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CHAPTER 1
Introduction

In this dissertation, the main topic is representations of numbers in relation to match-
ing, entropy and holes. In this chapter, we first briefly discuss the representations that
are studied in this dissertation. This is followed by a section in which we introduce
the basic definitions used in dynamical systems and ergodic theory. This is done by
means of the regular continued fraction. Other representations which we study are
β-expansions. These are explained in the section thereafter. In the last part of the
introduction we explain the words in the title and elaborate more on what to find in
which chapter.
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1 §1.1 Representing numbers

In general we express one number by using others. There is a family of numbers
which we know how to use because we use them to count: the natural numbers. The
numbers of the set B := { 1

n : n ∈ N}1 are also natural to use and, since the n-fold
of them equals 1, they are still related to counting. Now suppose we have a number
x between 0 and 1. We try to express x using these numbers. If x 6∈ B we can only
approximate x by a number 1

n such that the error is small. If we want to express x
with elements from B without an error we should not stop here but continue! We can
do two things. Either write x = 1

n + ε or x = 1
n+ε for some ε > 0. We can proceed

with ε and find an m ∈ N such that ε is close to 1
m and continue in this manner. The

first case corresponds to Lüroth expansions which are introduced in [78] and widely
studied thereafter (see for example [6, 40, 51]). Our interest lies in the second way
which leads to continued fractions. We obtain a continued fraction expansion for x
by using the Gauss map T : [0, 1]→ [0, 1] which is defined by

T (x) =
1

x
−
⌊

1

x

⌋

for x 6= 0 and T (0) = 0, see Figure 1.1. Let the digits be defined as d1(x) = b 1
xc and

dn(x) = d1

(
Tn−1(x)

)
for n > 1.

0 1

1

1
2

1
3

1
4

1
5

· · ·

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................

Figure 1.1: The Gauss map.

1In this dissertation 0 is not included in the set of natural numbers.
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For x ∈ [0, 1] we find

x =
1

d1(x) + T (x)
=

1

d1(x) +
1

d2(x) + T 2(x)

=
1

d1(x) +
1

d2(x) +
1

d3(x) +
. . .

with dn ∈ N. We can write this in short notation as x = [0; d1, d2, d3, . . .]. Examples of
such expansions are e− 2 = [0; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .] or

√
2− 1 = [0; 2, 2, 2, . . .].

Any x ∈ (0, 1] has such an expansion. For rational numbers one finds a finite continued
fraction and for irrational numbers one finds an infinite continued fraction. For con-
vergence and other basic properties of this representation see [29]. In Chapter 2, 3
and 4 variations of T will be studied.

Suppose that, instead of taking the natural numbers as a given, we take a value 1
β

with β > 1. Now we approximate numbers in [0, 1] by numbers of the form m
βn so

that x = m
βn + ε with n,m ∈ N. We do this in the following way. We first pick the

smallest n ∈ N such that 1
βn < x and then we take m ∈ {1, . . . , bβxc} maximal such

that m
βn < x. Then we procceed the procedure applied on ε = x − m

βn . We can do
this dynamically with the function Tβ : [0, 1] → [0, 1] defined by Tβ(x) = βx− bβxc.
For an example see Figure 1.2. Now we set d1(x) = bβxc and dn = d1

(
Tn−1(x)

)
for

n > 1. This give us

x =
d1(x) + Tβ(x)

β
=
d1(x)

β
+
d2(x) + T 2

β (x)

β2
=
d1(x)

β
+
d2(x)

β2
+
d3(x)

β3
+ . . . .

Convergence of this representation is immediately clear since, when taking the first n
digits, we are at most 1

βn away from x. The β-expansions are studied in Chapter 5.
In Section 5.6.1 we see some relation to continued fractions.

§1.1.1 Continued fractions
In this section we introduce some basic notions and results concerning continued
fractions. Along the way we encounter concepts that are prominent in ergodic theory.
Because of the introductory nature of this section, all the results presented in this
section can also be found in [29]. Let x ∈ (0, 1) with

x =
1

d1 +
1

d2 +
1

d3 +
. . .

.

We define the nth convergent of x as

cn =
pn
qn

=
1

d1 +
1

d2 +
1

. . . +
1

dn

.

3
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Figure 1.2: The β-transformation with β = 3.76.

For pn and qn we have the following recurrence relations

p−1 := 1; p0 := 0; pn = dnpn−1 + pn−2, n ≥ 1,
q−1 := 0; q0 := 1; qn = dnqn−1 + qn−2, n ≥ 1.

The fact that limn→∞ cn = x follows from∣∣∣∣x− pn
qn

∣∣∣∣ ≤ 1

q2
n

(1.1.1)

and the fact that the sequence (qn)n∈N grows exponentially fast. A classical moti-
vation to study continued fractions comes from approximation theory also known as
Diophantine approximation. This name stems from Diophantus of Alexandria, who
lived around AD 250. Let x ∈ [0, 1] and suppose that we want to find rationals p

q such
that |x − p

q | is small. Of course for q large one can probably do better. Therefore it
is natural to make |x− p

q | small relative to q. Hurwitz proved the following theorem
in 1891.

Theorem 1.1.1 (Hurwitz [49]). For every irrational number x there exist infi-
nitely many pairs of integers p and q, such that∣∣∣∣x− p

q

∣∣∣∣ ≤ 1√
5

1

q2
. (1.1.2)

The constant 1√
5
is the best possible, i.e. for every ε > 0 there are x such that there

are only finitely many pairs of integers p and q such that the inequality holds when
replacing 1√

5
by 1√

5
− ε.

To be able to find such pairs one can look at the convergents of x. This is displayed
by a theorem of Borel from 1903.

4
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Theorem 1.1.2 (Borel). Let n ≥ 1 and let pn−1

qn−1
, pnqn and pn+1

qn+1
be three consecutive

continued fraction convergents of the irrational number x. Then at least one of these
convergents satisfies (1.1.2).

There also exists a theorem that states that, when a rational approximates x well, it
is a convergent of x. This was shown by Legendre in 1798.

Theorem 1.1.3 (Legendre [70]). Let p and q be two integers that are co-prime
with q > 0. Furthermore, let x ∈ (0, 1] and suppose that

∣∣∣x− p
q

∣∣∣ ≤ 1
2q2 . Then p

q is a
convergent of x.

For a refinement of this theorem see Barbolosi, Jager 1994 [5]. Looking at the recur-
rence relations and (1.1.1) we can see that the higher the digits of x are, the faster
the continued fraction converges to x. For a given x ∈ (0, 1] we can simply calculate
the convergents. However, we would like to make statements about typical points x
i.e. statements that hold for almost all x ∈ (0, 1]. This is where ergodic theory comes
into play. The word ergodic originates from the words ergon and odos which mean
work and path respectively in Greek. Ergodic theory was used by physicists before
mathematicians picked up on it in the 1930s and 1940s (from [29]). Let us first define
what a dynamical system is and then give the definition of ergodicity.

Definition 1.1.4 (Dynamical system). A dynamical system is a quadruple
(X,F , µ, T ) where X is a non-empty set, F is a σ-algebra on X, µ is a probability
measure on (X,F) and T : X → X is a surjective transformation such that the
measure µ is T -invariant i.e. for all A ∈ F we have µ(T−1(A)) = µ(A). Furthermore,
if T is also injective we call (X,F , µ, T ) an invertible dynamical system.

When dropping the condition of a probability measure and allowing the space to have
an infinite measure one enters the realm of infinite ergodic theory which is studied in
Chapter 2. In any case ergodic theory is characterised by ergodicity.

Definition 1.1.5 (Ergodicity). Let (X,F , µ, T ) be a dynamical system. Then T is
called ergodic if for every µ-measurable set A satisfying T−1(A) = A one has µ(A) = 0

or µ(Ac) = 0.

This means that, when iterating points, they will go from everywhere to everywhere
and the state space X cannot be divided into subsets X1, X2 with both positive
measure such that T (X1) ⊂ X1 and T (X2) ⊂ X2. It is natural to wonder when two
dynamical systems can be called the same. We say such maps are isomorphic.

Definition 1.1.6 (Isomorphic). Two dynamical systems (X,F , µ, T ) and (Y, C, ν, S)

are isomorphic if there exists a map θ : X → Y with the following properties.

