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Chapter 4

Basic Constraint Handling

With the definition of the supercube representation in the previous chapter, everything

is now available to start optimising building spatial designs. However, it was also

identified that numerous infeasible designs exist in this representation. To navigate

the infeasible space, this chapter aims to evaluate constraint handling techniques to

use during optimisation. This also ties in to answering RQ2, which asks for methods

to effectively handle constraints, specifically to ensure feasible building spatial designs

are discovered.

In order to improve the understanding of the supercube representation, the search

space, and the objectives, this chapter approaches building spatial design as a single-

objective problem. Based on the results it will be easier to extend to multi-objective

building spatial design in the next chapter (Chapter 5). To this end an evolution

strategy [82, 90] is used, and extended here with constraint handling mechanisms

suitable to the considered problem.

This chapter continues in Section 4.1 with a discussion of the problem of building

design, as well as a brief overview of work related to building design optimisation.

Section 4.2 introduces evolution strategies, which will be used in the optimisation

procedure. Then, in Section 4.3 the considered objective functions are discussed in

more detail. In Section 4.4 the integration of evolution strategies with constraint

handling techniques are discussed. The setup of experiments used to evaluate the

approach are then described in Section 4.5. An in-depth discussion of results is then

presented in Section 4.6. Finally, Section 4.7 provides a summary of the main results,

and indicates directions for future work.
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4.1. Building Design Optimisation

4.1 Building Design Optimisation

Building design is traditionally performed by architects and engineers who create so-

lutions for discipline specific design problems. Nowadays these solutions are usually

assessed by, and modified in accordance with, design analysis tools. Such tools include

finite element methods (FEM) to simulate for instance structural performance or heat

transfers, and computational fluid dynamics (CFD) to simulate e.g. heat, ventilation,

and lighting problems. The division between the different disciplines within the field

of building design also calls for tools that allow engineers from different disciplines

to cooperate. An example of such a tool is computer aided design (CAD), which is

used to create and share designs. However, currently building information modelling

(BIM) [37] is on the rise. BIM is a method that uses data management in order

to dynamically share information with other disciplines. This allows engineers to –

among other things – take other disciplines into account in the early (also, concep-

tual) design phase. The early design phase is important for optimal building designs,

because decisions in the conceptual design stage often affect performances across all

disciplines. A design based on a single discipline may therefore lead to a suboptimal

multi-disciplinary design.

Optimisation in the built environment is mostly performed by parametrising build-

ing components, e.g. installation type, construction type, material type, dimensions,

or shapes. In [79] an overview of software tools for building optimisation is presented,

followed by the introduction of a new tool. The new tool allows design variables of a

building design to be selected for optimisation. Following that, an optimisation strat-

egy can be selected. Although such tools can change and greatly improve a design,

they cannot discover new designs (e.g. a new window cannot appear). Very recently,

advances in early design optimisation have been made. For example, in [52] an opti-

misation approach inspired by the human design process is used to optimise a building

spatial design for the structural performance of its related structural design. In the

building physics discipline, the software tools discussed in [3, 102] are able to provide

performance information for building designs. Statistical sensitivity analysis to predict

the impact of design variables on the optimality of a building design is presented in

[54]. This analysis is interesting for early design optimisation as the impact of each

design variable in distinct design stages can be investigated.

In this chapter building optimisation for early stage building spatial design is per-

formed using the previously defined supercube representation (Section 3.2). Although

the supercube does not allow for completely free exploration of designs, it does permit
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Chapter 4. Basic Constraint Handling

significant changes in the shape of the building. Completely free exploration will be

investigated in Chapter 9, where the supercube is used in conjunction with a corre-

sponding superstructure free representation. Here, the supercube considers a layout

of building spaces that can be rearranged and resized for optimal performance. Opti-

misation methods are investigated for two different objective functions: (a) Structural

performance, for which the compliance is to be minimised, and (b) building physics,

for which the outside surface area is to be minimised. These disciplines are selected

because they are known to be dependent on the building spatial design. Later in this

thesis (Chapter 6) a resistance/capacitance (RC) network will be employed to anal-

yse heating and cooling energy, it will serve as a more accurate measure of building

physics performance. For the development of the optimisation method presented here

minimal surface area is used as objective function because it is cheaper to compute.

Details on the objective functions follow in Section 4.3.

