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Chapter 2

Theory

This chapter details the theoretical background neccesary to describe the interactions

between molecules and metal surfaces needed for performing dynamical simulations,

which can be directly compared with molecular beam experiments. In the scope of

this thesis, the focus is on homonuclear diatomic molecules. In order to simplify the

presentation, atomic units are used throughout this chapter (h̄ = me = 1).
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CHAPTER 2. THEORY

2.1 Simulations of Molecular Beam Experiments

In a molecular beam experiment, molecules can be prepared in a specific (subject to ex-

perimental challenges) vibrational, rotational and electronic quantum state |Ψ(R, r, t)0⟩

in the gas phase. Obviously, the molecules are prepared in such a way that they are

on a trajectory to collide with a surface. In principle, the time dependent Schrödinger

equation can be used to model the time evolution of this experiment given the initial

condition |Ψ(R, r, t)0⟩ according to

ih̄
∂

∂t
|Ψ(R, r, t)⟩ = Ĥ |Ψ(R, r, t)⟩ , (2.1)

where |Ψ(R, r, t)⟩ is the wave function of the system with nuclei R and electrons r. The

Hamiltonian (Ĥ) describes all the relevant interactions between individual molecules

in the surface.

In practice, Eq. 2.12.1 cannot be evaluated without further approximations in the

context of molecular beam simulations, due to the large amount of computational

effort required. In particular, it is often assumed that the quantum state |Ψ(R, r, t)⟩

can be written as a product of the electronic (φ) and nuclear (ϕ) states together with

the electronic (Ĥe) and nuclear (ĤN ) Hamiltonian according to

Ĥ |Ψ(R, r, t)⟩ ≈
(
ĤN + Ĥe

)
|ϕ⟩ |φ⟩ , (2.2)

within the Born-Oppenheimer approximation (BOA). The electronic system can then

be solved first and separately by taking the electronic Hamiltonian

Ĥe =

Ne∑
n=1

−∇2
rn

2︸ ︷︷ ︸
T̂e

+
1

2

Ne∑
m ̸=n

1

|rm − rn|︸ ︷︷ ︸
V̂ee

−
Ne∑
n=1

NN∑
N=1

ZN

|RN − rn|︸ ︷︷ ︸
V̂Ne

(2.3)

where T̂e is the kinetic energy of the electrons T̂e, the electron-electron interaction

V̂ee and the nuclear-electron interaction V̂Ne. The Schrödinger equation for the elec-

tronic system is then solved at a specific, i.e. depending parametrically on, nuclear

configuration R according to

Ĥe |φ (r,R)⟩ = Ve (R) |φ (r,R)⟩ , (2.4)
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where the eigenvalue Ve (R) can then be interpreted as the energy of the electronic

subsystem given the nuclear coordinates R. Within the scope of this work Eq. 2.42.4 is

used to solve for the electronic ground-state.

It is then possible to solve Eq. 2.22.2 for the nuclear system according to(
ĤN + V̂e

)
|ϕ⟩ = V (R) |ϕ⟩ , (2.5)

since within the BOA the nuclear dynamics are completely defined by the ground state

potential energy surface Ve + VNN . The BOA is often justified because the coupling

between the electronic and nuclear system, which is neglected here, has a magnitude of

the ratio of the electron and nuclear masses, which is smaller than 10−3. For molecules

interacting with metal surfaces, this approximation is severely challenged: while the

coupling for each state i is small due to the mass ratio, there is a large amount of

states available for coupling at zero energetic cost due to the lack of a band gap. In

fact, there are several (molecular and atomic beam) experiments that demonstrate the

failure of the BOA [11, 22].

The following sections will describe how the potential energy is obtained and how

the nuclear dynamics are calculated in this work. The potential energy (Sec. 2.22.2)

is found by approximating the ground state electronic Hamiltonian using DFT and

obtaining the concomitant ground-state energies. Nuclear dynamics as described by

Eq. 2.52.5 are solved approximately using the method of quasi-classical (QC) dynamics

(Sec. 2.32.3). Finally, the foundations of electronic friction theory are presented in Sec.

