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A B S T R A C T

Aim: Acute myocardial infarction and subsequent post-infarction heart failure are among the leading causes of
mortality worldwide. The endocannabinoid system has emerged as an important modulator of cardiovascular
disease, however the role of endocannabinoid metabolic enzymes in heart failure is still elusive. Herein, we
investigated the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and
non-failing controls.
Methods and results: Quantitative real-time PCR, targeted lipidomics, and activity-based protein profiling (ABPP)
enabled assessment of the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human
hearts and non-failing controls. Based on lipidomic analysis, two subgroups were identified within the ischemic
heart failure group; the first similar to control hearts and the second with decreased levels of the en-
docannabinoid 2-arachidonoyl-glycerol (2-AG) and drastically increased levels of the endocannabinoid ana-
ndamide (AEA), other N-acylethanolamines (NAEs) and free fatty acids. The altered lipid profile was accom-
panied by strong reductions in the activity of 13 hydrolases, including the 2-AG hydrolytic enzyme
monoacylglycerol lipase (MGLL).
Conclusions: Our findings suggest the presence of different biological states within the ischemic heart failure
group, based on alterations in the lipid and hydrolase activity profiles. In addition, this study demonstrates that
ABPP is a valuable tool to rapidly analyze enzyme activity in clinical samples with potential for novel drug and
biomarker discovery.

1. Introduction

Ischemic heart disease, involving acute myocardial infarction and
subsequent heart failure development, was responsible for 12.7 % of the
total global mortality (2008), thereby making it the leading cause of
mortality worldwide [1]. In the advanced stages of heart failure, a
significant number of patients needs hospitalization and possible ad-
mission to intensive care units. These critically ill patients usually suffer
from life threatening clinical syndromes such as pulmonary edema,
associated with respiratory distress and low oxygen saturation;

cardiogenic shock, defined as tissue hypoperfusion induced by in-
effective cardiac contractility; or from cardio-renal syndrome.

Recently, the endocannabinoid system (ECS) has emerged as a
modulator of the cardiovascular system under diseased conditions
[2–4]. The ECS is comprised of G-protein coupled receptors, the can-
nabinoid receptor type 1 and 2 (CB1R, CB2R), their endogenous lipid-
derived ligands, the endocannabinoids 2-arachidonoylglycerol (2-AG)
and anandamide (AEA), and the enzymes responsible for their synthesis
and degradation (Fig. 1) [5]. Diacylglycerol lipase α and β (DAGLα,
DAGLβ) are the two main 2-AG biosynthetic enzymes [6]. The majority
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of 2-AG is hydrolyzed to arachidonic acid (AA) by monoacylglycerol
lipase (MGLL) [7,8], but α,β-hydrolase domain containing proteins 6
and 12 (ABHD6, ABHD12) hydrolyze 2-AG as well [8–10]. The ex-
istence of multiple N-acylethanolamine (NAE) metabolic pathways
makes AEA biosynthesis more complex. Direct hydrolysis of N-acyl-
phospatidylethanolamines (NAPEs) to NAEs by NAPE phospholipase D
(NAPE-PLD), is considered the canonical pathway, but alternative
multi-step pathways exist as well [11]. The NAEs are hydrolyzed to
ethanolamines and free fatty acids by fatty acid amide hydrolase
(FAAH) [12,13]. Of note, several other NAE species have been reported
as bioactive lipids, suggesting an important modulatory role for this
lipid class. For example, oleoylethanolamide (OEA) and stear-
oylethanolamide (SEA) have anorexic effects in the periphery [14,15]
and palmitoylethanolamide (PEA) was reported to enhance anti-
nociception [16,17].

The ECS regulates a broad spectrum of physiological and patholo-
gical processes, including energy balance, obesity, pain, inflammation,
neurological and immunological disorders [18–20]. In the cardiovas-
cular system the endocannabinoids have been implicated in vasodila-
tion and/or vasoconstriction, cardiac protection against atherogenic
inflammation, depression of cardiac function, and cell death of cardi-
omyocytes and endothelial cells in CB1/2R-dependent or -independent
manner [3,21–23]. In vivo cardiovascular effects of the en-
docannabinoids may be exerted through the central and peripheral
nervous system as well, or through direct effects on the myocardium
and vasculature [24,25]. The two cannabinoid receptors have been
shown to have opposing effects, e.g. CB1R facilitates the development
of cardiometabolic disease and cardiac dysfunction [3,26], whereas
CB2R mainly exerts anti-inflammatory effects [3,27,28].

Despite extensive investigation of the endocannabinoids and their
receptors in cardiac function and dysfunction, only little is known about
the endocannabinoid metabolic enzymes [3]. Most endocannabinoid
metabolic enzymes, with the exception of NAPE-PLD, belong to the
serine hydrolase family. This protein class can be targeted by activity-
based probes covalently interacting with their catalytic serine residue.
Activity-based probes are used in chemical proteomics to assess the
functional state of an entire enzyme classes in complex biological
samples [29,30]. In this study, the endocannabinoid metabolic enzymes
were evaluated in ischemic end-stage failing human hearts and non-
failing controls by chemical proteomics, lipidomics, and gene expres-
sion analysis to gain insight in the role of this complex system in post-
ischemic chronic heart failure.