• θ is bijective almost everywhere. By this we mean that, if we remove a suitable
set NX ⊂ X with µ(NX) = 0 and a suitable set NY ⊂ Y with ν(NY ) = 0 then
θ : X\NX → Y \NY is a bijection.

• θ is bi-measurable, i.e. θ(F ) ∈ C, for all F ∈ F and θ−1(C) ∈ F , for all C ∈ C.

5
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• θ preserves the dynamics, i.e. θ ◦ T = S ◦ θ.

Before stating what we mean by “for almost all” we give the definition of the Lebesgue
measure and the definition of an absolutely continuous measure.

Definition 1.1.7 (Lebesgue measure). Let [a, b] be an interval on the real line.
The Borel σ-algebra is the σ-algebra generated by open intervals. The Lebesgue meas-
ure λ is the measure such that λ((c, d)) = d− c for all open intervals (c, d) ⊂ [a, b].

The Lebesgue measure is the only measure that is translation invariant. All measures
studied in this dissertation are equivalent to Lebesgue. These kinds of measures
are considered to be physically most relevant because they describe the statistical
properties of forward orbits of a set of points with positive Lebesgue measure.

Definition 1.1.8 (Absolutely continuous and equivalence of measures). Let
(X,F) be a measurable space and µ, ν two measures on this space. The measure µ
is absolutely continuous with respect to measure ν if ν(A) = 0 implies µ(A) = 0.
Furthermore, if also ν is absolutely continuous with respect to measure µ we say that
the measures are equivalent.

Equivalence implies that if ν(A) = 1 then µ(A) = 1 whenever ν and µ are probability
measures. With for “almost all x ∈ X” we mean with probability 1. One can see
that it does not matter whether we use measure µ or ν for this statement when µ

is absolutely continuous with respect to ν. This way “for almost all” (or for almost
every) x means with respect to Lebesgue in this dissertation.

Now that we know what for almost all means we can state a theorem by Paul Lévy
from 1929 that gives us the speed at which qn grows for almost all x ∈ [0, 1].

Theorem 1.1.9 (Lévy [72]). For almost all x ∈ [0, 1] one has

lim
n→∞

1

n
log(qn) =

π2

12 log(2)
.

The fact that invariant measures are useful follows from what is the most important
theorem of the field.

Theorem 1.1.10 (The Ergodic Theorem / Birkhoff’s Theorem).
Let (X,F , µ) be a probability space and T : X → X such that µ is T -invariant. Then
for any f ∈ L1(µ),

lim
n→∞

1

n

n−1∑
i=1

f ◦ T i(x) = f∗(x)

exists almost everywhere and
∫
X
fdµ =

∫
X
f∗dµ. If moreover T is ergodic, then f∗

is constant almost everywhere and f∗ =
∫
X
fdµ.

6
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This theorem is often heuristically phrased as “time average is space average” and has
been proved by G.D Birkhoff in 1931 (see [8]). A question that arises is whether we
can find an invariant measure for the Gauss map. The answer is yes. An invariant
measure was found by Gauss in 1800. Note that this was way before most tools in
ergodic theory were developed. The measure µ found by Gauss is called the Gauss
measure and is given by

µ(A) =
1

log(2)

∫
A

1

1 + x
dλ(x).

An example of what one can do with this invariant measure and Birkhoff’s Theorem
is to calculate frequencies of digits for typical numbers. Let freq(i) be defined as

freq(i) := lim
n→∞

# digits of x equal to i in the first n digits
n

.

Let us also define cylinders (of order n)

∆(a1, . . . an) = {x ∈ [0, 1] : d1(x) = a1, d2(x) = a2, . . . , dn(x) = an}.

Note that whenever dn(x) = i that Tn−1(x) ∈ ∆(i) and that ∆(i) = {x ∈ [0, 1] :

d1(x) = b 1
xc = i} = ( 1

i+1 ,
1
i ]. Since the map T is ergodic with respect to µ and µ is

invariant for T , we can apply the Ergodic Theorem with f = 1∆(i) giving

freq(i) = lim
n→∞

1

n

n−1∑
i=1

f ◦ T i(x) =
1

log(2)

∫
∆(i)

1

1 + x
dx = µ(∆(i)).

The frequencies of digits where found by Paul Lévy in 1929 (see [72]) and are given
by

freq(i) = µ(∆(i)) =
1

log(2)
log

(
1 +

1

i(i+ 2)

)
.

Remarkably one can find the Gauss measure through a limit of the Lebesgue measure.
This is shown by the Gauss-Kuzmin-Lévy Theorem. This theorem states that the
Lebesgue measure of the pre-images of a measurable set A will converge to the Gauss
measure i.e.

λ
(
T−n(A)

)
→ µ(A) as n→∞. (1.1.3)

This was stated as a hypothesis by Gauss in his mathematical diary in 1800 and
proved by Kuzmin in 1928 who also obtained a bound on the speed of convergence.
Independently, Lévy proved the same theorem in 1929 but found a sharper bound for
the speed of convergence namely |λ (T−n(A))−µ(A)| = O(qn) with 0 < q < 1 instead
of O(q

√
n) which is the bound Kuzmin found. In [99] it is shown that (1.1.3) holds

for a family of mappings T . In Chapter 4 we will base a numerical method on this
theorem to get good estimates on invariant measures for other maps.

A very powerful tool in ergodic theory is that of a natural extension. The idea
behind it is that you make a non-invertible system into an invertible one by adding
dimensions. For the invertible system it can be easier to guess the invariant measure.
Then one can find the invariant measure of the original system by projecting it.

7
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1 Definition 1.1.11 (Natural Extension). Let (X,F , µ, T ) be a dynamical system

with T a non-invertible transformation. An invertible dynamical system (Y, C, ν, S) is
called a natural extension of (X,F , µ, T ) if there exist two sets F ∈ F and C ∈ C and
a function θ : C → F , such that the following properties hold.

• µ(X\F ) = ν(Y \C) = 0,

• T (F ) ⊂ F and S(C) ⊂ C,

• θ is measurable, measure preserving and surjective,

• (θ ◦ S)(y) = (T ◦ θ)(y) for all y ∈ C,

•
∨∞
k=0 S

kθ−1(F) = C where
∨∞
k=0 S

kθ−1(F) is the smallest σ-algebra containing
all σ-algebras Skθ−1(F).

Natural extensions are unique up to isomorphism and therefore we can speak of the
natural extension. Let Ω = [0, 1]× [0, 1]. The natural extension of the Gauss map is
given by T : Ω→ Ω with

T (x, y) :=

(
T (x),

1

d1(x) + y

)
, (x, y) ∈ Ω.

The natural extension captures information about the future in the first dimension
and of the past in the second. The following theorem gives us the invariant measure
as well as ergodicity for the natural extension of the Gauss map.

Theorem 1.1.12 (Ito, Nakada, Tanaka [82, 83]). Let µ̄ be the measure given by

µ̄(A) =
1

log(2)

∫
A

1

(1 + xy)2
dλ(x)

then µ̄ is an invariant probability measure for T . Furthermore, the dynamical system
(Ω,B, µ̄, T ) where B is the Borel σ-algebra, is an ergodic system.

The natural extension is also used in approximation theory to get information about
the quality of convergents (see [29] and the references therein). We will use the concept
of natural extensions in Chapter 2 and 4.

Another notion that can be useful is that of an induced transformation. Let (X,F , µ, T )

be dynamical system and pick A ⊂ X such that µ(A) > 0. Let n(x) := inf{n ≥ 1 :

Tn(x) ∈ A}. By the Poincare Recurrence Theorem we have that the set of x for
which n(x) =∞ has zero measure. We remove this set from A and define the induced
transformation TA : A→ A as

TA(x) = Tn(x)(x) for all x ∈ A.

8
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§1.1.2 β-expansions
In the previous section we have seen how to write a number in its continued fraction
expansion. In this section we shed light upon β-expansions. These are derived from
a much simpler map Tβ : [0, 1]→ [0, 1] with Tβ(x) = βx− bβxc with β ∈ (1,∞). Fix
x ∈ [0, 1] and set d1(x) = bβxc and dn(x) = d1(Tn−1

β (x)) for n > 1. Then for x we
find

x =

∞∑
i=1

di(x)

βi
.

