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CHAPTER 3
Matching and Ito Tanaka’s

α-continued fraction expansions

This chapter is joint work with Carlo Carminati and Wolfgang Steiner.

Abstract

Two closely related families of α-continued fractions were introduced in 1981: by
Nakada on the one hand, by Ito and Tanaka on the other hand. The entropy and
matching for Nakada’s family has been studied extensively, whereas the study of Ito
Tanaka’s family remained on the fringe. This chapter has two parts. In the first
part we focus mostly on the similarities; algebraic conditions and monotonicity of
the entropy function on matching intervals. The second part focuses mostly on the
Ito Tanaka α-continued fraction. We show that the parameter space is almost com-
pletely covered by matching intervals. In other words, the set of parameters for which
the matching condition does not hold, called the bifurcation set, is a zero measure
set (even if it has full Hausdorff dimension). These properties are shared by Na-
kada’s α-continued fractions, though the proof is different. In contrast to Nakada’s
α-continued fractions, the bifurcation set of Ito Tanaka’s α-continued fractions con-
tains several non zero rational values. Moreover, it contains numbers of which the
regular continued fraction expansion ends in a sequence that is bounded from below.
We give several characterisations of the bifurcation set and have dimensional results
for neighbourhoods of the small golden mean and rationals in the bifurcation set.
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§3.1 Introduction

Various variants of the regular continued fraction (RCF) have been considered. The
most famous ones are the nearest integer continued fraction (NICF) and the backward
continued fraction (BCF). Starting from the 80s, some attention has been devoted
to families of continued fraction algorithms; even if different authors have focused on
different families one can describe most1 of these families using the same setting as
follows. Let Tα : [α− 1, α]→ [α− 1, α] be defined by

Tα(x) =

{
S(x)− bS(x) + 1− αc for x 6= 0,

0 for x = 0.
(3.1.1)

Different choices of S in formula (3.1.1) give rise to different generalisations of the
classical continued fraction algorithms:

(N) for S(x) = 1
|x| one gets the α-continued fractions first studied by Nakada [82],

(KU) for S(x) = − 1
x one finds a subfamily of (a, b)-continued fractions (corresponding

to the choice b = α and a = α − 1), which were first studied by Katok and
Ugarcovici [54],

(IT) for S(x) = 1
x one gets the α-continued fractions first studied by Ito and Tanaka [103].

(a) the branches of (N) (b) the branches of (KU) (c) the branches of (IT)

Figure 3.1: The different branches for the different transformations.

In Figure 3.1 the different transformations are displayed. In all of the above three
cases, for all α ∈ (0, 1), the dynamical system defined by the map (3.1.1) admits
an absolutely continuous invariant probability measure and is ergodic. For the (IT)
case this is proven in an unpublished article by Nakada and Steiner. Therefore, we
can study the metric entropy hµα(Tα). This determines the speed of convergence
of the continued fraction algorithm of typical points (in the same way as in the
regular continued fraction case (1.2.1) on page 12). The higher the entropy, the
better the convergence. An issue which has been in the spotlight in recent years is
the dependence of the entropy on the parameter α. In Figure 3.2 the entropy plotted
as a function of α is shown for the Ito Tanaka continued fractions.

1Actually some authors, such as the authors of [81], studied the so called folded algorithms which
are not of the type (3.1.1), however from the metric viewpoint there is hardly any difference between
the folded and the unfolded version (see § 3.1 of [9] for a discussion of this issue).
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Figure 3.2: The entropy as a function of α for the Ito Tanaka continued fractions.

The behaviour of the entropy is by now quite well understood in case (N), which is by
far the most studied [18, 19, 65, 79, 81, 82, 84]. The same is true for the case (KU),
which was considered much more recently [17, 54, 56]. However, not much progress
has been made in the case (IT) for which there are only partial results dating back
to 1981 (see [103]). This chapter studies the similarities and differences between the
families, where the results on (IT) are new. As in the cases (N) and (KU), also for Ito
Tanaka continued fractions the matching property plays a central role; a parameter
α ∈ [0, 1] satisfies the matching condition with matching exponents N,M if

TNα (α) = TMα (α− 1). (3.1.2)

The peculiar (and somehow surprising) feature of these systems is that a condition
like (3.1.2) holds on intervals with non-empty interior; thus what is actually relevant
is the definition of a matching interval.

Definition 3.1.1 (Matching). Let J ⊂ [0, 1] be a non-empty open interval. We say
that J is a matching interval (with exponents N,M) if TNα (α) = TMα (α − 1) for all
α ∈ J , TN−1

α (α) 6= TM−1
α (α − 1) for almost all α ∈ J , and J is not contained in

a larger open interval with these properties. The difference ∆ := M − N is called
matching index. We call the matching set the union of all matching intervals; its
complement will be called the bifurcation set and will be denoted by E.

Observe that we do not impose conditions on the derivative of TNα and TMα , as in
Definition 1.2.8 on page 13, since these are automatically satisfied whenever matching
holds on an open interval (this is proved in Section 3.2). The following lemma shows
that two matching intervals cannot overlap (for any choice of S(x) above).

Lemma 3.1.2. Let M,M ′, N,N ′ be such that M − N 6= M ′ − N ′. Then there are
at most countably many α ∈ [0, 1] such that TNα (α) = TMα (α − 1) and TN

′

α (α) =

TM
′

α (α− 1).
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Figure 3.3: Matching intervals, plotted as arcs from a to b for a matching interval (a, b), for
the Ito Tanaka continued fractions.

Proof. Assume w.l.o.g. that N ′ ≥ N . Then we have TM+N ′−N
α (α − 1) = TN

′

α (α) =

TM
′

α (α − 1). Since M −N 6= M ′ −N ′, this implies that α is a rational or quadratic
number. �

By definition, matching is an open condition. For the α-continued fractions (N) it is
conjectured in [84] and shown in [18] that matching holds almost everywhere; the same
is true in the case of (KU) (see [17, 54, 56]). In Section 3.3 we show that this is also
true for the α-continued fractions of Ito and Tanaka. However, for the bifurcation set
the situation is different. Not only does each of the three variants (N), (KU) and (IT)
have a different bifurcation set (we denote them by EN , EKU and EIT respectively) but
these bifurcation sets display quite a few differences. For instance, it is not difficult
to show that both EN and EKU do not intersect Q ∩ (0, 1) and are made of badly
approximable numbers; this is not the case for EIT : not only does it contain infinitely
many rational values (such as the values 1/n for n ≥ 3) but it also contains numbers
for which the tail of the regular continued fraction expansion has digits bounded
from below. In the following subsection, we shall focus on the specific features of
the Ito Tanaka case as well as stating the results on the exceptional set EIT . In this
section we also state our theorems. In Section 3.2 we show that the entropy formula
in terms of qn is true for all three families as well as the fact that matching implies
monotonicity of the entropy. Furthermore, we shed light onto algebraic conditions.
Each family comes with different algebraic conditions that hold for α ∈ Q ∩ (0, 1).
They will illustrate the fact that the (IT) case is more complicated than the others.
The results displayed in this section in the case of (KU) and (N) are already known
but added for comparison. The study of the so called exceptional set is specific for
every family and is the focus of the second part of this chapter (Section 3.3 and 3.4).
In Section 3.3 we prove the results on the exceptional set EIT as well as the fact that
matching holds almost everywhere for which the proof is specific for the (IT) case.
Section 3.4 is dedicated to dimensional results for the exceptional set.

§3.1.1 Ito Tanaka continued fractions: old and new
results

In this section Tα will always denote the map (3.1.1) for the Ito Tanaka case, i.e.,
with S(x) = 1/x. Let us point out that the dynamical systems of α and 1 − α are
isomorphic. Indeed, setting τ(x) = −x gives

τ ◦ Tα = T1−α ◦ τ.
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For this reason, it is enough to study this family for the parameter α ∈ [1/2, 1].
Setting dα(x) = bS(x) + 1− αc, for every x ∈ [α− 1, α], we use the shorthand dα,n =

dα,n(x) = dα (Tnα (x)) to write the continued fraction expansion

x =
1

dα,1 +
1

dα,2 +
1

. . .

.

