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CHAPTER 1
Introduction

In this dissertation, the main topic is representations of numbers in relation to match-
ing, entropy and holes. In this chapter, we first briefly discuss the representations that
are studied in this dissertation. This is followed by a section in which we introduce
the basic definitions used in dynamical systems and ergodic theory. This is done by
means of the regular continued fraction. Other representations which we study are
β-expansions. These are explained in the section thereafter. In the last part of the
introduction we explain the words in the title and elaborate more on what to find in
which chapter.
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In general we express one number by using others. There is a family of numbers
which we know how to use because we use them to count: the natural numbers. The
numbers of the set B := { 1

n : n ∈ N}1 are also natural to use and, since the n-fold
of them equals 1, they are still related to counting. Now suppose we have a number
x between 0 and 1. We try to express x using these numbers. If x 6∈ B we can only
approximate x by a number 1

n such that the error is small. If we want to express x
with elements from B without an error we should not stop here but continue! We can
do two things. Either write x = 1

n + ε or x = 1
n+ε for some ε > 0. We can proceed

with ε and find an m ∈ N such that ε is close to 1
m and continue in this manner. The

first case corresponds to Lüroth expansions which are introduced in [78] and widely
studied thereafter (see for example [6, 40, 51]). Our interest lies in the second way
which leads to continued fractions. We obtain a continued fraction expansion for x
by using the Gauss map T : [0, 1]→ [0, 1] which is defined by

T (x) =
1

x
−
⌊

1

x

⌋

for x 6= 0 and T (0) = 0, see Figure 1.1. Let the digits be defined as d1(x) = b 1
xc and

dn(x) = d1

(
Tn−1(x)

)
for n > 1.
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Figure 1.1: The Gauss map.

1In this dissertation 0 is not included in the set of natural numbers.
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For x ∈ [0, 1] we find

x =
1

d1(x) + T (x)
=

1

d1(x) +
1

d2(x) + T 2(x)

=
1

d1(x) +
1

d2(x) +
1

d3(x) +
. . .

with dn ∈ N. We can write this in short notation as x = [0; d1, d2, d3, . . .]. Examples of
such expansions are e− 2 = [0; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .] or

√
2− 1 = [0; 2, 2, 2, . . .].

Any x ∈ (0, 1] has such an expansion. For rational numbers one finds a finite continued
fraction and for irrational numbers one finds an infinite continued fraction. For con-
vergence and other basic properties of this representation see [29]. In Chapter 2, 3
and 4 variations of T will be studied.

Suppose that, instead of taking the natural numbers as a given, we take a value 1
β

with β > 1. Now we approximate numbers in [0, 1] by numbers of the form m
βn so

that x = m
βn + ε with n,m ∈ N. We do this in the following way. We first pick the

smallest n ∈ N such that 1
βn < x and then we take m ∈ {1, . . . , bβxc} maximal such

that m
βn < x. Then we procceed the procedure applied on ε = x − m

βn . We can do
this dynamically with the function Tβ : [0, 1] → [0, 1] defined by Tβ(x) = βx− bβxc.
For an example see Figure 1.2. Now we set d1(x) = bβxc and dn = d1

(
Tn−1(x)

)
for

n > 1. This give us

x =
d1(x) + Tβ(x)

β
=
d1(x)

β
+
d2(x) + T 2

β (x)

β2
=
d1(x)

β
+
d2(x)

β2
+
d3(x)

β3
+ . . . .

Convergence of this representation is immediately clear since, when taking the first n
digits, we are at most 1

βn away from x. The β-expansions are studied in Chapter 5.
In Section 5.6.1 we see some relation to continued fractions.

§1.1.1 Continued fractions
In this section we introduce some basic notions and results concerning continued
fractions. Along the way we encounter concepts that are prominent in ergodic theory.
Because of the introductory nature of this section, all the results presented in this
section can also be found in [29]. Let x ∈ (0, 1) with

x =
1

d1 +
1

d2 +
1

d3 +
. . .

.

We define the nth convergent of x as

cn =
pn
qn

=
1

d1 +
1

d2 +
1

. . . +
1

dn

.
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Figure 1.2: The β-transformation with β = 3.76.