4.2 Evolution Strategies

As outlined in the introduction evolutionary algorithms (EAs, Section 2.3) subsume

different algorithms that mimic natural evolution, in order to find improved or opti-

mised technological designs [4]. Population-based evolutionary algorithms generally

work according to a basic loop structure, the so-called generational loop. It starts

after an initialisation phase where an initial parent population consisting of µ indi-

viduals (solution candidates) is generated and evaluated. Then the loop begins by

establishing a ranking among the individuals according to their fitness (their perfor-

mance according to some objective function). Next, parents are selected to generate

an offspring population (also referred to as reproduction). In this step the ranking

of the population might be taken into account, although in Evolution Strategies – an

important EA variant – parent individuals are chosen randomly. From the selected

parent individuals, λ offspring individuals are created. Recombination is applied to

allow parts of the genomes (the decision variables, possibly encoded) from multiple

parents to be combined into a new genome. In order to introduce new – possibly

not previously considered – information into the genome, random perturbations are

applied through mutation of some of the variables in the newly produced genome.

When applicable, this is followed by constraint evaluation, where invalid individuals

may either be repaired, penalised, or discarded. Finally, the offspring population is

evaluated on the objective function, a new parent population is produced (note that
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4.3. Objective Functions

here performance may be taken into account, unlike in the reproduction step), and

the loop starts anew.

The specific type of evolutionary algorithm used in this chapter is the (µ + λ)-

Evolution Strategy. Evolution Strategies (ESs) were developed by Ingo Rechenberg

and Hans-Paul Schwefel at the Technische Universität Berlin in the 1960s and are

especially well suited for solving engineering design problems [82, 90]. They are in-

teresting for this work because they are able to handle discrete as well as continuous

decision variables, as outlined in [69].

In Algorithm 1 the main loop of a (µ+ λ)-ES is summarised. In short, the parent

population (multiset) Xt, indexed by the number of iterations and consisting of µ

individuals, is used as a template to generate the offspring population X ′t of size

λ. Then, from the combination of parents and offspring the best individuals are

selected as the parents of the next generation Xt+1. The initialisation, mutation,

and recombination operators are chosen in a domain specific way, as will be discussed

later in this section. For a more detailed discussion on evolution strategies and their

properties the reader is referred to [4] and [12].

Algorithm 1 (µ+ λ) Evolution Strategy [90]

1: t← 0
2: Xt ← init() . Xt ∈ Sµ : Set of individuals
3: while t < tmax do . Generate λ solutions by (stochastic) variation operators
4: X ′t ← generate(Xt)
5: evaluate(Qt)
6: Xt+1 ← select(X ′t ∪Xt) . Rank and select µ best
7: t← t+ 1
8: end while

4.3 Objective Functions

Structural performance is optimised here by minimising the compliance. To compute

the compliance corresponding to a building spatial design, a building structural design

needs to be provided. This is carried out by applying a so-called structural grammar

on each space of the building spatial design. The grammar that is used here adds

four walls (slabs), with a roof (also a slab) on top. All of these are made of concrete

with a thickness t = 150 mm (millimetre), Young’s modulus E = 30 000 N mm−2

(newton per square millimetre), and a Poisson’s ratio ν = 0.3. The building spatial

design is then loaded with a live load of 1.8 kN m−2 (kilo newton per square metre)
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Chapter 4. Basic Constraint Handling

on each floor/roof surface. Further, each outside surface is subjected to wind loads

of 1.0 kN m−2 for pressure, 0.5 kN m−2 for suction, and 0.4 kN m−2 for shear from

eight general directions (North, Northwest, West, etc.). After the transfer of the

loads to the building structural design and meshing of the structure, finite element

analyses are carried out to find the total compliance for all loads together. More

detailed information about this procedure can be found in [52]. In summary, the first

optimisation task is to minimise the total compliance (measured in newton metres),

subject to the given constraints.

Next, building physics performance is optimised by minimising the total outside

surface area. This objective can be computed for the supercube representation (Sec-

tion 3.2) as follows. Firstly, it is required that the building spatial design contains no

cantilevers, overhangs, or archways. This is achieved by Constraint C2, which ensures

that no vertical gaps exist with Equation 3.2. Additionally, the computation requires a

layer of cells with their binary variables equal to zero around the supercube (Equation

3.4).

To compute the outside surface area the surfaces of all outer walls, and the roof are

considered. These may be found by considering all rows, columns, and pillars of the

supercube. In width and depth the number of changes from zero to one are counted,

and then multiplied by the area corresponding to the considered dimensioning indices.