Note that T1 is the Gauss map and T 1
2
is the map for Hurwitz continued fraction

expansions [48]. Furthermore, dα,n(x) is called the nth digit of x and can be both
negative and positive. We define the nth convergent as

cα,n(x) =
pα,n(x)

qα,n(x)
=

1

dα,1(x) +
1

dα,2(x) +
1

. . . +
1

dα,n(x)

.

Let g =
√

5−1
2 . For the speed of convergence for any x ∈ [α− 1, α] we have∣∣∣∣x− pα,n

qα,n

∣∣∣∣ ≤ 2√
5 |qα,n|2

for
1

2
≤ α ≤ g

and ∣∣∣∣x− pα,n
qα,n

∣∣∣∣ ≤ 1

|qα,n|2
for g < α ≤ 1 (3.1.3)

with |qα,n(x)| ≥ (g+ 1)n (see [103]). By symmetry, analogous results could be stated
for the convergence of the algorithms when α ∈ [0, 1

2 ). Now let us turn to matching
and state our first theorem.

Theorem 3.1.3. Matching holds almost everywhere on [0, 1] and the only possible
indices are −2, 0 and 2. More precisely, the matching indices are 0 or 2 for α ≤ 1/2

and 0 or −2 for α ≥ 1/2.

Let us recall from [103] that the symmetric parameter interval (1 − g, g) is (almost)
covered by the three adjacent matching intervals (1 − g,

√
2 − 1), (

√
2 − 1, 2 −

√
2)

and (2−
√

2, g) see Figure 3.3; so the interesting part of the bifurcation set is in the
ranges of [0, 1−g] and [g, 1]. Since the problem is symmetric with respect to α = 1/2,
we can focus on EIT ∩ [g, 1]. We prove the following characterisations of this set.

Theorem 3.1.4. The bifurcation set on [g, 1] is given by

EIT ∩ [g, 1]

= {α ∈ [g, 1] : Tnα (α− 1) ≤ 1
α+1 and Tnα ( 1

α − 1) ≤ 1
α+1 for all n ≥ 1} (3.1.4)

=
{
α ∈ [g, 1] : Tng (α− 1) ≥ α− 1 and Tng ( 1

α − 1) ≥ α− 1 for all n ≥ 1
}
. (3.1.5)
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While the characterisation in terms of Tα is natural from the definition of the bifurc-
ation set, the characterisation with a fixed map Tg will be more useful. In particular,
from the ergodicity of Tg it easily follows that EIT is a Lebesgue measure zero set.
Note that there is a clear connection with holes namely that EIT contains those α
for which α and α − 1 are contained in the survivor set when iterating over Tg with
hole [g − 1, α− 1). Using this characterisation, we retrieve the following dimensional
results for EIT .

Theorem 3.1.5. We have that EIT is a Lebesgue measure zero set and
dimH(EIT ) = 1. Moreover, for all δ > 0 we have dimH (EIT ∩ (g, g + δ)) = 1.

This is similar to the behaviour of Nakada’s continued fractions around zero (see [18]).
What is different however, is the presence of rationals in the bifurcation set. For those
points we have the following theorem.

Theorem 3.1.6. The bifurcation set EIT contains infinitely many rational values and
the set of rational bifurcation parameters EIT ∩ Q has no isolated points. Moreover,
for all r ∈ EIT ∩ Q and for all δ > 0 we have that dimH(EIT ∩ (r − δ, r + δ)) > 1/2.

Theorem 3.1.3 and 3.1.4 are proved in Section 3.3. In Section 3.4 we prove the
theorems on dimensional results (Theorem 3.1.5 and 3.1.6).

§3.2 Algebraic relations, an entropy formula and
matching implies monotonicity

Even though the results in this section will be focused on Ito Tanaka α-continued
fractions, most of the results also hold for other continued fraction expansion families.
Therefore, we will generalise some results to fit a more general framework or refer to
other continued fraction expansion families after a proof. We will first prove that for
all α ∈ (0, 1) ∩ Q an algebraic condition holds. In the case of Ito Tanaka α-continued
fractions this results in 6 different algebraic relations. For KU-continued fractions and
Nakada’s α-continued fractions the situation greatly simplifies. We find 2 algebraic
relations for each family. They are used in the proof of monotonicity on matching
intervals later on in this section. But before proving monotonicity we will prove an
entropy formula as in (1.2.1) for all three families.

To find the algebraic relations we work with Möbius transformations and matrices.

Definition 3.2.1 (Möbius transformation). Let A =

[
a1 a2

a3 a4

]
be a matrix

with ai ∈ Z. The Möbius transformation induced by A is the map A : R→ R given by

A(z) =
a1z + a2

a3z + a4
.

Now let d ∈ Z. We define the following matrices in SL2(Z):

Bd =

[
0 1
1 d

]
, R =

[
1 1
0 1

]
, S =

[
0 1
1 0

]
.
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Note that
Rd =

[
1 d
0 1

]
which gives us Bd = SRd. Fix α and x ∈ [α− 1, α] and let
Mα,x,n = Bdα,1(x)Bdα,2(x)Bdα,3(x) · · ·Bdα,n(x). An easy check shows that Mα,x,n(0) =

cα,n(x).

Lemma 3.2.2 (Recurrence relations). We have the recurrence relations

pα,−1 := 1; pα,0 := 0; pα,n(x) = dα,n(x)pα,n−1(x) + pα,n−2(x), n ≥ 1,
qα,−1 := 0; qα,0 := 1; qα,n(x) = dα,n(x)qα,n−1(x) + qα,n−2(x), n ≥ 1.

The recurrence formulas are also given in [103] however without a proof. We provide
a proof using the Möbius transformations. This proof is analogous to the proof for
the regular continued fraction given in [29].

Proof. We can obtain the recurrence relations by writing

Mα,x,n =

[
rα,n(x) pα,n(x)
sα,n(x) qα,n(x)

]
.

Now

Mα,x,n = Mα,x,n−1Bdα,n(x) =

[
rα,n−1(x) pα,n−1(x)
sα,n−1(x) qα,n−1(x)

] [
0 1
1 dα,n(x)

]
=

[
pα,n−1(x) dα,n(x)pα,n−1(x) + rα,n−1(x)
qα,n−1(x) dα,n(x)qα,n−1(x) + sα,n−1(x)

]
.

This gives us rα,n = pα,n−1 and sα,n = qα,n−1 and the recurrence formulas are found.
�

Just as in the classical case we have the following equation

pα,n−1(x)qα,n(x)− pα,n(x)qα,n−1(x) = (−1)n. (3.2.1)

Note that this implies that pα,n(x) and qα,n(x) are co-prime for all n ∈ N as well as
qα,n(x) and qα,n−1(x). The equation is found by looking at the determinant ofMα,x,n

det(Mα,x,n) = det
(
Bdα,1(x)Bdα,2(x) · · ·Bdα,n(x)

)
= (−1)n.

Also the following equation holds

x =
pα,n(x) + pα,n−1(x)Tnα (x)

qα,n(x) + qα,n−1(x)Tnα (x)
. (3.2.2)

Note that Tα(x) = B−1
dα,n(x)(x) and so x = Bdα,n(x) (Tα(x)). This gives us

x = Mα,x,n (Tnα (x)) =
pα,n(x) + pα,n−1(x)Tnα (x)

qα,n(x) + qα,n−1(x)Tnα (x)
.

Let us now turn to the algebraic conditions. For (N) and (KU) continued fractions
one can define Mα,x,n in the same way as for the (IT) case. The following lemma
holds for all three families.
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Lemma 3.2.3 (Pre-algebraic condition). Let α ∈ [0, 1] and suppose matching oc-
curs. Let b = TNα (α) = TMα (α− 1) then the following equation holds

Mα,α,N (b) = RMα,α−1,M (b). (3.2.3)

Proof. We write

α = Mα,α,N (b)

α− 1 = R−1α = Mα,α−1,M (b)

which gives us (3.2.3). �

From the evaluation in b we get the algebraic conditions (for the (IT) case) that hold
for Mα,α,N and Mα,α−1,M .