For pn and qn we have the following recurrence relations

p−1 := 1; p0 := 0; pn = dnpn−1 + pn−2, n ≥ 1,
q−1 := 0; q0 := 1; qn = dnqn−1 + qn−2, n ≥ 1.

The fact that limn→∞ cn = x follows from∣∣∣∣x− pn
qn

∣∣∣∣ ≤ 1

q2
n

(1.1.1)

and the fact that the sequence (qn)n∈N grows exponentially fast. A classical moti-
vation to study continued fractions comes from approximation theory also known as
Diophantine approximation. This name stems from Diophantus of Alexandria, who
lived around AD 250. Let x ∈ [0, 1] and suppose that we want to find rationals p

q such
that |x − p

q | is small. Of course for q large one can probably do better. Therefore it
is natural to make |x− p

q | small relative to q. Hurwitz proved the following theorem
in 1891.

Theorem 1.1.1 (Hurwitz [49]). For every irrational number x there exist infi-
nitely many pairs of integers p and q, such that∣∣∣∣x− p

q

∣∣∣∣ ≤ 1√
5

1

q2
. (1.1.2)

The constant 1√
5
is the best possible, i.e. for every ε > 0 there are x such that there

are only finitely many pairs of integers p and q such that the inequality holds when
replacing 1√

5
by 1√

5
− ε.

To be able to find such pairs one can look at the convergents of x. This is displayed
by a theorem of Borel from 1903.
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Theorem 1.1.2 (Borel). Let n ≥ 1 and let pn−1

qn−1
, pnqn and pn+1

qn+1
be three consecutive

continued fraction convergents of the irrational number x. Then at least one of these
convergents satisfies (1.1.2).

There also exists a theorem that states that, when a rational approximates x well, it
is a convergent of x. This was shown by Legendre in 1798.

Theorem 1.1.3 (Legendre [70]). Let p and q be two integers that are co-prime
with q > 0. Furthermore, let x ∈ (0, 1] and suppose that

∣∣∣x− p
q

∣∣∣ ≤ 1
2q2 . Then p

q is a
convergent of x.

For a refinement of this theorem see Barbolosi, Jager 1994 [5]. Looking at the recur-
rence relations and (1.1.1) we can see that the higher the digits of x are, the faster
the continued fraction converges to x. For a given x ∈ (0, 1] we can simply calculate
the convergents. However, we would like to make statements about typical points x
i.e. statements that hold for almost all x ∈ (0, 1]. This is where ergodic theory comes
into play. The word ergodic originates from the words ergon and odos which mean
work and path respectively in Greek. Ergodic theory was used by physicists before
mathematicians picked up on it in the 1930s and 1940s (from [29]). Let us first define
what a dynamical system is and then give the definition of ergodicity.

Definition 1.1.4 (Dynamical system). A dynamical system is a quadruple
(X,F , µ, T ) where X is a non-empty set, F is a σ-algebra on X, µ is a probability
measure on (X,F) and T : X → X is a surjective transformation such that the
measure µ is T -invariant i.e. for all A ∈ F we have µ(T−1(A)) = µ(A). Furthermore,
if T is also injective we call (X,F , µ, T ) an invertible dynamical system.

When dropping the condition of a probability measure and allowing the space to have
an infinite measure one enters the realm of infinite ergodic theory which is studied in
Chapter 2. In any case ergodic theory is characterised by ergodicity.

Definition 1.1.5 (Ergodicity). Let (X,F , µ, T ) be a dynamical system. Then T is
called ergodic if for every µ-measurable set A satisfying T−1(A) = A one has µ(A) = 0

or µ(Ac) = 0.

This means that, when iterating points, they will go from everywhere to everywhere
and the state space X cannot be divided into subsets X1, X2 with both positive
measure such that T (X1) ⊂ X1 and T (X2) ⊂ X2. It is natural to wonder when two
dynamical systems can be called the same. We say such maps are isomorphic.

Definition 1.1.6 (Isomorphic). Two dynamical systems (X,F , µ, T ) and (Y, C, ν, S)

are isomorphic if there exists a map θ : X → Y with the following properties.

• θ is bijective almost everywhere. By this we mean that, if we remove a suitable
set NX ⊂ X with µ(NX) = 0 and a suitable set NY ⊂ Y with ν(NY ) = 0 then
θ : X\NX → Y \NY is a bijection.