2.42.4, which allows to reintroduce effects beyond the BOA in a computationally affordable

manner for molecules moving near metal surfaces. Based on these methods, observables

have been computed that are accessible in molecular beam experiments. These results

either stand as predictions, or can be compared with existing experimental data as a

means of validating the underlying theoretical methodology and approximations.

2.2 Potential Energy

Given the computational demand for performing electronic structure calculations of

even small molecules interacting with metal surfaces and the large amount of such
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calculations needed for dynamics calculations, density functional theory (DFT) is cur-

rently the best compromise between accuracy and computational cost for the treatment

of the electronic structure.

2.2.1 Density Functional Theory

The first Hohenberg-Kohn theorem states that there is a one-to-one mapping between

the electronic wave function (φ), the electron density (ρ) and the so-called external

potential (Vext) which includes all external influences on the electronic system [33].

In the context of this work the external potential is given by the nuclear-electron

interaction V̂Ne (Eq. 2.32.3) since no other fields that may perturb the electronic system

(e.g. external electric or magnetic fields) are considered.

Since the total energy (E) of the system can be defined by the functional E[φ], it

can also be defined by ρ or Vext using

E[φ] ⇔ E[ρ] ⇔ E[Vext]. (2.6)

The functional defining the energy using ρ can be written as a sum of two contributions:

the interaction of the electron density with the external potential (Vext[ρ]) and the

Hohenberg-Kohn functional (FHK [ρ]) describing all other interactions according to

E[ρ] = Vext[ρ] + FHK [ρ]. (2.7)

In the second Hohenberg-Kohn theorem, also known as the Hohenberg-Kohn variational

principle, the ground state electron density ρ0 is proven to minimize the total energy

functional

E0 := E[ρ0] ≤ E[ρ], ∀ρ ̸= ρ0. (2.8)

The ground state can therefore be found by finding the stationary point using a func-

tional derivative
δE[ρ]

δρ
= 0 ⇒ ρ0. (2.9)

Consequently, the ground state energy becomes a function of the nuclear coordinates

according to

E0[Vext(R)] = E0(R), (2.10)
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which is exactly the definition of the PES needed to perform dynamics.

Unfortunately, the Hohenberg-Kohn functional is not known. In order to construct a

(first) approximation, Kohn and Sham [44] have split up the Hohenberg-Kohn functional

into the electrostatic interaction of the electron density with itself and the kinetic energy

of the electron density.

E[ρ] = Vext[ρ] + FHK [ρ] = Vext[ρ] + J [ρ] + Ts[ρ]︸ ︷︷ ︸
exact

+Vxc[ρ]. (2.11)

The electrostatic interaction is approximated by the classical coulomb interactions

of the electron density

J [ρ] =
1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|
. (2.12)

In order to evaluate the kinetic energy, Kohn and Sham have reintroduced orbitals,

denoted here as Kohn-Sham orbitals φKS
i , that represent a fictitious system of n non-

interacting electrons with the same density as a system of interacting electrons. The

density is given in terms of the Kohn-Sham orbitals as

ρ
({
φKS
1 ..φKS

n

})
=
∑
i

⟨φKS
i |φKS

i ⟩ . (2.13)

The kinetic energy is then approximated by a quantum system with the same electron

density, but where the electrons do not interact

Ts[ρ] =
∑
i

⟨φKS
i | −∇2

2
|φKS

i ⟩ . (2.14)

A certain part of the electron-electron interaction is not correctly described by J [ρ] and,

likewise, Ts[ρ] does not correctly describe the energy for interacting electrons. These

contributions are collected in the exchange-correlation functional Vxc[ρ], for which ap-

proximations are discussed below.