Finally, to consider both the entry and exit points, the outcome is multiplied by

two. In case of the height direction the multiplication by two is omitted, because the

connection with the ground layer is not counted as outside surface area. Since there

are no vertical gaps in feasible designs, the height direction is essentially the sum of

areas of all pillars with an active cell. The sum SA = Sw + Sd + Sh of Equations 4.1,

4.2, and 4.3 below is then the total outside surface area. Here Sw, Sd, and Sh are the

total outside surface area of the width vectors (rows), depth vectors (columns), and

height vectors (pillars), respectively. Note that once more, bi,j,k is taken as the result

of a logical OR over all ` bits of a cell i, j, k. In summary, the second objective function

is to minimise the outside surface area SA (measured in square metres), subject to the

given constraints.

Sw =

Nd∑

j=1

Nh∑

k=1

(
2

(
Nw+1∑

i=1

(1− bi−1,j,k) bi,j,k

)
djhk

)
(4.1)

Sd =

Nw∑

i=1

Nh∑

k=1


2



Nd+1∑

j=1

(1− bi,j−1,k) bi,j,k


wihk


 (4.2)
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4.4. Methods

Sh =

Nw∑

i=1

Nd∑

j=1

((
Nh+1∑

k=1

(1− bi,j,k−1) bi,j,k

)
widj

)
(4.3)

4.4 Methods

This section provides a description of how the earlier introduced (µ + λ)-ES is cus-

tomised for building spatial design optimisation with the supercube representation,

and how the different constraints are handled. To this end, first a general overview

is given of the procedure that will be the subject of the later presented experiments.

The outline is visualised in Figure 4.1.

Start (t = 0, i = 0)
Initalise parent pop-
ulation Xt of size µ

Repair volume Repair successful? Check constraints

Stop early

Constraint
violations?

Return objective
value, i = i + 1

Return
penalty value

Select µ new
parents Xt+1

from Xt ∪ X ′
i > max?t = t + 1

Stop

Produce off-
spring population
X ′ of size λ

no

yes

no

yes

no

yes

Figure 4.1: Optimisation outline. Nodes shaded in grey are performed for each individual.

The process starts by initialising the parent population X of size µ. Following

this, the volume of all new individuals is repaired to be within a small margin of the

desired volume V0. If volume repair fails it is likely that incompatible settings were

provided, and the process is stopped early. Next, the constraints are checked, and in

case of constraint violations a penalty value is returned. If no constraints are violated,

then the objective value is computed and returned instead. Moreover, the evaluation

counter i is incremented. Based on these returned objective and penalty values, the
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Chapter 4. Basic Constraint Handling

µ best individuals are selected from the parent and offspring populations. In the first

iteration this will naturally always be the initial population. If the maximum number

of evaluations is reached the process stops here, otherwise the iteration counter t is

incremented. Finally, a new generation starts by producing an offspring population

X ′ of size λ. The loop is then repeated by starting again from the volume repair step.

This process continues until the desired number of evaluations is reached. Note that

here evaluations are counted based on the number of valid (non-constraint violating)

solutions.

In the following subsections a number of these processes are discussed in more

detail. Specifically, domain specific ES operators (initialisation, selection, mutation,

crossover), penalty functions, and repair functions will be introduced.

4.4.1 Domain Specific Operators

The ES starts by generating an initial parent population of µ = 20 individuals. For

continuous variables initial values are drawn uniformly at random from [lb, . . . , ub],

with lb = 3.0, and ub = 19.8 (both in metres) being the lower, and respectively upper

bounds for the continuous variables. Step sizes of the continuous variables are simply

initialised to σ = 0.1. While binary variables are initialised to one with a probability

1/Ncells, or zero otherwise. Recall that Ncells = Nw ×Nd ×Nh.

Parental selection is done by choosing two parents (possibly the same twice) uni-

formly at random, for each of the λ = 100 offspring individuals that are generated.

Next, intermediate crossover is applied to the continuous variables as well as their

corresponding step sizes. That is, for each variable the arithmetic mean of the two

parents is taken. For binary variables dominant crossover is applied by copying the

value of the bit from one of the parents, chosen uniformly at random for each bit.

