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CHAPTER 2
Natural extensions, entropy and

infinite systems

This chapter is based on joint work with Charlene Kalle, Marta Maggioni and Sara
Munday.

Abstract

In this chapter we leave the realm of finite ergodic theory and enter the realm of
the infinite. We introduce a family of mappings {Tα} with α ∈ [0, 1] related to the
Gauss map. This family interpolates between the Gauss map and a map isomorphic
to the backward continued fraction map. For α < 1

2

√
2 we find an explicit expression

of an invariant measure that is absolutely continuous with respect to the Lebesgue
measure. We do so by means of the natural extension. For α ≤

√
5−1
2 we calculate

the Krengel entropy which equals π2

6 . Furthermore, we show that the maps are so
called basic AFN-maps which leads to several nice properties such as the existence of
a weak law of large numbers.
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§2.1 Introduction

In 1981 Nakada introduced a family of continued fraction transformations, now mainly
known as α-continued fraction maps [82]. For each α ∈ [0, 1], one can define the map
Sα : [α− 1, α]→ [α− 1, α] by

Sα(x) =
∣∣∣ 1
x

∣∣∣− ⌊∣∣∣ 1
x

∣∣∣+ 1− α
⌋
.

Let x ∈ [α − 1, α], define ε0(x) = sign(x) and dα,1(x) = b| 1x | + 1 − αc. By setting
dα,n(x) = d1(Snα(x)) and εα,n(x) = ε0(Snα(x)) we find the following expansion for x

x =
ε0(x)

dα,1(x) +
ε1(x)

d2(x) +
εα,2(x)

dα,3(x) +
. . .

.

Nakada studied this type of expansions for α ∈
[

1
2 , 1
]
and in [80] Marmi, Moussa and

Yoccoz extended the study and also included the values α ∈
[
0, 1

2

)
. In [82] Nakada

constructed a natural extension for the maps Sα and gave a thorough analysis of the
map’s metric and ergodic properties for α ∈ [ 1

2 , 1]. For α ∈ [
√

2 − 1, 1
2 ) the natural

extension can be found in [79] and for α ∈ [
√

10−2
3 ,

√
2−1] in [35]. Each of these maps

admits a unique absolutely continuous invariant measure να. Nakada already started
the study of the dependence on α of the entropy of the map Sα with respect to να for
α ∈

[
1
2 , 1
]
. The function mapping α to the metric entropy of Sα with respect to να,

turned out to have a very intricate structure for α ∈ [0, 1
2 ) and has been extensively

studied. See for example [18, 65, 79, 84] and the references therein.

It was shown in [27] that the family of folded α-continued fraction maps Ŝα is a
particular instance of what the authors called D-continued fraction maps. Folded
α-continued fractions are almost the same as α-continued fractions from a metric
point of view. The D-continued fraction maps are variants of the classical Gauss map
T : x 7→ 1

x (mod 1) where one specifies a region D ⊆ [0, 1], such that on [0, 1] \ D
one uses the Gauss map and on D one uses a flipped version of the Gauss map,
F = 1 − T . It is shown that the folded α-continued fraction maps are obtained by
taking D =

⋃
n≥2

(
1
n ,

1
n+α−1

]
.

In this chapter, we consider the natural counterparts of the folded α-continued frac-
tions, which we call flipped α-continued fraction maps. They are obtained by taking
α ∈ [0, 1] and setting

D = Dα =
⋃
n≥1

( 1

n+ α
,

1

n

]
.

20
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We define Tα : Iα → Iα as

Tα(x) =


1

x
−
⌊

1

x

⌋
if x 6∈ Dα,(

1 +

⌊
1

x

⌋)
− 1

x
if x ∈ Dα

(2.1.1)

where Iα := [min(α, 1 − α), 1]. In terms of the Gauss map T we can define it as
follows. Note that Dα = {x ∈ [0, 1] : T (x) < α} and

Tα(x) =

{
T (x), if x 6∈ Dα,
1− T (x), if x ∈ Dα.

See Figure 2.1 for a couple of examples.

0 1

1

1
1+α

1
2+α

α

1 − α

(a) T

0 1

1

1
1+α

1
2+α

α

1 − α

(b) Ŝα

0 1

1

1
1+α

1
2+α

α

1 − α

α

(c) Tα

0 1

1

1
1+α

1 − α

α

(d) F = 1− T

0 1

1

1
1+α

1 − α

α

(e) Ŝα

0 1

1

1
1+α

1 − α

α

1 − α

(f) Tα

Figure 2.1: The Gauss map T and the flipped map F = 1 − T in (a) and (d). The folded
α-continued fraction map Ŝα and the flipped α-continued fraction map Tα for α < 1

2
in (b)

and (c) and for α > 1
2
in (e) and (f) respectively.