The Kohn-Sham equations are effective single particle Schrödinger equations that

result from reexpressing the total density constrained Hohenberg-Kohn variational prin-

ciple
δ

δρ

(
E [ρ]− µ

(∫
drρ(r)− n

))
= 0, (2.15)
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with Lagrangian multiplier µ, in terms of the Kohn-Sham orbitals according to(
−∇2

2
+ veff

)
φKS
i = ϵiφ

KS
i . (2.16)

Here veff is given by

veff (r) =

∫
dr′

ρ (r′)

|r− r′|︸ ︷︷ ︸
vCoul

+
δVNe [ρ]

δρ (r)︸ ︷︷ ︸
vext

+
δVxc [ρ]

δρ (r)︸ ︷︷ ︸
vXC

, (2.17)

with vext being the one-electron external potential. Solving Eqs. 2.112.11 and 2.162.16 self-

consistently from an initial guess of the Kohn-Sham orbitals then yields the single

particle energies ϵi and the total energy is given by

E [ρ] =
∑
i

ϵi − J [ρ] + Vxc [ρ]−
∫

drvxc [ρ] (r) . (2.18)

There are several classes of approximations for the exchange-correlation function-

als. In the local density approximation (LDA) the exchange-correlation functional is

designed to reproduce the homogeneous electron gas (HEG)

V [ρ] =

∫
drρ(r)vHEG

xc (ρ(r)) , (2.19)

and is based on local evaluations of the density only. The generalised gradient approx-

imation (GGA) the gradient of the electron density is also evaluated as a first order

approximation to non-local effects,

V [ρ] =

∫
drρ(r)vGGA

xc (ρ(r),∇rρ(r)) , (2.20)

which for most applications is an improvement compared to the LDA. A further im-

provement to the accuracy is the meta-GGA which includes even more non-local effects.

Including the higher order non-local contributions generally comes at an increased com-

putational effort.

In this thesis functionals at the GGA level (mainly PBE [55, 66] and RPBE [77],

depending on the system) constitute the main ’work horses’ for the construction of

PESs. In addition, the semi-empirically motivated SRP method [88] is used where a
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new functional is created by taking the linear combination of two existing functionals

A and B based on the parameter α

E[ρ] = Vext[ρ] + J [ρ] + Ts[ρ] + αV A
xc[ρ] + (1− α)V B

xc[ρ], (2.21)

in such a way that an experimental observable is reproduced more accurately. Ideally,

the (groundstate) PES given by this new functional is better approximated than by

the underlying functionals.

2.2.2 Continuous Representations of the Potential Energy Surface

While DFT is in principle able to produce Ve (R) needed to solve the nuclear Schrödinger

equation 2.52.5, it is neccesary to obtain this potential for all configurations R of the nu-

clear system that are relevant for the dynamics in a simulation of a molecular beam

experiment. One way to do this is to do ab-initio molecular dynamics (AIMD) by

performing a DFT calculation every time Ve (R) is needed for a specific configuration

R during the dynamics. However, if one is interested in obtaining observables with

statistical significance for rare events during dynamics, such as reactions for molecules

with a very low reaction probability, this becomes too computationally demanding.

Instead, continuous representations of the PES are used. Generally, a large data set of

configurations with concomitant energies is generated which is consequently interpo-

lated or fitted. When the resulting continuous representation is not of sufficient quality,

a larger data set can be obtained, or a different strategy can be used. For diatomic

molecules, the coordinates R can be conveniently described w.r.t. a surface atom in the

first layer as two single atom Cartesian coordinates RA and RB , or using the molec-

ular coordinate system where the center of mass (COM) (equivalent to the geometric

centre for homonuclear molecules) X, Y and Z coordinates are used together with the

bond distance r, polar angle θ, and azimuthal angle ϕ (see Fig. 2.12.1). Three different

methods have been used in this thesis to obtain continuous representations of PESs.