Mutation works as described in Algorithm 2. For convenience two definitions

are introduced, the number of continuous variables Ncont = Nw + Nd + Nh, and

the dimensionality of the search space Ndims = Ncont + Ncells × Nspaces. Gaussian

mutation with individual step sizes is applied to the continuous variables. To this

end the number g3 is drawn from a Gaussian distribution G(·, ·). Step sizes σ of

the continuous variables are mutated using the Gaussian numbers g1, g2 (also drawn

from G(·, ·)), the local learning rate τ1 = 1/
√

2
√
Ndims, and the global learning rate

τ2 = 1/
√

2×Ndims as in [69]. Finally, binary variables are mutated by flipping each

bit with a probability of 1/(Ncells × Nspaces), for which a number is drawn from the

uniform distribution U(·, ·).
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4.4. Methods

Algorithm 2 Mutate

1: τ1 ← 1/
√

2
√
Ndims . Local learning rate

2: τ2 ← 1/
√

2×Ndims . Global learning rate
3: g1 ← G(0, 1)
4: for all i ∈ {1, . . . , Ndims} do
5: g2 ← G(0, 1)
6: g3 ← G(0, 1)
7: if i ≤ Ncont then
8: σ′i ← σi × exp(g1 × τ2 + g2 × τ1) . Mutate step size
9: x′i ← xi + g3 × σ′i . Mutate continuous variable

10: else
11: if U(0, 1) < 1/(Ncells ×Nspaces) then
12: x′i ← (xi + 1) % 2 . Mutate binary variable
13: end if
14: end if
15: end for

Following mutation, some variables may exceed their bounds. To repair them,

modified interval bounds treatment is applied as in [69]. Decision variables consider

the lower bounds lb and the upper bounds ub, while step size variables use the bounds

lbs = 0.01 and ubs = ub× 0.1.

Finally, survival selection works as is standard for evolution strategies. Namely,

the µ best (lowest objective value) individuals from the (µ∪λ) (parents and offspring)

individuals are selected to be the parent population of the next generation, this is also

referred to as elitist selection (the best/elite wins).

4.4.2 Penalties

The supercube representation considers a number of constraint functions that must

hold to ensure feasible designs are produced. However, when many infeasible (con-

straint violating) designs exist (like in the supercube representation, see Section 3.2.4)

an optimiser needs some technique to navigate towards feasible space. If no such tech-

nique is employed, in the worst case the optimiser might not find any feasible design

at all.

Here two approaches are considered, which will be compared empirically in Sec-

tion 4.5. First, a single fixed penalty value of pen = 999 999 999 is used whenever

any constraint is violated. This value is chosen to be well beyond any realistically

expected objective value to prevent any infeasible solution from being favoured over

a feasible solution, but is otherwise arbitrary. The penalty provides the optimiser
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Chapter 4. Basic Constraint Handling

with the information that the considered design is of very low quality. However, if no

feasible design is found, this does not help to steer the search closer to feasible space.

Even so, this still provides a baseline when comparing with other methods. Second, a

graded penalty approach is used where the penalty value depends on the number of

constraint violations. The idea behind this approach is that the penalty value should

decrease when fewer constraints are violated. By favouring solutions that violate fewer

constraints, the search will be biased towards areas closer to feasible space. Given this

property, the graded penalty approach should be more suited to navigate the con-

straint landscape than the single penalty approach. Specifically, an infeasible solution

will receive a penalty value equal to pen + CV − 1. Here CV ∈ {1, . . . , 5} represents

the number of constraint violations, and pen is the same as before. Although the

absolute differences between these penalty values are small, together with elitist selec-

tion this means the individual with the least constraint violations is always favoured.

Note that five constraints are considered here. This concerns the four constraints de-

scribed in Section 3.2.2, where Constraint C4 is split into two parts: (a) cuboid shape

(Equations 3.5 and 3.6), and (b) connected cuboid (Equation 3.7).

4.4.3 Repair Functions

Given the constraint on the volume introduced by Equation 3.8, a mechanism is needed

to maintain a constant volume during optimisation. Since this concerns an equality

constraint on continuous variables, the use of penalty values would be less effective

than for the previously discussed constraints. That is, finding solutions with exactly

the right volume by the stochastic processes of an evolutionary algorithm is so unlikely

that another technique is needed to handle this constraint. Here, a repair function is

used to change any design that does not satisfy this constraint into one that does.

Repairing the volume works by scaling the continuous variables to satisfy a pre-

defined desired total volume V0 (in the following experiments V0 = 43 ×Ncells. How

these variables have to be scaled depends on the current total volume Vc, which is

simply the outcome of the left-hand side of Equation 3.8. Given the current and de-

sired volume, it is possible to compute the factor α = V0/Vc. The desired volume is

then reached by multiplying the continuous variables by the cubic root of α, as shown

in Equation 4.4. Note that this is only necessary for vectors (rows, columns, or pillars

in the supercube) that contain at least one active cell (cells that belong to a space).