• θ is bi-measurable, i.e. θ(F ) ∈ C, for all F ∈ F and θ−1(C) ∈ F , for all C ∈ C.

5
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1 • θ preserves the measures, i.e. ν(C) = (ν ◦ θ−1)(C) for all C ∈ C.

• θ preserves the dynamics, i.e. θ ◦ T = S ◦ θ.

Before stating what we mean by “for almost all” we give the definition of the Lebesgue
measure and the definition of an absolutely continuous measure.

Definition 1.1.7 (Lebesgue measure). Let [a, b] be an interval on the real line.
The Borel σ-algebra is the σ-algebra generated by open intervals. The Lebesgue meas-
ure λ is the measure such that λ((c, d)) = d− c for all open intervals (c, d) ⊂ [a, b].

The Lebesgue measure is the only measure that is translation invariant. All measures
studied in this dissertation are equivalent to Lebesgue. These kinds of measures
are considered to be physically most relevant because they describe the statistical
properties of forward orbits of a set of points with positive Lebesgue measure.

Definition 1.1.8 (Absolutely continuous and equivalence of measures). Let
(X,F) be a measurable space and µ, ν two measures on this space. The measure µ
is absolutely continuous with respect to measure ν if ν(A) = 0 implies µ(A) = 0.
Furthermore, if also ν is absolutely continuous with respect to measure µ we say that
the measures are equivalent.

Equivalence implies that if ν(A) = 1 then µ(A) = 1 whenever ν and µ are probability
measures. With for “almost all x ∈ X” we mean with probability 1. One can see
that it does not matter whether we use measure µ or ν for this statement when µ

is absolutely continuous with respect to ν. This way “for almost all” (or for almost
every) x means with respect to Lebesgue in this dissertation.

Now that we know what for almost all means we can state a theorem by Paul Lévy
from 1929 that gives us the speed at which qn grows for almost all x ∈ [0, 1].

Theorem 1.1.9 (Lévy [72]). For almost all x ∈ [0, 1] one has

lim
n→∞

1

n
log(qn) =

π2

12 log(2)
.

The fact that invariant measures are useful follows from what is the most important
theorem of the field.

Theorem 1.1.10 (The Ergodic Theorem / Birkhoff’s Theorem).
Let (X,F , µ) be a probability space and T : X → X such that µ is T -invariant. Then
for any f ∈ L1(µ),

lim
n→∞

1

n

n−1∑
i=1

f ◦ T i(x) = f∗(x)

exists almost everywhere and
∫
X
fdµ =

∫
X
f∗dµ. If moreover T is ergodic, then f∗

is constant almost everywhere and f∗ =
∫
X
fdµ.

6
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This theorem is often heuristically phrased as “time average is space average” and has
been proved by G.D Birkhoff in 1931 (see [8]). A question that arises is whether we
can find an invariant measure for the Gauss map. The answer is yes. An invariant
measure was found by Gauss in 1800. Note that this was way before most tools in
ergodic theory were developed. The measure µ found by Gauss is called the Gauss
measure and is given by

µ(A) =
1

log(2)

∫
A

1

1 + x
dλ(x).

An example of what one can do with this invariant measure and Birkhoff’s Theorem
is to calculate frequencies of digits for typical numbers. Let freq(i) be defined as

freq(i) := lim
n→∞

# digits of x equal to i in the first n digits
n

.

Let us also define cylinders (of order n)

∆(a1, . . . an) = {x ∈ [0, 1] : d1(x) = a1, d2(x) = a2, . . . , dn(x) = an}.

Note that whenever dn(x) = i that Tn−1(x) ∈ ∆(i) and that ∆(i) = {x ∈ [0, 1] :

d1(x) = b 1
xc = i} = ( 1

i+1 ,
1
i ]. Since the map T is ergodic with respect to µ and µ is

invariant for T , we can apply the Ergodic Theorem with f = 1∆(i) giving

freq(i) = lim
n→∞

1

n

n−1∑
i=1

f ◦ T i(x) =
1

log(2)

∫
∆(i)

1

1 + x
dx = µ(∆(i)).

The frequencies of digits where found by Paul Lévy in 1929 (see [72]) and are given
by

freq(i) = µ(∆(i)) =
1

log(2)
log

(
1 +

1

i(i+ 2)

)
.

