
Multi-objective mixed-integer evolutionary algorithms for building
spatial design
Blom, K. van der

Citation
Blom, K. van der. (2019, December 11). Multi-objective mixed-integer evolutionary algorithms
for building spatial design. Retrieved from https://hdl.handle.net/1887/81789

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/81789

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/81789

Cover Page

The handle http://hdl.handle.net/1887/81789 holds various files of this Leiden University
dissertation.

Author: Blom, K. van der
Title: Multi-objective mixed-integer evolutionary algorithms for building spatial design
Issue Date: 2019-12-11

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/81789
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 7

Mining Optimisation Data for

Design Rules

Up to this point, a mixed-integer representation has been defined for the building

spatial design problem in Chapter 3. Based on this representation, multi-objective

evolutionary algorithms have been devised, along with problem specific operators in

Chapters 4 and 5. Furthermore, the application of the hypervolume indicator gradient

[40], to improve local search, was studied in Chapter 6, which resulted in a considerable

amount of optimisation data.

Despite all this progress, the transfer of an optimisation result to a design expert is

not merely a matter of stating ”this solution is better than the previous one”. For an

optimised building spatial design to be used, the solution must be trusted by the design

expert. To inspire such confidence in the optimised design, the optimised results should

be made explainable. This can be achieved by learning heuristic design rules from the

optimisation data. Given such rules, it becomes clear why the design is effective.

Ideally, not only known rules that experts trust and understand are obtained, but also

new insights. By combining known and new design rules it is possible for experts, and

automated (e.g. co-evolutionary [23]) design systems, to improve their design process.

These improved design processes can then be applied to similar problems, without

another lengthy optimisation procedure. Learning these design rules, new and old, is

the focus of RQ4, and as such of this chapter.

The process of learning innovative design rules from optimisation data was intro-

duced in [33], and termed innovization. This concept has since been applied to a

107

7.1. Features

variety of problems such as clutch brake design in [33], and truss design in [7]. Later,

the learning process was interleaved with the optimisation process in [78], and further

automated in [7, 31]. Furthermore, in [8] it was studied how an optimiser learns new

concepts over time. Here it is investigated whether simple techniques used to verify

optimisation results may also lead to innovative insights.

This work is a first step in applying innovization in building spatial design. The

following contributions are made: Optimisation results are verified through data anal-

ysis of a subset of the 800 000 solutions found by multi-objective optimisation in Sec-

tion 6.5. Handling a dataset of this size also results in new challenges. With this in

mind, simple and computationally inexpensive analysis techniques are applied.

From here on, this chapter first introduces features to enable the discovery of

heuristic design rules in Section 7.1. The preparation of the considered dataset is then

described in Section 7.2. Section 7.3 evaluates the results from analysis of the data,

and the implications that follow. Finally, Section 7.4 briefly summarises the study,

and proposes possible directions for future work.

7.1 Features

The supercube representation introduced in Chapter 3 is a mixed-integer represen-

tation of the building spatial design problem, consisting of binary and positive real

numbers. Raw data in this format is difficult to interpret in terms of building prop-

erties, making it difficult to learn directly from this data. To ease this process, this

section introduces elementary features that allow building engineers to characterise a

building spatial design. Such features are necessarily domain specific. However, the

same process may be applied in other domains.

Given that the supercube representation is key to understanding the dataset and

features, its essential components are briefly reintroduced in the following. Since it

is used for building spatial design, the supercube representation considers a number

of spaces that together form the building spatial design. Each space is defined as a

cuboid (3D rectangle), such that the whole building consists of rectangular surfaces,

like in Figure 7.1. Additional constraints ensure that the floors of all spaces are

connected with the soil via other spaces, that is, in the given representation no floating

or overhanging spaces may exist.