Inactive cells do not influence the volume, and therefore can remain unchanged.
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4.5. Experiments

∀i : w′i = 3
√
αwi ∀j : d′j = 3

√
αdj ∀k : h′k = 3

√
αhk (4.4)

Both the creation of new individuals (recombination and mutation), and the volume

repair procedure may result in continuous variables that exceed their boundaries. Such

boundaries result from the requirement for continuous variables to have positive values

(Equation 3.9), but also from limits set for a specific design process. For instance,

a lower bound lb may be set because a space that is less than half a metre wide

is not practically useful. Likewise, an upper bound ub is used to avoid excessively

wide/deep/high spaces. To correct for this, variables exceeding the lower bound are

set to the lower bound, while variables exceeding the upper bound are multiplied by

0.95 until they are within the bound. Since these corrections affect the volume, volume

repair is done iteratively together with bound corrections until both requirements

are satisfied. Note that the volume requirement is considered satisfied as long as

the volume remains within 1 % from the desired volume. This prevents an excessive

amount of time from being spent solely on satisfying this constraint, while staying

reasonably close to the requirement. The iterative process is repeated at most 26 times.

If this number of repetitions is insufficient for any of the individuals the optimisation

process is stopped and considered unsuccessful. The likelihood that this occurs is

dependent on the chosen bounds and the desired volume, but this did not occur during

any of the experiments presented in this chapter.

4.5 Experiments

Based on the described optimisation outline a number of experiments have been de-

vised. Single objective optimisation is considered, concerning the surface area and the

compliance objectives. By focussing on single-objective optimisation, and – for now

– leaving out the additional complications involved in multi-objective optimisation, it

is possible to purely focus on developing good constraint handling techniques. This is

first done with single penalty values to investigate how well the proposed supercube

representation functions in practice, and to set a baseline to compare against. Next,

the same objectives are considered, but now with the graded penalty, based on the

number of constraint violations. Through the comparison of these two approaches,

some first insights are gained into constraint handling for this heavily constrained

problem.
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Chapter 4. Basic Constraint Handling

These experiments are all conducted with a budget of 1000 evaluations, and re-

peated five times. As mentioned before, only feasible candidates are evaluated, and

thus only feasible candidates reduce the remaining evaluation budget. To prevent the

optimisation process from going on forever (in case only infeasible solutions are found),

the process is stopped after generating one million candidate solutions, even if the bud-

get is not exhausted yet. Moreover, six different configurations of the supercube are

considered to give insight into algorithm behaviour and problem characteristics for

different numbers of cells and spaces. The considered configurations are: 2221, 2223,

2225, 3331, 3333, 3335. This notation has to be interpreted as follows. The first three

numbers indicate the number of width, depth, and respectively height divisions in the

supercube. Whereas the last number indicates how many spaces are considered. The

2221 configuration, for example, indicates a supercube that is two cells wide, deep,

and high, and encodes a single space.

Settings as used in the experiments for the parameters introduced in the previous

section are summarised in Table 4.1.

µ λ V0 lb ub lbs ubs

20 100 43 ×Ncells 3.0 19.8 0.01 ub× 0.1

Table 4.1: Parameter settings used for the constraint handling evolution strategy.

4.6 Results

Figure 4.2 shows mean convergence plots for the compliance objective when using the

single penalty approach. Note that this mean is only computed over the successful

runs, i.e. runs that found 1000 feasible solutions. After a rapid decrease in the

objective value during the first few hundred evaluations the optimisation process tends

to stagnate. In Figure 4.2a the results for the 222x configurations are shown. Only

three of the five runs for configuration 2225 were successful, so the mean of this

configuration is based on only three runs. In fact, for these unsuccessful runs no

feasible designs were found at all. This means that, for this problem size constraint

handling is already a major problem with a single penalty value. With the larger

supercube considered for the 333x configurations in Figure 4.2b this problem becomes

even more apparent. In case of the 3333 configuration two out of five runs also failed

to find any feasible solution, while for the 3335 configuration none of the runs found
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4.6. Results

a feasible design. Evidently, a more sophisticated constraint handling technique is

needed.
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Figure 4.2: Mean convergence of the compliance for all successful runs (maximum of five)
using a single penalty value. Configurations 2225 and 3333 had 3 successful runs, while 3335
had none.