2. Experimental procedures

2.1. Materials and probes

Activity-based fluorophosphonate-based probes FP-TAMRA and FP-
biotin were purchased from ThermoFisher and Santa Cruz bio-
technology respectively. MB064 and MB108 were synthesized in-house
as previously described [31]. All synthesized compounds were at least
95 % pure and were analyzed by LC–MS, NMR, and HRMS. Other
chemicals, reagents, and primers were purchased from Sigma Aldrich

unless indicated otherwise.

2.2. Ethical statement

All experimental procedures were done in accordance with the
ethical standards of the responsible institutional and national com-
mittee on human experimentation, adhering to the Helsinki Declaration
(1975). Written informed consent was obtained from all patients in-
volved in the study according to the protocol approved by the Local
Ethics Committees of the Institute of Cardiology, Warszawa, Poland (IK-
NP-0021-24/1426/14).

2.3. Sample collection and preparation

Healthy (control) human hearts were obtained from organ donor
patients (n= 6 for qRT-PCR, Set A and n=9 for ABPP, Set B, please see
Table 1 for details) whose hearts were not used for transplantation due
to technical reasons (e.g., donor/recipient incompatibility). The donors
did not have any relevant previous cardiological history or any ab-
normalities in ECG and echocardiography (left ventricle dimensions/
contractility within normal ranges). Explanted failing hearts were ob-
tained from patients suffering from end-stage, advanced heart failure of
ischemic etiology (n= 6 for qRT-PCR, Set A and n=9 for ABPP, Set B,
please see Table 1 for details).

Sample collection was performed as previously described [32]. In
brief, human tissue samples were taken at the time of heart explanation
(avoiding scarred, fibrotic, or adipose tissue, endocardium, epicardium,
or coronary vessels). The samples were rinsed immediately in saline,
blotted dry, frozen in liquid nitrogen, powdered with a pestle and
mortar in liquid nitrogen and stored in cryovials at −80 °C until further
analysis. Healthy control samples were stored in cold cardioplegic so-
lution and once it was decided that there is no compatible recipient the
samples were handled and stored as described above.

2.4. Quantitative real-time PCR

2.4.1. RNA isolation
Total RNA was isolated from left ventricular samples (n=6) with a

chloroform/isopropanol precipitation method. In brief, Qiazol®
(Qiagen) was added to each sample and homogenized with Tissue Lyser
(Qiagen). Homogenates were centrifuged and DNA and protein was
precipitated from the clean upper phase with chloroform. Total RNA
was precipitated with isopropanol and pellets were washed twice with
ethanol (vWR). Finally, total RNA was resuspended in nuclease-free
water, and RNA concentration was determined by spectrophotometry
(NanoDrop, Thermo Fischer Scientific).

2.4.2. cDNA synthesis and qRT-PCR
cDNA was synthesized from 1 μg total RNA by Sensifast cDNA

synthesis kit (Bioline) according to the manufacturers protocol. cDNA
was diluted 20 times with RNAse-free water. qRT-PCR reactions were
performed on a LightCycler® 480 II instrument (Roche) by using
SensiFAST SYBR Green master mix (Bioline). Polymerase was heat-

Fig. 1. The endocannabinoid system. The en-
docannabinoid system comprises of cannabi-
noid receptor 1 and 2 (CB1R, CB2R), their
endogenous ligands 2-arachidonoylglycerol (2-
AG) and anandamide (AEA) and their meta-
bolic enzymes: diacylglycerol lipase α and β
(DAGLα, DAGLβ), monoacylglycerol lipase
(MGLL), α,β-hydrolase domain containing
proteins 6 and 12 (ABHD6, ABHD12), N-acyl-
phosphatidylethanolamine phospholipase D
(NAPE-PLD) and fatty acid amide hydrolase
(FAAH). Alternative multi-step pathways for
AEA biosynthesis are not shown.
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activated for 2min at 95 °C and targets were amplified and quantified in
40 cycles (denaturation: 5 s at 93 °C; annealing: 10 s at 60 °C; synthesis:
20 s at 72 °C). Forward and reverse primers for the fatty acid amide
hydrolase (FAAH), cannabinoid receptor 1 (CNR1), cannabinoid re-
ceptor 2 (CNR2), diacylglycerol lipase α (DAGLα), diacylglycerol lipase
β (DAGLβ), monoacylglycerol lipase (MGLL), N-acylpho-
sphatidylethanolamine phospholipase D (NAPEPLD), α/β-hydrolase
domain-containing 6 (ABHD6), α/β-hydrolase domain-containing 12
(Abhd12) were used for analysis. Hypoxanthine-guanine phosphor-
ibosyltransferase (HPRT) was used as a housekeeping gene. Results
were calculated with 2‐ΔΔCp evaluation method. Primer sequences are
shown in Supplementary Table S1.