Theorem 3.2.4 (Algebraic conditions). Let α = p
q ∈ Q ∩ (0, 1) with TNα (α) =

TMα (α − 1) = 0 and N,M minimal. Then one of the following algebraic conditions
holds

(a) Mα,α,N = RMα,α−1,M (b) Mα,α,N = RMα,α−1,MSRS

(c) Mα,α,N = RMα,α−1,MSR
−1S (d) Mα,α,N = RMα,α−1,MV SRS

(e) Mα,α,N = RMα,α−1,MV SR
−1S (f) Mα,α,N = RMα,α−1,MV

with V =

[
−1 0
0 1

]
.

Proof. Let α = p
q ∈ Q∩ (0, 1) with TNα (α) = TMα (α− 1) = 0 and N,M minimal. Now

(3.2.3) gives us

Mα,α,N =

[
a1 p
a2 q

]
RMα,α−1,M =

[
b1 p
b2 q

]
for some a1, a2, b1, b2 ∈ Z\{0}. We have that a2 = qα,N−1(α) and b2 = qα,M−1(α−1).
We prove that |qα,N−1(α)| < |qα,N (α)| and |qα,M−1(α − 1)| < |qα,M (α − 1)| which
gives us

0 < |a2| < q, 0 < |b2| < q. (3.2.4)

This is used in all 6 cases. We have∣∣∣∣pα,N (α)

qα,N (α)
− pα,N−1(α)

qα,N−1(α)

∣∣∣∣ =

∣∣∣∣pα,N (α)qα,N−1(α)− pα,N−1(α)qα,N (α)

qα,N (α)qα,N−1(α)

∣∣∣∣
=

∣∣∣∣ (−1)N

qα,N (α)qα,N−1(α)

∣∣∣∣ ≤ 1

qα,N (α)2
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from (3.2.1) and the speed of convergence (Equation (3.1.3) on page 43) for (IT) . This
gives us |qα,N−1(α)| ≤ |qα,N (α)| . Suppose that equality holds. From the recurrence
formulas we find

±qα,N−1(α) = qα,N (α) = dα,N (α)qα,N−1(α) + qα,N−2(α)

which implies (±1− dα,N (α)) qα,N−1(α) = qα,N−2(α). This contradicts with qα,N−1(α)

and qα,N−2(α) being co-prime. Therefore we find

|qα,N−1(α)| < |qα,N (α)| .

Now
det(Mα,α,N ) = (−1)N and det(RMα,α−1,M ) = (−1)M .

Whenever N −M is odd we find det(Mα,α,N ) = − det(RMα,α−1,M ) and if N −M is
even we find det(Mα,α,N ) = det(RMα,α−1,M ). Furthermore, we either have a2b2 > 0

or a2b2 < 0. These different cases lead to different algebraic conditions. Table 3.1
shows which algebraic condition we find in which case. Left to prove is that this table
holds.

a2b2 > 0 a2b2 < 0
det(Mα,α,N ) = det(RMα,α−1,M ) (a) (b,c)

det(Mα,α,N ) = −det(RMα,α−1,M ) (d,e) (f)

Table 3.1: The different cases.

When det(Mα,α,N ) = det(RMα,α−1,M ) we find

(a1 − b1)q = (a2 − b2)p (3.2.5)

by writing out the determinants. Since p and q are co-prime, a2 − b2 is a multiple of
q. Together with (3.2.4) we get that a2− b2 ∈ {−q, 0, q}. If a2b2 > 0, then a2− b2 = 0

and so a2 = b2. Note that this also gives us a1 = b1 using (3.2.5). This results in

Mα,α,N = RMα,α−1,M

which is condition (a). Now suppose a2b2 < 0. We find that (a2 − b2) = ±q. In case
a2 − b2 = q we have a1 − b1 = p by (3.2.5) which gives us

Mα,α,N =

[
b1 + p p
b2 + q q

]
and so

Mα,α,N =

[
b1 p
b2 q

] [
1 0
1 1

]
.

We find
Mα,α,N = RMα,α−1,MSRS

which is case (b). In case a2 − b2 = −q we have a1 − b1 = −p which gives

Mα,α,N =

[
b1 − p p
b2 − q q

]
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and so
Mα,α,N =

[
b1 p
b2 q

] [
1 0
−1 1

]
.

We find
Mα,α,N = RMα,α−1,MSR

−1S

which is case (c). When det(Mα,α,N ) = −det(RMα,α−1,M ) we get

(a1 + b1)q = (a2 + b2)p.

This time a2 + b2 is a multiple of q and together with (3.2.4) this gives a2 + b2 ∈
{−q, 0, q}. Now assume that a2b2 > 0. We find a2 + b2 = ±q. In case a2 + b2 = q we
have a1 + b1 = p which gives

Mα,α,N =

[
p− b1 p
q − b2 q

]
and so

Mα,α,N =

[
b1 p
b2 q

] [
−1 0
1 1

]
.

This results in
Mα,α,N = RMα,α−1,MV SRS

which is case (d).
Suppose a2 + b2 = −q. Then a1 + b1 = −p which gives

Mα,α,N =

[
−p− b1 p
−q − b2 q

]
and so

Mα,α,N =

[
b1 p
b2 q

] [
−1 0
−1 1

]
.

This results in
Mα,α,N = RMα,α−1,MV SR

−1S

which is case (e). If a2b2 < 0 then a2 + b2 = 0 and so a1 + b1 = 0 which gives us

Mα,α,N = RMα,α−1,MV

which is case (f). �

For (N) continued fractions we know that qn(x) > 0 for all choices of α and x. With
the same reasoning as above we find that a2b2 > 0. Furthermore, a2 + b2 = −q is
excluded. The two algebraic relations that remain are (a) and (d). For details see the
appendix of [18] and [84].
For KU-continued fractions we have that det(Mα,x,k) = 1 for any allowed triple
(α, x, k). With the above reasoning we can find that either (a),(b) or (c) holds.
In [17] it is shown that (b) holds for a special class of rationals Q ⊂ Q ∩ (0, 1). For
other rationals (a) holds. Beware that the matrix S is defined slightly differently in
the (KU)-case since S(x) = − 1

x .

Theorem 3.2.4 results in the following corollary.
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Corollary 3.2.5. Let α ∈ Q∩(0, 1) with TNα (α) = TMα (α−1) = 0 and N,M minimal
and x in the neighbourhood of α. Then

if (a) holds, TNx (x) = TMx (x− 1) if (b) holds, TN+1
x (x) = TM+1

x (x− 1)

if (c) holds, TN+1
x (x) = TM+1

x (x− 1) if (d) holds, TN+1
x (x) = −TM+1

x (x− 1)

if (e) holds, TN+1
x (x) = −TM+1

x (x− 1) if (f) holds, TNx (x) = −TMx (x− 1).

Proof. Fix α ∈ Q∩ (0, 1). We first prove that there is a neighbourhood of α such that
for every x in this neighbourhood we have

Mx,x,N = Mα,α,N and Mx,x−1,M = Mα,α−1,M . (3.2.6)

In other words, the functions TNz (z) and TMz (z−1) are continuous in z = α. Suppose
that TNz (z) is not continuous in z = α then there exists a k ≤ N such that T kα(α) =

α− 1. This gives

α =
1

dα,1 +
1

. . . +
1

dα,k + α− 1

which is an infinite (periodic) expansion of α and so α is irrational. In the same way
we find a contradiction for TMz (z − 1).
Now pick x in the neighbourhood of α so that (3.2.6) holds. We write

x = Mx,x,N (TNx (x)) (3.2.7)

and
x = RMx,x−1,M (TMx (x− 1)). (3.2.8)

Since x is in the neighbourhood of α we have that

Mx,x,N = Mα,α,N and Mx,x−1,M = Mα,α−1,M .

If condition (a) holds, we find

Mx,x,N = Mα,α,N = RMα,α−1,M = RMx,x−1,M .

This gives us, together with (3.2.7) and (3.2.8), that

TNx (x) = TMx (x− 1).

In the second case we get from condition (b) and (3.2.7), (3.2.8) that

SRSTNx (x) = TMx (x− 1)

and so
TNx (x)

TNx (x) + 1
= TMx (x− 1)
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which implies

TNx (x) =
TMx (x− 1)

1− TMx (x− 1)
. (3.2.9)

Now

TN+1
x (x) =

1

TMx (x− 1)
− 1− dx,N+1(x),

TM+1
x (x− 1) =

1

TNx (x)
+ 1− dx,M+1(x− 1).