For the surface area objective similar results can be observed in Figure 4.3. Here

too, a number of runs were not successful for various configurations. In Figure 4.3a

configuration 2225 completed two of the five runs successfully. Further, the 3333 and

3335 configurations in Figures 4.3b respectively had three and zero successful runs.

As was the case for the compliance objective, all unsuccessful runs here did not find

any feasible solution at all. When comparing between the two objectives, it appears

that the convergence speed is fairly similar.
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Figure 4.3: Mean convergence of the surface area for all successful runs (maximum of five)
using a single penalty. Configurations 2225, 3333, and 3335 had 2, 3, and no successful runs
respectively.
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For the ease of discussion the considered constraints are briefly summarised next.

• No overlap (Constraint C1, Equation 3.1), each cell belongs to no more than one

space.

• Ground connected (Constraint C2, Equation 3.2), all cells are either on the

ground level, or have an active cell on the level below them.

• Existence (Constraint C3, Equation 3.3), all spaces exist, i.e. they are described

by at least one cell.

• Cuboid shape (part one of Constraint C4, Equations 3.5 and 3.6), the cells de-

scribing a space together form a cuboid shape, possibly with gaps.

• Connected cuboid (part two of Constraint C4, Equation 3.7), all cells in the same

row, column, or pillar are connected. Given that the cuboid shape constraint

also holds, this means that all cells forming a space are connected and form a

cuboid without voids.

Note that for some problem configurations certain constraints are always satisfied,

these are indicated as not applicable (N/A). For the 2221 and 3331 problem instances, a

single space has nothing to overlap with and can therefore never violate Constraint C1.

The 222x instances cannot have cuboids with gaps in them, because there are not

enough cells for this to occur.

Given these constraints, Table 4.21 shows the ratios of constraint violations for

every configuration and constraint type for the minimal compliance objective when

using a single penalty value. These values are computed by taking the ratio of con-

straint violations for a single run, and then taking the mean over the five runs. For

the small supercube sizes considered here, the existence constraint does not appear

to be a major problem. Although for the 3335 configuration it is already violated

frequently. The likelihood of violating the no overlap constraint naturally depends on

the ratio between the number of spaces and the number of cells. I.e., more spaces

per cell increases the likelihood of overlap. This is supported by the results for the

2223 and 2225 configurations. Meanwhile, the probability of constraint violation for

the 3335 configuration is extremely high (0.999327413), making it difficult to search

1The values shown in the table here differ from those originally reported in [17], because the results
there mistakenly showed numbers for a single run, rather than the average over five runs. However,
the primary conclusions still hold. The same goes for Tables 4.3, 4.4, and 4.5.
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4.6. Results

at all. The remaining three constraints show a similar pattern to the no overlap con-

straint, increasing violation probability with more spaces for both the 222x and 333x

configurations, and excessively many constraint violations for the 3335 configuration.

Config. No overlap Ground con-
nected

Existence Cuboid shape Connected
cuboid

2221 N/A 0.365825317 0.058657830 0.444417496 N/A
2223 0.360701373 0.370035639 0.140828056 0.515696088 N/A
2225 0.806357513 0.735303689 0.130767034 0.784227148 N/A
3331 N/A 0.502740860 0.017993546 0.587753423 0.115546192
3333 0.479018371 0.701397235 0.054896992 0.755925962 0.481095119
3335 0.999327413 0.999974401 0.816441071 0.999885802 0.998834023

Table 4.2: Mean constraint violation probability over five runs for minimal compliance
optimisation with a single penalty value for various problem configurations.

The constraint violations of the surface area in Table 4.3 show largely similar

behaviour to those of the compliance objective, with a large portion of the constraints

being violated with high probabilities. There are some minor variations between which

constraint is violated more or less often between the two objectives. However, this

can likely be attributed to chance, considering the small number of runs. Moreover,

constraint violations in both cases frequently occur more than 50 % of the time. This

further supports the findings from the convergence analysis, that the single penalty

approach is unable to handle this heavily constrained problem.