All considered features are listed in Table 7.1 with their definitions and explana-

tions. Except for the last three, all other features are computed both for the building,

and for individual spaces. Since the ordering of spaces is arbitrary, including values

108

Chapter 7. Mining Optimisation Data for Design Rules

Soil surface area

Inside surface area

h
1

h
2

h
3h

0 x

y

z

minx3

maxx3

Space 1

Space 2

Space 3

Figure 7.1: Example building spatial design, annotated with a selection of features.

for each of them in the feature set would be of little use. Therefore, statistics are taken

over all spaces in a building for each feature. In particular, the minimum, maximum,

mean, median, range, standard deviation and Gini index (average deviation from the

mean) are considered. Since the last three features in Table 7.1 do not make sense for

individual spaces (e.g. mean height of a space is equal to its height), they are only

computed for the building as a whole.

Values for w, d, h are found by taking max∗−min∗, where ∗ corresponds to x, y, z

respectively. In other words, they are simply the distance between the minimal and

maximal coordinates of a given dimension. For example, the minx and maxx of space

3 are marked in Figure 7.1. Note that these values are computed for the full design,

as well as for individual spaces, as indicated for height in Figure 7.1 with h for the

complete building spatial design, and h1, h2, h3 for each individual space.

To differentiate between various surfaces, the following surface area definitions

are used. First, to distinguish between different locations of the surfaces, a non-

overlapping division is made between inside (in area), outside (out area), and soil

(soil area) surface area. Exterior surfaces are considered as outside, while interior

surfaces are considered as inside. The ground floor which connects with the soil is

excluded from the outside surface area, and taken as soil surface area. In Figure 7.1,

examples of inside and soil surface area are highlighted (the rest is outside surface

area). Second, to distinguish between walls and floors/ceilings, a division between

109

7.1. Features

Feature Definition Explanation

vol w × d× h Volume of the space, or sum of spaces for the full design
short min(w, d) Shortest horizontal edge, indicator of span
long max(w, d) Longest horizontal edge, indicator of span
height maxz −minz Height of the space or the full building spatial design
out sum(out area) Outside surface area, indicator of energy flow
in sum(in area) Inside surface area, indicator of energy flow
soil sum(soil area) Soil (ground floor) surface area, indicator of spread
horz sum(horz area) Horizontal surface area, indicator of total wall area
vert sum(vert area) Vertical surface area, indicator of floor and roof area
in out in/(in+ out) Ratio between inside- and outside surface area
out vol out/vol Ratio between outside surface area and volume
long short long/(long + short) Ratio between longest- and shortest horizontal edge
meanh sum(h× roof area)/soil Mean height of the building
meanh h meanh/height Ratio between the mean height and the height
height soil height/soil Ratio between the height and the soil area

Table 7.1: Features, definitions, and explanations.

horizontal (horz area) and vertical (vert area) surface area is made. The horizontal

surface area includes all floors and ceilings (so also the ground floor) while the vertical

surface area consists of all walls, regardless of them being interior or exterior. Finally,

the roof area considered for meanh is a part of the roof area in the building spatial

design positioned at equal height.

Note that when considering a building as a whole, each surface is counted only

once per considered distinction (e.g. horizontal/vertical). However, on the space level,

surfaces are sometimes counted twice. That is, for two neighbouring spaces, both

count their connecting surface as being part of, for instance, their horizontal surface

areas. As a result, the sum of the surface areas of all spaces is not (necessarily) equal

to the total surface area of the building.

In some cases, different features measure the same thing. For instance, the outside

surface area of a building has an equal distribution (but not value) to the mean out-

side surface area of the spaces. Despite this, such features are kept to simplify data

processing. In the analysis, only one representative should be used for these equivalent

features, unless the differing values provide additional insights.

Additionally, some features may result in distributions similar to each other. This

is particularly common for the range, standard deviation, and Gini index. However,

even small differences may make one of them more valuable in distinguishing between

solution classes than the other. Since, a priori, it is not known which is more useful

in which situation, all of them are included.

110

Chapter 7. Mining Optimisation Data for Design Rules

Finally, it is noted that undefined (NAN) values may appear in a few cases. Some

spaces may be disconnected (meaning they do not share a wall with another space).

As a result, it can occur in a building design that none of the spaces has a neighbour,

from which it follows that their inside surface area is zero. In these cases, the Gini

indices of the interior surface area, and of the ratio between inside and outside surface

areas will be undefined and marked as NAN (the Gini index divides by the sum of the

set of spaces, which is zero in this case). However, since these are very low quality

solutions, they are not considered in the analysis in the rest of this chapter. This will

become clear in the next section.