2.5. Targeted lipidomics

2.5.1. Lipid extraction
Lipid extraction was performed as previously described [33], with

minor adaptations. In brief, ∼50mg tissue was weighed into a pre-
cooled 1.5 mL Eppendorf tube and reconstituted in ice cold ammonium
acetate buffer (0.1M, adjusted to pH 4 with acetic acid) (4 μL/mg
tissue). The tissue was finely cut using chirurgical scissors and subse-
quently homogenized by a tissue homogenizer (M.P. Biomedicals, LLC,
USA) and probe sonication (3 cycles, 10 s, 30 % amplitude) while kept
on ice. Samples were spiked with 10 μL of deuterated internal standard
mix (Supplementary Table S2). After extraction with 1000 μL methyl
tert-butyl ether (MTBE), the tubes were thoroughly mixed for 5min
using a bullet blender (Next Advance) at medium speed, followed by a
centrifugation step (16,000 g, 5 min, 4 °C). Next, 850 μL of the upper
MTBE layer was transferred to clean 1.5 mL Eppendorf tube. Samples
were dried in a speedvac (Eppendorf) followed by reconstitution in
acetonitrile:water (50 μL, 90:10, v/v). The reconstituted samples were
centrifuged (16,000 g, 5 min, 4 °C) before transferring into LC–MS vials.
5 μL of each sample was injected into the LC–MS/MS system.

2.5.2. LC–MS/MS analysis
LC–MS/MS analysis was performed as previously described [33],

with minor adaptations. A targeted analysis of 31 compounds, in-
cluding endocannabinoids and related N-acylethanolamines (NAEs)
along with the fatty acids (Supplementary Table S2), was measured
using an Acquity UPLC I class Binary solvent manager pump (Waters) in
conjugation with AB SCIEX 6500 quadrupole-ion trap (AB Sciex). The
separation was performed with an Acquity HSS T3 column
(2.1× 100mm, 1.8 μm) maintained at 45 °C. The aqueous mobile
phase A consisted of 2mM ammonium formate and 10mM formic acid,
and the organic mobile phase B was acetonitrile. The flow rate was set
to 0.55mL/min; initial gradient conditions were 55 % B held for 2min
and linearly ramped to 100 % B over 6min and held for 2min; after 10 s
the system returned to initial conditions and held 2min next injection.
Electrospray ionization-MS and a selective Multiple Reaction Mode
(MRM) was used for endocannabinoid quantification. Individually op-
timized MRM transitions using their synthetic standards for target
compounds and internal standards are described in Supplementary
Table 2. For each sample the normalized lipid abundance was calcu-
lated by dividing lipid abundance by total weight of tissue used for lipid
extraction (49−52mg tissue/sample). Subsequently, the normalized
lipid abundances were averaged and the averaged control value was set
at ratio 1 or at 100 %.

2.6. Activity-based protein profiling

2.6.1. Sample preparation
Cardiac tissue was dounce homogenized in ice-cold lysis buffer

(250mM sucrose, 20mM HEPES pH 7.2, 2 mM DTT, 1mM MgCl2, 2 U/
mL benzonase) and incubated on ice (15min). Clear lysate was ob-
tained as the supernatant fraction after two low-speed centrifugation
steps (2500 g, 5min, 4 °C). After dilution to 2mg/mL in storage buffer
(20mM HEPES pH 7.2, 2 mM DTT), samples were used or flash frozen
in liquid nitrogen and stored at -80 ⁰C until further use.

Table 1
Clinical characteristics of study populations. Values are given as mean±SEM. Set A: Fig. 2. Set B: Figs. 3–5. BMI: body mass index, NYHA: New York Heart
Association (3.5 is included in class IV), CO: cardiac output, EF: ejection fraction, LVED: left ventricular end-diastolic diameter, LVSD: left ventricular end-systolic
diameter, PW: posterior wall-thickness, IVS: interventricular septum thickness; SVR: systemic vascular resistance, AST: aspartate transaminase, ALT: alanine
transaminase, NT-proBNP: N-terminal prohormone of brain natriuretic peptide, LDL: low density lipoprotein, HDL: high density lipoprotein, n.a.: not available.
Subgroups Ischemic 1 and 2 (set B) were compared by two-tailed t-test: * p<0.05 *** p< 0.001.