Config. No overlap Ground con-
nected

Existence Cuboid shape Connected
cuboid

2221 N/A 0.283941972 0.058233004 0.460658365 N/A
2223 0.363531813 0.363550249 0.135668651 0.510627974 N/A
2225 0.865383477 0.817330126 0.089653027 0.850689870 N/A
3331 N/A 0.486303466 0.046760850 0.524354276 0.137718976
3333 0.532956461 0.744087185 0.049183401 0.795422495 0.500961661
3335 0.999399612 0.999975601 0.816310074 0.999910402 0.998905822

Table 4.3: Mean constraint violation probability over five runs for surface area optimisation
with a single penalty value for various problem configurations.

Next, it is investigated whether a graded penalty approach is able to remedy this

problem. The used approach penalises based on the number of constraints that are

violated. This should allow evolutionary search to gradually correct violations, and

move towards feasible solutions faster.

Figure 4.4a shows the mean convergence of the compliance on the 222x config-

urations when using the graded penalty method. Notably, all runs were completed
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successfully, which shows the advantage of this method over the single penalty ap-

proach. The convergence behaviour is largely similar to the single penalty method,

with quick improvements early on and stabilisation after a few hundred evaluations.

For the 333x configurations shown in Figure 4.4b the results are also largely the same.

Despite the fact that these configurations are more challenging than their 222x coun-

terparts, here too all runs were successful with the graded penalty method. Evidently,

the graded penalty method shows the expected and desired result of being better

equipped to deal with the constraint landscape than the single penalty approach.
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Figure 4.4: Mean convergence of the compliance over five runs using graded penalty values
based on the number of constraint violations.
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Figure 4.5: Mean convergence of the surface area over five runs using graded penalty values
based on the number of constraint violations.

Mean convergence results of the graded penalty method for the surface area objec-

tive show similar improvements to those of the compliance objective. This holds for

both the 222x configurations in Figure 4.5a, and the 333x configurations in Figure 4.5b.

Furthermore, with all runs now being completed successfully, a more accurate analysis
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of the convergence behaviour is possible. Particularly for the 333x configuration it is

now possible to clearly observe the difference in convergence speed as the number of

spaces is increased from 1, to 3, and to 5, whereas this (expected) behaviour was not

clear at all with the single penalty approach (Figure 4.3b).

In terms of constraint violation probability, the results of the graded penalty

method are also an improvement over those of the single penalty method. This can be

observed for both the compliance objective in Table 4.4, and the surface area objective

in Table 4.5. Most notably, the probabilities around 0.99 observed in many cases with

the single penalty method (e.g. for compliance in Table 4.2) have disappeared. Even

so, many of the constraint violation probabilities are still around or above 0.5. Espe-

cially the number of violations of the existence constraint for the 3335 configuration

are cause for concern, since this suggests that this will remain a problem with larger

sized designs, which often have to be dealt with in real world applications.

Config. No overlap Ground con-
nected

Existence Cuboid shape Connected
cuboid

2221 N/A 0.361342915 0.058746357 0.453979888 N/A
2223 0.330288406 0.321899619 0.153398193 0.474461674 N/A
2225 0.475043604 0.345127277 0.305617513 0.443144107 N/A
3331 N/A 0.512244896 0.019280040 0.592070113 0.107721204
3333 0.114589803 0.476313711 0.131886344 0.564315490 0.100258658
3335 0.159904807 0.407218686 0.833920127 0.474255397 0.075510223

Table 4.4: Mean constraint violation probability over five runs for minimal compliance
optimisation with a graded penalty value for various problem configurations.

Config. No overlap Ground con-
nected

Existence Cuboid shape Connected
cuboid

2221 N/A 0.294695023 0.065057210 0.449316221 N/A
2223 0.352604824 0.150746218 0.153169050 0.475316636 N/A
2225 0.527390468 0.389167427 0.285392221 0.455517944 N/A
3331 N/A 0.482476598 0.048915412 0.523626333 0.121148832
3333 0.130755993 0.477704137 0.144945542 0.573464583 0.106156523
3335 0.173648794 0.400757221 0.839106603 0.477907732 0.086331151

Table 4.5: Mean constraint violation probability over five runs for surface area optimisation
with a graded penalty value for various problem configurations.