7.2 Data Preparation

In order to learn heuristic rules for building spatial design, the dataset from the optimi-

sation experiments in Section 6.5 is used. The dataset is a Pareto front and an archive

from a building design optimisation that aimed for a building spatial design consisting

of three spaces, with a total volume of 300 m3 (cubic metre). Note that while these

may seem like simple building spatial designs, they already require 9 continuous and

81 binary variables to encode with the supercube representation (Section 3.2), leading

to a large search space. The optimisation runs resulted in a dataset of around 800 000

solutions. Here the data is prepared for analysis in the following five steps. First,

classes are defined to enable the discovery of different qualities in different groups of

solutions. Second, the nondominated (ND) set is identified. Third, the knee point

solution is identified. Fourth, solutions are assigned labels to link them to a class,

based on the previously identified ND set and knee point. Fifth, a procedure is de-

scribed to equalise the number of solutions in each class for those analysis techniques

that demand this. Note that all steps are defined such that they should at least be

generalisable for two-dimensional convex Pareto fronts with a pronounced knee-shape.

To be able to learn from the features defined in the previous section, the data

is split into different classes. This is accomplished based on objective values, rather

than features. Classification based on objective values allows for the verification of the

optimisation procedure: Do design experts agree that the designs with good objective

values are indeed good? In addition, it is often a combination of features that indicate a

certain quality in the building spatial design, making feature based classification more

complex. Further, by classifying on known good qualities of a building spatial design,

finding innovative design rules would become very unlikely. Here, four categories of

solutions are considered: the knee point area (KP), good in the compliance objective

111

7.2. Data Preparation

(F1), good in the heating/cooling energy objective (F2), and relatively low quality

solutions (BD). The aim is to data-mine for heuristic design rules that make it possible

to differentiate between all of these distinct classes. For problems with more objectives

additional classes F* can be added as needed.

The classification considers two primary aspects: (1) It should clearly distinguish

between the classes in the objective space, and (2) It should be computationally ef-

ficient to enable processing of the large dataset of circa 800 000 points. The com-

putational efficiency should also allow the proposed methods to generalise to larger

building spatial designs than those considered here.

Since the considered classes are defined based on the nondominated (ND) set and

the knee point, these have to be identified first. For ND set computation the well-

known log-linear time algorithm based on sorting is employed [65]. Based on the ND

set, the knee point is derived as follows. First the objective values of the ND set are

normalised to a [0, 1] range, where outliers beyond 1.5 times the interquartile range

are set to the appropriate boundary value. Next, the Euclidean distance to the origin

(0, 0) is computed for each normalised ND point. The point with the smallest distance

is then taken as the knee point (indicated with ’kp’ in Figure 7.2), which is a reasonable

approximation for the given dataset.

 610

 620

 630

 640

 650

 660

 25000 30000 35000 40000 45000 50000 55000 60000 65000

H
e

a
ti
n

g
/c

o
o

lin
g

 e
n

e
rg

y
 (

k
W

h
)

Compliance (Nmm)

ALL

KP

F1

F2

BD

ND

kp

KP

F2

F1 BD

kp

Figure 7.2: Division of data into different classes: All points (ALL), knee point area (KP),
objective one (F1), objective two (F2), bad solutions (BD) included in the analysis; relative
to the nondominated set (ND), and the knee point (kp). A subset of the full dataset is shown.

112

Chapter 7. Mining Optimisation Data for Design Rules

The data is then classified based on the knee point p = (p1, p2), and the ND set.

For this, the ND set is first reduced to the ND points that were not considered an

outlier after normalisation, but the non-normalised values are used. In order to classify

in a computationally efficient manner, each class is defined by a bounding box. These

bounding boxes are found based on the length of the range of the ND set in objective

one r1, and objective two r2. For the knee point area class (KP) the lower bound of

the box is set to (0, 0), while the upper bound is set to (p1 + r1 × 0.2, p2 + r2 × 0.2).