Control
Set A

Ischemic
Set A

Control
Set B
H1-9

Ischemic
Set B
I1-9

Ischemic 1
Set B
I1-3, 8-9

Ischemic 2 Set B
I4-7

Samples (n) 6 6 9 9 5 4
Gender (female/male) 1 / 5 1 / 5 2 / 7 0/9 0/5 0/4
Age (year) 34.7 ± 4.5 56.2 ± 4.1 37.8 ± 3.8 58.0 ± 2.7 60.4 ± 2.5 55.0 ± 5.5
BMI (kg/m2) 26.0 ± 5.0 26.1 ± 2.3 25.2 ± 1.3 26.6 ± 1.1 28.7 ± 1.2 24.0 ± 1.0 *
Cardiac functional parameters
NYHA functional

class I/II/III/IV (n)
n.a. 0/1/2/3 n.a. 0/1/5/3 0/1/2/2 0/0/3/1

CO (L/min) n.a. 3.9 ± 0.6 n.a. 4.0 ± 0.21 4.5 ± 0.1 3.4 ± 0.2 ***
EF (%) n.a. 20.1 ± 3.2 n.a. 21.4 ± 2.5 21.4 ± 3.7 21.5 ± 4.1
LVED (mm) n.a. 69.2 ± 2.5 n.a. 75.0 ± 3.2 70.2 ± 3.6 81.0 ± 4.4
LVSD (mm) n.a. 63.0 ± 3.2 n.a. 67.8 ± 4.5 62.3 ± 6.7 73.3 ± 5.5
PW (mm) n.a. 9.1 ± 0.7 n.a. 8.4 ± 0.8 9.8 ± 1.0 6.7 ± 0.5 *
IVS (mm) n.a. 8.4 ± 1.1 n.a. 9.5 ± 0.7 10.2 ± 1.2 8.7 ± 0.6
SVR (mmHg·min/L) n.a. 18.3 ± 1.8 n.a. 19.0 ± 2.2 15.1 ± 2.5 23.8 ± 2.2 *
Laboratory parameters
AST (U/L) 79.6 ± 24.4 27.6 ± 3.1 76 ± 17.1 43.3 ± 10.8 54.8 ± 17.9 29.0 ± 6.5
ALT (U/L) 55.5 ± 19.2 27.6 ± 7.9 79 ± 13.8 34.8 ± 11.3 45 ± 19.9 22.2 ± 3.2
Creatinine (μM) n.a. 107.6 ± 10.9 n.a. 115.8 ± 8.8 104.6 ± 13.8 130 ± 5.8
NT-proBNP (pg/mL) n.a. 3605 ± 1267 n.a. 4031 ± 1322 2687 ± 1399 5711 ± 2352
Total cholesterol (mM) n.a. 3.7 ± 0.3 n.a. 4.8 ± 0.4 4.3 ± 0.3 5.4 ± 0.8
LDL cholesterol (mM) n.a. 1.9 ± 0.2 n.a. 3 ± 0.3 2.6 ± 0.2 3.5 ± 0.7
HDL cholesterol (mM) n.a. 1.1 ± 0.1 n.a. 1 ± 0.1 1.1 ± 0.1 0.8 ± 0.2
Triacylglycerol (mM) n.a. 1.2 ± 0.1 n.a. 1.9 ± 0.3 1.5 ± 0.1 2.6 ± 0.6
Glucose (mM) n.a. 6.5 ± 0.5 n.a. 5.7 ± 0.2 5.8 ± 0.3 5.6 ± 0.2
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2.6.2. Gel-based ABPP
Clear lysates (2 mg/mL) were incubated with activity-based probes

MB064 (2 uM), FP-TAMRA (500 nM), or DH379 (1 μM) (20min, rt).
The reaction was quenched with Laemmli buffer (30min, rt) and 20 μg
protein was resolved by SDS-PAGE (10 % acrylamide gel, ∼80min,
180 V) along with protein marker (PageRuler™ Plus, Thermo Fisher).
In-gel fluorescence was measured in the Cy2, Cy3, and Cy5 channels
(ChemiDoc™MP, Bio-Rad) and gels were stained with Coomassie after
scanning. Fluorescence was quantified and normalized to Coomassie
staining using ImageLab™ software (Bio-Rad). No significant differences
in Coomassie signal were detected, indicating similar protein content
and gel loading.

2.6.3. Chemical proteomics with label-free quantification
The chemical proteomics workflow was modified from a previously

published protocol [34]. In short, for general profiling of the serine
hydrolases the whole lysates (250 μg protein, 1 mg/mL) were incubated
with serine hydrolase probe cocktail (10 μM MB108, 10 μM FP-Biotin,
30 min, 37 °C, 300 rpm). A denatured protein sample (1 % SDS, 5min,
100 °C) was taken along as a negative control. Precipitation, alkylation,
avidin enrichment, on-bead digestion and sample preparation was
performed according to protocol. Dried peptides were stored at −20 °C
until LC–MS analysis. Prior to measurement, samples were recon-
stituted in 50 μL LC–MS solution and transferred to LC–MS vials. LC–MS
data was analyzed by ProteinLynx Global SERVER™ (PLGS, Waters) and
IsoQuant software [35] (www.proteomeumb.org/MZw.html) (minimal
peptide score 6, false discovery rate 1 %). Excel was used for further
analysis, with the following cut-offs: false discovery rate 1 %, unique
peptides ≥ 1, identified peptides ≥ 2, ratio positive over negative
control ≥ 2, part of putative hydrolase target list. Graphs were created
using GraphPad Prism 7 (GraphPad).