If α = 0, we obtain the Gauss map T and if α = 1 we obtain the map 1 − T . Since
these maps are well known, we omit them from our analysis. Since the domain of the
map Tα is given by Iα = [min{α, 1− α}, 1] it has only finitely many branches. Note
that for any α ∈ (0, 1) the map Tα has an indifferent fixed point at 1. This causes
the existence of an infinite absolutely continuous invariant measure µα. This makes
the family of maps {Tα : Iα → Iα}α∈(0,1) interesting to study as a natural family
of infinite measure systems that do in general not have a Markov partition but have
many other nice properties. Let us turn to stating our results. We construct for each

21
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α ∈
(
0, 1

2

√
2) the natural extension of the map Tα. From the natural extension we

obtain the absolutely continuous invariant measures for the maps Tα.

Theorem 2.1.1. Let 0 ≤ α ≤ 1
2

√
2, let Bα be the Borel σ-algebra on [min(α, 1−α), 1].

The absolutely continuous measure µα on ([min(α, 1− α), 1],Bα) with density

fα(x)=



1
x1[α, α

1−α ](x) + 1
1+x1[ α

1−α ,1](x) + 1
1−x1[1−α,1](x) for α ∈ [0, 1

2 ],

1
1−x1[1−α,α](x) + 1

x(1−x)1[α, 1−αα ](x) + x2+1
x(1−x2)1[ 1−α

α ,1](x) for α ∈ (1/2, g],

( 1
1−x + 1

x+ 1
g−1

)1[1−α, 2α−1
α ](x) + 1

1−x1[ 2α−1
α ,α](x)+

( 1
1−x + 1

x −
1

x+ 1
g

)1[α, 2α−1
1−α ](x) + x2+1

x(1−x2)1[ 2α−1
1−α ,1](x) for α ∈ (g, 2

3 ],

( 1
1−x + 1

x+ 1
g−1

)1[1−α, 2α−1
α ](x) + 1

1−x1[ 2α−1
α ,α](x)+

1+gx2

x−(gx)2−gx31[α, 1−α
2α−1 ](x)+

( 2
1−x2 − x+1

x2+(2g+1)x+1 + 1
x )1[ 1−α

2α−1 ,1](x) for α ∈ ( 2
3 ,

1
2

√
2],

is the unique σ-finite infinite invariant measure for Tα.

For infinite measure systems, there are various notions of entropy generalising the
notion of metric entropy for finite measure systems. From these notions Krengel
entropy is probably the most used. For α ∈ (0, g] we are able to calculate this value
which brings us to our second result.

Theorem 2.1.2. For any α ∈ (0, g] the Krengel entropy hKr,µα(Tα) for the measure
µα from Theorem 2.1.1 is equal to π2

6 .

Even though we have the invariant measure for g < α ≤ 1
2

√
2 the exact value of the

Krengel entropy eludes us. From evaluating the expressions obtained numerically, one
would believe we would also find the value π2

6 in that case. Since we have an infinite
system we can study the asymptotic behaviour of the maps near the indifferent fixed
point 1 and give a finer analysis of their excursion times to the interval

(
1

1+α , 1
]
. To

be more precise, we study the wandering rates and return sequences. The following
proposition summarises the properties that hold for our systems in case α ∈ (0, 1

2 ).

Proposition 2.1.3. For each α ∈
(
0, 1

2

)
and each n ≥ 1 we have wn(T ) ∼ log n for

the wandering rate and an(T ) ∼ n
logn for the return time. Furthermore, a weak law

of large numbers holds for Tα:

log n

n

n−1∑
k=0

f ◦ T kα
µα−−→

∫
Iα

f dµα, for f ∈ L1(µα) and
∫
Iα

f dµα 6= 0.

This chapter is outlined as follows. In Section 2.2 we give some preliminaries. We set
up some framework on insertions and singularisations and look at the consequences
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on the natural extension and entropy. Then we look back to our map and put this
into context. In Section 2.3 we define the natural extension of the maps Tα with
α ∈ (0, 1

2

√
2) and use this to obtain Theorem 2.1.1. After that we prove Theorem 2.1.2

in Section 2.4. In Section 2.5 several dynamical properties are shown for α ∈ (0, 1).
Furthermore we show Proposition 2.1.3. We end this chapter with final observations
and remarks.

§2.2 Preliminaries

The properties of various continued fraction expansions are a classical object of study.
In 1913 Perron introduced the notion of semi-regular continued fraction expansions
(see [89]). These continued fractions are a finite or infinite expression for x ∈ (0, 1] of
the following form:

x =
1

d1 +
ε1

d2 +
ε2

d3 +
. . .