Remarkably one can find the Gauss measure through a limit of the Lebesgue measure.
This is shown by the Gauss-Kuzmin-Lévy Theorem. This theorem states that the
Lebesgue measure of the pre-images of a measurable set A will converge to the Gauss
measure i.e.

λ
(
T−n(A)

)
→ µ(A) as n→∞. (1.1.3)

This was stated as a hypothesis by Gauss in his mathematical diary in 1800 and
proved by Kuzmin in 1928 who also obtained a bound on the speed of convergence.
Independently, Lévy proved the same theorem in 1929 but found a sharper bound for
the speed of convergence namely |λ (T−n(A))−µ(A)| = O(qn) with 0 < q < 1 instead
of O(q

√
n) which is the bound Kuzmin found. In [99] it is shown that (1.1.3) holds

for a family of mappings T . In Chapter 4 we will base a numerical method on this
theorem to get good estimates on invariant measures for other maps.

A very powerful tool in ergodic theory is that of a natural extension. The idea
behind it is that you make a non-invertible system into an invertible one by adding
dimensions. For the invertible system it can be easier to guess the invariant measure.
Then one can find the invariant measure of the original system by projecting it.

7
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1 Definition 1.1.11 (Natural Extension). Let (X,F , µ, T ) be a dynamical system

with T a non-invertible transformation. An invertible dynamical system (Y, C, ν, S) is
called a natural extension of (X,F , µ, T ) if there exist two sets F ∈ F and C ∈ C and
a function θ : C → F , such that the following properties hold.

• µ(X\F ) = ν(Y \C) = 0,

• T (F ) ⊂ F and S(C) ⊂ C,

• θ is measurable, measure preserving and surjective,

• (θ ◦ S)(y) = (T ◦ θ)(y) for all y ∈ C,

•
∨∞
k=0 S

kθ−1(F) = C where
∨∞
k=0 S

kθ−1(F) is the smallest σ-algebra containing
all σ-algebras Skθ−1(F).

Natural extensions are unique up to isomorphism and therefore we can speak of the
natural extension. Let Ω = [0, 1]× [0, 1]. The natural extension of the Gauss map is
given by T : Ω→ Ω with

T (x, y) :=

(
T (x),

1

d1(x) + y

)
, (x, y) ∈ Ω.

The natural extension captures information about the future in the first dimension
and of the past in the second. The following theorem gives us the invariant measure
as well as ergodicity for the natural extension of the Gauss map.

Theorem 1.1.12 (Ito, Nakada, Tanaka [82, 83]). Let µ̄ be the measure given by

µ̄(A) =
1

log(2)

∫
A

1

(1 + xy)2
dλ(x)

then µ̄ is an invariant probability measure for T . Furthermore, the dynamical system
(Ω,B, µ̄, T ) where B is the Borel σ-algebra, is an ergodic system.

The natural extension is also used in approximation theory to get information about
the quality of convergents (see [29] and the references therein). We will use the concept
of natural extensions in Chapter 2 and 4.

Another notion that can be useful is that of an induced transformation. Let (X,F , µ, T )

be dynamical system and pick A ⊂ X such that µ(A) > 0. Let n(x) := inf{n ≥ 1 :

Tn(x) ∈ A}. By the Poincare Recurrence Theorem we have that the set of x for
which n(x) =∞ has zero measure. We remove this set from A and define the induced
transformation TA : A→ A as

TA(x) = Tn(x)(x) for all x ∈ A.

8
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§1.1.2 β-expansions
In the previous section we have seen how to write a number in its continued fraction
expansion. In this section we shed light upon β-expansions. These are derived from
a much simpler map Tβ : [0, 1]→ [0, 1] with Tβ(x) = βx− bβxc with β ∈ (1,∞). Fix
x ∈ [0, 1] and set d1(x) = bβxc and dn(x) = d1(Tn−1

β (x)) for n > 1. Then for x we
find

x =

∞∑
i=1

di(x)

βi
.