This gives

TN+1
x (x)− TM+1

x (x− 1) =
1

TMx (x− 1)
− 1

TNx (x)
− 2− dx,N+1(x) + dx,M+1(x− 1).

Using (3.2.9) we find

TN+1
x (x)−TM+1

x (x−1) =
1

TMx (x− 1)
− 1

TMx (x− 1)
+ 1−dx,N+1(x) +dx,M+1(x−1).

so
TN+1
x (x)− TM+1

x (x− 1) = r

for some r ∈ Z. Since TN+1
x (x), TM+1

x (x− 1) ∈ [x− 1, x) we find r = 0. Case (c),(d)
and (e) can be found in a similar way as case (b). Case (f) is similar to case (a). �

Note that from (3.2.9) it follows that TNx (x) 6= TMx (x− 1) whenever (b) holds. In the
same manner we find that whenever (c) holds TNx (x) 6= TMx (x− 1). For (d), (e) and
(f) we also find TNx (x) 6= TMx (x−1). We can conclude that on a matching interval (a)
must hold, otherwise not all points in that matching interval have the same matching
exponents. Simulations suggest that (b) only holds for α = 1

2 and (c) only holds for
α ∈ { 2

5 ,
3
5}.

We now prove the fact that if det(Mα,α,N ) = det(Mα,α−1,M ) for α ∈ (0, 1) ∩ Q, then
the condition on the derivatives, as in Definition 1.2.8 on page 13, of TNα (α) and
TMα (α− 1) are satisfied. This lemma holds for all three families.

Lemma 3.2.6. Fix α ∈ (0, 1) and let N,M be minimal such that TNα (α) = TMα (α−
1) = 0 with det(Mα,α,N ) = det(Mα,α−1,M ) = t with t ∈ {−1, 1}. Then (TNα )′(α) =

(TMα )′(α− 1).

Proof. We know that there are a, b, . . . , f ∈ Z such that

TNα (x) =
ax+ b

cx+ d
, TMα (x) =

ex+ f

gx+ h
.

We have that TNα (α) = 0 gives α = − b
a and TMα (α − 1) = 0 gives α − 1 = − fe . For

any choice of S we have that ad− bc = t and eh− fg = t. This gives us

(TNα )′(x) =
t

(cx+ d)2
, (TMα )′(x) =

t

(gx+ h)2
.
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Filling in α = − b
a and α− 1 = −de respectively gives

(TNα )′(α) =
t

(−cba + d)2
=

ta2

(ad− cb)2
= ta2

and

(TMα )′(α− 1) =
t

(−fge + h)2
=

te2

(eh− fg)2
= te2.

Furthermore, note that a and b are co-prime and f and e are co-prime. Since α− 1 =
−b−a
a = − fe we find a = ±e so that a2 = e2. This finalises the proof. �

Note that on a matching interval the determinants are equal (since condition (a)
holds). Let us now turn to the entropy formula. We prove it for the (IT) and (N)
case and show where the proof fails to work for the (KU) case.

Lemma 3.2.7. Let Tα be as in (3.1.1) with S(x) = 1
x or S(x) = 1

|x| . For almost
every x ∈ [α− 1, α] we have that

h(α) := h(Tα) = 2 lim
n→∞

1

n
|log(qα,n(x))| . (3.2.10)

where qα,n(x) is the denominator associated to the nth convergent of x for the corres-
ponding map S.

The proof of Lemma 3.2.7 is very similar to the proof in the classical case (see [29]).

Proof of Lemma 3.2.7. Let T be Tα for some choice of S and α ∈ (0, 1) and let x be
a typical point. For all three cases one has recurrence relations for the convergents of
the following form

pα,−1 := 1; pα,0 := 0; pα,n(x) = dα,n(x)pα,n−1(x) + εn−1(x)pα,n−2(x), n ≥ 1,
qα,−1 := 0; qα,0 := 1; qα,n(x) = dα,n(x)qα,n−1(x) + εn−1(x)qα,n−2(x), n ≥ 1.

Here dα,n(x) = dα,1(Tn−1(x)) and εα,n(x) = εα,1(Tn−1(x)) where dα,1(x) and εα,1(x)

depend on the choice of S and ε0 := 1. In the proof we will omit the dependence of
α in our notation. First we show that for all n ∈ N we have

pn(x) = qn−1(T (x)) (3.2.11)

by using induction. For n = 0 we find p0(x) = 0 = q−1(T (x)), for n = 1 we
find p1(x) = ε0 = 1 = q0(T (x)). We assume pn(x) = qn−1(T (x)) and pn−1(x) =

qn−2(T (x)) to find

pn+1(x) = dn+1(x)pn(x) + εn(x)pn−1(x)

= dn+1(x)qn−1(T (x)) + εn(x)qn−2(T (x))

= dn(T (x))qn−1(T (x)) + εn−1(T (x))qn−2(T (x))

= qn(T (x))
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which finalises the induction. Using (3.2.11) we write

1

qn(x)
=

1

qn(x)

pn(x)

qn−1(T (x))

pn−1(T (x))

qn−2(T 2(x))
· · · p1(Tn−1(x))

q0(Tn(x))

=
pn(x)

qn(x)

pn−1(T (x))

qn−1(T (x))
· · · p1(Tn−1(x))

q1(Tn−1(x))
.

Taking the absolute value and the logarithm on both sides we find

− log |qn(x)| = log

∣∣∣∣pn(x)

qn(x)

∣∣∣∣+ log

∣∣∣∣pn−1(T (x))

qn−1(T (x))

∣∣∣∣+ . . .+ log

∣∣∣∣p1(Tn−1(x))

q1(Tn−1(x))

∣∣∣∣ . (3.2.12)

Now we write

− log |qn(x)| = log |x|+ log |T (x)|+ · · ·+ log |Tn−1(x)|+ E(n, x) (3.2.13)

and determine the error term E(n, x) by substituting the right hand side of (3.2.12)
for − log |qn(x)| in (3.2.13) and rewriting the equation. We get

E(n, x) = log

∣∣∣∣pn(x)

qn(x)

∣∣∣∣− log |x|+ · · ·+ log

∣∣∣∣p1(Tn−1(x))

q1(Tn−1(x))

∣∣∣∣− log |Tn−1(x)|. (3.2.14)

Now we prove that for any y ∈ [α− 1, α]\Q we have∣∣∣∣log

∣∣∣∣pn(y)

qn(y)

∣∣∣∣− log |y|
∣∣∣∣ ≤ 1

|qn(y)|
. (3.2.15)

First we prove that if we write |x| = | dqn | then d > 1 for n ≥ 2. We have∣∣∣∣|x| − |pnqn |
∣∣∣∣ ≤ ∣∣∣∣d− pnqn

∣∣∣∣ ≤ 1

q2
n

. (3.2.16)

For the (IT) case this follows from 3.1.3 and for the (N) case this estimate can be
found in [81]. We do not have this estimate for the (KU) case where only |x− pn

qn
| < 1

qn
is proven in [54]. Now (3.2.16) gives |d− pn||qn| ≤ 1. Now suppose |pnqn | ≤ |x|. Using
the Mean Value Theorem with f(x) = log |x| on [|pnqn |, |x|] we find

0 ≤
∣∣∣∣log |x| − log |pn

qn
|
∣∣∣∣ =

∣∣∣∣|x| − |pnqn |
∣∣∣∣ 1

c
≤
∣∣∣∣x− pn

qn

∣∣∣∣ 1

c
≤ 1

q2
n

1

c
≤ 1

q2
n

| qn
pn
| ≤ 1

|qn|

for some c ∈ [|pnqn |, |x|]. Suppose |x| ≤ |pnqn |. Using the Mean Value Theorem with
f(x) = log |x| on [|x|, |pnqn |] we find

0 ≤
∣∣∣∣log |x| − log |pn

qn
|
∣∣∣∣ =

∣∣∣∣|x| − |pnqn |
∣∣∣∣ 1

c
≤
∣∣∣∣x− pn

qn

∣∣∣∣ 1

c
≤ 1

q2
n

1

c
≤ 1

q2
n

|qn
d
| ≤ 1

|qn|
.