,

where εn ∈ {−1, 1}, dn ∈ N and dn + εn ≥ 1 for each n ≥ 1. We denote the
semi-regular continued fraction expansion of a number x by

x = [0; 1/d1, ε1/d2, ε2/d3, . . .].

In case we have εn = 1 for all n ∈ N we find a regular continued fraction and simply
write x = [0; d1, d2, . . .].

In general a number has many different semi-regular continued fraction expansions.
There are two well studied operations that convert one semi-regular continued fraction
expansion of a number to another: singularisation and insertion. Both operations
were already introduced in [89] and later appeared in many other places in literature
(see for example [63]). Singularisation is based on the following equality holding for
a, b ∈ N, ε ∈ {−1, 1} and ξ ∈ [0, 1]:

a+
ε

1 +
1

b+ ξ

= a+ ε+
−ε

b+ 1 + ξ
.

In terms of the semi-regular continued fractions of numbers, it can be written as
follows. If

x = [0; 1/d1, ε1/d2, . . . , εn−1/dn, εn/1, 1/dn+2, . . .]

then

x = [0; 1/d1, ε1/d2, . . . , εn−1/(dn + εn),−εn/(dn+2 + 1), . . .].

23
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The inverse operation of singularisation is insertion, which is based on the following
equality and holds for a, b ∈ N with b ≥ 2 and ξ ∈ [0, 1]:

a+
1

b+ ξ
= a+ 1 +

− 1

1 +
1

b− 1 + ξ

.

In terms of the semi-regular continued fractions of numbers, it gives the following. If

x = [0; 1/d1, ε1/d2, . . . , εn−1/dn, 1/dn+1, εn+1/dn+2, . . .],

with dn+1 ≥ 2, then

x = [0; 1/d1, ε1/d2, . . . , εn−1/(dn + 1),−1/1, 1/(dn+1 − 1), εn+1/dn+2, . . .].

Singularisations and insertions are directly related toD-continued fraction expansions.
In [27] it is explained that if x ∈ ∪∞n=1( 2

2n+1 ,
1
n ] then the map 1−T acts as an insertion

on x. If x 6∈ ∪∞n=1( 2
2n+1 ,

1
n ] then the map 1−T acts as a singularisation. Furthermore,

by the action of singularisation one removes a convergent in the sequence (pnqn )n≥1.
On the other hand, by insertion one adds a mediant of two consecutive convergents
(see [63]).

In the next section we will see how insertion can affect the natural extension and the
entropy. This is in essence the opposite of what singularisation would do which is
explained in [29].

§2.2.1 Insertions and the natural extension
Let D ⊂ [0, 1]× R and define TD : ΩD → ΩD by

TD(x, y) :=

(
TD(x),

εD(x, y)

d1(x) + y

)
, (x, y) ∈ ΩD

where εD(x, y) = −1 if (x, y) ∈ D and 1 otherwise. Note that ΩD is not yet specified.
The game is to find a suitable ΩD such that TD is bijective almost everywhere because
of the following proposition.

Proposition 2.2.1. Let ΩD ⊂ [0, 1]×R such that TD is bijective almost everywhere.
Then

µD(A) =

∫
A

1

(1 + xy)2
dλ(x)

is an invariant measure for TD.

The proof is essentially the same as for [82]. We now show that for a certain class
of subsets of D ⊂ [0, 1] × [0, 1] we can easily find the natural extension. From the
natural extension we can show that there is a decrease in entropy when comparing
it with the regular continued fraction. For this subset, the corresponding continued
fraction algorithm only uses insertions and no singularisations.

24
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For suitable insertion sets D we show that h(TD) = h(T )
1+µ̄(D) with h the (metric)

entropy and µ̄ the 2-dimensional Gauss measure from page 8. Let

D∗ =

∞⋃
n=1

(
2

2n+ 1
,

1

n

)
× [0, 1]

and pick D ⊂ D∗ such that T (D) ∩ D = ∅ with T the natural extension map of
the regular continued fraction (see Theorem 1.1.12 from page 8). Note that this
does not include the case where the measure of the system of TD is infinite. Neither
the case where we do “insertion on the newly added regions”. We will first find the
natural extension domain of TD by building it from the natural extension domain of
T . Note that T (x, y) = TD(x, y) for (x, y) ∈ Dc. The new natural domain will be
(([0, 1]× [0, 1])\T (D)) ∪ TD(D) ∪ T 2

D(D). We first show that there is no overlap.
Note that TD(x, y) 6∈ [0, 1] × [0, 1] since −1

n+1+y < 0. We also have that T 2
D(x, y) 6∈

[0, 1] × [0, 1] because 1

1 +
−1

n+ 1 + y

= 1 + 1
n+y > 1. For the same reason we find

TD(D) ∩ T 2
D(D) = ∅.