2.7. Western blot

Clear lysates (2mg/mL) were denatured with Laemmli buffer
(5 min, 100 °C) and 45 μg lysate was resolved by SDS-PAGE (10 % ac-
rylamide gel, 65min, 200 V) along with PageRuler™ Plus Protein
Marker (Thermo Scientific). Proteins were transferred to 0.2 μm poly-
vinylidene difluoride membranes by Trans-Blot Turbo™ Transfer system
(Bio-Rad). Membranes were washed with TBS (50mM Tris, 150mM
NaCl) and blocked with 5 % milk in TBS-T (50mM Tris, 150mM NaCl,
0.05 % Tween 20) (1 h, rt). Membranes were then incubated with pri-
mary antibody rabbit-anti-MGLL (ab24701, Abcam, 1:200 in 5 % milk
in TBS-T, O/N, 4 °C) washed with TBS-T, incubated with secondary
donkey-anti-rabbit Alexa647 (A-31573, Thermo Fisher; 1:10000 in 5 %
milk TBS-T, 1 h, rt), and washed with TBS-T and TBS. Fluorescence was
detected on the ChemiDoc™ MP (Bio-Rad) in the Alexa647 channel, and
Cy3/Cy5-channels for the protein marker.

2.8. Statistical methods

Statistical significance was determined by a Student’s t-test (two-
tailed, unpaired, p-values) with Benjamini-Hochberg false discovery
rate (FDR 10 %, q-values) for lipidomics and proteomics data using
GraphPad Prism 7 (GraphPad) software. Samples were compared to
(mean) healthy controls and significance is indicated as *< 0.05,
**<0.01, ***<0.001.

3. Results

To investigate the involvement of the ECS in cardiac ischemia, tissue
from the left ventricle was obtained from patients with terminal-stage
heart failure (due to previous ischemic pathology) indicated for heart
transplantation, as well as from non-failing control hearts (n= 6,
Table 1). There was no major difference in the general characteristics
(Table 1) of patients (no overt diabetes, normal liver and kidney
function). All of the heart failure patients received standard medication
for chronic heart failure (ACE inhibitors, beta receptor antagonists, and
mineralocorticoid receptor antagonists), as well as statins for ischemic
heart disease. There was an increased level of NT-proBNP in all heart
failure groups, that is a well-known marker of disease state. Considering
the reported unreliability of cannabinoid receptor specific antibodies
[26,36], we choose quantitative real-time polymerase chain reaction
(qRT-PCR) to measure the expression levels of ECS-related genes in
control and ischemic failing hearts (Fig. 2). The expression levels of
ECS-related proteins in control and ischemic failing hearts were de-
termined by quantitative real-time polymerase chain reaction (qRT-
PCR) (Fig. 2). CB1R (CNR1) expression strongly increased in half of the
ischemic samples, however the overall increase was not significant
(p= 0.08). Reduced expression of 2-AG biosynthetic enzyme DAGLβ
and the 2-AG hydrolytic enzymes MGLL and ABHD6 was observed in
the ischemic tissue. The AEA metabolic enzymes were not significantly
altered, nor was CB2R (CNR2) expression.

In light of the altered mRNA expression of ECS-related enzymes, the
endocannabinoid levels in control and ischemic failing cardiac tissues
were compared. Lipids were extracted from a second set of cardiac
tissues (n=9, Table 1) and were analyzed by liquid chromatography
coupled to mass spectrometry (LCeMS) (Fig. 3, Supplementary Fig.
S1A). In addition, levels of NAEs, free fatty acids (FFA) and cortisol
(COR) were measured in the same assay. The NAEs and their related
FFA levels had strongly increased in the ischemic failing tissues (Fig. 3,
Supplementary Fig. S1B). However, based on their lipid profile, the
ischemic samples could be categorized into two subgroups. The first
(Ischemic 1: I1-I3, I8-I9) had a lipid profile similar to control for most
lipids including the endocannabinoids. Only several lipids were in-
creased, including N-docosahexa-enoylethanolamide (DHEA), eicosa-
pentaenoyl-ethanolamide (EPEA), α- and γ- linoleic acid (α-LA and γ-

Fig. 2. Quantitative PCR on ECS-related genes in cardiac ischemia. mRNA levels of endocannabinoid related genes were normalized to house-keeping gene hy-
poxanthine-guanine phosphoribosyltransferase (HPRT) expression and expressed relative to control (mean± SEM, two-tailed t-test: ** p< 0.01).
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LA) (maximum fold-change: 2.8). In contrast, all NAE and FFA levels
were increased with a fold change ranging from 4 to 120 in the second
subgroup (Ischemic 2: I4-I7) as compared to controls. In addition, the
endocannabinoid AEA was increased by a 31 ± 13-fold, while 2-AG
was significantly reduced by a 5-fold in this subgroup.