For class F1 a lower bound of (p1 + r1 × 0.35, 0), and an upper bound of (p1 + r1 ×
0.75, p2) are taken. Similarly, F2 is found with the bounds (0, p2 + r2 × 0.35), and

(p1, p2 + r2 × 0.75). Lastly, BD uses the bounds (p1 + r1 × 0.35, p2 + r2 × 0.35), and

(p1 + r1 × 0.75, p2 + r2 × 0.75). Following this, points are assigned a label based on

the box they are located in. Any remaining unlabelled points are excluded from the

analysis. Note that the parameters 0.2, 0.35, 0.75 are heuristic in their nature. It is

possible to change them slightly, but overlap of the regions should be avoided.

The result of the classification process is visualised in Figure 7.2. Note that gaps

are left between the different classes to improve the chances of being able to distinguish

between them. If the classes would directly neighbour each other, points on the border

are likely to have very similar features. This would impede learning what makes a

solution perform well (or not) in one objective or the other. Future work could study

how these points can be included in the analysis.

In Figure 7.3 a randomly selected example of a building spatial design is shown for

each class. Although the examples for KP and F1 look similar, the design for F1 is far

more elongated. This result can be expected, as the short spans (here coupled with

elongated spaces) allow F1 designs to reduce the strain energy, at the cost of a larger

surface area, which reduces thermal efficiency. The F2 design shows the reverse, with

a much more compact design. Finally, the BD design is not very evenly arranged in

the spatial sense, and shows relatively poor performance in both objectives.

After processing the dataset1 70 088 of the 806 430 solutions are labelled, includ-

ing 5978 KP, 3400 F1, 48 482 F2, and 12 228 BD solutions respectively. Given the

mixed-integer nature of the representation, multiple discrete subspaces can be seen in

Figure 7.2, indicated by the apparition of different curves in the point cloud. Since

the dataset is not homogeneous, the resulting classes do not have an equal number of

points. For some types of analysis, however, it is critical to have equally sized classes.

In such situations, excess solutions are removed from the larger classes uniformly at

random. In all other situations, all labelled data is used.

1The dataset is available under http://moda.liacs.nl/index.php?page=code

113

7.3. Results

(a) KP. (b) F1. (c) F2. (d) BD.

Figure 7.3: Typical examples of the different classes.

7.3 Results

Two techniques are used for data analysis: Box plots and decision trees. Box plots

give insight into the distribution of feature data for different solution classes. As such,

it may be possible to identify features that allow for a clear distinction between two or

more classes. Besides, the decision tree can provide information about distinguishing

features, since it generates clear rules based on such features. Moreover, it gives

confidence measures for the classification of solutions to different classes. Finally, by

using the learned decision tree on new data, it is possible to validate whether those

rules can indeed be used reliably.

7.3.1 Box Plots

To generate box plots all labelled data is used, with each feature normalised to a [0, 1]

range, without removing outliers. In the plots, each class is then visualised by an

individual box, such that any differences become clearly visible.

In Figure 7.4 a subset of the features is shown that appears to allow for a significant

amount of distinction between the different classes. Notice, for example, how the

mean of the most extended horizontal edge (long.mean) enables differentiation between

objective one (F1), and objective two (F2).

Surprisingly the soil surface area (soil.mean), and the horizontal surface area (not

in the figure) both showed exactly the same distributions. This occurs because all

buildings considered in the labelled dataset are single-storey buildings. For such single-

storey buildings, the horizontal surface area is equal to the soil surface area plus the

roof area. Since these two areas are equal, the horizontal surface area is exactly twice

the soil surface area, which results in their equal distributions.

It appears then that, in general, single-storey buildings have a good performance

114

Chapter 7. Mining Optimisation Data for Design Rules

 0

 0.2

 0.4

 0.6

 0.8

 1

short.m
ean

long.mean

height.building

out.mean
in.std

soil.m
ean

vert.m
ax

out_vol.building

long_short.b
uilding

meanh

KP F1 F2 BD

Figure 7.4: Boxplot of a selection of distinguishing features.

for the given objectives, even if they are not necessarily optimal. After all, the labelled

solutions are all relatively close the Pareto front approximation. Naturally, this result

may not generalise to designs with a larger number of spaces. This also indicates it

may be interesting to include an even worse class of solutions in future analysis to

see how things differ with even worse solutions. Additionally, a feature indicating the

number of storeys of a building spatial design could be useful as well in this case. Even

if just to identify this type of situation more easily.

