
Multi-objective mixed-integer evolutionary algorithms for building
spatial design
Blom, K. van der

Citation
Blom, K. van der. (2019, December 11). Multi-objective mixed-integer evolutionary algorithms
for building spatial design. Retrieved from https://hdl.handle.net/1887/81789
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/81789
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/81789


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/81789 holds various files of this Leiden University 
dissertation. 
 
Author: Blom, K. van der 
Title: Multi-objective mixed-integer evolutionary algorithms for building spatial design 
Issue Date: 2019-12-11 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/81789
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 2

Preliminaries

This chapter provides a gentle introduction to the core subjects of this thesis. It covers

the basics of optimisation, multi-objective optimisation, evolutionary computation,

and building spatial design.

2.1 Optimisation

In optimisation the aim is to find an optimal, or at least an improved solution, to a

given problem. A problem may be that you want to design a house, but how do you

decide on the properties (number of rooms, floorspace, type of isolation material) of the

house? Let us assume – for the moment – that your only concern is the purchase price,

which you want to be as low as possible. That is, your objective is the minimisation of

the price of the house. Naturally, how much a house costs depends on the properties

of the house. A larger number of rooms, for instance, may result in a higher price.

Such properties may be captured in variables. Given an objective, and the variables

that influence its value, an objective function can be described. In other words, a

function describing how the objective value changes, given different input variables.

Altogether the optimisation problem can now be described mathematically as follows.

An objective function f , with a vector of input variables x, is to be minimised. With x

being an element of the search space S. Here the search space is the set of all possible

variable combinations. In short:

f(x)→ min, x ∈ S. (2.1)

9



2.2. Multi-Objective Optimisation

2.1.1 Constraints

Although unconstrained objective functions exist, in practice most optimisation prob-

lems consider constraints. Two classes of constraints are distinguished here, namely

equality and inequality constraints. For instance, for the design of a house, a specific

number of rooms c1 may be required, leading to an equality constraint of the form:

g(x) = c1. (2.2)

Further, there may be a minimum requirement to the number of square metres c2

in floorspace, resulting in an inequality constraint of the form:

h(x) ≥ c2. (2.3)

Finally, it is noted that a constraint might be applicable to a subset of the input

variables. For instance variables x1, . . . , x5 may be subject to constraint function g1,

while variables x3, . . . , xn are subject to constraint function g2.

2.1.2 Mixed-Integer Problems

Various types of variables may be considered in optimisation problems. Objective

values will generally have some ordering to them, and no major problems arise whether

they are real or integer. However, decision variables may consist of different types.

In this work we consider three classes of decision variables: real (also, continuous),

integer (also, discrete), and nominal discrete (also, categorical). Examples for each are

as follows, the height of a window could be a real variable, the number of rooms on the

ground floor is an integer, and the type of material in a wall can be nominal discrete.

Note that nominal discrete variables are usually encoded as integers, but by their

nominal nature are not ordered. As a result, handling them differently from regular

integer variables may be advantageous in an optimisation algorithm. Although both

real and integer variables are ordered, they still have differing properties and therefore

benefit from being treated separately as well.

2.2 Multi-Objective Optimisation

Equivalent to single-objective optimisation, multi-objective optimisation considers the

minimisation (or, without loss of generality, maximisation) of objective functions. In-

stead of optimising one function at a time, multiple functions are optimised in concert.

10



Chapter 2. Preliminaries

That is, rather than considering f(x)→ min, we consider f1(x)→ min, . . . , fm(x)→
min. Here, m indicates the number of objectives.

Beyond the basic concepts introduced in the following, the interested reader is

referred to [44] for a general overview and introduction to the field of multi-objective

optimisation, and state-of-the-art multi-objective evolutionary algorithms (MOEAs).

2.2.1 Pareto Optimality

In the single-objective case defining optimality is trivial: The smallest (or largest)

possible value for a given objective function is the optimum. In the multi-objective

case we could simply take the minimal value of each objective function, and say this

is the set of optima. However, this poses a problem. Consider a bi-objective problem,

with conflicting objectives. That is, optimal variables for one objective are not optimal

for the other and vice versa. An optimal solution in one objective is in this case likely

to be a low quality solution in the other objective. Clearly, it would be of interest

to find solutions that are in between, good – but not necessarily optimal – in both

individual objectives.

The Pareto (also: Edgeworth-Pareto) order makes it possible to measure optimality

of such in between solutions. This order is a partial order on the solutions. That is,

for some solutions it is clear which solution is preferable, but in other cases there

is no strict preference for one solution over the other. Any two solutions can be

compared using the notions of dominance, incomparability, and indifference. Here y

denotes a vector of m objective values. Also note that minimisation of the objectives

is considered in the following.

Definition 2.1 (Dominance). Solution y(1) is said to dominate solution y(2) if and

only if ∀i∈{1,...,m} : y
(1)
i ≤ y(2)i and ∃i∈{1,...,m} : y

(1)
i < y

(2)
i , in symbols y(1) ≺ y(2).

Definition 2.2 (Incomparability). Solution y(1) is said to be incomparable to solution

y(2) if and only if ∃i∈{1,...,m} : y
(1)
i < y

(2)
i and ∃i∈{1,...,m} : y

(1)
i > y

(2)
i , in symbols

y(1)‖y(2).

Definition 2.3 (Indifference). Solution y(1) is said to be indifferent to solution y(2)

if and only if ∀i∈{1,...,m} : y
(1)
i = y

(2)
i , in symbols y(1) ∼ y(2).