In this case we define the convergents as cn =
∑n
i=1

di
βi . The convergence rate is given

by |x− cn| ≤ 1
βn . Note that whenever x has long sequences of zeros in its expansion

there are cn that are fairly close to x relative to n. On the other hand, the sequence
(di(x)) is not the only sequence that will give convergence to x. We see that high
digits result in better convergents. Since we always use the highest digit possible by
taking bβxc, the map Tβ is known as the greedy β-transformation (introduced by
Rényi in 1957 [95]). When instead of always taking the highest digit possible one
would always take the lowest, one finds the lazy β-expansion. Fix β ∈ (1,∞) and
define S = ∪1≤i≤bβc[

i
β ,

bβc
β(β−1) + i−1

β ]. The map used to find a lazy β-expansion is
given by Lβ(x) = Tβ(x) for x 6∈ S and Lβ(x) = Tβ(x) + 1 for x ∈ S. The set S is also
called the switch region. By superimposing the two maps one can choose which of
the maps to use once the orbit of x falls into a switch region (see Figure 1.3). When
choosing to iterate over the lazy map one will find that the digit will be one lower
than when picking the greedy one. This gives us for almost every x uncountably many
expansions. For references on lazy β-expansions see [30, 38, 60] and for a mix of lazy
and greedy [26, 31].

0 1
β−1

1
β−1

1
β

1
β(β−1)
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Figure 1.3: The lazy and greedy β-transformation with β = 1.85.
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1 It is proven that the system Tβ is ergodic with respect to the invariant measure

found by Gelfond in 1959 and Parry in 1960 independently (see [42] and [88]). The
probability measure has density

fβ(x) =
1

C(β)

∞∑
n=0

1

βn
1[0,Tnβ (1))(x)

where C(β) =
∫ 1

0

∑∞
n=0

1
βn1[0,Tnβ (1))(x)dx is a normalising constant. This measure is

the unique measure of maximal entropy (see Section 1.2.1 for more details). What
plays a crucial role in the study of β-expansions is the quasi greedy expansion of 1. Let
us first explain what a quasi greedy expansion is. Define the map T̃β(x) = Tβ(x) for
all x with Tβ(x) 6= 0 and T̃β(x) = 1 whenever x 6= 0 and Tβ(x) = 0. Set d̃1(x) = d1(x)

for Tβ(x) 6= 0 and d̃1(x) = d1(x) − 1 whenever x 6= 0 and Tβ(x) = 0. Furthermore,
let d̃n(x) = d̃1(T̃n−1

β (x)) for n > 1. The quasi greedy expansion of x is given by

x =

∞∑
i=1

d̃i(x)

βi
.

Note that points ending up in 0 under the forward orbit of Tβ will have a finite greedy
expansion. The error made by its convergent will be 0 at some point. For these points
the quasi greedy expansion does a worse job in converging and there will always remain
an error. For the quasi greedy expansion of 1 we write α(β) :=

(
d̃n(1)

)
n≥1

. Let us

now define the lexicographical ordering on sequences in {0, 1, . . . , bβc}N. For two
sequences (xi), (yi) ∈ {0, 1, . . . , bβc}N we write (xi) ≺ (yi) or (yi) � (xi) if x1 < y1, if
or there is an integer m ≥ 2 such that xi = yi for all i < m and xm < ym. Moreover,
we say (xi) 4 (yi) or (yi) < (xi) if (xi) ≺ (yi) or (xi) = (yi). We can use this ordering
and α(β) to prescribe which sequences are allowed in the β-expansion of any x ∈ [0, 1].
Due to Parry [88] we have that

Σβ = {(xi) ∈ {0, 1, . . . , bβc}N : σn((xi)) ≺ α(β) for all n ≥ 0}

is the set of all sequences that can occur as a β-expansion of some x ∈ [0, 1]. Here σ
denotes the shift, i.e. σ((xi)) = (xi+1). Not every sequence in (N ∪ {0})N can occur
as a quasi greedy expansion for some β. We have the following characterisation.

Theorem 1.1.13 (Komornik and Loreti [61]). A sequence (ai) ∈ (N ∪ {0})N is
a quasi greedy expansion of 1 for some β if and only if

0 ≺ an+1an+2 . . . 4 a1a2 . . . for all n ≥ 0.

In Chapter 5 there will be a constant interplay between the symbolic space Σβ and the
space [0, 1]. We proceed by explaining the other terms in the title of this dissertation:
entropy, matching and holes.
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§1.2 Explaining the terms in the title

§1.2.1 Entropy
In this section we explain what entropy is. For any dynamical system (Ω,F , µ, T ) the
entropy is defined in the following way.

Definition 1.2.1 (Entropy of a partition). Let γ be a countable partition of Ω,
i.e a collection of pairwise disjoint (µ-measurable) sets such that their union is Ω up
to a µ-measure 0 set. The entropy of the partition is given by

hµ(γ, T ) = −
∑
γi∈γ

µ(γi) log(γi).

where 0 log(0) = 0.

Definition 1.2.2 (Entropy). We define the entropy of T by

hµ(T ) := sup
γ
hµ(γ, T )

where we take the supremum over all countable partitions.

Observe that different measures give different values for h. Often one is interested in

sup
µ: µ is invar.

hµ(T )

and whether this value is attained for a certain measure. If so, this measure is called
measure of maximal entropy. Intuitively the entropy of a system tells you something
about the amount of randomness in a system. It is worth mentioning that entropy
did not only show its importance in mathematics but also in fields like interactive
particle systems [75] and information theory [25].

Unfortunately, the definition is not very helpful for applications since you have to
take the supremum over all partitions. Fortunately, there are other ways to calculate
the entropy. For the first method we need the notion of a generator. This generator
will be a partition attaining the supremum (if it is finite). First we define

γ1

∨
γ2 = {Ai ∩Bj : Ai ∈ γ1, Bj ∈ γ2}

which allows us to define

γmn =

m∨
k=n

T−kγ

for any n,m ∈ Z. Now we can define a generator.

Definition 1.2.3 (Generator). Let σ
(∨∞

i=−∞ T−iγ
)
be the smallest σ-algebra con-

taining all the partitions γmn . Then γ is called a generator w.r.t. T if σ
(∨∞

i=−∞ T−iγ
)

=

F .

11
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Theorem 1.2.4 (Kolmogorov and Sinai [59, 101]). If γ is a finite or countable
generator for T with h(γ, T ) <∞, then hµ(T ) = hµ(γ, T ).

We also have an existence theorem.

Theorem 1.2.5 (Krieger [67]). If T is an ergodic measure preserving transforma-
tion with hµ(T ) <∞, then T has a finite generator.

Note that, once we have a finite generator, we can calculate the entropy of the partition
by taking a finite sum. It also gives a certificate that there are no other partitions
giving a higher value. Therefore we find the entropy. A generator that works for
continued fractions is the family {∆(k) = {x : b 1

xc = k}}.

There are other ways to calculate the entropy. A theorem of Shannon, McMillan,
Breiman and Chung uses any finite or countable partition. By applying it to a gener-
ator, the theorem can easily be used to find the entropy of the system. Let An(x) be
the unique element of

∨n−1
i=0 T

−iγ such that x ∈ An(x). Then we have the following
theorem.

Theorem 1.2.6 (Shannon-McMillan-Breiman-Chung). Let γ be a countable par-
tition of X with hµ(γ, T ) <∞ then for almost every x ∈ X we have

lim
n→∞

− 1

n
log (µ(An(x))) = hµ(γ, T ).

This theorem gives us the following insight in the setting of number expansions. If
we let γ be the collection of cylinder sets of length 1 then An(x) is the set of x
starting with the same n digits. Intuitively, the faster An(x) shrinks the faster you
gain information about x and the higher the entropy. So if An(x) shrinks fast we
expect the convergents of x to converge to x fast. For continued fractions the bound
on the convergence is given in terms of qn(x) so we might expect to find a formula
for the entropy in terms of qn(x) as well which is indeed the case.