7.3.2 Decision Trees

In order to use decision trees to their full potential, the data should be equally dis-

tributed among the classes. As such, this is carried out as described previously (Sec-

tion 7.2). Since the smallest class contains 3400 solutions, the other classes are reduced

to the same number of data points, resulting in a total of 13 600 solutions. This total is

split into a training set of 10 200 solutions, and a test set of 3400 solutions by sampling

uniformly at random. Note that as a result of random sampling, the representation of

each class is not necessarily exactly equal in either of the training and test sets, but

still sufficiently close. The training and test sets then consist of approximately 2550,

respectively 850 solutions per class. Only labelled solutions are used, no normalisation

115

7.3. Results

is applied, and no outliers of individual features are removed. In the future it may be

of interest to do the same study with unlabelled solutions to see if the generated rules

generalise.

Given the prepared dataset, the decision tree in Figure 7.5 was generated with the

CART algorithm [27] implemented in the R package rpart [95] with default settings.

In each node probabilities of belonging to each class are given (from left to right: BD,

F1, F2, KP), as well as the percentage of the data concerned. From this figure, it can

be found that the longest horizontal edge, the outer surface area, the ratio between

the longest and shortest horizontal edge, and the ratio between the inner and outer

surface area provide important information to distinguish between different classes of

solutions.

long.build >= 15

long_short.min < 0.8

out.build >= 236

in_out.std < 0.14

long.gini >= 0.043

BD

.25 .25 .25 .25

100%

F1

.03 .97 .00 .00

26%

KP

.33 .00 .34 .34

74%

F2

.49 .00 .50 .00

49%

BD

.87 .00 .12 .00

28%

BD

1.00 .00 .00 .00

23%

F2

.33 .00 .66 .01

5%

BD

.92 .00 .05 .03

1%

F2

.09 .00 .91 .00

4%

F2

.00 .00 .99 .01

21%

KP

.00 .00 .02 .98

25%

yes no

Figure 7.5: Decision tree based on data.

These rules indicate properties of a building that contribute to qualities present in

different solution classes. The first split shows that relatively long buildings (long.build)

are likely to be efficient in objective one (compliance). This split intuitively makes

sense, since buildings that are more stretched out are likely to have short spans. Note

that this is under the assumption that not just the building is stretched out, but the

spaces as well (e.g. F1 in Figure 7.3).

In the other branch buildings are a bit more compact. Additionally, it can be seen

that buildings where the minimal ratio of the spaces between the longest and shortest

horizontal edge (long short.min) is relatively high, are very likely to be solutions in

the knee point area. This indicates that although the building as a whole is more

compact, the individual spaces remain somewhat elongated to balance between the

two objectives.

The primary split between low quality solutions and the second objective (energy)

116

Chapter 7. Mining Optimisation Data for Design Rules

is made based on the outer surface area of the entire building (out.build). Since a

larger outer surface area is an indicator of a more significant loss of energy to the

outside, this appears to be a sensible rule. Further, these rules provide clear pointers

on how to navigate towards the PF. It may be possible to incorporate this in problem

specific operators to speed up the optimisation process.

From the decision tree in Figure 7.5 it appears classification of solutions is possible

with high precision. To validate this, the tree was used to classify the 3400 solutions in

the test set. Table 7.2 shows the resulting predictions. All assignments were made with

a confidence of at least 90 %, showing that it is possible to classify designs quite reliably.

A particularly notable result is the classification of the majority of the solutions in the

F2 and KP classes, which, for this dataset, is done with near perfect confidence. Not

only does this provide confidence in the optimisation process, but these rules could

even be useful during optimisation. By classifying new solutions based on these rules

it may be possible to identify which solutions are more likely to perform well, such

that expensive simulations might only be needed for those.