Now we show that T 2(D) = T 3
D(D) which gives that “no holes appear” in the natural

domain of TD besides T (D), see also Figure 2.2. Let (x, y) ∈ D then we can write x =
1

n+ 1
k+z

with k ∈ N and z ∈ [0, 1] since (x, y) ∈ D∗. We find T 2 (x, y) =
(
z, 1

k+ 1
n+y

)
,

TD (x, y) =

 1

1 +
1

k − 1 + z

,
−1

n+ 1 + y

 , T 2
D (x, y) =

 1

k − 1 + z
,

1

1 +
−1

n+ 1 + y


and

T 3
D (x, y) =

z,
1

k − 1 +
1

1 +
−1

n+ 1 + y

 .

Note that
1

k − 1 +
1

1 +
−1

n+ 1 + y

=
1

k +
1

n+ y

.

We will derive a formula for the entropy of the new system. Let A := ([0, 1] ×
[0, 1])\T (D) and denote by T̂ : A → A the induced transformation for T on A and
T̂D : A → A the induced transformation for TD on A, see page 9 for the definition.
Abramov’s entropy formula give us:

h(T̂ ) =
h(T )

µ̄(A)
(2.2.1)
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D

..........................................................................................
.......................

....T

...........................................................................................................................

.......
.......
......

.......

.......
.......
......

TD

T (D)

..........................................................................................
.......................

....T

T 2(D)

TD(D)

..........................................................................................
.......................

....TD

TD(D)

T 2
D(D)

..........................................................................................
.......................

....TD

TD(D)

T 2
D(D)

T 3
D(D)

Figure 2.2: A diagram of the construction of the natural extension domain.

and

h(T̂D) =
h(TD)

ν(A)
, (2.2.2)

where µ̄ is the invariant measure for the original system and ν for the new system
i.e. µ̄(A) = C

∫
A
f(x, y)λ×λ(x, y) and ν(A) = C ′

∫
A
f(x, y)λ×λ(x, y) with f(x, y) =

1
(1+xy)2 . We will now find an expression for C ′. We have

(C ′)−1 =

∫
ΩD

f(x, y)λ× λ(x, y)

=

∫
Ω

f(x, y)λ× λ(x, y)−
∫
T (D)

f(x, y)λ× λ(x, y)

+

∫
TD(D)

f(x, y)λ× λ(x, y) +

∫
T 2
D(D)

f(x, y)λ× λ(x, y)

=

∫
Ω

f(x, y)λ× λ(x, y) +

∫
D

f(x, y)λ× λ(x, y)

=
1

C
+

∫
D

f(x, y)λ× λ(x, y)

=
1

C
(1 + µ̄(D)).
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This gives us C ′ = C
1+µ̄(D) which results in

µ̄(A) = (1 + µ̄(D))ν(A). (2.2.3)

Since T 2(D) = T 3
D(D) we have that T̂ = T̂D. Using (2.2.1) and (2.2.2) we now find

h(T )

µ̄(A)
=
h(TD)

ν(A)
,

which together with (2.2.3) gives

h(T )

1 + µ̄(D)
= h(TD).

Given this result one might expect that, in our setting, we would have a decrease in
entropy whenever we add insertions. Though, Theorem 2.1.1 shows this is not the
case (even though for α ≤ 1

2 there are only insertions). This illustrates well that there
are differences between similar systems when one system is an infinite system and the
other is a finite one. Another observation is that for Nakada’s α-continued fractions
we have only singularisations for α ∈ (g, 1]. In a similar way as for insertions, one
finds that the entropy as a function of α is in this case decreasing on (g, 1] since the
measure of the singularisation region decreases as α goes to one.

§2.2.2 Back to our map
The map Tα generates semi-regular continued fraction expansions of real numbers.
For any α ∈ (0, 1) and any x ∈ Iα, the map Tα from (2.1.1) defines a continued
fraction expansion for any x ∈ Iα in the following way. Define the partial quotients
dk = dk(x) and the signs εk = εk(x) by dk(x) := d1(T k−1

α (x)), where

d1(x) :=

{
b 1
xc, if x /∈ Dα,

b 1
xc+ 1, otherwise;

and by εk(x) := ε1(T k−1
α (x)), where

ε1(x) :=

{
1, if x /∈ Dα,

−1, otherwise.

With this notation the map Tα can be written as

Tα(x) = ε1(x)

(
1

x
− d1(x)

)
and so

x =
1

d1 + ε1Tα(x)
=

1

d1 +
ε1

d2 +
. . . +

εn−1

dn + εnTnα (x)

. (2.2.4)
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Denote by (pk/qk)k≥1 the sequence of convergents of such an expansion, i.e., we write

pk
qk

=
1

d1 +
ε1

d2 +
. . . +

εk−1

dk

.