Lemma 1.2.7 (Entropy formula [72]). Let T be the Gauss map. For almost all
x ∈ [0, 1] we have

hµ(T ) = 2 lim
n→∞

1

n
|log(qn(x))| . (1.2.1)

Actually, in [72] the right-hand side is calculated and equals π2

6 which later turned
out to be the entropy of the Gauss map with respect to the Gauss measure. This
holds in a slightly more general setting which we will prove in Chapter 3. In case the
ergodic system satisfies the Rényi’s condition (which is true in the case of continued
fractions, β-expansions and other expansions considered in this dissertation) we can
use the following formula found by Rohlin [96]:

hµ(T ) =

∫
Ω

log |T ′(x)| dµ. (1.2.2)

12
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For a certain class of infinite systems this formula also holds (see [106] for example).
This formula is very helpful since, once we have the density, we only need to integrate.
Another way of calculating the entropy is by using Birkhoff’s Theorem with a suitable
f which in this case gives us

1

n

n∑
i=1

log |T ′
(
T i(x)

)
| →

∫
log |T ′(x)| dµ as n→∞.

This formula is very useful for simulation, since we do not need the density. On the
other hand, we do not obtain the density either.

The entropy of two isomorphic systems is equal (for the proof see [29]). The use of
entropy is showcased in a paper of Ornstein, where he proved that Bernoulli shifts
with equal entropy are isomorphic [87]. The entropy is also equal for a non-invertible
system and its natural extension [10]. Furthermore, for a family of continued fractions
(α-continued fractions with a corresponding family of mappings Tα where α ∈ [0, 1]) it
is shown in [65] that the product of the entropy of the dynamical system corresponding
to Tα and the (non-normalised) measure of the domain of the natural extension is π2

6 .

The notion of entropy is present in every chapter of this dissertation. Since in
Chapter 2 infinite ergodic theory is studied, we will introduce Krengel entropy which
is calculated through (1.2.2). In Chapter 3 and 4 entropy is studied as a function of
a parameter (for each different value of the parameter one has a different system). In
Chapter 5 we will introduce the notion of topological entropy.

§1.2.2 Matching
The concept of matching is relatively simple but often has big implications. Definitions
vary from article to article as well as the name. The same phenomenon goes under
the name of cycle property and synchronisation property. For a piecewise continuous
map T we define the right and left limit of a point c as

T (c+) := lim
x↓c

T (x), T (c−) := lim
x↑c

T (x).

We will use the definition as in [12].

Definition 1.2.8 (Matching). Let T : Ω → Ω be a piecewise continuous map. We
say that the matching condition holds for T if for all discontinuity points c we have
that there are N,M ∈ N such that

TN (c+) = TM (c−)

and
(TN )′(c+) = (TM )′(c−).

The integers N,M are called matching exponents of the discontinuity point c.

13
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1 Note that for piecewise linear mappings, the condition on the derivatives ensures that

points in the neighbourhood of c+ and c− also match, i.e. there exists δ > 0 such
that for all ε ∈ (−δ, δ) we have TN (c+ + ε) = TM (c− + ε). For continued fraction
expansions it is a necessary but not sufficient condition. At first sight it is not clear
whether this is useful to study. Still it showed its uses in various articles in various
ways. Often a family of mappings {Tα} is studied. Matching of the discontinuities
can have implications for the behaviour of an observable. For example, entropy as
a function of α for several families of continued fractions is studied in [54, 56, 84].
Particularly, entropy is monotonic on matching intervals (see Chapter 3 for more de-
tails). In Chapter 3 we study a family for which matching holds almost everywhere.
In Chapter 4 we will also encounter matching where it implies that the entropy is
constant. Though, the way it is used in the proof is different from the others. It is
proved that for parameters from a specific matching interval the corresponding sys-
tems are isomorphic. Also the natural extension comes into play. In Chapter 2 we
study matching and natural extensions for a family of continued fraction transform-
ations related to an infinite ergodic system. Interestingly, it does not seem to affect
the entropy in the way it does for the other continued fraction systems studied.

A family related to the β-transformations is the so called generalised β-transformation
which is given by Tα,β : [0, 1] → [0, 1] with Tα,β(x) = βx+ α mod 1. For a family of
parameters β it is shown that matching holds for almost every α (see [11]).

§1.2.3 Holes and expansions
Up to now we looked at closed dynamical systems. That is, we had a quadruple
(Ω,B, µ, T ) with T : Ω → Ω. We can make the system open by assigning a hole
H ⊂ Ω. Through this hole mass will leak out by iterating T . We are interested in
those points that never fall into the hole.

Definition 1.2.9 (Survivor set). The set

S(H) := {x ∈ Ω : Tn(x) 6∈ H for all n ∈ N}

is called the survivor set of hole H.

For any ergodic system we have that if µ(H) > 0 then µ(S(H)) = 0. In case that µ is
equivalent to the Lebesgue measure λ, we find that λ(S(H)) = 0. Therefore we need
a different tool to study the size of S(H). To do so we use Hausdorff dimension which
we denote by dimH . For the definition of Hausdorff dimension see [39]. Though,
to compute the Hausdorff dimension by using the definition directly can be slightly
cumbersome. What often is done to get dimensional results is to relate the set one is
interested in to a set of which the dimension is already known. The following lemma
helps to achieve this.

Lemma 1.2.10 (Lipschitz [39]). Let F ⊂ Rn. If f : F → Rm is Lipschitz, then
dimH(f(F )) ≤ dimH(F ). If f is also bi-Lipschitz, then dimH(f(F )) = dimH(F ).
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Several interesting sets pop up as survivor sets when the hole is carefully chosen.
For example, let us look at the system ([0, 1],B, µ, T ) where B is the Borel algebra,
µ the Gauss measure and T the Gauss map. We are interested in the set of all
x ∈ [0, 1] such that the digits of x are bounded, i.e. there exists an N ∈ N such
that di(x) ∈ {1, . . . , N} for all i ∈ N. We find that x satisfies this condition if and
only if x ∈ S

(
(0, 1

N+1 )
)
. If we set BN = S

(
(0, 1

N+1 )
)
then the set BAD = ∪BN is

known as the set of badly approximable numbers. This set is widely studied and has
connections to the famous Littlewood conjecture [46]. For the size of BAD we have
that dimH(BAD) = 1. This is a result of Jarník from 1928 in [52]. In the same paper
he also proved that

1− 1

N log(2)
≤ dimH(BN ) ≤ 1− 1

8N log(N)

for N ≥ 8. For the set BAD a strong property holds which is called α-winning
(see [47]). This property implies that the set has full Hausdorff dimension and persists
through taking intersections, i.e. if A,B are both α-winning then A∩B is α-winning.
Another example of an interesting set is the set of well approximable numbers. Let
KN := {x ∈ [0, 1] : di(x) ≥ N for all i ∈ N} = S

(
( 1
N , 1)

)
. We have good estimates

for the size of KN in the case of N ≥ 20 due to an article of Good from 1941 (see [45]):

1

2
+

1

2 log(N + 2)
< dimH(KN ) <

1

2
+

log(log(N − 1))

2 log(N − 1)
.

In Chapter 3 we will relate our set of interest with KN .

In Chapter 5 we look at holes of the formHa = (0, a) for the greedy β-transformations.
From [47] we have that ∪Ha is α-winning. Let us fix β ∈ (1,∞). For almost every
x ∈ [0, bβcβ−1 ], the greedy β-expansion is not the only representation of x of the form∑∞
i=1

ai
βi . Holes have a connection to the set of x with a unique expansion for a fixed β

(see [30]). On page 9 it is explained that for a fixed β almost every x has uncountably
many expansions. Every time the orbit of the point falls into the switch region one
has a choice. There are points that will never enter the switch region and therefore
have a unique expansion. This is equivalent to stating that, when taking the switch
region ∪1≤i≤bβc[

i
β ,

bβc
β(β−1) + i−1

β ] as a hole, the survivor set will be the set of x with
a unique expansion. For dimensional results on such sets see [43, 62].

§1.3 Statement of results

In Chapter 2 we study continued fractions in the domain of infinite ergodic theory.
The corresponding infinite systems are obtained by flipping part of the branches of
the Gauss map. We study the Krengel entropy, natural extensions and matching.

In Chapter 3 we study another family of continued fractions, namely the Ito Tanaka’s
α-continued fractions. The relation between matching and entropy is shown. The
focus lies on the set for which there is no matching. We characterise this set and
obtain several dimensional results.
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1 In Chapter 4 we study N -expansions. In the first part we also allow flips. For some

cases we were able to find the natural extension and therefore the invariant density.
A numerical method is used which is based on the Gauss-Kuzmin-Lévy Theorem. In
the last part we study matching and entropy.