Observe that indifference is equivalent to equality in the objective space. If the

mapping f : S → Rm is considered, it is not equivalent to equality in the search space

S:

11



2.3. Evolutionary Computation

x(1) ∼ x(2) 6=⇒ x(1) = x(2) (2.4)

Note that these are all pairwise comparisons. In other words, they compare two

solutions to each other, but do not say anything about how an individual solution

compares to the set of all other solutions. For instance, identifying whether a solution

y(1) is Pareto optimal with respect to all other solutions y(i 6=1) requires (in the worst

case) a pairwise comparison to each of them.

2.2.2 The Hypervolume Indicator

Although the Pareto order makes it possible to compare two solutions with each other,

it provides no direct way to compare larger sets of (mutually incomparable) solutions.

Indicators aggregate information about a set of solutions, or introduce additional pref-

erence information (on how to distribute the set across the front), but in doing so are

necessarily imperfect measures. Two sets of solutions may, for instance, have an equiv-

alent indicator value, even if they are not equivalent themselves. The hypervolume

indicator [107] measures the region (m = 2, area; m = 3, volume; m ≥ 4, hypervol-

ume) covered by a set of points Y, relative to a reference point ρ. Given a single

point this is easily done by measuring the region between this point and the reference

point. With more points, things naturally get more complicated, since the different

regions between the two points and the reference point may overlap. The hypervolume

indicator measures the union of these two regions, rather than their sum. Further, it

is defined as a general measure, for any number of dimensions. For a more detailed

description of the hypervolume indicator, see [107].

Definition 2.4 (Hypervolume Indicator).

H(Y) = Λm(∪y∈Y[y,ρ]) (2.5)

here Λm denotes the Lebesgue measure on Rm, with m being the number of objective

functions.

2.3 Evolutionary Computation

Optimisation – in the single as well as the multi-objective case – concerns the minimi-

sation (or maximisation) of some objective function(s). Well-behaved functions can

be optimised efficiently by exact methods, such as gradient-based search. However,

12



Chapter 2. Preliminaries

many functions are non-differentiable or have complex (e.g. multimodal) landscapes,

and are not well suited to traditional optimisation techniques. Heuristic methods, and

nature inspired methods in particular, have shown great success in optimising for such

complex objective functions.

One class of nature inspired methods draws ideas from Darwinian evolution and

genetics, and is termed evolutionary computation. Different branches of evolutionary

computation were originally developed by independent communities. This resulted in

evolution strategies [81, 88], evolutionary programming [48], and genetic algorithms

[53]. Although differences exist between these branches, the core concepts are largely

the same. As such, a generalised model of evolutionary computation is considered in

the following.

Basically, a parent population of size µ is considered and evaluated on the target

objective function. From this population, individuals are selected through mating

selection. The selected parent individuals then produce λ offspring individuals through

recombination. Offspring individuals are then mutated. In this manner variation

is introduced into the offspring population, enabling the discovery of new solutions.

These offspring individuals are evaluated, and finally survival selection determines a

new parent population (again of size µ) to be used in the next generation, based on

the used performance metric.

While the above represents a general outline for an evolutionary algorithm, much

variation is possible. Imagine, for instance, an algorithm that only uses mutation.

Furthermore, for each of the basic steps multiple variations have been introduced

over time. In the case of survival selection the so called plus-strategy, and comma-

strategy [89, 90] were considered. A plus-strategy, written (µ + λ), selects the new

parent population from both the old parents and the offspring. On the other hand,

the comma-strategy, written (µ, λ), selects only from the offspring (which necessitates

λ ≥ µ).

2.4 Building Spatial Design

Applying optimisation techniques in building spatial design requires a basic under-

standing of the topic, which is introduced in the following.

Building spatial design concerns the design of the internal, and external shape of

a building, subdivided into so-called spaces1. A space is similar to a room, but also

1In some fields spaces are referred to as zones

13



2.4. Building Spatial Design

encapsulates concepts such as corridors and atria. In Figure 2.1 an example of a simple

spatial design consisting of three spaces is shown.

The building spatial design is an important part of the full building design since it

influences and restricts many other design decisions. In order to minimise the need for

Space 1

Space 2

Space 3

Figure 2.1: Example of a simple spatial design with three spaces.

repeated adjustments in other design components, the spatial design is more or less

fixed early on. However, due to its large impact on the rest of the design process, it is of

great value to find the best spatial design possible. Optimising spatial designs requires

a performance metric. Here the structural performance, and the energy performance

are considered.

Structural performance will be measured by the total amount of strain energy of

the structural elements of the building. Strain energy is an indicator for how well

loads are distributed via the different structural elements. The needed structural

elements are, however, not directly available in the spatial design. As such, structural

components with given properties are added to the spatial design in order to be able

to measure the strain energy. Specific properties of the added components, and the

procedures to arrange them, differ between experiments, and are therefore described

with the experiments.

Measuring energy performance is carried out in two ways, (a) outside surface area,

and (b) heating and cooling simulations. Outside surface area is cheap to compute,

and serves as a proxy for energy transfer between the building and the environment in

some experiments. Heating and cooling simulations make it possible to measure the

required energy to maintain a comfortable temperature. These simulations give a more

accurate picture since they are based on properties of the building elements, and they

14



Chapter 2. Preliminaries

take also into account internal energy transfer between spaces. As with strain energy,

the measurement of heating and cooling energy also requires additional properties not

available in the spatial design. Likewise, these are described along with the specific

experiments. More details are available in [25].

15



2.4. Building Spatial Design

16