Increased AEA levels have been reported in the past e.g. due to
various forms of ischemia/reperfusion (I/R) (e.g. hepatic, brain). In the
liver, I/R increased 2-AG and AEA levels positively correlated with
tissue damage markers such as tumor necrosis factor α (TNF-α), but
inflammatory stimuli per se only increased AEA levels [37]. NAE levels
have also been shown to drastically increase post-mortem [38] and in
infarcted myocardium [39–42], thus suggesting the observed effects
may be related to the extent of tissue injury. Of note, there were no
obvious differences in general clinical characteristics (gender, age, co-
morbidity, recent ischemic events, etc.) between the two ischemic
subgroups. Nonetheless, cardiac function in the second subgroup was
more severely affected based on significantly decreased cardiac output
(CO) and significantly increased systemic vascular resistance (SVR)
(Table 1). In addition, the body mass index (BMI) of the second sub-
group was significantly lower than that of the first subgroup; however,
it was not significantly different from controls.

Next, the activity of the ECS metabolic enzymes was investigated by
activity-based protein profiling (ABPP). The tissue was lysed by dounce-
homogenization and clear lysates were labeled with fluorescent ac-
tivity-based probes (Fig. 4), which enabled visualization of probe tar-
gets by sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and in-gel fluorescence scanning. The tailored lipase probe
MB064 (Fig. 4A) preferentially reacts with the DAGLα, DAGLβ, ABHD6,
and ABHD12 [31]. FP-TAMRA (Fig. 4B), a broad spectrum serine hy-
drolase probe fluorophosphonate-rhodamine (FP-TAMRA), labels
ABHD6, MGLL and FAAH amongst many other hydrolases [29,30].

Probe DH379 [43] enabled more selective the labeling of DAGL/ABHD6
(Fig. 4C).

In total, more than 20 hydrolases were labeled, including MGLL (33
and 35 kDa) (Fig. 4). The overall hydrolase activity in ischemic samples
I4-I7 (subgroup 2 based on lipid profile, indicated with *,) was reduced
as compared to the remaining ischemic samples and controls for which
only limited deviations in labeling were observed. In addition, MGLL
activity and expression were nearly abolished in samples I4-7 (Fig. 4B,
E). However, there were no obvious differences in the overall protein
staining (Fig. 4D) and general post-mortem degradation by autolysis
thus appears unlikely. Interestingly, an additional band was observed in
the activity profile of samples I4-I7 (Fig. 4B, indicated with #). Of note,
the other ECS metabolic hydrolases, including DAGLα (∼120 kDa),
DAGLβ (∼70 kDa), ABHD6 (∼35 kDa), and FAAH (∼60 kDa) were not
detected (Fig. 4A–C), even though ABHD6 activity was detected in
murine myocardium in the past [44].

The biotinylated counterparts of FP-TAMRA and MB064, FP-biotin
and MB108 respectively, were then used for target identification by
mass spectrometry-based chemical proteomics (Fig. 5). In total, 31 hy-
drolases were identified, including MGLL as the only ECS-related hy-
drolase (Fig. 5A, Supplementary Table S3). A slight, but nonsignificant,
upregulation of CES1, NCEH1, and DPP4 was observed in the ischemic
group, as well as downregulation of several hydrolases, including MGLL
(Fig. 5B). This downregulation of MGLL was further confirmed by
Western blot analysis (Fig. 4E). Strikingly, separation of the ischemic
samples into two subgroups (based on lipid profile, Fig. 3) revealed that
13 hydrolase activities, including MGLL, were drastically and sig-
nificantly reduced in the subgroup with an altered lipid profile (Is-
chemic 2, Fig. 5C) and worse cardiac function (Table 1). Hydrolase
activities from the first subgroup, however, were not significantly al-
tered. Notably, not all hydrolase activities were affected in the second

Fig. 3. Ischemic heart tissues can be categorized into sub-
groups based on divergent lipid profiles. Heatmap summary of
lipid analysis of healthy (control) and ischemic cardiac tissue.
Lipid levels were normalized to tissue weight and are ex-
pressed as mean response ratio of controls (grayscale, log10)
or relative to mean control (red-blue scale, log10 ratio).
Detailed lipid characteristics in Supplementary Table S2. (For
interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article).

A.C.M. van Esbroeck, et al. Pharmacological Research 151 (2020) 104578

5



subgroup and the extent of activity reduction is different between the
altered hydrolases. This reinforces the hypothesis that the observed
alterations in these samples are indeed not artefacts resulting from a
general process such as post-mortem autolysis.