Prob. .0000 .0008 .0046 .0048 .0051 .0162 .0276 .0345 .0483 .0926 .9074 .9241 .9655 .9784 .9949 .9952

BD 1758 0 0 0 728 0 54 0 0 0 0 0 0 860 0 0
F1 1649 860 0 0 0 0 0 0 0 0 0 0 891 0 0 0
F2 891 0 0 748 0 860 0 0 54 0 119 0 0 0 728 0
KP 728 0 860 0 0 0 0 891 0 119 0 54 0 0 0 748

Table 7.2: Decision tree results on the test set. Columns relate to the predicted probability
of belonging to a specific class, whereas rows refer to classes. Each cell then contains the
number of solutions that belong to a solution class, with a particular probability.

Based on first discussions with a design expert, it can be concluded that interesting

heuristics are learned that accurately describe high quality building spatial designs.

However, it seems to remain difficult to foresee the consequences of changes in feature

values with respect to the objective values. In order to improve this, visual aids would

be helpful. For instance, a slider controlling the weights of the structural and thermal

objectives could be used to change the spatial design in real-time.

7.4 Conclusion

7.4.1 Summary

In this chapter optimisation data from previous experiments (Section 6.5) has been

analysed to learn what makes a good building spatial design perform well with respect

117

7.4. Conclusion

to compliance and energy performance. This information could then be used to inform

a design expert why a proposed new design should be considered. Moreover, if new

design rules are learned, the expert can use them in the future.

To be able to analyse the optimisation data, this chapter included a process to

go from optimisation data to practically analysable data. To this end, features have

been defined that describe a building spatial design in a meaningful way for a design

expert. Following that, the data was subdivided in multiple classes, representing so-

lutions that are good in objective one (structural performance), objective two (energy

performance), both objectives, or neither objective.

Data analysis has been performed through the use of box plots and decision trees.

The box plots provided a clear overview of which features are likely to be useful in

differentiating between the classes. Then, the decision tree produces specific rules to

assign solutions to one of the previously defined classes. Further, these rules have been

tested with new solutions (not used to produce the decision tree), which resulted in

high precision (≥ 96%) classification of solutions. Finally, from discussions with a de-

sign expert it was identified that the learned rules accurately describe what constitutes

a good building spatial design.

With respect to RQ4 it can be said that it is indeed possible to learn valuable infor-

mation from optimisation data, or to confirm existing empirical knowledge. Clearly,

the optimised designs have been proven to conform with rules known by design experts,

learned from the data.

7.4.2 Future Work

Besides generating insight, the design rules could also be useful in steering the multi-

objective optimisation process. For future work, it would be interesting to investigate

which moves in the optimisation process result in improvements. In other words, given

an existing design, what changes to its features will, with high probability, result in

an improved design. Furthermore, it may be possible to apply learned rules in co-

evolutionary design processes [23]. Or, one could use the results from data mining

to implement a mechanism to discard inferior solutions without the to use expensive

simulations during optimisation.

The current work analyses data for a specific type of building. To generalise the

conclusions, the same methods should be evaluated on a larger variety of building

types. Given the computationally efficient nature of the used approach, it is probable

that larger building spatial designs can be handled, however this must still be verified.

118

Chapter 7. Mining Optimisation Data for Design Rules

Additionally, currently only a subset of the optimisation data is labelled. As a

result, it is unclear whether the learned rules generally allow the identification of, for

instance, solutions that perform well in the compliance objective. It may be the case

that some areas of the objective space, that have not been considered here, have similar

characteristics in some features. This should be studied in the future. A challenge is

how to do proper analysis with both sparse and dense areas in the objective space.

In the same line of including the currently unlabelled solutions into the analysis,

it would be interesting to consider how the inclusion of solutions that lay between the

currently considered classes would influence the ability to learn useful rules. Moreover,

including solutions beyond the current worst class may provide new insights in how

solutions change as they come closer to the Pareto front.

To improve the usefulness of the learned design rules for a design expert, it would

be beneficial to have them more involved in the process. As such, an option might

be introduced that allows them to use sliders to get a feel for the relation between

different feature and objective values. The development of effective tools for these

ideas is a challenging future direction towards a user-friendly workflow from problem

specification to results and insights.

119

7.4. Conclusion

120