Visualisations of example results for some building spatial designs are analysed

next. A first observation is that different configurations result in different spatial de-

signs. This substantiates the need for optimisation since results from one configuration

do not generalise for another configuration. There is a clear distinction between the
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results from minimal compliance optimisation (Figure 4.6) and those of surface area

optimisation (Figure 4.7). Surface area optimisation leads to compact cuboid, or near

cuboid, shapes, as might be expected. Minimal compliance optimisation on the other

hand produces a variety of shapes. Little use is made of the extra space in the 333x

configurations. For the 3333 configurations this may be explained by the availabil-

ity of only three spaces. There is a limited number of valid building spatial designs

that can make use of the larger number of cells with only three spaces. Note that

while it is possible to produce spaces consisting of a large number of cells, reaching

such a situation becomes increasingly difficult with more cells while also satisfying the

constraints. For example the largest space in the 3335 configuration for surface area

optimisation (Figure 4.7d) consists of just two cells. This is likely to play a role in

the limited use of space for both the 3333 and 3335 configurations. These frequent

issues with constraints complicate exploring all feasible solutions in the search space.

In particular, transitions between different feasible parts of the search space are chal-

lenging when many moves end up in infeasible parts of the search space. Evidently,

this is something that needs to be addressed in future work.

(a) 2223 (b) 2225 (c) 3333 (d) 3335

Figure 4.6: Examples of spatial designs optimised for minimal compliance.

(a) 2223 (b) 2225 (c) 3333 (d) 3335

Figure 4.7: Examples of spatial designs optimised for minimal surface area.
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4.7 Conclusions

4.7.1 Summary

With this chapter, the previously introduced supercube representation (Chapter 3)

is subjected to first practical tests and assessed in combination with an optimisa-

tion algorithm. To this end, a brief overview of optimisation in building design, and

the canonical Evolution Strategy (ES) have been presented. Furthermore, objective

functions related to the two disciplines (structural, and building physics performance)

considered in this thesis are also introduced.

Based on the canonical ES, and the knowledge about the number of infeasible (con-

straint violating) designs in the supercube representation (Chapter 3, Section 3.2.4),

an ES variant has been developed to accommodate this situation. This algorithm

considers variation operators (mutation, recombination) suitable to the mixed-integer

nature of the supercube representation. Furthermore, penalty functions are used to

deal with the constraints on the binary variables (Chapter 3, Section 3.2.2), while

repair functions have been developed to satisfy the constraints on the continuous

variables (Chapter 3, Section 3.2.3). With that, first steps have been taken towards

answering RQ2, which calls for effective constraint handling.

This constraint handling ES is subjected to experiments comparing a single penalty

method with a graded penalty method. In the single penalty method a fixed penalty

value is returned regardless of the number of constraints that are violated, while the

graded penalty method applies penalties that grow with the number of violated con-

straints. The experiments showed that, as expected, a graded penalty allows for a

more effective search than a single penalty value. However, despite being more effec-

tive, constraint violations remain frequent. Due to this, it seems unlikely that larger

supercube configurations than those considered here can be optimised effectively, even

when using the graded penalty method. With this in mind, different constraint han-

dling techniques have to be developed.

4.7.2 Future Work

As mentioned, although the improvements when using a graded penalty are promising,

constraint violations still occur frequently, and likely prohibit the optimisation of larger

building spatial designs. One direction in which the graded penalty approach could be

improved is by increasing the granularity in which it penalises infeasible designs. In

the version evaluated in this chapter a design that violates (for instance) the existence
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constraint once, would get the same penalty value as a design that violates the same

constraint multiple times (for different spaces). By penalising designs based on a

more fine-grained measure of constraint violation it should be possible to indicate a

smoother path towards feasible space for the search process. This removes plateaus in

the penalised part of the search space, but it might also introduce local optima.

Despite the possibilities to improve on the graded penalty approach, any penalty

based approach has the inherent downside of spending time on infeasible solutions

(except for the special – and unlikely – case were only feasible solutions are found).

An alternative that does not suffer from this drawback is the use of specialised search

operators that only navigate the feasible space. Naturally, developing such operators

requires careful consideration of how to navigate the feasible search space. After

all, every feasible solution should still be reachable, even if there are disconnected

feasible regions. The development of specialised operators for the building spatial

design problem will be investigated in the next chapter.

Another issue that was identified is that many optimised solutions seem to use a

limited selection of the cells in the supercube. Although this may just be the end result

of the optimisation process, it could also indicate that the search has difficulty moving

from one part of the feasible space to another. Considering the number of constraint

violations, and the number of changes that are often needed in the binary part of

the search space to transition from one feasible solution to another, this is a serious

concern. Fortunately, it should be possible to address the reachability of all feasible

solutions with specialised operators, as will be addressed in Chapter 5. Additionally,

in future work it may be worth investigating how global optimisation strategies such

as niching [93] can improve the variety of the discovered solutions.
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