In both cases we find that (3.2.15) holds. Using this estimate in (3.2.14) we find

|E(n, x)| ≤ 1

|qn(x)|
+ · · ·+ 1

|q1(Tn−1
α (x))|

.
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Since for all choices of S and α ∈ (0, 1] we have that the sequence |qn(x)| grows
exponentially fast (see [54, 80, 103]2 ) there is a b ∈ R>1 such that |qn| > bn−1 for
n > 1. Furthermore q1 ≥ 1 and so we get

|E(n, x)| ≤ 1 +
1

b
+ · · ·+ 1

bn−1
<

∞∑
k=0

1

bk
=

b

b− 1
. (3.2.17)

Using Rohlin’s formula and Birkhoff’s formula we find

h(α) =

∫
log |T ′(x)|dµ = lim

n→∞

1

n

n∑
i=1

log |T ′(T i(x))|.

With (3.2.13) this gives us

h(α) = −2 lim
n→∞

1

n
(− log |qn(x)| − E(n, x)) .

Since (3.2.17) holds we can now conclude

h(α) = 2 lim
n→∞

1

n
log |qn(x)|

which is equation (3.2.10).
�

Now we will prove that on a matching interval the entropy is monotonic. The general
idea is the same as for the α-continued fractions (see [84]).

Theorem 3.2.8. Let A ⊂ [0, 1] be a matching interval for (N),(KU) or (IT). Then
the entropy is monotonic on A. Furthermore, if the matching index is positive h(α)

is increasing, if the matching index is zero h(α) is constant and if the matching index
is negative h(α) is decreasing.

Proof. Fix s ∈ Q\E , where E ∈ {EN , EKU , EIT } depends on the choice of S, with
TNα (α) = TMα (α − 1) = 0 and N,M minimal and let (l(s), r(s)) be such that s ∈
(l(s), r(s)) where l(s) and r(s) are chosen in such a way that Mα,α,N = Ms,s,N and
Mα,α−1,M = Ms,s−1,M for all α ∈ (l(s), r(s)). Note that this implies that (l(s), r(s))

is contained in a matching interval. Let α, β ∈ (l(s), r(s)) and define Tmα (α) = αm
and Tmβ (β) = βm. We prove the following equation holds for m ≤M

|αm − βm| <
|α− β|

|p2
α,m−1 − 2pα,m−1qα,m−1|

. (3.2.18)

From (3.2.2) and the fact that αm and βm have the same partial quotients we can get

αm = ε̂
αqα,m − pα,m

pα,m−1 − qα,m−1α
, βm = ε̂

βqα,m − pα,m
pα,m−1 − qα,m−1β

,

2Actually, in [54, 80] linear growth is proven, but the proof can be adjusted easily to get expo-
nential growth since, in the sequence of digits for any x ∈ [α− 1, α], a sequence of consecutive 2’s or
−2’s is uniformly bounded for a fixed α < 1. All proofs are based on the recurrence relations.

53



3. Matching and Ito Tanaka’s α-continued fraction expansions

C
h
a
pt

er
3

where ε̂ ∈ {−1, 1} depending on the family (always 1 for (IT), always −1 for (KU)
and εα,m(α) for (N)). This gives us by (3.2.1)

|αm − βm|= |
αqα,m − pα,m

pα,m−1 − qα,m−1α
− βqα,m − pα,m
pα,m−1 − qα,m−1β

|

= | (αqα,m − pα,m)(pα,m−1 − qα,m−1β)− (βqα,m − pα,m)(pα,m−1 − qα,m−1α)

(pα,m−1 − qα,m−1α)(pα,m−1 − qα,m−1β)
|

= | (qα,mpα,m−1 − qα,m−1pα,m)α+ (qα,m−1pα,m − qα,mpα,m−1)β

p2
α,m−1 − pα,m−1qα,m−1(α+ β) + q2

α,m−1αβ
|

= | (−1)mα− (−1)mβ

p2
α,m−1 − pα,m−1qα,m−1(α+ β) + q2

α,m−1αβ
|

< | α− β
p2
α,m−1 − 2pα,m−1qα,m−1

|.

Fix α and let us define the set L(α) = ∪Nn=1T
n
α (α) ∪ ∪Mn=1T

n
α (α − 1). We show that

there is an ε > 0 such that for all β ∈ (α− ε, α) we have that L(α) ⊂ (α− 1, β) and
L(β) ⊂ (α−1, β). Let ε′ > 0 such that the minimum of L(β) is attained after the same
amount of iterations for all β ∈ (α − ε′, α) so that when Tmα (α) = αm = min(L(α))

then Tmβ (β) = βm = min(L(β)) for β ∈ (α− ε′, α). This can be done since the maps
Tnz (z) and Tn

′

z (z−1) are continuous in z = α for n ≤ N and n′ ≤M . If the minimum
is attained in a point of the orbit of α− 1 and β − 1 the proof works the same.
We now find an ε1 > 0 such that |αm−βm| < |α−1−αm| for all β ∈ (α−ε1, α)∩(α−
ε′, α) ∩ (l(s), r(s)) which implies L(β) ⊂ (α − 1, β). Let c = 1

|p2
α,m−1−2pα,m−1qα,m−1|

and set ε1 := |α−1−αm|
c . We find for β ∈ (α− ε1, α) and from equation (3.2.18) that

|αm − βm| < c|α− β| < cε1 = |α− 1− αm|.

Now let ε2 = α − max(L(α)), then L(α) ⊂ (α − 1, β) for all β ∈ (α − ε2, α). Let
ε = min(ε1, ε2, ε

′) then we have L(α) ⊂ (α − 1, β) and L(β) ⊂ (α − 1, β) for all
β ∈ (α− ε, α).
Fix β ∈ (α−ε, α)∩(l(s), r(s)) and pick x ∈ (β, α) such that x is a typical point for the
system (Tα, (α−1, α), µα) and x−1 is a typical point for the system (Tβ , (β−1, β), µβ).
By typical we mean that limn→∞

1
n#{i < n : T iα(x) ∈ (β, α)} = µα ((β, α)). We

iterate x over Tα and x′ = x− 1 over Tβ . Let nk be the kth return time of x to (β, α)

and mk the kth return time of x′ to (β−1, α−1). We show that nk−mk = (N−M)k

and qα,nk−1,(x) = qβ,mk−1(x′).

Because L(α), L(β) ⊂ (α − 1, β) we have that x will not return to (β, α) before N
iterations of Tα and x′ will not return to (β − 1, α − 1) before M iterations. On the
interval (α−1, β) we have that Tα(x) = Tβ(x) whenever Tα(x) ∈ (α−1, β). This gives
us that TNα (x) = TMβ (x′) and Tn1−1

α (x) = Tm1−1
β (x′) and we find n1 −m1 = N −M .

Furthermore, since x is contained in the same matching interval as s we have that
condition (a) holds and so

Mx,x,N = RMx,x−1,M
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which gives us qx,N (x) = qx,M (x′) and so qα,N (x) = qβ,M (x′). Since the orbits
of x and x′ coincide after N and M iterations respectively we have that also the
fractional transformations coincide. This results in qα,n1−1(x) = qβ,m1−1(x′). Now
Tm1

β (x′) + 1 = Tn1
α (x) and Tm1

β (x′) ∈ (β − 1, α − 1) is a typical point for (Tβ , (β −
1, β), µβ) and Tn1

α (x) ∈ (β, α) is a typical point for (Tα, (α − 1, α), µα). This means
we are in the same situation as we started and so we can repeat this process and find
nk −mk = (N −M)k and qα,nk−1,(x) = qβ,mk−1(x′). We will now prove

h(Tα) = (1 + (M −N)µα ((β, α)))h(Tβ).

It follows from Birkhoff’s Theorem that for typical x we have

lim
n→∞

1

n
#{i < n : T iα(x) ∈ (β, α)} = µα ((β, α)) .

This gives us

lim
k→∞

k

nk
= µα ((β, α)) .

We find the following limit:

lim
k→∞

mk

nk
= lim

k→∞

(
1 +

mk − nk
nk

)
= lim

k→∞

(
1 +

(M −N)k

nk

)
= 1 + (M −N)µα ((β, α)) .