First the corrugation reducing procedure (CRP) in combination with an interpolation

using symmetry adapted basis functions is used for H2 interacting with (an ideal 0K)

Cu(111) surface (Chap. 33). This method only allows for 6 degrees of freedom of the
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X

Z

Y
RA

RB

COM

r

−φ

θ

Figure 2.1: Six-dimensional coordinate system for the description of diatomic molecules

(atoms in blue) on metal surfaces (atoms in green), consisting of the center of mass

(COM) coordinates (X,Y ,Z) and the bond distance r as well as the polar angle θ and

azimuthal angle ϕ. X,Y,Z = 0 corresponds to the position of a surface layer atom in

the surface plane (top site).

molecule while the motion and displacements of the metal is neglected. Secondly, the

SCM model (Chap. 33) allows to introduce the effect of surface atom displacements.

This effect is introduced within a so-called sudden approximation and realised as a

perturbation to the 6D CRP PES. Such a treatment precludes energy exchange with

the phonons of the surface. Finally, to also include the effect of surface motion, NN

fits (Chap. 55) have been used to model all degrees of freedom of the nuclear system.

Corrugation Reducing Procedure

Within the CRP, the PES is represented by

VCRP (R) = V3D(RA) + V3D(RB) + I6D(R), (2.22)

as sum of two 3D potentials (V3D), which describe the interaction of two independent

atoms A and B with the metal surface, and a 6D interpolation function (I6D), which

describes the molecular contribution of the system. Here R = (RA,RB) represents the

coordinate vector composed of both individual atom coordinate vectors RA and RB .

Much of the corrugation is then already contained in the 3D potentials and the rest

24
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term is then more easily interpolated. The 3D potential

V3D(Rx) =
N∑
i

V1D,ref (|Rx − Si|) + I3D(Rx), x ∈ {A,B} (2.23)

consists of the sum of two-body interactions (V1D,ref ) with the N closest surface atoms,

described by the vectors Si together with a 3D interpolation function (I3D). Surface

symmetry (C3v) and periodicity can be fully taken into account using the CRP. The

3D and 6D interpolation functions are based on symmetry adapted basis functions

defined using the Grand Orthogonality Theorem. For the 6D interpolation function a

spline interpolation is made for several 2D PES cuts in the r-Z plane at several surface

sites (X,Y) and molecular orientations (ϕ,θ). The symmetry adapted basis functions

are then used to interpolate between the different r-Z cuts. Because the error of the

CRP interpolation is generally much smaller than that of the underlying DFT, it is

considered appropriate to use the CRP to represent the 6D PES.

Static Corrugation Model

The effect of surface atom displacements can be taken into account by treating the

displacements as perturbations to the ideal lattice using the SCM, which has originally

been developed by Wijzenbroek and Somers [99] Chap. 33 describes the model in detail,

together with the further development and improvments that are introduced as part

of this thesis [1010].

Neural Networks

For the reactive scattering of N2 on Ru(0001) a significant amount of energy exchange

with the phonons of the surface has been found. Consequently, a significant influence of

surface motion on the dissociative chemisorption probability was also observed [1111, 1212].

Thus both the CRP and SCM are not suitable for this system. Instead a continuous

representation of the PES including surface atom motion has been obtained using a

high-dimensional NN [1212]. In order for the NN to predict energies with the correct

symmetry, the Behler-Parrinello method has been used [1313, 1414]. This method uses

radial and angular symmetry functions to describe the chemical environment for each
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atom in the system. The total PES is decomposed into individual atomic contributions,

where differently optimized NN-parameters are used for different atom types. The

resulting single atom energies are added together, ensuring the correct symmetry. In

Chap. 66 more details on NN topologies are provided. Although the focus there is not

on PESs, this details also apply for NN-based PES representation.

2.3 Quasi-Classical Molecular Dynamics

Using any of the previously discussed continuous PES representations(CRP plus SCM

or NN), it is possible to describe the dissociative chemisorption and rovibrational

(in)elastic scattering of diatomic molecules on metal surfaces. The PES itself is not

a directly measurable quantity, but it is possible to do molecular dynamics simula-

tions with the PES to compute observables. In this thesis, dynamics simulations were

performed of H2 and N2 molecules coming from the gas phase towards a Cu(111) and

Ru(0001) surface respectively, in a collision event. The dynamics were performed using

the method of QC dynamics [88, 1111, 1515].