Since we obtained Tα from the Gauss map by flipping on the domain Dα, it follows
immediately from [27, Theorem 1] that for any x ∈ Iα the expression from (2.2.4)
converges to a continued fraction expansion of x: lim

k→∞

pk
qk

= x. Therefore, we can

write

x =
1

d1 +
ε1

d2 +
. . . +

εk−1

dk +
. . .

=: [0; 1/d1, ε1/d2, ε2/d3, . . .]α,

which we call the flipped α-continued fraction expansion of x. For x ∈ [0, 1] it is
well known that the regular continued fraction is finite if and only if x ∈ Q. In
our case 0 is not in the domain of Tα. Therefore, we cannot find finite expansions.
Instead of a finite continued fraction all rational numbers will end in 1 where 1 =

[0; 1/2,−1/2,−1/2, . . .]α for all α ∈ (0, 1).

Proposition 2.2.2. Let α ∈ (0, 1) and x ∈ Iα be given. Then x ∈ Q if and only if
there is an N ≥ 0 such that TNα (x) = 1.

Proof. If there is an N ≥ 0 such that TNα (x) = 1, then it follows immediately that x ∈
Q. Suppose x ∈ Q. Note that Tnα (x) ∈ Q∩ Iα for all n ≥ 0 and write Tnα (x) = sn

tn
with

sn, tn ∈ N and tn as small as possible. Assume for a contradiction that Tnα (x) 6= 1 for
all n ≥ 1. Then sn < tn and since either Tn+1

α (x) = tn−ksn
sn

or Tn+1
α (x) = (k+1)sn−tn

sn
,

we get 0 < tn+1 < tn. This gives a contradiction. �

§2.3 Natural extensions for our maps

To find the invariant density of the absolutely continuous invariant measure of Tα, we
construct a natural extension domain such that Tα is almost bijective and minimal
from a measure theoretic point of view. In that case Proposition 2.2.1 gives us the
wanted result. We are able to construct the domain for α ∈ (0, 1

2

√
2]. We will go

through a subset of the parameter space to show the method. Invariant densities of
other values are found in the same way but with different computations. Let α ∈ (0, 1

2 )

such that 1
n+α < α < 1

n with n ∈ N≥2. We define Tα : Ωα → Ωα as

(x, y) 7→
(
Tα(x),

ε1(x)

d1(x) + y

)
where

Ωα :=

[
α,

α

1− α

]
×
[
0,∞

)
∪
(

α

1− α
, 1− α

]
×
[
0, 1

]
∪
(

1− α, 1
]
×
[
− 1, 1

]
.
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Ωα Tα(Ωα)

a
[
α, 1

n

]
×
[
0,∞

) [
α−1+nα

α , 1
]
×
[
− 1

n+1 , 0
]

b
[

1
n ,

1
n−1+α

]
×
[
0,∞

) [
α, 1

]
×
[
0, 1

n−1

]
c

[
1

n−1+α ,
α

1−α
]
×
[
0,∞

) [
1− α, α−1+nα

α

]
× [− 1

n , 0
]

d
[
α

1−α ,
1

n−1

]
×
[
0, 1
] [

α−1+nα
α , 1

]
×
[
− 1

n ,−
1

n+1

]
e

[
1
k+1 ,

1
k+α

]
×
[
0, 1
] [

α, 1
]
×
[

1
k+1 ,

1
k

]
for k ∈ N≤n−2

f
[

1
k+1+α ,

1
k+1

]
×
[
0, 1
] [

1− α, 1
]
×
[
− 1

k+2 ,−
1
k+3

]
for k ∈ N≤n−3

g
[
1− α, 1

1+α

]
×
[
− 1, 0

] [
α, α

1−α
]
×
[
1,∞

)
h

[
1

1+α , 1
]
×
[
− 1, 1

] [
1− α, 1

]
×
[
− 1,− 1

3

]
Table 2.1: Ωα split up in disjoint pieces in the left column and their image under Tα in the
right column.

Table 2.1 shows that Tα is bijective almost everywhere on Ωα. See Figure 2.3 for a
visualisation of the map.

α 1
n 1
n−1+α

α
1−α

1
n−1

1
3 1

2+α

1
2

1
1+α

∞

−1

0

1a b c

d e,f e f e

g

h

........................................................................................................................................................
.......................

....Tα

∞

−1

− 1
3

0

1
2

1

− 1
n+1− 1

n

1
n−1

g’

e’

e’
b’

f’
f’

c’ a’
d’

Figure 2.3: The natural extension domain for Tα where Tα(a) = a′, Tα(b) = b′ etc..