In Chapter 5 we study β-expansions with a hole around 0. We define Kβ(t) := {x ∈
[0, 1) : Tnβ (x) 6∈ (0, t) for all n ≥ 0} and look at the set Eβ of all parameters t ∈ [0, 1)

for which the set-valued function t 7→ Kβ(t) is not locally constant. We show that
Eβ is a Lebesgue null set of full Hausdorff dimension for all β ∈ (1, 2). Furthermore
we characterise the topological structure of Eβ for any given β ∈ (1, 2].

16



§1.3. Statement of results

C
h
a
pter

1

17





CHAPTER 2
Natural extensions, entropy and

infinite systems

This chapter is based on joint work with Charlene Kalle, Marta Maggioni and Sara
Munday.

Abstract

In this chapter we leave the realm of finite ergodic theory and enter the realm of
the infinite. We introduce a family of mappings {Tα} with α ∈ [0, 1] related to the
Gauss map. This family interpolates between the Gauss map and a map isomorphic
to the backward continued fraction map. For α < 1

2

√
2 we find an explicit expression

of an invariant measure that is absolutely continuous with respect to the Lebesgue
measure. We do so by means of the natural extension. For α ≤

√
5−1
2 we calculate

the Krengel entropy which equals π2

6 . Furthermore, we show that the maps are so
called basic AFN-maps which leads to several nice properties such as the existence of
a weak law of large numbers.
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§2.1 Introduction

In 1981 Nakada introduced a family of continued fraction transformations, now mainly
known as α-continued fraction maps [82]. For each α ∈ [0, 1], one can define the map
Sα : [α− 1, α]→ [α− 1, α] by

Sα(x) =
∣∣∣ 1
x

∣∣∣− ⌊∣∣∣ 1
x

∣∣∣+ 1− α
⌋
.

Let x ∈ [α − 1, α], define ε0(x) = sign(x) and dα,1(x) = b| 1x | + 1 − αc. By setting
dα,n(x) = d1(Snα(x)) and εα,n(x) = ε0(Snα(x)) we find the following expansion for x

x =
ε0(x)

dα,1(x) +
ε1(x)

d2(x) +
εα,2(x)

dα,3(x) +
. . .

.

Nakada studied this type of expansions for α ∈
[

1
2 , 1
]
and in [80] Marmi, Moussa and

Yoccoz extended the study and also included the values α ∈
[
0, 1

2

)
. In [82] Nakada

constructed a natural extension for the maps Sα and gave a thorough analysis of the
map’s metric and ergodic properties for α ∈ [ 1

2 , 1]. For α ∈ [
√

2 − 1, 1
2 ) the natural

extension can be found in [79] and for α ∈ [
√

10−2
3 ,

√
2−1] in [35]. Each of these maps

admits a unique absolutely continuous invariant measure να. Nakada already started
the study of the dependence on α of the entropy of the map Sα with respect to να for
α ∈

[
1
2 , 1
]
. The function mapping α to the metric entropy of Sα with respect to να,

turned out to have a very intricate structure for α ∈ [0, 1
2 ) and has been extensively

studied. See for example [18, 65, 79, 84] and the references therein.

It was shown in [27] that the family of folded α-continued fraction maps Ŝα is a
particular instance of what the authors called D-continued fraction maps. Folded
α-continued fractions are almost the same as α-continued fractions from a metric
point of view. The D-continued fraction maps are variants of the classical Gauss map
T : x 7→ 1

x (mod 1) where one specifies a region D ⊆ [0, 1], such that on [0, 1] \ D
one uses the Gauss map and on D one uses a flipped version of the Gauss map,
F = 1 − T . It is shown that the folded α-continued fraction maps are obtained by
taking D =

⋃
n≥2

(
1
n ,

1
n+α−1

]
.

In this chapter, we consider the natural counterparts of the folded α-continued frac-
tions, which we call flipped α-continued fraction maps. They are obtained by taking
α ∈ [0, 1] and setting

D = Dα =
⋃
n≥1

( 1

n+ α
,

1

n

]
.
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We define Tα : Iα → Iα as

Tα(x) =


1

x
−
⌊

1

x

⌋
if x 6∈ Dα,(

1 +

⌊
1

x

⌋)
− 1

x
if x ∈ Dα

(2.1.1)

where Iα := [min(α, 1 − α), 1]. In terms of the Gauss map T we can define it as
follows. Note that Dα = {x ∈ [0, 1] : T (x) < α} and

Tα(x) =

{
T (x), if x 6∈ Dα,
1− T (x), if x ∈ Dα.

See Figure 2.1 for a couple of examples.

0 1

1

1
1+α

1
2+α

α

1 − α

(a) T

0 1

1

1
1+α

1
2+α

α

1 − α

(b) Ŝα

0 1

1

1
1+α

1
2+α

α

1 − α

α

(c) Tα

0 1

1

1
1+α

1 − α

α

(d) F = 1− T

0 1

1

1
1+α

1 − α

α

(e) Ŝα

0 1

1

1
1+α

1 − α

α

1 − α

(f) Tα

Figure 2.1: The Gauss map T and the flipped map F = 1 − T in (a) and (d). The folded
α-continued fraction map Ŝα and the flipped α-continued fraction map Tα for α < 1

2
in (b)

and (c) and for α > 1
2
in (e) and (f) respectively.

If α = 0, we obtain the Gauss map T and if α = 1 we obtain the map 1 − T . Since
these maps are well known, we omit them from our analysis. Since the domain of the
map Tα is given by Iα = [min{α, 1− α}, 1] it has only finitely many branches. Note
that for any α ∈ (0, 1) the map Tα has an indifferent fixed point at 1. This causes
the existence of an infinite absolutely continuous invariant measure µα. This makes
the family of maps {Tα : Iα → Iα}α∈(0,1) interesting to study as a natural family
of infinite measure systems that do in general not have a Markov partition but have
many other nice properties. Let us turn to stating our results. We construct for each
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α ∈
(
0, 1

2

√
2) the natural extension of the map Tα. From the natural extension we

obtain the absolutely continuous invariant measures for the maps Tα.

Theorem 2.1.1. Let 0 ≤ α ≤ 1
2

√
2, let Bα be the Borel σ-algebra on [min(α, 1−α), 1].

The absolutely continuous measure µα on ([min(α, 1− α), 1],Bα) with density

fα(x)=



1
x1[α, α

1−α ](x) + 1
1+x1[ α

1−α ,1](x) + 1
1−x1[1−α,1](x) for α ∈ [0, 1

2 ],

1
1−x1[1−α,α](x) + 1

x(1−x)1[α, 1−αα ](x) + x2+1
x(1−x2)1[ 1−α

α ,1](x) for α ∈ (1/2, g],

( 1
1−x + 1

x+ 1
g−1

)1[1−α, 2α−1
α ](x) + 1

1−x1[ 2α−1
α ,α](x)+

( 1
1−x + 1

x −
1

x+ 1
g

)1[α, 2α−1
1−α ](x) + x2+1

x(1−x2)1[ 2α−1
1−α ,1](x) for α ∈ (g, 2

3 ],

( 1
1−x + 1

x+ 1
g−1

)1[1−α, 2α−1
α ](x) + 1

1−x1[ 2α−1
α ,α](x)+

1+gx2

x−(gx)2−gx31[α, 1−α
2α−1 ](x)+

( 2
1−x2 − x+1

x2+(2g+1)x+1 + 1
x )1[ 1−α

2α−1 ,1](x) for α ∈ ( 2
3 ,

1
2

√
2],

is the unique σ-finite infinite invariant measure for Tα.

For infinite measure systems, there are various notions of entropy generalising the
notion of metric entropy for finite measure systems. From these notions Krengel
entropy is probably the most used. For α ∈ (0, g] we are able to calculate this value
which brings us to our second result.

Theorem 2.1.2. For any α ∈ (0, g] the Krengel entropy hKr,µα(Tα) for the measure
µα from Theorem 2.1.1 is equal to π2

6 .

Even though we have the invariant measure for g < α ≤ 1
2

√
2 the exact value of the

Krengel entropy eludes us. From evaluating the expressions obtained numerically, one
would believe we would also find the value π2

6 in that case. Since we have an infinite
system we can study the asymptotic behaviour of the maps near the indifferent fixed
point 1 and give a finer analysis of their excursion times to the interval

(
1

1+α , 1
]
. To

be more precise, we study the wandering rates and return sequences. The following
proposition summarises the properties that hold for our systems in case α ∈ (0, 1

2 ).