In this case we define the convergents as cn =
∑n
i=1

di
βi . The convergence rate is given

by |x− cn| ≤ 1
βn . Note that whenever x has long sequences of zeros in its expansion

there are cn that are fairly close to x relative to n. On the other hand, the sequence
(di(x)) is not the only sequence that will give convergence to x. We see that high
digits result in better convergents. Since we always use the highest digit possible by
taking bβxc, the map Tβ is known as the greedy β-transformation (introduced by
Rényi in 1957 [95]). When instead of always taking the highest digit possible one
would always take the lowest, one finds the lazy β-expansion. Fix β ∈ (1,∞) and
define S = ∪1≤i≤bβc[

i
β ,

bβc
β(β−1) + i−1

β ]. The map used to find a lazy β-expansion is
given by Lβ(x) = Tβ(x) for x 6∈ S and Lβ(x) = Tβ(x) + 1 for x ∈ S. The set S is also
called the switch region. By superimposing the two maps one can choose which of
the maps to use once the orbit of x falls into a switch region (see Figure 1.3). When
choosing to iterate over the lazy map one will find that the digit will be one lower
than when picking the greedy one. This gives us for almost every x uncountably many
expansions. For references on lazy β-expansions see [30, 38, 60] and for a mix of lazy
and greedy [26, 31].

0 1
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1
β−1

1
β

1
β(β−1)
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Figure 1.3: The lazy and greedy β-transformation with β = 1.85.
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1 It is proven that the system Tβ is ergodic with respect to the invariant measure

found by Gelfond in 1959 and Parry in 1960 independently (see [42] and [88]). The
probability measure has density

fβ(x) =
1

C(β)

∞∑
n=0

1

βn
1[0,Tnβ (1))(x)

where C(β) =
∫ 1

0

∑∞
n=0

1
βn1[0,Tnβ (1))(x)dx is a normalising constant. This measure is

the unique measure of maximal entropy (see Section 1.2.1 for more details). What
plays a crucial role in the study of β-expansions is the quasi greedy expansion of 1. Let
us first explain what a quasi greedy expansion is. Define the map T̃β(x) = Tβ(x) for
all x with Tβ(x) 6= 0 and T̃β(x) = 1 whenever x 6= 0 and Tβ(x) = 0. Set d̃1(x) = d1(x)

for Tβ(x) 6= 0 and d̃1(x) = d1(x) − 1 whenever x 6= 0 and Tβ(x) = 0. Furthermore,
let d̃n(x) = d̃1(T̃n−1

β (x)) for n > 1. The quasi greedy expansion of x is given by

x =

∞∑
i=1

d̃i(x)

βi
.

Note that points ending up in 0 under the forward orbit of Tβ will have a finite greedy
expansion. The error made by its convergent will be 0 at some point. For these points
the quasi greedy expansion does a worse job in converging and there will always remain
an error. For the quasi greedy expansion of 1 we write α(β) :=

(
d̃n(1)

)
n≥1

. Let us

now define the lexicographical ordering on sequences in {0, 1, . . . , bβc}N. For two
sequences (xi), (yi) ∈ {0, 1, . . . , bβc}N we write (xi) ≺ (yi) or (yi) � (xi) if x1 < y1, if
or there is an integer m ≥ 2 such that xi = yi for all i < m and xm < ym. Moreover,
we say (xi) 4 (yi) or (yi) < (xi) if (xi) ≺ (yi) or (xi) = (yi). We can use this ordering
and α(β) to prescribe which sequences are allowed in the β-expansion of any x ∈ [0, 1].
Due to Parry [88] we have that

Σβ = {(xi) ∈ {0, 1, . . . , bβc}N : σn((xi)) ≺ α(β) for all n ≥ 0}

is the set of all sequences that can occur as a β-expansion of some x ∈ [0, 1]. Here σ
denotes the shift, i.e. σ((xi)) = (xi+1). Not every sequence in (N ∪ {0})N can occur
as a quasi greedy expansion for some β. We have the following characterisation.

Theorem 1.1.13 (Komornik and Loreti [61]). A sequence (ai) ∈ (N ∪ {0})N is
a quasi greedy expansion of 1 for some β if and only if

0 ≺ an+1an+2 . . . 4 a1a2 . . . for all n ≥ 0.

In Chapter 5 there will be a constant interplay between the symbolic space Σβ and the
space [0, 1]. We proceed by explaining the other terms in the title of this dissertation:
entropy, matching and holes.

10
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§1.2 Explaining the terms in the title

§1.2.1 Entropy
In this section we explain what entropy is. For any dynamical system (Ω,F , µ, T ) the
entropy is defined in the following way.

