)

Q7 = exp

(
Z

2

)
(6.15g)

Q8 = d (6.15h)

Q9 = cos (θ)
2
, (6.15i)

which are based on the Cartesian and molecular coordinates.

The g1 and g2 generate a unique coordinate for every symmetry equivalent x and
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y along a C3v surface (e.g. Ru(0001) and Cu(111)) according to

g1 (x, y) = g

(
x− a

4
, y − a

4
√
3

)
(6.16a)

g2 (x, y) = g

(
x+

a

4
, y +

a

4
√
3

)
(6.16b)

g (x, y) =
1

3
√
3

[
sin

(
2π

a

(
x− 1√

3
y

))
+

sin

(
2π

a

(
2√
3
y

))
+ sin

(
2π

a

(
x+

1√
3
y

))]
+

1

2
.

(6.16c)

Using this coordinate system, a tensor field with the correct symmetry behavior is

obtained ( see Figure 6.66.6a) by transforming to the Q coordinate system and transform-

ing the result of the hidden network from Q to R.

6.3.4 Symmetry Adapted Coordinate Mapping with Asymmetric Trans-
formations

To include asymmetric contributions, the following alternative g functions, based on

seperating the different terms in g from Eq. 6.166.16c, are defined

gone (x, y) =
1

3
√
3

[
sin

(
2π

a

(
x− 1√

3
y

))]
(6.17a)

gtwo (x, y) =
1

3
√
3

[
sin

(
2π

a

(
1√
3
y

))]
(6.17b)

gthree (x, y) =
1

3
√
3

[
sin

(
2π

a

(
x+

1√
3
y

))]
. (6.17c)

These g functions define corresponding coordinate systems Q and Jacobian tensors

J (p) that are used to transform the same output of the hidden network in Figure 6.66.6b

and an average of these transformed results is taken. Note that the hidden network is

evaluated only once, which results in a significant performance increase compared to

the a posteriori method.

Any of the symmetry operators in the C3v group either cause the swapping of two

of these Jacobian tensors J , which changes the permutation order, or reorder them by

pulling the last one to the front, which keeps the permutation order. In both cases,

the averaging of the transformed result remains the same and thus this representation

is symmetry invariant.
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Figure 6.6: Schematic representation of the symmetry adapted coordinate mapping

either without (a) or with (b) asymmetric transformations.
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Figure 6.7: A schematic representation of the a posteriori architecture.

6.3.5 a posteriori Imposed Symmetry Behavior

The a posteriori method is implemented as shown schematically in Figure 6.76.7. For each

symmetry operator in the C3v group, the input coordinates are transformed and given

to any of the previously discussed models. The result of these models are subsequently

transformed and averaged.

6.4 Computational Details

TensorFlow [2828] has been used for fitting the electronic friction tensors. The fitting

parameters of the models were initialized using a normal distribution with µ = 0 and

σ = 1
Nl

(Nl is the number of nodes in a specific layer) for the weights and σ = 0.1 for the

biases. Next the RMSProp algorithm [2929] is used in three consecutive runs of 100.000

epochs using a decay of 0.997 and a learning rate of 10-3, 10-4, and 10-5 for the first,

second, and third run respectively. A training and test set was obtained by randomly

shuffling the order of electronic friction tensors in the data set and assigning the first

10% of the data entries to the test set and the remaining data entries to the training

set. Only the training set was used during the learning stage. A so-called committee
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[3030, 3131] with 5 committee members was created by repeating all fitting procedures for

each member with the same settings, but with different randomly initialized weights

and biases. The training and test set shuffling was different for different committee

member It has been kept the same for all machine learning models such that the

respective committees are all presented the same training and test sets for the same

member.

6.5 Results

Here a comparison is made between the different methods of obtaining continuous

representations of friction tensors as discussed previously based on the root-mean-

square errors (RMSEs). For each data set, both the RMSE of the training set and test

set has been computed (see Sec. 6.46.4). The argument here is that the RMSE of the test

set is a measure of how well the method is at continuously representing. The RMSE of

the training set on the other hand shows the flexibility of the method. In particular,

if the symmetry of the coordinate dependence is not correctly taken into account a

priori, the training set may still yield a low RMSE if the data points in the training set

are not sampled from different irreducible wedges. In contrast, the test set, which for

this chapter is always replicated to other irreducible wedges, does yield a high RMSE

if this symmetry is not taken into account properly.