A dynamics calculation is performed by first determining the initial configuration

for the molecule and in the case of a non-zero surface temperature also determining

the initial displacements of surface atoms from their equilibrium positions. Initial

conditions are determined using a Monte-Carlo sampling scheme, where zero point

energy is taken into account for the initial configuration of the molecule. Then the

system is propagated classically by solving Newton’s equations of motion until certain

stopping criteria are fulfilled and the resulting trajectory is then analysed. This process

is repeated many (104 to 106) times - depending on the observable to be calculated - to

get a good statistical average using the Monte-Carlo scheme. The details are discussed

in the following sections.

2.3.1 Initial Conditions

The initial conditions are generated by first calculating the rovibrational energy levels

of the diatomic molecule for their respective PES in the gas phase using the Fourier grid

26
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Hamiltonian method [1616]. To get the QC distribution for the atom-atom separation

r of the molecule, the gasphase molecule was propagated for one complete phase in

its vibration, after which the initial atomic positions and velocities were chosen using

standard Monte Carlo methods such that the sampling is homogenous in time. The

ϕ angle is chosen from an uniform random distribution in the range [0, 2π] while θ

is chosen from an uniform random distribution in the range [0, θL] where θL = π if

J=0 and cos(θL) = mJ√
J(J+1)

if J≥1. The angular velocities are chosen according to

the quantized angular momentum L2 = J(J + 1)h̄2. The initial COM position is then

shifted 9 Å in Z away from the surface (Z=9 Å) while the COM position along the

surface is given by X = U + 1
2V and Y = 1

2

√
3V where U and V are chosen from

an uniform random distribution in the range [0, a] with a being the lattice constant.

This process is identical to earlier work [88, 99, 1515, 1717, 1818]. In the case of finite surface

temperature, a detailed description of the surface atom displacement is given in Chap.

33.

2.3.2 Propagation

Once the initial conditions are defined, the system is propagated according to Hamil-

ton’s formulation of classical mechanics, i.e. based on the Hamiltionian

H =
p2A(t)

2mA
+
p2B(t)

2mB
+ V (R(t)), (2.24)

where pA(t) and pB(t) are the momenta of atoms A and B respectively at time t and

V (R(t)) is the potential energy at time t. The time propagation of simulations of

H2 have been performed using the predictor-corrector method of Bulirsch and Stoer

[1919]. Simulations with N2 on the other hand have been propagated as detailed in

Sec. 2.42.4. The propagation of a trajectory is stopped when either the maximum time

limit has been reached (as detailed in the respective chapters), or the H (N) atoms

are separated by more than 2.25Å (2.75Å), in which case the original corresponding

diatomic is considered to have dissociated (i.e. reacted).
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2.3.3 Analysis

After a trajectory has been stopped, it is analysed to determine the outcome.

Reaction Probability

The reaction probability is defined as the number of trajectories that result in a reac-

tion, divided by the total number of trajectories and gives a measure of how likely it is

for the reaction to take place under a certain set of initial conditions (e.g. molecular

velocity distribution and/or rovibrational state, surface temperature).

Rovibrational Elastic and Inelastic Scattering

When an incoming trajectory is not reactive, it can either scatter back into the gasphase

or get trapped on the surface. The incoming trajectories that turn out to scatter can

be divided into two groups: either the molecule returns from the surface in the same

rovibrational state, or it does not. Scattered molecules in the same rovibrational state

are considered to have scattered elastically, while scattered molecules that are not in

the same rovibrational state are considered to have scattered inelastically. In order to

relate the outcome of a quasiclassical trajectory to a (discrete) rovibrational quantum

state a binning procedure is necessary. That means that the final rovibrational energy

has to be assigned to a rotational (J) and a vibrational (v) state. Generally the energy

difference between rotational states is much smaller than vibrational states which means

if the total rovibrational energy of two states is similar, we can easily distinguish by

first binning to the rotational state and then to the vibrational state. The quantum

rotational state J has a direct classical analogue according to

L2 = J(J + 1). (2.25)