We will now use Lemma 3.2.7 to find the wanted result

h(Tα) = 2 lim
nk→∞

1

nk − 1
| log (qα,nk−1(x)) |

= lim
k→∞

mk − 1

nk − 1

1

mk − 1
| log (qβ,mk−1(x′)) |

= (1 + (M −N)µα(β, α))h(Tβ).

This finalises the proof. �

In the next section we primarily focus on the (IT) case. Most techniques used cannot
be mimicked to prove statements for the other two families.

§3.3 Matching almost everywhere and characterisa-
tions of the bifurcation set

The main tool that lies at the basis of the results in this section is the following
technical lemma. It can be used both to compare α-continued fractions of two numbers
(in particular of α − 1 and Tα(α) = 1

α − 1) as well as to translate an α-continued
fraction into a β-continued fraction. Recall that g =

√
5−1
2 .

Lemma 3.3.1. Let g ≤ α ≤ β ≤ 1, x ∈ [α− 1, α), y ∈ [β − 1, β).
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(i) If x = y, then Tβ(y)− Tα(x) ∈ {0, 1}.
(ii) If y − x = 1, then (x+ 1)(Tβ(y) + 1) = 1.

(iii) If (x+ 1)(y + 1) = 1 or x+ y = 0, then Tα(x) + Tβ(y) ∈ {0, 1}.
(iv) If x+ y = 1, then

Tβ(y)− T 2
α(x) ∈ {0, 1} if x > 1

α+1 ,

T 2
β (y)− Tα(x) ∈ {0, 1} if y > 1

β+1 ,(
Tα(x) + 1

)(
Tβ(y) + 1

)
= 1 otherwise.

Figure 3.4: A diagram for Lemma 3.3.1.

In Figure 3.4 one can see which condition can imply which other condition.

Proof. Case (i). We have Tβ(y)− Tα(x) ∈ Z ∩ (β − 1− α, β − α+ 1) = {0, 1}.
Case (ii). Since x ≥ α− 1, we have y ≥ α, thus (x+ 1)(Tβ(y) + 1) = x+1

y = 1.

Case (iii). Dividing the equations by xy gives us 1
x + 1

y = −1 and 1
x + 1

y = 0

respectively. This implies that Tα(x) + Tβ(y) ∈ Z ∩ [α+ β − 2, α+ β) = {0, 1}.
Case (iv). If x > 1

α+1 , then
1

Tα(x) = 1
1
x−1

= x
1−x = 1−y

y = 1
y − 1, thus 1

y −
1

Tα(x) = 1

and so Tβ(y)−T 2
α(x) ∈ Z∩ (β− 1−α, β−α+ 1) = {0, 1}. Similarly, y > 1

β+1 implies
that T 2

β (y)− Tα(x) ∈ {0, 1}.
If x ≤ 1

α+1 and y ≤ 1
β+1 , then x = 1 − y ≥ β

β+1 ≥
g
g+1 = 1

g+2 ≥
1

α+2 and y =

1 − x ≥ α
α+1 ≥

1
g+2 ≥

1
β+2 . We cannot have x = 1

α+2 because this would imply
that α = g = β = y, contradicting that y < β. Similarly, we cannot have y = 1

β+2 .
From x ∈ ( 1

α+2 ,
1

α+1 ] and y ∈ ( 1
β+2 ,

1
β+1 ], we infer that (Tα(x) + 1)(Tβ(y) + 1) =

( 1
x − 1)( 1

y − 1) = 1. �

Lemma 3.3.1 greatly simplifies when taking α = β and only looking at the orbits of
α− 1 and 1

α − 1 before exceeding 1
α+1 . We use the notation

xn := Tnα (α− 1), yn := Tnα ( 1
α − 1).

Lemma 3.3.2. Let α ∈ (g, 1] and m ∈ N be such that

xn ≤ 1
α+1 and yn ≤ 1

α+1 for all 0 ≤ n < m. (3.3.1)
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Then for any 0 ≤ n ≤ m the pair (xn, yn) satisfies one of the following relations:

(A) (xn + 1)(yn + 1) = 1,
(B) xn + yn = 0,
(C) xn + yn = 1.

If xm > 1
α+1 or ym > 1

α+1 , then xm + ym = 1.

Figure 3.5: A diagram for Lemma 3.3.2.

In Figure 3.5 one can see from which state to which state you can get.

Proof. The proof is a straightforward application of Lemma 3.3.1. The pair (x0, y0)

satisfies (A), condition (i) in Lemma 3.3.1. Let 0 ≤ n < m then yn − xn = 1

is impossible since xn, yn ∈ [α − 1, α). Also xn = yn is impossible since we have
xn ≤ 1

α+1 and yn ≤ 1
α+1 which implies that (xn, yn) always are in state (A), (B) or

(C). We find that if (xn, yn) satisfies (A) or (B), then (xn+1, yn+1) satisfies (B) or (C).
If (xn, yn) satisfies (C), then (A) holds for (xn+1, yn+1).
Now suppose that xm > 1

α+1 and (B) holds. Then ym < − 1
α+1 < α − 1 which

contradicts with ym ∈ [α−1, α). If xm > 1
α+1 and (A) holds we find ym = 1

xm+1−1 <
1

1
α+1 +1

− 1 = − 1
2+α < α− 1 since α > g which also contradicts with ym ∈ [α− 1, α).

Note that the role of xm and ym are interchangeable. We find that if xm > 1
α+1 or

ym > 1
α+1 , then xm + ym = 1. �

We focus now on the complement of the set

Ẽ = {α ∈ [g, 1] : xn ≤ 1
α+1 and yn ≤ 1

α+1 for all n ≥ 1}

and show that it belongs to the matching set (Ẽ is the set in (3.1.4)).

Proposition 3.3.3. Let α ∈ (g, 1] with m ∈ N such that (3.3.1) holds and ε ∈
{−1, 1}. If Tmα (αε−1) > 1

α+1 , then α belongs to a matching interval J with exponents
M = m + 2 − 1−ε

2 , N = m + 2 + 1−ε
2 . Furthermore, let f(z) = Tmz (zε − 1). The

boundaries of J satisfy f(z) = 1
z+1 and f(z) = z respectively.

See Figure 3.6 for an example. For the proof of the proposition, we use the following
lemma.
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Figure 3.6: An example of Proposition 3.3.3 for α = 7
10

with m = 1, ε = 1 and matching
exponents (3, 3) where f(z) = 1

z−1
+ 4.

Lemma 3.3.4. Let α ∈ (g, 1], m ∈ N such that (3.3.1) holds, and xm > 1
α+1 or

ym > 1
α+1 . Then the maps Tmz (z − 1) and Tmz ( 1

z − 1) are continuous at z = α.

Proof. The maps Tnz (z−1) and Tnz ( 1
z −1) are continuous at z = α for all 1 ≤ n ≤ m if

and only if xn 6= x0 and yn 6= x0 for all 1 ≤ n ≤ m. Suppose that xn = x0 or yn = x0

for some 1 ≤ n ≤ m. If (xn, yn) satisfies (C) and xn = x0 then xn+yn = α−1+yn = 1

and so yn = 2 − α > α. Since we can use the same reasoning for yn = x0 we
find that (xn, yn) satisfies (A) or (B). This gives n < m and xn+1 + yn+1 ∈ {0, 1},
x1 + y1 ∈ {0, 1}. We find xn+1 + yn+1 − (x1 + y1) ∈ {−1, 0, 1}. If xn = x0, then
we have xn+1 = x1 and xn+1 + yn+1 − (x1 + y1) = yn+1 − y1 ∈ {−1, 0, 1} where
we can exclude ±1 since yn+1, y1 ∈ [α − 1, α) and thus yn+1 = y1; if yn = x0, then
we have yn+1 = x1 and thus xn+1 = y1. We get that {xm−n, ym−n} = {xm, ym},
contradicting (3.3.1). �

Proof of Proposition 3.3.3. By Lemma 3.3.2, we have xm+ym = 1. Then Lemma 3.3.1
gives that xm+2 = ym+1, i.e., Tm+2

α (α − 1) = Tm+2
α (α), if xm > 1

α+1 , and that
xm+1 = ym+2, i.e., Tm+1

α (α− 1) = Tm+3
α (α), if ym > 1

α+1 .
Let f be the linear fractional transformation satisfying f(z) = Tmz (zε − 1) around
z = α, which exists by Lemma 3.3.4. By Lemma 3.3.4, we also get that Tmz (z − 1)

and Tmz ( 1
z − 1) are continuous at all points z with 1

z+1 < f(z) < z. Note that (3.3.1)
holds for these points because Tnz (z±1 − 1) = 1

z+1 implies that Tn+1
z (z±1 − 1) is not

continuous. Since the maps z 7→ Tn+1
z (z±1 − 1) are continuous at all points z̄ for
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which 1
z̄+1 < Tn+1

z (z̄±1 − 1) < z̄ holds. Therefore, f is expanding at these points
and we have some z−, z+ with f(z−) = 1

z−+1 and f(z+) = z+; let J be the open
interval with boundaries z−, z+. Since (3.3.1) holds for all points in J , the interval J
has matching exponents N = m+ 2 + 1−ε

2 ,M = m+ 2− 1−ε
2 .