All friction tensors discussed here are for N2 on Ru(0001), where only the N2 degrees

of freedom are considered and the Ru(0001) surface is kept frozen in the hexagonal sym-

metry (including surface expansion in the lateral directions and interlayer relaxation

that is representative for Ts = 575K). Ru(0001) is kept at its ideal configuration (but

includes surface expansion and layer relaxation for 575K). Since the electronic friction

tensor is symmetric, it has 21 independent elements for the 6 degrees of freedom of the

N2 molecule.
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6.5.1 Reduced-Dimensional Models: Machine Learning Parameters

For this comparison, the data set of electronic friction tensors from Ref. [2424] has been

used, which directly accounts for the dependence of four of the six molecular coor-

dinates. This data set has subsequently been fitted using the reduced dimensional

method. This allows one to focus on how the friction tensor itself is represented rather

than how the symmetry of the tensor field (i.e., the symmetry of the coordinate depen-

dence) is included. Here the result of using one NN that produces the 21 independent

elements as its output is compared with using 21 independent NNs (options 1a and 1b

from Fig. 6.36.3, respectively). Moreover, a comparison is made between the procedure of

obtaining 21 independent elements and arranging them in a symmetric tensor directly,

and of obtaining 21 independent elements in a lower triangular tensor and subsequently

squaring this tensor to obtain a positive-definite tensor (options 2a and 2b in Fig. 6.36.3,

respectively). Finally, results obtained with different numbers of layers and nodes are

compared with reference to the number of free parameters needed to construct the

corresponding NN topologies.

Figure 6.86.8 shows the RMSEs for NN fits for directly obtaining a symmetric tensor

(option 2a). When using a different NN for each element (option 1a), there is no

substantial difference for the RMSE between using two or three NN layers over the

wide range of NN topologies considered here. On the other hand, if a single NN to

fit the entire tensor is used (option 1b) the RMSEs are significantly larger for two

NN layers (not reported here). Apparently, in this case two layers are not enough

and the additional NN layer is required to describe the difference between the different

elements, in contrast to option 1a where using different NNs can provide this flexibility.

The additional third layer under option 1a simply provides more fitting parameters,

which is supported by the similar behavior of the RMSE as a function of the number

of fitting parameters for both two and three layers as plotted in Fig. 6.86.8. Using option

1b with three layers performs significantly better than both two and three layers with

option 1a with a much smaller number of fitting parameters. The minimum error is

found with 15 nodes per layer (resulting in 891 fitting parameters in total). Option 1a

with both two and three hidden layers only performs similar to option 1b f the number
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of fitting parameters has the same order of magnitude as the number of data points.

Figure 6.96.9 shows the RMSEs for obtaining a lower triangular tensor and subse-

quently squaring it (option 2b). The RMSEs of option 1a with both two and three

layers are again very similar in their behavior as a function of the number of fitting

parameters. However, the range of the RMSE is slightly smaller as it is between 0.21

and 0.255 meVpsÅ−2 instead of 0.21 and 0.285 meVpsÅ−2 when comparing to the cor-

responding curves in Fig. 6.86.8. Option 1b on the other hand yields a higher RMSE if

more than 2000 fitting parameters are used when combined with option 2b (Fig. 6.96.9)

instead of option 2a (Fig. 6.86.8). For 10 and 15 nodes the results are essentially the

same, in particular when considering the scattering over the respective neural network

committees, while 21 and 25 nodes now give a lower RMSE with option 2b, with 21

nodes being the best fit.

The need for increasing the number of fitting parameters from 891 to 1971 in order

to obtain the best fit when using option 2b over 2a is not surprising. When using option

2b the friction tensor is more constrained by construction and thus a larger number of

parameters is required to obtain the same flexibility.

For the data set used here it is clear that using option 1b instead of 1a is clearly

better. The same NN used to obtain the entire friction tensor yields better results

for substantially fewer fitting parameters. Moreover, option 2b instead of 2a provides

additional advantages: although the improvement to the RMSE is only 0.02 meVpsÅ−2

and comes at the cost of needing more fitting parameters, it ensures a positive defi-

nite and thus physically meaningful friction tensor by construction. This property is

important for using friction tensors in the generalized Langevin equation (GLE) to

perform molecular dynamics with electronic friction. Option 2a does not ensure that

the result of the friction tensor is a dissipation of energy, it is possible that for some

configurations the NN will predict an energy gain of the sy stem.

It is not clear whether these results generalize to other data sets. It is suggested

here to use option 2b over option 2a as long as the RMSE is not influenced significantly.

It is suspected here that option 1b will generally perform better than option 1a for the

same number of fitting parameters, since the different friction tensor elements depend
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Figure 6.8: RMSE of the test set for the combination of options 1a+2a (details see

text and Fig. 6.36.3) with 2 hidden layers (purple), options 1a+2a with 3 hidden layers

(green), and options 1b+2a with 3 hidden layers (blue) as a function of the number of

parameters (neural network weights and biases, on a logarithmic scale). Data points

correspond to 5, 10, 15, 21, 25, 30, 45, and 60 nodes for each hidden layer in this

order for option 1a while 5 nodes is ommited for option 1b due to too large errors.

Error bars show the spread of RMSEs for different committee members (expressed as

a RMSE itself). Note that since only a single NN is employed for the same amount of

hidden nodes the blue curve corresponds to a factor of 2̃0 fewer fitting parameters.
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Figure 6.9: Same as Fig. 6.86.8, but for the combination of options 1a+2b with 2 hidden

layers (purple), options 1a+2b with 3 hidden layers (green), and options 1b+2b with

3 hidden layers (blue).
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similarly on the input coordinates. For example, all elements will be small when the

molecule is far away from the surface. Using option 1b this information needs to be

’understood’ by the NN only once while for option 1a this needs to be learned by all

independent NNs. For results henceforth, option 1b is used in combination with 2b,

together with three NN layers each with 21 nodes (using 25 nodes yields a comparatively

small increase in fitting accuracy for a large increase in fitting parameters).