The rotational state of a molecule in the quasiclassical approximation can be described

in a similar way as a quantum rotational state by first assigning a non-integer number

for J. Next the value of J is rounded while taking into account selection rules. These

selection rules preclude a transition of J before the collision with the surface to a J

after the collision that is different by an odd number. This approach works because

28
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L is well defined in classical dynamics. For a classical trajectory, the momenta of all

atoms are known at all times. If there is no interaction between the surface and the

diatomic molecule at the time of analysis, i.e. at sufficiently large molecular-surface

distances, the angular momentum L of the diatomic is conserved and given by

L = |−→r ×−→p | , (2.26)

where −→r is the distance vector from one atom to the other and −→p = µ−̇→r is the

momentum vector along the internal coordinates of the molecule with

µ =
mAmB

mA +mB
. (2.27)

When the J state is assigned, the rovibrational energy of the scattered molecule (Erovib)

is determined by subtracting the COM kinetic energy (Ekin,COM ) and the potential

energy (V (r)) relative to the equilibrium potential energy (V (r0)) from the total kinetic

energy of the molecule according to

Erovib = Ekin − Ekin,COM − (V (r0)− V (r)) . (2.28)

The COM kinetic energy for a diatomic is defined by

Ekin,COM =
(mA +mB)

(
Ẋ2 + Ẏ 2 + Ż2

)
2

. (2.29)

The rovibrational energy is then compared to the rovibrational eigenstates of the

molecule that has the previously determined J state (according to Eqs. 2.252.25 and 2.262.26)

and the candidate with the closest energy is selected.

2.4 Nuclear Dynamics Beyond the Born-Oppenheimer

Approximation

With dynamics on a (single) PES, it is not possible to take into account the exchange of

energy between the electronic and nuclear system due to electron-nuclear couplings that

are neglected within the BOA. In order to reintroduce the effect of these couplings and
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concomitant electron-hole pair excitations on the nuclear dynamics (while maintaining

a classical description of the latter), electronic friction theory [2020, 2121] is used in this

work. This work-horse theory for dynamics of molecules on metal surfaces, which can

be considered as “weakly non-adiabatic”, is based on a generalized Langevin equation

(GLE)

mi
d2 {R,S}i

dt
= −∇iV (R,S) −

∑
j

ηmol
ij (R)

dRj

dt︸ ︷︷ ︸
dissipative

+ Fmol (η, Ts)︸ ︷︷ ︸
random

. (2.30)

This equation introduces two additional terms compared to Newtonian dynamics (see

previous section): a dissipative term based on the electronic friction tensor ηmol and

the velocities dR
dt , and random forces Fmol that depend on the surface temperature Ts

and the friction tensor. The friction tensor is based on matrix elements that couple the

electronic and nuclear system and the GLE thus goes beyond the Born-Oppenheimer

Approximation. Motivated by previous work [2222–2525], in this thesis the focus has been

on obtaining electronic friction coefficients for the diatomic molecule R but not for the

surface atoms S.

The non-adiabatic energy loss, i.e. energy that is dissipated into electron-hole pairs

at time t starting from time t0, in the absence of random forces, is given by

Ediss(t) =

∫ t

t′=t0

dt′Ṙi(t
′)ηij (R(t′)) Ṙj(t

′). (2.31)

All dynamical calculations for H2 on Cu(111) including electronic friction make use

of the static surface approximation (Ts = 0 K), for which the stochastic term (Fmol)

vanishes (see also Chap. 44). The calculations for N2 on Ru(0001) on the other hand

have been performed for a surface temperature TS = 575 K. In order to do so, the

”OVRVO” algorithm of Sivak, Chodera, and Crooks [2626] has been adapted (see Chap.