Proposition 2.1.3. For each α ∈
(
0, 1

2

)
and each n ≥ 1 we have wn(T ) ∼ log n for

the wandering rate and an(T ) ∼ n
logn for the return time. Furthermore, a weak law

of large numbers holds for Tα:

log n

n

n−1∑
k=0

f ◦ T kα
µα−−→

∫
Iα

f dµα, for f ∈ L1(µα) and
∫
Iα

f dµα 6= 0.

This chapter is outlined as follows. In Section 2.2 we give some preliminaries. We set
up some framework on insertions and singularisations and look at the consequences
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on the natural extension and entropy. Then we look back to our map and put this
into context. In Section 2.3 we define the natural extension of the maps Tα with
α ∈ (0, 1

2

√
2) and use this to obtain Theorem 2.1.1. After that we prove Theorem 2.1.2

in Section 2.4. In Section 2.5 several dynamical properties are shown for α ∈ (0, 1).
Furthermore we show Proposition 2.1.3. We end this chapter with final observations
and remarks.

§2.2 Preliminaries

The properties of various continued fraction expansions are a classical object of study.
In 1913 Perron introduced the notion of semi-regular continued fraction expansions
(see [89]). These continued fractions are a finite or infinite expression for x ∈ (0, 1] of
the following form:

x =
1

d1 +
ε1

d2 +
ε2

d3 +
. . .

,

where εn ∈ {−1, 1}, dn ∈ N and dn + εn ≥ 1 for each n ≥ 1. We denote the
semi-regular continued fraction expansion of a number x by

x = [0; 1/d1, ε1/d2, ε2/d3, . . .].

In case we have εn = 1 for all n ∈ N we find a regular continued fraction and simply
write x = [0; d1, d2, . . .].

In general a number has many different semi-regular continued fraction expansions.
There are two well studied operations that convert one semi-regular continued fraction
expansion of a number to another: singularisation and insertion. Both operations
were already introduced in [89] and later appeared in many other places in literature
(see for example [63]). Singularisation is based on the following equality holding for
a, b ∈ N, ε ∈ {−1, 1} and ξ ∈ [0, 1]:

a+
ε

1 +
1

b+ ξ

= a+ ε+
−ε

b+ 1 + ξ
.

In terms of the semi-regular continued fractions of numbers, it can be written as
follows. If

x = [0; 1/d1, ε1/d2, . . . , εn−1/dn, εn/1, 1/dn+2, . . .]

then

x = [0; 1/d1, ε1/d2, . . . , εn−1/(dn + εn),−εn/(dn+2 + 1), . . .].
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The inverse operation of singularisation is insertion, which is based on the following
equality and holds for a, b ∈ N with b ≥ 2 and ξ ∈ [0, 1]:

a+
1

b+ ξ
= a+ 1 +

− 1

1 +
1

b− 1 + ξ

.

In terms of the semi-regular continued fractions of numbers, it gives the following. If

x = [0; 1/d1, ε1/d2, . . . , εn−1/dn, 1/dn+1, εn+1/dn+2, . . .],

with dn+1 ≥ 2, then

x = [0; 1/d1, ε1/d2, . . . , εn−1/(dn + 1),−1/1, 1/(dn+1 − 1), εn+1/dn+2, . . .].

Singularisations and insertions are directly related toD-continued fraction expansions.
In [27] it is explained that if x ∈ ∪∞n=1( 2

2n+1 ,
1
n ] then the map 1−T acts as an insertion

on x. If x 6∈ ∪∞n=1( 2
2n+1 ,

1
n ] then the map 1−T acts as a singularisation. Furthermore,

by the action of singularisation one removes a convergent in the sequence (pnqn )n≥1.
On the other hand, by insertion one adds a mediant of two consecutive convergents
(see [63]).

In the next section we will see how insertion can affect the natural extension and the
entropy. This is in essence the opposite of what singularisation would do which is
explained in [29].

§2.2.1 Insertions and the natural extension
Let D ⊂ [0, 1]× R and define TD : ΩD → ΩD by

TD(x, y) :=

(
TD(x),

εD(x, y)

d1(x) + y

)
, (x, y) ∈ ΩD

where εD(x, y) = −1 if (x, y) ∈ D and 1 otherwise. Note that ΩD is not yet specified.
The game is to find a suitable ΩD such that TD is bijective almost everywhere because
of the following proposition.

Proposition 2.2.1. Let ΩD ⊂ [0, 1]×R such that TD is bijective almost everywhere.
Then

µD(A) =

∫
A

1

(1 + xy)2
dλ(x)

is an invariant measure for TD.

The proof is essentially the same as for [82]. We now show that for a certain class
of subsets of D ⊂ [0, 1] × [0, 1] we can easily find the natural extension. From the
natural extension we can show that there is a decrease in entropy when comparing
it with the regular continued fraction. For this subset, the corresponding continued
fraction algorithm only uses insertions and no singularisations.
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For suitable insertion sets D we show that h(TD) = h(T )
1+µ̄(D) with h the (metric)

entropy and µ̄ the 2-dimensional Gauss measure from page 8. Let

D∗ =

∞⋃
n=1

(
2

2n+ 1
,

1

n

)
× [0, 1]

and pick D ⊂ D∗ such that T (D) ∩ D = ∅ with T the natural extension map of
the regular continued fraction (see Theorem 1.1.12 from page 8). Note that this
does not include the case where the measure of the system of TD is infinite. Neither
the case where we do “insertion on the newly added regions”. We will first find the
natural extension domain of TD by building it from the natural extension domain of
T . Note that T (x, y) = TD(x, y) for (x, y) ∈ Dc. The new natural domain will be
(([0, 1]× [0, 1])\T (D)) ∪ TD(D) ∪ T 2

D(D). We first show that there is no overlap.
Note that TD(x, y) 6∈ [0, 1] × [0, 1] since −1

n+1+y < 0. We also have that T 2
D(x, y) 6∈

[0, 1] × [0, 1] because 1

1 +
−1

n+ 1 + y

= 1 + 1
n+y > 1. For the same reason we find

TD(D) ∩ T 2
D(D) = ∅.

Now we show that T 2(D) = T 3
D(D) which gives that “no holes appear” in the natural

domain of TD besides T (D), see also Figure 2.2. Let (x, y) ∈ D then we can write x =
1

n+ 1
k+z

with k ∈ N and z ∈ [0, 1] since (x, y) ∈ D∗. We find T 2 (x, y) =
(
z, 1

k+ 1
n+y

)
,

TD (x, y) =

 1

1 +
1

k − 1 + z

,
−1

n+ 1 + y

 , T 2
D (x, y) =

 1

k − 1 + z
,

1

1 +
−1

n+ 1 + y


and

T 3
D (x, y) =

z,
1

k − 1 +
1

1 +
−1

n+ 1 + y

 .

Note that
1

k − 1 +
1

1 +
−1

n+ 1 + y

=
1

k +
1

n+ y

.

We will derive a formula for the entropy of the new system. Let A := ([0, 1] ×
[0, 1])\T (D) and denote by T̂ : A → A the induced transformation for T on A and
T̂D : A → A the induced transformation for TD on A, see page 9 for the definition.
Abramov’s entropy formula give us:

h(T̂ ) =
h(T )

µ̄(A)
(2.2.1)
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D

..........................................................................................
.......................

....T

...........................................................................................................................

.......
.......
......

.......

.......
.......
......

TD

T (D)

..........................................................................................
.......................

....T

T 2(D)

TD(D)

..........................................................................................
.......................

....TD

TD(D)

T 2
D(D)

..........................................................................................
.......................