Definition 1.2.1 (Entropy of a partition). Let γ be a countable partition of Ω,
i.e a collection of pairwise disjoint (µ-measurable) sets such that their union is Ω up
to a µ-measure 0 set. The entropy of the partition is given by

hµ(γ, T ) = −
∑
γi∈γ

µ(γi) log(γi).

where 0 log(0) = 0.

Definition 1.2.2 (Entropy). We define the entropy of T by

hµ(T ) := sup
γ
hµ(γ, T )

where we take the supremum over all countable partitions.

Observe that different measures give different values for h. Often one is interested in

sup
µ: µ is invar.

hµ(T )

and whether this value is attained for a certain measure. If so, this measure is called
measure of maximal entropy. Intuitively the entropy of a system tells you something
about the amount of randomness in a system. It is worth mentioning that entropy
did not only show its importance in mathematics but also in fields like interactive
particle systems [75] and information theory [25].

Unfortunately, the definition is not very helpful for applications since you have to
take the supremum over all partitions. Fortunately, there are other ways to calculate
the entropy. For the first method we need the notion of a generator. This generator
will be a partition attaining the supremum (if it is finite). First we define

γ1

∨
γ2 = {Ai ∩Bj : Ai ∈ γ1, Bj ∈ γ2}

which allows us to define

γmn =

m∨
k=n

T−kγ

for any n,m ∈ Z. Now we can define a generator.

Definition 1.2.3 (Generator). Let σ
(∨∞

i=−∞ T−iγ
)
be the smallest σ-algebra con-

taining all the partitions γmn . Then γ is called a generator w.r.t. T if σ
(∨∞

i=−∞ T−iγ
)

=

F .

11
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1 This leads us to a powerful theorem from 1959.

Theorem 1.2.4 (Kolmogorov and Sinai [59, 101]). If γ is a finite or countable
generator for T with h(γ, T ) <∞, then hµ(T ) = hµ(γ, T ).

We also have an existence theorem.

Theorem 1.2.5 (Krieger [67]). If T is an ergodic measure preserving transforma-
tion with hµ(T ) <∞, then T has a finite generator.

Note that, once we have a finite generator, we can calculate the entropy of the partition
by taking a finite sum. It also gives a certificate that there are no other partitions
giving a higher value. Therefore we find the entropy. A generator that works for
continued fractions is the family {∆(k) = {x : b 1

xc = k}}.

There are other ways to calculate the entropy. A theorem of Shannon, McMillan,
Breiman and Chung uses any finite or countable partition. By applying it to a gener-
ator, the theorem can easily be used to find the entropy of the system. Let An(x) be
the unique element of

∨n−1
i=0 T

−iγ such that x ∈ An(x). Then we have the following
theorem.

Theorem 1.2.6 (Shannon-McMillan-Breiman-Chung). Let γ be a countable par-
tition of X with hµ(γ, T ) <∞ then for almost every x ∈ X we have

lim
n→∞

− 1

n
log (µ(An(x))) = hµ(γ, T ).

This theorem gives us the following insight in the setting of number expansions. If
we let γ be the collection of cylinder sets of length 1 then An(x) is the set of x
starting with the same n digits. Intuitively, the faster An(x) shrinks the faster you
gain information about x and the higher the entropy. So if An(x) shrinks fast we
expect the convergents of x to converge to x fast. For continued fractions the bound
on the convergence is given in terms of qn(x) so we might expect to find a formula
for the entropy in terms of qn(x) as well which is indeed the case.

Lemma 1.2.7 (Entropy formula [72]). Let T be the Gauss map. For almost all
x ∈ [0, 1] we have

hµ(T ) = 2 lim
n→∞

1

n
|log(qn(x))| . (1.2.1)

Actually, in [72] the right-hand side is calculated and equals π2

6 which later turned
out to be the entropy of the Gauss map with respect to the Gauss measure. This
holds in a slightly more general setting which we will prove in Chapter 3. In case the
ergodic system satisfies the Rényi’s condition (which is true in the case of continued
fractions, β-expansions and other expansions considered in this dissertation) we can
use the following formula found by Rohlin [96]:

hµ(T ) =

∫
Ω

log |T ′(x)| dµ. (1.2.2)

12
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For a certain class of infinite systems this formula also holds (see [106] for example).
This formula is very helpful since, once we have the density, we only need to integrate.
Another way of calculating the entropy is by using Birkhoff’s Theorem with a suitable
f which in this case gives us

1

n

n∑
i=1

log |T ′
(
T i(x)

)
| →

∫
log |T ′(x)| dµ as n→∞.