55). This algorithm is a split-operator method where first half a time step of friction

and random force is propagated using the Ornstein–Uhlenbeck (O) method [2727], then

half a time step of the deterministic velocity (V) is updated, next a full time step of the

deterministic position (R) is updated and finally half a time step of V and then O are

updated. When no friction is present, this algorithm simplifies to the velocity-Verlet

algorithm.
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Already in 1975 have Suhl and coworkers [2020] derived an expression for the electronic

friction tensor (here expressed for spin-unpolarized systems)

ηmol
ij = 2π

∑
m,n

⟨ψm| F̂i |ψn⟩ ⟨ψn| F̂j |ψm⟩ × δ (ϵF − ϵm) δ (ϵF − ϵn) . (2.32)

Their derivation is based on a “bootstrap” method to compare the friction tensor ηfric

based on the Fokker-Planck equation with rigorous formulas using the full Hamiltonian

of the system. Here F̂i,j describes the response of a perturbation to the electronic

system of the adsorbate-surface system within a single-particle picture with states

ψn,ψm and concomitant energies ϵn,ϵm. The perturbation results from the motion

along adsorbate coordinates Ri and Rj in the limit of slow adsorbate motion (quasi-

static limit) and small electronic temperatures corresponding to energy equivalents

that are small relative to the Fermi energy ϵF of the metal.

Subotnik and coworkers [2828–3131] have shown that there is only one ”universal” elec-

tronic friction tensor, which is the temperature dependent version of Eq. 2.322.32. Other

formulations of electronic friction then are either equivalent or contain further approx-

imations.

In this thesis I have used two methods to calculate electronic friction coefficients

(i.e. elements of the friction tensor): i) the Local-Density Friction Approximation

(LDFA) [2525, 3232] where the friction tensor of an atom in jelium is computed and ii) the

orbital-dependent friction (ODF) [2020, 2121, 3333–3636] where the friction tensor is obtaind

from density functional perturbation theory (density functional perturbation theory

(DFPT)). Detailed derivations of both LDFA and ODF can be found elsewhere [2020,

2828, 2929]. Brief summaries of these derivations are presented in the remainder of this

section since some of the underlying approximations are important for comparing the

LDFA and ODF results as is done later in this thesis.

2.4.1 Local Density Friction Approximation

Within the LDFA Eq. 2.322.32 is used to evaluate the electronic friction tensor of a model

system, namely an atom (moving) in a homogeneous electron gas (jellium) with a

given density ρe. In this case the matrix elements ⟨ψm| F̂i |ψn⟩ can be conveniently
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obtained by considering the scattering of the electronic continuum from the nucleus

of the atom embedded therein. Assuming spherical symmetry, the scattering problem

becomes (effectively) one dimensional, and the aforementioned matrix elements can

be obtained from the scattering phase shifts of partial (spherical) waves belonging

to different angular momentum channels l. As a result of the spherical Hamiltonian

assumption, the friction tensor becomes diagonal in Cartesian coordinates and the

elements are the same in every direction for the same atom and jelium, resulting in a

single friction coefficient per atom.

ηAiJ (ρe) = ρe
8

3π
ϵF
∑
l

(l + 1) sin2 (δl − δl+1) . (2.33)

Juaristi and coworkers [2424] have suggested to use these friction coefficients for sim-

ulations of molecular beam experiments on metal surfaces. Diatomic molecules are

treated within an independent atom approximation. That means that the friction co-

efficient for each individual atom is taken as the friction of that atom in a jelium with

an electron density ρe equal to that of the electron density of a clean metal surface, at

the position of the atom RA:

ηLDFA (RA) = ηAiJ (ρclean surface
e (RA)

)
. (2.34)

The friction coefficient for a specific atom is then computed for several electron densities

and a simple analytical fit is made to map the density to the friction coefficient. These

friction coefficients can easily be fitted in 3D, e.g. by using machine learning techniques

(NNs).