Taken together, lipidomics and ABPP enabled the identification of a
subgroup within the ischemic sample set, which showed drastic in-
creases in NAE and FFA levels, whereas many hydrolase activities had

decreased. Aside from MGLL, no endocannabinoid metabolic enzymes
were detected, possibly due to instability or inactivity. Despite accurate
sample handling, differences in the sample collection procedure cannot
be excluded as a potential cause for the observed subgroups. In addi-
tion, therapeutic interventions or unknown clinical factors may sepa-
rate the ischemic tissues from one another. However, these data de-
monstrated that ABPP could be used for the rapid analysis of serine

Fig. 4. Activity-based protein profiling of healthy and ischemic human hearts. (A–D) Gel-based ABPP analysis on healthy (control) and ischemic cardiac tissue.
Whole lysates were labeled with activity-based probes (20min, rt), resolved by SDS-PAGE and in-gel fluorescence was detected. Coomassie served as a protein
loading control. (A) β-lactone probe MB064 (2 μM). (B) Broad-spectrum hydrolase probe FP-TAMRA (500 nM). (C) DAGL-probe DH379 (1 μM). (D) Coomassie
staining. (E) Western-blot using anti-MGLL (1:200, O/N, 4 °C) verified MGLL expression. * Denotes samples with overall reduced serine hydrolase labeling.

Fig. 5. Activity-based proteomics on healthy
and ischemic heart tissues. (A–C) Lysates from
healthy (control) and ischemic cardiac tissues
were labeled with MB108 and FP-biotin (10
μM each, 30 min, 37 °C) and analyzed by mass-
spectrometry. A pre-boiled sample (10 % SDS,
100 °C, 5 min) served as negative control. (A)
Heatmap summary of mean abundance of hy-
drolases from control tissues. (B) Hydrolase
activity relative to mean control. Data is ex-
pressed as mean±SEM (n=9), t-test with
Benjamini-Hochberg correction: * q< 0.05.
(C) Hydrolase activity relative to mean control,
ischemic samples categorized in subgroups.
Data is expressed as mean±SEM (control
n=9, ischemic 1 n=5, ischemic 2 n=4), t-test
with Benjamini-Hochberg correction. Control
versus ischemic 1: not significant; control
versus ischemic 2: # q< 0.05, ## q<0.01.
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hydrolases in clinical samples. In the future, this technique may aid in
the discovery of drug targets or biomarkers.

4. Discussion

The role of cannabinoid receptors, as potential drug targets, has
been extensively studied in various forms of cardiovascular diseases
[3]. In addition, there are continuous efforts to develop new drugs ei-
ther to target the cannabinoid receptors, or the metabolic pathways that
are involved in endocannabinoid production and degradation [45].
Therefore, to better understand endocannabinoid metabolism and
cannabinoid receptor signaling in critically ill patients, and to char-
acterize the endocannabinoid system in clinically relevant human
samples is of high importance, in order to find the most suitable patient
groups for the drugs that are currently under development.

CB1R-mediated endocannabinoid signaling has been implicated in
the pathogenesis of shock, atherosclerosis, and numerous forms of
cardiomyopathies (ischemic, diabetic, doxorubicin-induced [3,20]. The
in vivo effects of CB2R modulation have mainly been studied in models
of myocardial infarction and stroke. The observed effects have pri-
marily been attributed to limiting inflammatory cell infiltration to the
injured tissue [27,46] and to inhibition on endothelial activation fi-
broblast-myofibroblast transformation [3,47].

The knowledge on the role of endocannabinoid metabolic enzymes
in cardiovascular diseases is much more limited. FAAH knockout mice,
having a threefold increase in myocardial AEA, displayed increased
mortality, myocardial injury, and neutrophil infiltration in an experi-
mental model of doxorubicin-induced cardiomyopathy in a CB1R-de-
pendent manner [48]. FAAH deficiency also enhanced intra-plaque
neutrophil recruitment in atherosclerosis-prone mice [49]. In obese
humans, increased plasma levels of AEA and 2‐AG strongly correlated
with impaired coronary endothelial function and adverse cardiovas-
cular events [50,51]. In epicardial fat from ischemic human hearts,
CB1R was upregulated accompanied by downregulation of CB2R and
FAAH [52]. Similar upregulation of CB1R was observed in athero-
sclerotic coronary artery sections from patients with unstable angina
and in obese human subjects [26,53]. AEA or synthetic CB1R agonists
also decrease cardiomyocyte contractility both in rodents and humans
by interfering with excitation-contraction coupling [54,55]. Further-
more, endocannabinoids (through CB1R) promote p38 and JNK MAPKs
activation in human and/or mouse cardiomyocytes and coronary artery
endothelial cells facilitating apoptosis, as well as vascular inflammation
both in vitro and/or in vivo [56–59]. These findings strongly suggest that
the primary cardiovascular effects of endocannabinoids (particularly of
AEA), similarly to synthetic CB1R agonists, are deleterious and in many
cases CB1R-mediated [3]. Thus, in the present study, the markedly
increased tissue levels of AEA in the more severe ischemic heart failure
subgroup (having significantly decreased cardiac output (CO) and in-
creased systemic vascular resistance (SVR)) might imply a potential
disease modifying effect of AEA in chronic heart failure or reflect the
extent of cardiovascular injury/dysfunction. This is also consistent with
correlation of increased plasma levels of AEA with impaired coronary
endothelial function and adverse cardiovascular events in obese human
subjects [50,51]. Nonetheless, endocannabinoids have also been re-
ported to exert protective effects in the heart via receptor-independent
mechanisms (e.g. proposed to be involved in preconditioning me-
chanisms of the heart). However, these earlier studies are primarily
based on ex vivo experiments and use descriptive and indirect ap-
proaches, or the protective effects are time- and disease-state-depen-
dent [27,60].