....TD

TD(D)

T 2
D(D)

T 3
D(D)

Figure 2.2: A diagram of the construction of the natural extension domain.

and

h(T̂D) =
h(TD)

ν(A)
, (2.2.2)

where µ̄ is the invariant measure for the original system and ν for the new system
i.e. µ̄(A) = C

∫
A
f(x, y)λ×λ(x, y) and ν(A) = C ′

∫
A
f(x, y)λ×λ(x, y) with f(x, y) =

1
(1+xy)2 . We will now find an expression for C ′. We have

(C ′)−1 =

∫
ΩD

f(x, y)λ× λ(x, y)

=

∫
Ω

f(x, y)λ× λ(x, y)−
∫
T (D)

f(x, y)λ× λ(x, y)

+

∫
TD(D)

f(x, y)λ× λ(x, y) +

∫
T 2
D(D)

f(x, y)λ× λ(x, y)

=

∫
Ω

f(x, y)λ× λ(x, y) +

∫
D

f(x, y)λ× λ(x, y)

=
1

C
+

∫
D

f(x, y)λ× λ(x, y)

=
1

C
(1 + µ̄(D)).
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This gives us C ′ = C
1+µ̄(D) which results in

µ̄(A) = (1 + µ̄(D))ν(A). (2.2.3)

Since T 2(D) = T 3
D(D) we have that T̂ = T̂D. Using (2.2.1) and (2.2.2) we now find

h(T )

µ̄(A)
=
h(TD)

ν(A)
,

which together with (2.2.3) gives

h(T )

1 + µ̄(D)
= h(TD).

Given this result one might expect that, in our setting, we would have a decrease in
entropy whenever we add insertions. Though, Theorem 2.1.1 shows this is not the
case (even though for α ≤ 1

2 there are only insertions). This illustrates well that there
are differences between similar systems when one system is an infinite system and the
other is a finite one. Another observation is that for Nakada’s α-continued fractions
we have only singularisations for α ∈ (g, 1]. In a similar way as for insertions, one
finds that the entropy as a function of α is in this case decreasing on (g, 1] since the
measure of the singularisation region decreases as α goes to one.

§2.2.2 Back to our map
The map Tα generates semi-regular continued fraction expansions of real numbers.
For any α ∈ (0, 1) and any x ∈ Iα, the map Tα from (2.1.1) defines a continued
fraction expansion for any x ∈ Iα in the following way. Define the partial quotients
dk = dk(x) and the signs εk = εk(x) by dk(x) := d1(T k−1

α (x)), where

d1(x) :=

{
b 1
xc, if x /∈ Dα,

b 1
xc+ 1, otherwise;

and by εk(x) := ε1(T k−1
α (x)), where

ε1(x) :=

{
1, if x /∈ Dα,

−1, otherwise.

With this notation the map Tα can be written as

Tα(x) = ε1(x)

(
1

x
− d1(x)

)
and so

x =
1

d1 + ε1Tα(x)
=

1

d1 +
ε1

d2 +
. . . +

εn−1

dn + εnTnα (x)

. (2.2.4)
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Denote by (pk/qk)k≥1 the sequence of convergents of such an expansion, i.e., we write

pk
qk

=
1

d1 +
ε1

d2 +
. . . +

εk−1

dk

.

Since we obtained Tα from the Gauss map by flipping on the domain Dα, it follows
immediately from [27, Theorem 1] that for any x ∈ Iα the expression from (2.2.4)
converges to a continued fraction expansion of x: lim

k→∞

pk
qk

= x. Therefore, we can

write

x =
1

d1 +
ε1

d2 +
. . . +

εk−1

dk +
. . .

=: [0; 1/d1, ε1/d2, ε2/d3, . . .]α,

which we call the flipped α-continued fraction expansion of x. For x ∈ [0, 1] it is
well known that the regular continued fraction is finite if and only if x ∈ Q. In
our case 0 is not in the domain of Tα. Therefore, we cannot find finite expansions.
Instead of a finite continued fraction all rational numbers will end in 1 where 1 =

[0; 1/2,−1/2,−1/2, . . .]α for all α ∈ (0, 1).

Proposition 2.2.2. Let α ∈ (0, 1) and x ∈ Iα be given. Then x ∈ Q if and only if
there is an N ≥ 0 such that TNα (x) = 1.

Proof. If there is an N ≥ 0 such that TNα (x) = 1, then it follows immediately that x ∈
Q. Suppose x ∈ Q. Note that Tnα (x) ∈ Q∩ Iα for all n ≥ 0 and write Tnα (x) = sn

tn
with

sn, tn ∈ N and tn as small as possible. Assume for a contradiction that Tnα (x) 6= 1 for
all n ≥ 1. Then sn < tn and since either Tn+1

α (x) = tn−ksn
sn

or Tn+1
α (x) = (k+1)sn−tn

sn
,

we get 0 < tn+1 < tn. This gives a contradiction. �

§2.3 Natural extensions for our maps

To find the invariant density of the absolutely continuous invariant measure of Tα, we
construct a natural extension domain such that Tα is almost bijective and minimal
from a measure theoretic point of view. In that case Proposition 2.2.1 gives us the
wanted result. We are able to construct the domain for α ∈ (0, 1

2

√
2]. We will go

through a subset of the parameter space to show the method. Invariant densities of
other values are found in the same way but with different computations. Let α ∈ (0, 1

2 )

such that 1
n+α < α < 1

n with n ∈ N≥2. We define Tα : Ωα → Ωα as

(x, y) 7→
(
Tα(x),

ε1(x)

d1(x) + y

)
where

Ωα :=

[
α,

α

1− α

]
×
[
0,∞

)
∪
(

α

1− α
, 1− α

]
×
[
0, 1

]
∪
(

1− α, 1
]
×
[
− 1, 1

]
.
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Ωα Tα(Ωα)

a
[
α, 1

n

]
×
[
0,∞

) [
α−1+nα

α , 1
]
×
[
− 1

n+1 , 0
]

b
[

1
n ,

1
n−1+α

]
×
[
0,∞

) [
α, 1

]
×
[
0, 1

n−1

]
c

[
1

n−1+α ,
α

1−α
]
×
[
0,∞

) [
1− α, α−1+nα

α

]
× [− 1

n , 0
]

d
[
α

1−α ,
1

n−1

]
×
[
0, 1
] [

α−1+nα
α , 1

]
×
[
− 1

n ,−
1

n+1

]
e

[
1
k+1 ,

1
k+α

]
×
[
0, 1
] [

α, 1
]
×
[

1
k+1 ,

1
k

]
for k ∈ N≤n−2

f
[

1
k+1+α ,

1
k+1

]
×
[
0, 1
] [

1− α, 1
]
×
[
− 1

k+2 ,−
1
k+3

]
for k ∈ N≤n−3

g
[
1− α, 1

1+α

]
×
[
− 1, 0

] [
α, α

1−α
]
×
[
1,∞

)
h

[
1

1+α , 1
]
×
[
− 1, 1

] [
1− α, 1

]
×
[
− 1,− 1

3

]
Table 2.1: Ωα split up in disjoint pieces in the left column and their image under Tα in the
right column.

Table 2.1 shows that Tα is bijective almost everywhere on Ωα. See Figure 2.3 for a
visualisation of the map.

α 1
n 1
n−1+α

α
1−α

1
n−1

1
3 1

2+α

1
2

1
1+α

∞

−1

0

1a b c

d e,f e f e

g

h

........................................................................................................................................................
.......................

....Tα

∞

−1

− 1
3

0

1
2

1

− 1
n+1− 1

n

1
n−1

g’

e’

e’
b’

f’
f’

c’ a’
d’

Figure 2.3: The natural extension domain for Tα where Tα(a) = a′, Tα(b) = b′ etc..

§2.3.1 From natural extension to invariant measure
To find the invariant measure for the original system (Iα, Tα) one simply projects
onto the first coordinate. For α ∈ (0, 1

2 ) such that 1
n+α < α < 1

n with n ∈ N≥2 we
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find invariant density

fα(x) =

∫ ∞
0

1

(1 + xy)2
dy1[α, α

1−α ](x) +

∫ 1

0

1

(1 + xy)2
dy1[ α

1−α ,1](x)

+

∫ 0

−1

1

(1 + xy)2
dy1[1−α,1](x)

=
1

x
1[α, α

1−α ](x) +
1

1 + x
1[ α

1−α ,1](x) +
1

1− x
1[1−α,1](x).

Proof of Theorem 2.1.1. By the same method as explained in this section one can
find all the densities given in the theorem. Since only the calculations are different
from the case explained, we omit them here. �

For α ∈ ( 1
2

√
2, 1) the structure of the domain Ωα of natural extension becomes more

complicated as Figure 2.4 shows.

(a) α ≈ 0.73694949 (b) α ≈ 0.79347519

(c) α ≈ 0.85019348 (d) α ≈ 0.89348572

(e) α ≈ 0.92087668 (f) α ≈ 0.95234649

Figure 2.4: Several numerical simulations of the natural extension domain for α ∈ ( 1
2

√
2, 1).
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§2.4 Entropy

To be able to calculate the entropy we first have to do some preliminary work. We
show the following proposition.