Arbitrarily close to z− and z+, we can find points z where the minimal n such that
Tnz (z−1) ≥ 1

α+1 or Tnz ( 1
z−1) ≥ 1

α+1 is different fromm. Therefore, these points are in
matching intervals with different matching exponents than J . Hence, by Lemma 3.1.2,
they are not in J , and J is a matching interval. �

Proposition 3.3.3 shows that EIT ∩ [g, 1] ⊂ Ẽ .

Lemma 3.3.5. Let α ∈ (g, 1], z ∈ [α−1, g). The following conditions are equivalent:

(i) Tnα (z) = Tng (z) for all n ∈ N.

(ii) Tng (z) ≥ α− 1 for all n ∈ N.

(iii) Tnα (z) < g for all n ∈ N.

(iv) Tnα (z) ≤ 1
α+1 for all n ∈ N.

In particular, we have

Ẽ =
{
α ∈ [g, 1] : Tng (α− 1) ≥ α− 1 and Tng ( 1

α − 1) ≥ α− 1 for all n ≥ 1
}
.

Proof. The equivalences (ii) ⇔ (i) ⇔ (iii) are direct consequences of the definition
of Tα. Since 1

1+α < g, we have (iv) ⇒ (iii). For the converse, suppose that Tnα (z) >
1

α+1 for some n. Then we have Tn+1
α (z) = 1

Tnα (z) − 1, thus Tnα (z) ≥ g or Tn+1
α (z) >

1
g − 1 = g, hence (iii) does not hold. �

Now we prove that matching is prevalent and the only indices are −2, 0, 2.

Proof of Theorem 3.1.3. We have

EIT ⊂ Ẽ ⊂ {α ∈ (g, 1] : Tng (α− 1) ≥ α− 1 for all n ≥ 1}

⊂
∞⋃
k=1

{α ∈ (g, 1] : Tng (α− 1) ≥ g − 1 + 1
k for all n ≥ 1}.

Since Tg is ergodic (with respect to an invariant measure that is equivalent to the
Lebesgue measure), all the sets in this union have Lebesgue measure zero. Therefore,
by Proposition 3.3.3 and Lemma 3.3.5, the matching set has full measure on [g, 1].
Since matching is an open condition, Lemma 3.1.2 tells us that Proposition 3.3.3 gives
all matching exponents on [g, 1], hence the only possible indices are 0,−2. Recalling
that for almost all matching parameters in (1 − g, g) we have matching index 0, we
can exploit the symmetry to conclude the proof of the theorem. �

Next we prove Theorem 3.1.4.
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Proof of Theorem 3.1.4. Proposition 3.3.3 gives us EIT ∩ [g, 1] ⊂ Ẽ and the set Ẽ is
the set in (3.1.4) so left to show is Ẽ ⊂ EIT . Let x ∈ Ẽ and suppose x 6∈ EIT then
x ∈ (a, b) for some matching interval (a, b). From the proof of Theorem 3.1.3 we find
that the complement of Ẽ covers almost everything. Furthermore, the complement
is the union of matching intervals. We find that (a, b) ⊂ [0, 1] \ Ẽ and in particular
x ∈ [0, 1] \ Ẽ which gives a contradiction. We find Ẽ ⊂ EIT . Lemma 3.3.5 gives the
second characterisation (3.1.5). �

§3.4 Dimensional results for EIT
Now that we established several characterisations of EIT we will focus on dimensional
results of EIT in this section. We make use of two sets and the following proposition:

Proposition 3.4.1. Let us consider the sets

Fn = {x ∈ [0, 1] : x = [0; a1, a2, . . .] such that aj ≥ n for all j ∈ N},
Cn = {x ∈ [0, 1] : x = [0; a1, a2, . . .] and aj , . . . , aj+2n−1 6= 12n for all j ∈ N}.

where [0; a1, a2, . . .] denotes the regular continued fraction. For these sets we have
dimH(Fn) > 1

2 and limn→+∞ dimH(Cn) = 1.

Proof. In [45] it is shown that dimH(Fn) > 1
2 + 1

2 log(n+2) for n > 20. Since Fn+1 ⊂ Fn
we find that dimH(Fn) > 1

2 for all n ∈ N.
Let BAD(g) = {x ∈ [0, 1] : g 6∈ {Tn(x) : n ∈ N}} where T denotes the Gauss map.
Then [47] gives us that BAD(g) is α-winning and therefore it has Hausdorff dimension
1. On the other hand, it is not difficult to check that BAD(g) = ∪nCn and since Cn
is an increasing sequence of sets we get

1 = sup
n

dimH(Cn) = lim
n→+∞

dimH(Cn).

�

We will now give a lemma to prove Theorem 3.1.5.

Lemma 3.4.2. Let x ∈ [g− 1, g) have the RCF expansion x = [a0; a1, a2, a3, ...] with
a0 ∈ {0,−1}, aj ∈ N ∀j ≥ 1. Furthermore, let {x} = x for x ≥ 0 and {x} = x + 1

for x < 0. Then there is

• a sequence jk → +∞ such that 0 ≤ jk − jk−1 ≤ 2,

• a sequence of prefixes Pk ∈ {∅, (1), (a), (1, a)},

such that {T kg (x)} = [0;Pk, ajk , a1+jk , a2+jk , ...] for all k.

Proof. Let us set xk := T kg (x) and j−1 = 0 and proceed by induction. It is clear
that the statement holds for k = 0. Now suppose the statement holds for xk then
{xk} = [0;Pk, ajk , a1+jk , a2+jk , ...]. We treat the following cases:
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(a) if xk > 0 then {Tg(xk)} = {T (xk)} = T (xk) and xk = {xk} so we find the
desired form for {xk} with jk = jk−1 + 1.

(b) if xk ∈ (g−1,− 1
3 ) then {xk} ∈ (g, 2

3 ) and so we can write {xk} = [0; 12i+1, a,X]

with i ≥ 1. This implies that Tg(xk) = 1
xk

+ 3 = [0; a+ 1, X] in case i = 1 and
Tg(xk) = 1

xk
+ 3 = [0; 2, 12i−3, a,X] otherwise. We find {xk+1} = {Tg(xk)} =

Tg(xk) so it has the desired form with jk = jk−1 + 2.

(c) if xk ∈ (− 1
3 , 0) then {xk} is of the form {xk} = [0; 1, a,X] which gives us

xk = −[0; a+ 1, X] and so {Tg(xk)} = 1− [0;X]. Using the relation 1− [0; c1 +

1, c2, c3, ...] = [0; 1, c1, c2, c3, ...] we find that {xk+1} has the desired form with
jk+1 = jk + 1 if c1 = 0 and jk+1 = jk otherwise.

So in any case the RCF expansion of xk+1 is a short prefix (possibly empty) followed
by the tail of the RCF expansion of x. �

g − 1 g

1− g

0

0

1
2+g

1
3+g

−1
4−g −1

5−g

−1
6−g

· · · · · ·

........................................................................................................................................................................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................
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Figure 3.7: The map Tg.