In line with our results, Weiss et al. have reported that en-
docannabinoids are increased in the serum of patients suffering from
heart failure due to dilated cardiomyopathy [61]. They have also shown
a switch towards CB2R upregulation, without changes in the expression
of CB1R. Although, our present gene expression analysis revealed dif-
fering trends in CB1R and CB2R expression, this can be explained by the

differing etiology of dilated versus ischemic cardiomyopathies. Dilated
cardiomyopathy development is commonly a result of viral myocarditis
as well as less-understood autoinflammatory processes. Therefore, the
upregulation of CB2R in that disease setting is likely a result of proin-
flammatory mechanisms. Notably, the results of prior studies relying on
use of CB2R antibodies are also questionable in light of well-known
problem of the specificity of CB2R antibodies in tissues.

Despite extensive drug development efforts of MGLL inhibitors
[62,63], the role of MGLL and its substrate 2-AG in ischemic as well as
in metabolic cardiac derangements is unclear and controversial In a
very recent paper by Schloss et al. exogenous administration of 2-AG
was reported to be detrimental in myocardial infarction, by promoting
leukocyte recruitment to the damaged tissue [64]. In addition, the
authors found a markedly decreased expression of MGLL in infarcted
tissue, which is in line with the observed decrease in MGLL activity in
the present study. Accordingly, treatment with MGLL inhibitor JZL184
negatively affected post-infarction cardiac remodeling with extensive
fibrotic scar formation, and impaired cardiac function [64]. On the
other hand, MGLL seems to play a protective role in the stabilization of
atherosclerotic plaques [65]. Vujic et al. described that, in spite of in-
creased plaque formation in apolipoprotein E (ApoE)-MGLL double
knockout mice, plaques contained less lipids and inflammatory cells,
and more collagen as compared to wildtype controls, suggesting in-
creased plaque stability. Based on these findings, it appears likely that
MGLL plays a multifactorial role in ischemic heart failure as well as in
other cardiometabolic conditions. Therefore, to understand the com-
plex role of MGLL in lipid signaling and metabolism (related to the
synthesis of the endocannabinoid 2-AG, to the cleavage of mono-
acylglycerols, and providing free fatty acids for beta oxidation, as well
as the production of arachidonic acid, a precursor of complex lipid
mediators), there is a need for further studies that integrate these var-
ious aspects of MGLL-dependent signaling and metabolic pathways.

In addition, our ABPP-approach revealed other interesting changes,
although these changes do not necessarily relate those in en-
docannabinoid metabolism. We found increased activity of carbox-
ylesterase 1 (CES1), neutral cholesterol ester hydrolase 1 (NCEH1) and
dipeptidyl peptidase 4 (DPP4) in the cardiac tissues from the ischemic
heart failure group. Carboxylesterases are believed to be involved in the
formation of toxic fatty acid ethyl ethers [66,67] and therefore their
increased activity in heart failure might underlie the increased sus-
ceptibility to heavy alcohol consumption-induced toxicity after infarc-
tion [68]. NCEH1 is a critical enzyme in reverse cholesterol transport,
by cleaving intracellular cholesterol-esters and allowing cholesterol to
leave the cells and incorporate into high-density-lipoprotein (HDL)
[69,70]. Possibly, the increased activity of this enzyme represents an
adaptive mechanism, to tackle increased cholesterol and triacylglycerol
load of the heart. The increased activity of DPP4 is also interesting in
the failing heart in light of the revealed latent cardiotoxicity of sax-
agliptin, a selective DPP4 inhibitor, for the treatment of type 2 diabetes
[71].

5. Conclusion

In summary, a MS-based approach was used to investigate the en-
docannabinoids and their metabolic enzymes in cardiac ischemia using
ischemic end-stage failing hearts and non-failing controls. Targeted li-
pidomics analysis revealed the existence of two subgroups within the
ischemic samples; the first largely similar to controls and the second
with decreased 2-AG and increased AEA, NAE and FFA levels. The al-
tered lipid profile was accompanied by a strong reduction in the activity
of multiple hydrolases, including the 2-AG hydrolytic enzyme MGLL.
These data suggested the presence of different biological states within
the ischemic group, possibly the extent of tissue injury, despite the lack
of basic clinical characteristics separating the patients other than im-
paired cardiac function. In addition, this study demonstrated ABPP as a
tool to rapidly assess clinical samples which may be valuable in drug-
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target and biomarker discovery.
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