§2.3.1 From natural extension to invariant measure
To find the invariant measure for the original system (Iα, Tα) one simply projects
onto the first coordinate. For α ∈ (0, 1

2 ) such that 1
n+α < α < 1

n with n ∈ N≥2 we
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find invariant density

fα(x) =

∫ ∞
0

1

(1 + xy)2
dy1[α, α

1−α ](x) +

∫ 1

0

1

(1 + xy)2
dy1[ α

1−α ,1](x)

+

∫ 0

−1

1

(1 + xy)2
dy1[1−α,1](x)

=
1

x
1[α, α

1−α ](x) +
1

1 + x
1[ α

1−α ,1](x) +
1

1− x
1[1−α,1](x).

Proof of Theorem 2.1.1. By the same method as explained in this section one can
find all the densities given in the theorem. Since only the calculations are different
from the case explained, we omit them here. �

For α ∈ ( 1
2

√
2, 1) the structure of the domain Ωα of natural extension becomes more

complicated as Figure 2.4 shows.

(a) α ≈ 0.73694949 (b) α ≈ 0.79347519

(c) α ≈ 0.85019348 (d) α ≈ 0.89348572

(e) α ≈ 0.92087668 (f) α ≈ 0.95234649

Figure 2.4: Several numerical simulations of the natural extension domain for α ∈ ( 1
2

√
2, 1).
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§2.4 Entropy

To be able to calculate the entropy we first have to do some preliminary work. We
show the following proposition.

Proposition 2.4.1. Let α ∈ (0, 1). The system (Iα,B, µα, Tα) is a basic AFN map: a
conservative system, a piecewise monotonic system (there exists a partition P = {Ii}
such that Tα restricted to each element of P is continuous, strictly monotonic and
twice differentiable) and a system with at least one indifferent fixed point such that
the following conditions hold.

(A) Adler’s condition: T ′′α
(T ′α)2 is bounded on ∪iIi,

(F) Finite image condition: Tα(P) := {Tα(Ii) : Ii ∈ P} is finite,

(N) Indifferent fixed point condition: there exists a finite set Z ⊆ P, such that each
Zi ∈ Z has an indifferent fixed point xZi , i.e.

lim
x→xZi ,x∈Zi

Tα(x) = xZi and lim
x→xZi ,x∈Zi

T ′α(x) = 1

and T ′α decreases on (−∞, xZi)∩Zi respectively increases on (xZi ,∞)∩Zi. Last,
T is uniformly expanding on sets bounded away from {xZi : Zi ∈ Z}.

Proof. First, recall that a system Tα is said to be conservative if every wandering
set (a set for which all the pre-images under the map are pairwise disjoint) for Tα
is a set of null measure. Maharam’s Recurrence Theorem (see [57, Theorem 2.2.14])
ensures the conservativity through the existence of a sweep-out set (a positive but
finite measure set for which the set of all pre-images covers almost everything). It is
easy to see that any subinterval of Iα is a sweep-out set for the map Tα so that the
system is conservative.
For each α ∈ (0, 1), let k(α) ∈ N be such that min(α, 1− α) ∈

(
1

k(α)+1 ,
1

k(α)

]
and let

Wα :=

{[
min(α, 1− α), 1

k(α)

]
if 1
k(α)+α < α < 1

k(α) ,[
min(α, 1− α), 1

k(α)+α

]
,
(

1
k(α)+α ,

1
k(α)

]
, if 1

k(α)+1 < α < 1
k(α)+α .

A finite partition P can be given by{
Wα,

(
1

n+ 1
,

1

n+ α

]
,

(
1

n+ α
,

1

n

]
, for n = 1, 2, ..., k(α)− 1

}
.

On each of these subintervals the map is continuous, strictly monotonic and twice
differentiable. Furthermore we see that the conditions (A),(F),(N) hold:

(A) |2x| ≤ 2 on Iα,

(F) Tα(P) consists at most of three subintervals depending on α,

(N) xZ = 1 is the only indifferent fixed point for Z = ( 1
1+α , 1], and T ′α(x) = 1/x2

decreases on Z and it is strictly greater than 1 on sets bounded away from xZ .
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For infinite measure-preserving and conservative systems (X,B, µ, T ) there exists an
extension of the notion of entropy (w.r.t µ) due to Krengel [66]:

hKr,µ(T ) = h(TA, µ |A),

for A a sweep-out set for T , TA the induced transformation T on A and µ |A the
measure µ restricted to the set A. A result of Zweimüller tells us that we can use
Rohlin’s formula to calculate it.