6.5.2 Six-Dimensional Symmetry Adapted Models

In order to assess the performance of the different symmetry adapted models, a 6D

data set has been fitted with each method.

Fig. 6.106.10 shows the RMSEs of both the training and test set. Additionally, the

amount of time needed for fitting is provided in hours per processor core. The single

unit cell (SUC) piece-wise mapping (see Sec. 6.2.16.2.1) has been fitted in three ways:

without any additional considerations (SUC in Fig. 6.106.10), using the a posteriori method

(SUC-P) and by replicating the training set using the available symmetry operations

(SUC-D). The SUC test RMSEs are the worst at 0.44 meVpsÅ−2even though the

training error is satisfactory. This is not a result of over-fitting, instead this is because

the test set contains data from other irreducible wedges not included in the training

set. Since there is no information available to the NN on how the friction tensors in

different irreducible wedges are related and because there is not necessarily training

data available in all regions, it is not possible for the NN to make good predictions.

Using the SUC-P method substantially improves the description of the test RMSE

at a slight setback of the training RMSE. Similar to previous arguments, this can be

explained by the a posteriori method constraining the NN prediction which reduces

flexibility. Inspection of the elements as a function of movement of N2 along the

Ru(0001) surface shows no jumps at the symmetry seams for SUC-P as expected.

Replicating the training set for different irreducible wedges improves the test RMSE in

the SUC-D method only slightly over the SUC method. While the SUC-D does have

symmetry information available in the form of symmetrically replicated data, it misses

the exact relation between and constraints of the individual elements, which is enforced
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with the SUC-P.

The test and training RMSEs for all piece-wise mapping schemes based on the

irreducible wedge (IW, see Sec. 6.3.26.3.2) are essentially the same (see Fig. 6.106.10). This

is not surprising for IW and IW-D as the IW method already correctly takes into

account symmetry. However, it was expected that IW-P, using the a posteriori method,

no longer has the discontinuities at the symmetry seams present in IW. It turns out

that they are still present since computational rounding errors (due to finite floating

piont precision of the coordinates) can assign the N2 molecule to the wrong irreducible

wedges. This happens only when a data point is extremely close to the symmetry seam.

No simple solution was found to circumvent these errors due to the large number of

computations needed to obtain the mapping between irreducible wedges.

For the sym and asym methods (see Sec. 6.3.36.3.3 and Sec. 6.3.46.3.4 respectively) no results

for the a posteriori and training data replication are shown in Fig. 6.106.10 because, as

expected, the results are identical (only an increased computational effort was found).

The sym method performs substantially worse due to the additional (nonphysical) con-

straint introduced along some directions at the symmetry seam which are not present

in the asym method. Asym yields the smallest test RMSE (0.28 meVpsÅ−2) with a

similar training RMSE (0.20 meVpsÅ−2) indicating that an accurate fit was obtained.

There are no discontinuities at the symmetry seam for either method as the functional

forms of these methods are completely continuous.

Generally the piece-wise models (SUC and IW) are computationally more expensive

due to conditional statements present in the algorithm for mapping back to surface

unit cell or irreducible wedge. The a posteriori method and training data replication

method both increase the computational effort. Due to the additional input coordinate

transformations and output tensor transformations necessary in the a posteriori method

it is the most expensive. The a priori methods based on symmetry-adapted coordinates

(sym and asym) are the computationally cheapest methods.
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Figure 6.10: RMSE of test (purple) and training (green) data sets for several fitting

models (see explanations in text) as well as concomitant fitting times (blue) in hours

per processor core.

6.6 Conclusions

This chapter has introduced several strategies for obtaining continuous representations

of friction tensors based on the properties of tensors under coordinate transformations.

Obtaining all friction tensor elements using a single neural network with multiple out-

puts results in more accurate fits and additionally requires a substantially smaller

number of fitting parameters. Positive-definite friction tensors were obtained by gener-

ating a lower triangular tensor and subsequently squaring it, which did not introduce

additional difficulties for fitting the friction tensors compared to obtaining symmetric

tensors only.

The piece-wise mapping procedure targetting the irreducible wedge, which is based

on the work of Jiang and coworkers [2222], yields accurate fits of the electronic friction

tensors, albeit without exact compliance with the exact tensorial symmetry. Future

dynamical studies are likely to confirm that the small concomittant RMSEs do not

(significantly) affect calculated observables. From an analytical point of view these
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discontinuities should be removed if the a posteriori method is used, this turned out to

not work in practice due to computational rounding errors. As expected, the symmetry

adapted machine learning model developed here properly captures the symmetry of the

friction tensor. However, additional constraints are imposed which prevent an accurate

fit in some regions. Most notably, constraints at the symmetry seams that should only

be applicable for off-diagonal elements are also present for diagonal elements. The

asymmetric tensor model has none of the above problems and yields the most accurate

fit. Surprisingly, taking a simplified piece-wise mapping model targetting the entire

surface unit cell yields almost the same accuracy when combined with the a posteriori

method.
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