

Matching, entropy, holes and expansions Langeveld, N.D.S.

Citation

Langeveld, N. D. S. (2019, December 10). *Matching, entropy, holes and expansions*. Retrieved from https://hdl.handle.net/1887/81488

Version: Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/81488

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The following handle holds various files of this Leiden University dissertation: http://hdl.handle.net/1887/81488

Author: Langeveld, N.D.S.

Title: Matching, entropy, holes and expansions

Issue Date: 2019-12-10

Stellingen

behorende bij het proefschrift Matching, entropy, holes and expansions van Niels Langeveld

- 1. The natural extension of a system is a very powerful tool to find the invariant measure (Chapter 2 and 4).
- 2. Let $\alpha \in [0,1]$ and let $T_{\alpha}(x) : (\alpha,1] \to (\alpha,1]$ be defined as $T_{\alpha}(x) = \varepsilon_{\alpha}(x)(\frac{1}{x} \lfloor \frac{1}{x} \rfloor) + \frac{1}{2}(1 \varepsilon_{\alpha}(x))$ where $\varepsilon_{\alpha}(x) = -1$ if $x \in \bigcup_{n \geq 1}(\frac{1}{n+\alpha}, \frac{1}{n}]$ and $\varepsilon_{\alpha}(x) = 1$ otherwise. For a large part of the parameter space the Krengel entropy and the wandering rate are proven to be independent of α . Even though for different systems the same value is found and these observables give c-isomorphism invariants, the systems are not c-isomorphic (Chapter 2).
- 3. Let $\alpha \in [0,1]$ and let $T_{\alpha} : [\alpha 1, \alpha] \to [\alpha 1, \alpha]$ be defined as $T_{\alpha}(x) = \frac{1}{x} \lfloor \frac{1}{x} + 1 \alpha \rfloor$. For this family, matching holds almost everywhere. Furthermore, the set for which matching does not hold is of full Hausdorff dimension (Chapter 3).
- 4. For (flipped or non-flipped) N-expansions the Gauss-Kuzmin-Levy based approximation method gives a good approximation of the invariant density for the corresponding dynamical system. This approximation scheme is fast, especially in the case of a low number of branches of the map (Chapter 4).
- 5. Let T_{β} be the greedy β -transformation. The set $K_{\beta}(t) := \{x \in [0,1) : T_{\beta}^{n}(x) \notin (0,t) \text{ for all } n \geq 0\}$ has both infinitely many accumulation points and infinitely many isolated points in any neighbourhood of zero for almost every $\beta \in (1,2]$. Furthermore, the set of $\beta \in (1,2]$ for which $K_{\beta}(t)$ has no isolated points has Hausdorff dimension zero (Chapter 5).

- 6. Matching is the next best thing after a Markov partition.
- 7. High entropy means fast convergence for the related expansions of the dynamical system. The Shannon-McMillan-Breiman-Chung Theorem illustrates exactly this.
- 8. Survivor sets often have interesting properties. Even more so, these sets are likely to be found in other contexts.
- 9. Dynamical systems are a great tool to gain information about number expansions.
- 10. Matching always has implications, although sometimes it is not clear what these implications are.
- 11. Statements concerning holes should not contain a hole.