Theorem 2.4.2 (Zweimüller [106]). Let (I,B, µ, T ) be a basic AFN map with µα
an (absolutely continuous) invariant measure, then

hKr,µ(T ) =

∫
X

log(|T ′(x)|)dµ.

We are now in the position of proving Theorem 2.1.2.

Proof of Theorem 2.1.2. From Proposition 2.4.1 and Theorem 2.4.2 it follows we can
calculate the Krengel entropy by using Rohlin’s formula. We use some properties of
dilogarithm functions (see also [73]). We have

Li2(x) :=

∞∑
n=1

xn

n2
for |x| < 1

and

• Li2(0) = 0,

• Li2(−1) = −π2/12,

• Li2(x) + Li2(− x
1−x ) = − 1

2 log2(1− x),

• d
dx Li2(x) = − log(1−x)

x .

We compute the entropy for α ∈ (0, 1
2 ). The computation for α ∈ [ 1

2 , g) works in a
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similar way.∫
[α,1]

log(|T ′α(x)|)dµα = −2

[ ∫ α/(1−α)

α

log x

x
dx+

∫ 1−α

α/(1−α)

log x

1 + x
dx+

∫ 1

1−α

log x

1− x2
dx

]
= − log2 x |α/(1−α)

α −2[Li2(−x) + log x log(x+ 1)] |1−αα/(1−α)

− 2[Li2(1− x) + Li2(−x) + log x log(x+ 1)] |11−α

= − log2
( α

1− α
)

+ log2(α) + 2 Li2
( −α

1− α
)

+ 2 log
( α

1− α
)

log
( 1

1− α
)
− 2 Li2(0)− 2 Li2(−1)

− 2 log(0) log(2) + 2 Li2(α)

= log2(α)− log2
( α

1− α
)

+ 2[Li2
( −α

1− α
)

+ Li2(α)]+

− 2 log
( α

1− α
)

log(1− α) +
π

6

2

= log2(α)− log2
( α

1− α
)
− log2(1− α)

− 2 log
( α

1− α
)

log(1− α) +
π

6

2

= 2 log(1− α)[log(α)− log(1− α)− log(α) + log(1− α)] +
π

6

2

=
π

6

2
.

�

§2.5 Return sequences and wandering rates

Other ergodic properties can be obtained from the asymptotic type of the maps, which
is the asymptotic proportionality class of any return sequence of the map. Let Pα
denote the transfer operator of the map Tα, defined by the equation∫

A

Pαf dµα =

∫
T−1
α

f dµα for f ∈ L1(Iα,Bα, µα) and A ∈ Bα.

The return sequence for Tα is the sequence (an(Tα))n≥1 ⊆ (0,∞) satisfying

lim
n→∞

1

an(Tα)

n−1∑
k=0

P kαf =

∫
Iα

f dµα.

The result from [106, Theorem 1] implies that each map Tα is pointwise dual ergodic.
This ensures that such a sequence, which is unique up to asymptotic equivalence,
exists. The asymptotic type of any map Tα is the asymptotic proportionality class
of Tα, containing all sequences that are asymptotically equivalent to some positive
multiple of (an(Tα))n≥1.
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The return sequence of a system is related to its wandering rate, which quantifies how
big the system is in relation to its subsets of finite measure. To be more precise, if
(X,B, µ, T ) is a conservative, ergodic, measure preserving system and A ∈ B a set of
finite positive measure, then the wandering rate of A with respect to T is the sequence
given by (wn(A))n≥1 for

wn(A) := µ

( n−1⋃
k=0

T−kA

)
.

It follows from [106, Theorem 2] that for each of the maps Tα there is a sequence
(wn(Tα)) ⊆ (0,∞) such that wn(Tα) ↑ ∞ and wn(Tα) ∼ wn(A) as n → ∞ for all
sets A ∈ B such that 0 < µ(A) < ∞ and that are bounded away from one. The
asymptotic equivalence class of (wn(Tα)) is called the wandering rate of Tα. Using
the machinery from [106] we can prove Proposition 2.1.3.

Proof of Proposition 2.1.3. The wandering rate for AFN-maps is given in [106, The-
orem 3] and the return sequence in [106, Theorem 4]. Using the Taylor expansion of
the maps Tα one sees that for x → 1 we have Tα(x) = x − (x − 1)2 + o((x − 1)2).
Hence, Tα admits what is called nice expansions in [106]. Secondly, on the right most
interval

(
1

1+α , 1
]
the density fα for α ∈ (0, 1

2 ) is given by fα(x) = 2
1−x2 . This can

be written as fα(x) = G(x)H(x), where G(x) = x−2
x−1 and H(x) = 2

(1+x)(2−x) . As a
consequence, at the indifferent fixed point it holds that H(1) = 1. It then follows
from [106, Theorems 3 and 4], that the wandering rate is

wn(T ) ∼ log n

and the return sequence is
an(T ) ∼ n

log n
.