Proof of Theorem 3.1.5. Let fa : [0, 1]→ [0, 1] be defined as fa(x) = 1
a+x with a ∈ N

and let Ĉn := f2n+5
1 ◦ f2(Cn). We first prove that Ĉn ⊂ EIT . Let α ∈ Ĉn then we

can write α = [0; 12n+5, 2, X] for some string X without any subsequence 12n. From
Lemma 3.3.5 we get that if {T kg ( 1

α − 1)} 6∈ (g, α) and {T kg (α − 1)} 6∈ (g, α) for all k
then α ∈ EIT . Suppose there is a k such that {T kg ( 1

α − 1)} ∈ (g, α). Then k > 2

since Tg( 1
α − 1) = −[0; 2, 12n+1] and T 2

g ( 1
α − 1) = [0; 2, 12n−2]. Furthermore, we can

write {T kg ( 1
α − 1)} = [0; 12n+5, Y ] for some string Y . From Lemma 3.4.2 we find

{T kg ( 1
α − 1)} = [0;Pk+1, ajk+1

, a1+jk+1
, a2+jk+1

, . . .].
We find that ajk+1

, a1+jk+1
, a2+jk+1

, . . . , a2n−1+jk+1
= 12n which is not a part of the

initial string. This contradicts with α ∈ Ĉn. Since α − 1 = −[0; 2, 12n+2, X] we can
find the same contradiction for α − 1. Together with Lemma 3.3.5 and the proof of
Theorem 3.1.4 we can conclude α ∈ EIT . Of course, if Ĉn ⊂ EIT then ∪Ĉn ⊂ EIT .
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Since fa is bi-Lipschitz for all a ∈ N, the same is true for any finite composition of
these maps. Since bi-Lipschitz maps preserve the Hausdorff dimension we find

dimH(Cn) = dimH(Ĉn). (3.4.1)

From (3.4.1) and Proposition 3.4.1 it follows that

dimH

(
∪n>20Ĉn

)
= sup
n>20

dimH(Ĉn) = sup
n>20

dimH(Cn) = 1.

Since Ĉn ⊂ EIT we find dimH(EIT ) = 1. Now let δ > 0. For sufficiently large N
we have that Ĉn ⊂ (g, g + δ] for all n ≥ N and so dimH ((g, g + δ) ∩ EIT ) = 1 which
finishes the proof.

�

To get results on the Hausdorff dimension around a point b ∈ EIT ∩ Q we need more
insight in the behaviour around such a point. We establish this with the following
lemma.

Lemma 3.4.3. If α0 ∈ EIT ∩Q∩ (g, 1] has RCF expansion α0 = [0; a1, a2, ..., ak] then
there is a c ∈ N such that

Eα0
:= {α ∈ [g, 1] : α = [0; a1, a2, ..., ak, c, c1, c2, ...] with cj > a2 + 1 ∀j} ⊂ EIT

with c1, c2, . . . either a finite (possibly empty) or an infinite sequence. Furthermore,
we have that matching condition (3.1.2) holds for α0 with N −M = 1.

Proof. Let α0 ∈ EIT ∩Q∩ (g, 1] and define xn = Tnα0
(α0− 1) and yn = Tnα0

(
1
α0
− 1
)

=

Tn+1
α0

(α0). Since α0 ∈ Q, both the Tα0 -orbit of α0 − 1 and the Tα0 -orbit of 1/α0 − 1

will eventually reach zero, and since α0 ∈ EIT this will happen in one of the states
(A), (B) or (C) from Lemma 3.3.2. Let m be minimal such that xm = 0. From the
equations for (A), (B), (C) we have that (C) cannot happen and that ym = 0. This
gives us that Tmα0

(α0 − 1) = Tm+1
α0

(
α0

)
and matching condition (3.1.2) holds with

N −M = 1.

Now observe that Lemma 3.3.5 (ii) gives us that {Tng (α0)} 6∈ [g, α0] and {Tng (α0−1)} 6∈
[g, α0] for all n ∈ N. This implies that there is a δ > 0 such that for all α ∈ (α0−δ, α0+

δ) we have {Tng (α)} 6∈ [g, α] for 0 ≤ n ≤ m′+1 and {T jg (α−1)} 6∈ [g, α] for 0 ≤ j ≤ m′

withm′ minimal such that Tm
′

g ( 1
α0
−1) = 0. Pick c ∈ N such that Eα0

⊂ (α0−δ, α0+δ)

and α0 and α have the same partial quotients in their g-expansion up to m′ for all
α ∈ Eα0

. Let α ∈ Eα0
. From Lemma 3.4.2 we find {Tm′g ( 1

α−1)} = [0;Pm′ , c, c1, . . .] or
{Tm′g ( 1

α −1)} = [0;Pm′ , c1, . . .]. In the first case we find Tm
′

g ( 1
α −1) > 0 and Pm′ = ∅.

Since {T jg (α − 1)} 6∈ [g, α] for 0 ≤ j ≤ m′ we find T jg ( 1
α − 1) 6∈ [g − 1, α − 1] and so

T jg ( 1
α − 1) = T jα( 1

α − 1) for 0 ≤ j ≤ m′. This gives us Tm
′

α ( 1
α − 1) = [0; c, c1, c2 . . .].

It follows that Tm
′+j

α ( 1
α − 1) = [0; cj , cj+1, . . .] for all j ∈ N. Note that matching did

not happen before Tm
′

α ( 1
α −1) so that (Tm

′

α ( 1
α −1), Tm

′

α (α−1)) is in one of the states
(A), (B), (C) from Lemma 3.3.2. State (C) would imply that Tm

′

α (α − 1) > α so we
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can exclude it. If we are in state (A) we find Tm
′

α (α − 1) = −[0; c, c1, c2 . . .] and so
Tm

′+j
α (α − 1) = −[0; c, c1, c2 . . .]. We find α ∈ EIT . If we are in state (B) we have
Tm

′

α (α−1) = −[0; c+1, c1, c2 . . .] and we can draw the same conclusion. In the second
case we find Pm′ = c+ 1 and no difference to the proof of the first case.

�

Now Theorem 3.1.6 follows almost directly.

Proof of Theorem 3.1.6. The fact that there are infinitely many rationals in EIT is
given by the fact that n−1

n ∈ EIT for all n ∈ N≥3. Furthermore, EIT ∩Q∩(g, 1] does not
have isolated points since in Lemma 3.4.3 one can take a string c1 with c1 arbitrarily
high. For the dimensional result we reason as follows. The composition fa1 ◦. . .◦fak is
bi-Lipschitz. Furthermore, from Lemma 3.4.3 it follows that fa1 ◦ . . . ◦ fak

(
Fn
)
⊂ EIT

for all n > N for some N . Using Proposition 3.4.1 and symmetry the theorem now
follows. �

§3.5 Final observations and remarks

In the first part of this chapter, we have seen that a lot of machinery works for all
three families. In the second part we have seen some differences. Since for the (KU)
and (N) case the set of possible matching indices is Z we cannot expect that we can
obtain a tool like Lemma 3.3.1 for these families.

Note that this chapter was concerned mostly with matching and the non-matching
set rather than the entropy as a function of α. We do know that the set for which
the entropy as a function of α is not locally monotonic is a subset of EIT however we
do not know whether equality holds. Furthermore, we did not prove the fact that the
entropy function is continuous. For the matching set this should follow from the fact
that we have

h(Tα) = (1 + (M −N)µα ((β, α)))h(Tβ)

for β < α on the same matching interval and the fact that µα ((β, α)) is continuous
in β. To prove continuity on the non-matching set might be more challenging.

Worth mentioning is that Wolfgang Steiner and Hitoshi Nakada have (unpublished)
results on the natural extension for Ito Tanaka’s continued fractions. In particular
they can show that for every α ∈ [0, 1] there is a solid rectangle [α − 1, α] × [A,B]

that is fully contained in the domain of the natural extension. This implies that the
invariant measure has full support.

Now it is proven that for all three families matching holds almost everywhere, one
can take the challenge of mixing the maps. When, instead of iterating over one fixed
map, you flip a coin to decide whether you pick S(x) = 1

x or S(x) = − 1
x the orbit of

α and α − 1 become random. Can we prove that for almost every α ∈ [0, 1] we have
matching almost surely? And what does matching imply in this case? A different
toolbox would be needed to tackle this problem.
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