This formula is very useful for simulation, since we do not need the density. On the
other hand, we do not obtain the density either.

The entropy of two isomorphic systems is equal (for the proof see [29]). The use of
entropy is showcased in a paper of Ornstein, where he proved that Bernoulli shifts
with equal entropy are isomorphic [87]. The entropy is also equal for a non-invertible
system and its natural extension [10]. Furthermore, for a family of continued fractions
(α-continued fractions with a corresponding family of mappings Tα where α ∈ [0, 1]) it
is shown in [65] that the product of the entropy of the dynamical system corresponding
to Tα and the (non-normalised) measure of the domain of the natural extension is π2

6 .

The notion of entropy is present in every chapter of this dissertation. Since in
Chapter 2 infinite ergodic theory is studied, we will introduce Krengel entropy which
is calculated through (1.2.2). In Chapter 3 and 4 entropy is studied as a function of
a parameter (for each different value of the parameter one has a different system). In
Chapter 5 we will introduce the notion of topological entropy.

§1.2.2 Matching
The concept of matching is relatively simple but often has big implications. Definitions
vary from article to article as well as the name. The same phenomenon goes under
the name of cycle property and synchronisation property. For a piecewise continuous
map T we define the right and left limit of a point c as

T (c+) := lim
x↓c

T (x), T (c−) := lim
x↑c

T (x).

We will use the definition as in [12].

Definition 1.2.8 (Matching). Let T : Ω → Ω be a piecewise continuous map. We
say that the matching condition holds for T if for all discontinuity points c we have
that there are N,M ∈ N such that

TN (c+) = TM (c−)

and
(TN )′(c+) = (TM )′(c−).

The integers N,M are called matching exponents of the discontinuity point c.

13
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1 Note that for piecewise linear mappings, the condition on the derivatives ensures that

points in the neighbourhood of c+ and c− also match, i.e. there exists δ > 0 such
that for all ε ∈ (−δ, δ) we have TN (c+ + ε) = TM (c− + ε). For continued fraction
expansions it is a necessary but not sufficient condition. At first sight it is not clear
whether this is useful to study. Still it showed its uses in various articles in various
ways. Often a family of mappings {Tα} is studied. Matching of the discontinuities
can have implications for the behaviour of an observable. For example, entropy as
a function of α for several families of continued fractions is studied in [54, 56, 84].
Particularly, entropy is monotonic on matching intervals (see Chapter 3 for more de-
tails). In Chapter 3 we study a family for which matching holds almost everywhere.
In Chapter 4 we will also encounter matching where it implies that the entropy is
constant. Though, the way it is used in the proof is different from the others. It is
proved that for parameters from a specific matching interval the corresponding sys-
tems are isomorphic. Also the natural extension comes into play. In Chapter 2 we
study matching and natural extensions for a family of continued fraction transform-
ations related to an infinite ergodic system. Interestingly, it does not seem to affect
the entropy in the way it does for the other continued fraction systems studied.

A family related to the β-transformations is the so called generalised β-transformation
which is given by Tα,β : [0, 1] → [0, 1] with Tα,β(x) = βx+ α mod 1. For a family of
parameters β it is shown that matching holds for almost every α (see [11]).

§1.2.3 Holes and expansions
Up to now we looked at closed dynamical systems. That is, we had a quadruple
(Ω,B, µ, T ) with T : Ω → Ω. We can make the system open by assigning a hole
H ⊂ Ω. Through this hole mass will leak out by iterating T . We are interested in
those points that never fall into the hole.

Definition 1.2.9 (Survivor set). The set

S(H) := {x ∈ Ω : Tn(x) 6∈ H for all n ∈ N}

is called the survivor set of hole H.

For any ergodic system we have that if µ(H) > 0 then µ(S(H)) = 0. In case that µ is
equivalent to the Lebesgue measure λ, we find that λ(S(H)) = 0. Therefore we need
a different tool to study the size of S(H). To do so we use Hausdorff dimension which
we denote by dimH . For the definition of Hausdorff dimension see [39]. Though,
to compute the Hausdorff dimension by using the definition directly can be slightly
cumbersome. What often is done to get dimensional results is to relate the set one is
interested in to a set of which the dimension is already known. The following lemma
helps to achieve this.