In our setting [106, Theorem 5] translates to

log n

n

n−1∑
k=0

f ◦ T kα
µα−−→

∫
Iα

f dµα, for f ∈ L1(µα) and
∫
Iα

f dµα 6= 0,

i.e., a weak law of large numbers holds for Tα. �

§2.5.1 Isomorphic?
When considering a family of transformations with similar dynamical properties, a
natural question to ask is whether the maps in question are isomorphic. Since the
maps Tα all have an infinite invariant measure, these measures cannot be normalised
and the appropriate notion to consider is that of c-isomorphism, which is defined as
follows (see for example [1]): Two measure preserving dynamical systems (X,B, µ, T )

and (Y, C, ν, S) on σ-finite measure spaces are called c-isomorphic for c ∈ R>0 ∪ {∞}
if there are sets N ∈ B, M ∈ C with µ(N) = 0 = ν(M) and T (X \ N) ⊆ X \ N
and S(Y \M) ⊆ Y \M and if there is a map φ : X \N → Y \M that it invertible,
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bi-measurable and satisfies φ ◦ T = S ◦ φ and µ ◦ φ−1 = c · ν. Well known invariants
for c-isomorphism are the Krengel entropy and the asymptotic proportionality classes
of the return sequence and the wandering rate.

We have seen that the Krengel entropy for α ∈ (0, g] is constant and not depending
on α. Also the wandering rate as well as the return sequence do not display any
dependence on α, so that also these invariants do not give us information on the
existence (or non-existence) of isomorphisms between the maps Tα either. Using the
technique from [53] we can show that in general it is not true that for any α, α′ there
is a c ∈ R>0 ∪ {∞} such that Tα and Tα′ are c-isomorphic. Consider for example any
α ∈

(√
2−1, 1

2

)
, so that α ∈

(
1

2+α ,
1
2

)
and any α′ ∈

(
1
3 ,

3−
√

5
2

)
, so that Tα′(α′) > 1−α′,

see Figure 2.5. For a contradiction, suppose that there is a c-isomorphism φ : Iα → Iα′

for some c ∈ R>0 ∪{∞}. Let J = [α,min{Tα(α), 1−α}] and note that any x ∈ J has
precisely one pre-image. Since φ ◦Tα = Tα′ ◦φ and φ is invertible, any element of the
set φ(J) must also have precisely one pre-image. Since Tα′(α′) > 1−α′, there are no
such points, so µα′(φ(J)) = 0. On the other hand, since J is bounded away from 1, it
follows that 0 < µα(J) <∞. Hence, there can be no c, such that µα′ ◦ φ−1 = c · µα.
Obviously a similar argument holds for many other combinations of α and α′, even for
α > 1

2 , and in case the argument does not work for Tα and Tα′ , one can also consider
iterates of the transformation. Hence, even though the above discussed isomorphism
invariants are equal for all α ∈

(
0, 1

2

)
, in general one cannot conclude that any two of

the maps Tα are c-isomorphic.

α α′ 1

1− α

Tα(α)

(a) α ∈
(√

2− 1, 1
2

) α′ 1

1− α′

Tα′(α
′)

(b) α′ ∈
(
1
3
, 3−
√
5

2

)

Figure 2.5: Maps Tα and Tα′ that are not c-isomorphic for any c ∈ R>0 ∪ {∞}.

§2.5.2 Final observations and remarks
We have seen that the natural extension is a powerful tool to find invariant measures
for families of continued fractions. Though, for α > 1

2

√
2 the domain becomes more

complicated. In other families of continued fractions (α-continued fractions or Ito
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Tanaka’s α-continued fractions studied in Chapter 3) similar behaviour is seen for
certain values of the parameter space.

What one can do with the natural extensions that we found, is the study of Diophant-
ine approximation. Using for example tools from [29] one can study the quality of
convergence for typical points. One can show that for any α ∈ (0, 1) the convergence
of a typical point in Iα is not exponential. Though, maybe more can be said about
the quality.

Something we did not study in this chapter is matching. Though, matching can
be easily found. For example on the interval (0, 1

2 ) matching holds with exponents
(1, 3). In the study of other families, matching often has implications for the entropy
whereas for our family we did not observe a relation between the Krengel entropy
and matching. Maybe there is another observable which is related to matching in our
case.

In an upcoming paper we show a very close connection between matching intervals
for our family and for α-continued fractions. By using this relation we can prove that
matching holds almost everywhere, even though it is unclear to us how these families
are exactly related.
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