2.4.2 Orbital-Dependent Friction

Within a Kohn-Sham (KS) time-dependent DFT picture, an expression corresponding

to Eq. 2.322.32 for the electronic friction tnesor has been obtained by various authors

[2121, 3333, 3535, 3737, 3838]. Unlike for LDFA, the matrix elements of this “orbital-dependent”

friction (ODF) tensor are based on the KS orbitals of atoms and molecules on an actual

metal surface and the changes of the KS effective potential due to motion

ηODF
ij = 2π

∑
m,n

⟨ψKS
m |

∂vKS
eff

∂Ri
|ψKS

n ⟩ ⟨ψKS
n |

∂vKS
eff

∂Rj

∗ |ψKS
m ⟩ δ

(
ϵKS
n − ϵF

)
δ
(
ϵKS
m − ϵF

)
. (2.35)
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These so-called electron-phonon matrix elements ⟨ψKS
n | ∂vKS

eff
∂Ri

|ψKS
m ⟩ can be conve-

niently obtained from DFPT. Within DFPT, the Kohn-Sham equations are rewritten

in a derivative form, where a change in the position of nuclear coordinates is considered.

The Kohn-Sham equations now become(
−∇2

2
+ vKS

eff − ϵKS
m

)
|∆iφ

KS
m ⟩ = −

(
∆iv

KS
eff −∆iϵ

KS
m

)
|φKS

m ⟩ , (2.36)

where ∆i =
∂

∂Ri
denotes the potential derivative with respect to nuclear displacement

Ri. Eq. 2.362.36 leaves some room for interpretation on how to sum over the states n

and m, especially when considering a periodic system where also a k-point index is

introduced. Throughout this thesis, the method of Trail, Graham, and Bird [3939] for an

overlayer of adsorbates on a metal surface is used when performing this summation.

Both the perturbation of the external potential ∆ivext and an induced perturbation

due to the response of the system are included in the change of the effective potential

according to

∆iv
KS
eff = ∆ivext︸ ︷︷ ︸

perturbation

+

∫
dr′

∆iρ (r
′)

|r− r′|
+
δvXC (ρ)

δρ

∣∣∣∣
ρ=ρ(r)

∆ρ (r)︸ ︷︷ ︸
induced

. (2.37)

The perturbed quantities ∆iϵ
KS
m , ∆iφ

KS
m and ∆iρ are found by

∆iϵ
KS
m = ⟨φKS

m |∆iv
KS
eff |φKS

m ⟩ , (2.38)

∆iφ
KS
m =

∑
n̸=m

φKS
n

⟨φKS
n |∆iv

KS
eff |φKS

m ⟩
ϵKS
m − ϵKS

n

, (2.39)

and

∆iρ = 4

N/2∑
m=1

∑
n ̸=m

φKS
m

∗
φKS
n

⟨φKS
n |∆iv

KS
eff |φKS

m ⟩
ϵKS
m − ϵKS

n

(2.40)

respectively. Solving Eqs. 2.362.36 through 2.402.40 self-consistently (as nowadays imple-

mented in many standard DFT packages) yields the neccesary electron-phonon matrix

elements.

From a computational point of view, it is important to note that the δ-functions in

the ’sum over states’ (Eq. 2.352.35) cannot be analytically eliminated - unlike in the (final)

expression for for ηLDFA (Eq. 2.332.33). For a summation over a finite set of states, which
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are not all located at the Fermi surface (for practical reasons), the δ-functions thus are

broadened, i.e., usually substituted by Gaussians with a finite width [3434–3636, 4040–4444].

This approximation has been criticized by Novko and coworkers [4545] and might in the

future be overcome by a new technique, which has been suggested only very recently

by Jin and Subotnik [4646].

A continuous representation of ηODF
ij that accounts for symmetries of the adsorbate-

surface system is by far not as easy to obtain as ηLDFA
ij . The representations used in

Chap. 44 and Chap. 55 have been developed as part of this thesis, and the underlying

methodology is described in detail in Chap. 66.
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