Lemma 1.2.10 (Lipschitz [39]). Let F ⊂ Rn. If f : F → Rm is Lipschitz, then
dimH(f(F )) ≤ dimH(F ). If f is also bi-Lipschitz, then dimH(f(F )) = dimH(F ).
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Several interesting sets pop up as survivor sets when the hole is carefully chosen.
For example, let us look at the system ([0, 1],B, µ, T ) where B is the Borel algebra,
µ the Gauss measure and T the Gauss map. We are interested in the set of all
x ∈ [0, 1] such that the digits of x are bounded, i.e. there exists an N ∈ N such
that di(x) ∈ {1, . . . , N} for all i ∈ N. We find that x satisfies this condition if and
only if x ∈ S

(
(0, 1

N+1 )
)
. If we set BN = S

(
(0, 1

N+1 )
)
then the set BAD = ∪BN is

known as the set of badly approximable numbers. This set is widely studied and has
connections to the famous Littlewood conjecture [46]. For the size of BAD we have
that dimH(BAD) = 1. This is a result of Jarník from 1928 in [52]. In the same paper
he also proved that

1− 1

N log(2)
≤ dimH(BN ) ≤ 1− 1

8N log(N)

for N ≥ 8. For the set BAD a strong property holds which is called α-winning
(see [47]). This property implies that the set has full Hausdorff dimension and persists
through taking intersections, i.e. if A,B are both α-winning then A∩B is α-winning.
Another example of an interesting set is the set of well approximable numbers. Let
KN := {x ∈ [0, 1] : di(x) ≥ N for all i ∈ N} = S

(
( 1
N , 1)

)
. We have good estimates

for the size of KN in the case of N ≥ 20 due to an article of Good from 1941 (see [45]):

1

2
+

1

2 log(N + 2)
< dimH(KN ) <

1

2
+

log(log(N − 1))

2 log(N − 1)
.

In Chapter 3 we will relate our set of interest with KN .

In Chapter 5 we look at holes of the formHa = (0, a) for the greedy β-transformations.
From [47] we have that ∪Ha is α-winning. Let us fix β ∈ (1,∞). For almost every
x ∈ [0, bβcβ−1 ], the greedy β-expansion is not the only representation of x of the form∑∞
i=1

ai
βi . Holes have a connection to the set of x with a unique expansion for a fixed β

(see [30]). On page 9 it is explained that for a fixed β almost every x has uncountably
many expansions. Every time the orbit of the point falls into the switch region one
has a choice. There are points that will never enter the switch region and therefore
have a unique expansion. This is equivalent to stating that, when taking the switch
region ∪1≤i≤bβc[

i
β ,

bβc
β(β−1) + i−1

β ] as a hole, the survivor set will be the set of x with
a unique expansion. For dimensional results on such sets see [43, 62].

§1.3 Statement of results

In Chapter 2 we study continued fractions in the domain of infinite ergodic theory.
The corresponding infinite systems are obtained by flipping part of the branches of
the Gauss map. We study the Krengel entropy, natural extensions and matching.

In Chapter 3 we study another family of continued fractions, namely the Ito Tanaka’s
α-continued fractions. The relation between matching and entropy is shown. The
focus lies on the set for which there is no matching. We characterise this set and
obtain several dimensional results.
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1 In Chapter 4 we study N -expansions. In the first part we also allow flips. For some

cases we were able to find the natural extension and therefore the invariant density.
A numerical method is used which is based on the Gauss-Kuzmin-Lévy Theorem. In
the last part we study matching and entropy.

In Chapter 5 we study β-expansions with a hole around 0. We define Kβ(t) := {x ∈
[0, 1) : Tnβ (x) 6∈ (0, t) for all n ≥ 0} and look at the set Eβ of all parameters t ∈ [0, 1)

for which the set-valued function t 7→ Kβ(t) is not locally constant. We show that
Eβ is a Lebesgue null set of full Hausdorff dimension for all β ∈ (1, 2). Furthermore
we characterise the topological structure of Eβ for any given β ∈ (1, 2].
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