Proposition 2.4.1. Let α ∈ (0, 1). The system (Iα,B, µα, Tα) is a basic AFN map: a
conservative system, a piecewise monotonic system (there exists a partition P = {Ii}
such that Tα restricted to each element of P is continuous, strictly monotonic and
twice differentiable) and a system with at least one indifferent fixed point such that
the following conditions hold.

(A) Adler’s condition: T ′′α
(T ′α)2 is bounded on ∪iIi,

(F) Finite image condition: Tα(P) := {Tα(Ii) : Ii ∈ P} is finite,

(N) Indifferent fixed point condition: there exists a finite set Z ⊆ P, such that each
Zi ∈ Z has an indifferent fixed point xZi , i.e.

lim
x→xZi ,x∈Zi

Tα(x) = xZi and lim
x→xZi ,x∈Zi

T ′α(x) = 1

and T ′α decreases on (−∞, xZi)∩Zi respectively increases on (xZi ,∞)∩Zi. Last,
T is uniformly expanding on sets bounded away from {xZi : Zi ∈ Z}.

Proof. First, recall that a system Tα is said to be conservative if every wandering
set (a set for which all the pre-images under the map are pairwise disjoint) for Tα
is a set of null measure. Maharam’s Recurrence Theorem (see [57, Theorem 2.2.14])
ensures the conservativity through the existence of a sweep-out set (a positive but
finite measure set for which the set of all pre-images covers almost everything). It is
easy to see that any subinterval of Iα is a sweep-out set for the map Tα so that the
system is conservative.
For each α ∈ (0, 1), let k(α) ∈ N be such that min(α, 1− α) ∈

(
1

k(α)+1 ,
1

k(α)

]
and let

Wα :=

{[
min(α, 1− α), 1

k(α)

]
if 1
k(α)+α < α < 1

k(α) ,[
min(α, 1− α), 1

k(α)+α

]
,
(

1
k(α)+α ,

1
k(α)

]
, if 1

k(α)+1 < α < 1
k(α)+α .

A finite partition P can be given by{
Wα,

(
1

n+ 1
,

1

n+ α

]
,

(
1

n+ α
,

1

n

]
, for n = 1, 2, ..., k(α)− 1

}
.

On each of these subintervals the map is continuous, strictly monotonic and twice
differentiable. Furthermore we see that the conditions (A),(F),(N) hold:

(A) |2x| ≤ 2 on Iα,

(F) Tα(P) consists at most of three subintervals depending on α,

(N) xZ = 1 is the only indifferent fixed point for Z = ( 1
1+α , 1], and T ′α(x) = 1/x2

decreases on Z and it is strictly greater than 1 on sets bounded away from xZ .
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For infinite measure-preserving and conservative systems (X,B, µ, T ) there exists an
extension of the notion of entropy (w.r.t µ) due to Krengel [66]:

hKr,µ(T ) = h(TA, µ |A),

for A a sweep-out set for T , TA the induced transformation T on A and µ |A the
measure µ restricted to the set A. A result of Zweimüller tells us that we can use
Rohlin’s formula to calculate it.

Theorem 2.4.2 (Zweimüller [106]). Let (I,B, µ, T ) be a basic AFN map with µα
an (absolutely continuous) invariant measure, then

hKr,µ(T ) =

∫
X

log(|T ′(x)|)dµ.

We are now in the position of proving Theorem 2.1.2.

Proof of Theorem 2.1.2. From Proposition 2.4.1 and Theorem 2.4.2 it follows we can
calculate the Krengel entropy by using Rohlin’s formula. We use some properties of
dilogarithm functions (see also [73]). We have

Li2(x) :=

∞∑
n=1

xn

n2
for |x| < 1

and

• Li2(0) = 0,

• Li2(−1) = −π2/12,

• Li2(x) + Li2(− x
1−x ) = − 1

2 log2(1− x),

• d
dx Li2(x) = − log(1−x)

x .

We compute the entropy for α ∈ (0, 1
2 ). The computation for α ∈ [ 1

2 , g) works in a
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similar way.∫
[α,1]

log(|T ′α(x)|)dµα = −2

[ ∫ α/(1−α)

α

log x

x
dx+

∫ 1−α

α/(1−α)

log x

1 + x
dx+

∫ 1

1−α

log x

1− x2
dx

]
= − log2 x |α/(1−α)

α −2[Li2(−x) + log x log(x+ 1)] |1−αα/(1−α)

− 2[Li2(1− x) + Li2(−x) + log x log(x+ 1)] |11−α

= − log2
( α

1− α
)

+ log2(α) + 2 Li2
( −α

1− α
)

+ 2 log
( α

1− α
)

log
( 1

1− α
)
− 2 Li2(0)− 2 Li2(−1)

− 2 log(0) log(2) + 2 Li2(α)

= log2(α)− log2
( α

1− α
)

+ 2[Li2
( −α

1− α
)

+ Li2(α)]+

− 2 log
( α

1− α
)

log(1− α) +
π

6

2

= log2(α)− log2
( α

1− α
)
− log2(1− α)

− 2 log
( α

1− α
)

log(1− α) +
π

6

2

= 2 log(1− α)[log(α)− log(1− α)− log(α) + log(1− α)] +
π

6

2

=
π

6

2
.

�

§2.5 Return sequences and wandering rates

Other ergodic properties can be obtained from the asymptotic type of the maps, which
is the asymptotic proportionality class of any return sequence of the map. Let Pα
denote the transfer operator of the map Tα, defined by the equation∫

A

Pαf dµα =

∫
T−1
α

f dµα for f ∈ L1(Iα,Bα, µα) and A ∈ Bα.

The return sequence for Tα is the sequence (an(Tα))n≥1 ⊆ (0,∞) satisfying

lim
n→∞

1

an(Tα)

n−1∑
k=0

P kαf =

∫
Iα

f dµα.

The result from [106, Theorem 1] implies that each map Tα is pointwise dual ergodic.
This ensures that such a sequence, which is unique up to asymptotic equivalence,
exists. The asymptotic type of any map Tα is the asymptotic proportionality class
of Tα, containing all sequences that are asymptotically equivalent to some positive
multiple of (an(Tα))n≥1.
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The return sequence of a system is related to its wandering rate, which quantifies how
big the system is in relation to its subsets of finite measure. To be more precise, if
(X,B, µ, T ) is a conservative, ergodic, measure preserving system and A ∈ B a set of
finite positive measure, then the wandering rate of A with respect to T is the sequence
given by (wn(A))n≥1 for

wn(A) := µ

( n−1⋃
k=0

T−kA

)
.

It follows from [106, Theorem 2] that for each of the maps Tα there is a sequence
(wn(Tα)) ⊆ (0,∞) such that wn(Tα) ↑ ∞ and wn(Tα) ∼ wn(A) as n → ∞ for all
sets A ∈ B such that 0 < µ(A) < ∞ and that are bounded away from one. The
asymptotic equivalence class of (wn(Tα)) is called the wandering rate of Tα. Using
the machinery from [106] we can prove Proposition 2.1.3.

Proof of Proposition 2.1.3. The wandering rate for AFN-maps is given in [106, The-
orem 3] and the return sequence in [106, Theorem 4]. Using the Taylor expansion of
the maps Tα one sees that for x → 1 we have Tα(x) = x − (x − 1)2 + o((x − 1)2).
Hence, Tα admits what is called nice expansions in [106]. Secondly, on the right most
interval

(
1

1+α , 1
]
the density fα for α ∈ (0, 1

2 ) is given by fα(x) = 2
1−x2 . This can

be written as fα(x) = G(x)H(x), where G(x) = x−2
x−1 and H(x) = 2

(1+x)(2−x) . As a
consequence, at the indifferent fixed point it holds that H(1) = 1. It then follows
from [106, Theorems 3 and 4], that the wandering rate is

wn(T ) ∼ log n

and the return sequence is
an(T ) ∼ n

log n
.

In our setting [106, Theorem 5] translates to

log n

n

n−1∑
k=0

f ◦ T kα
µα−−→

∫
Iα

f dµα, for f ∈ L1(µα) and
∫
Iα

f dµα 6= 0,

i.e., a weak law of large numbers holds for Tα. �

§2.5.1 Isomorphic?
When considering a family of transformations with similar dynamical properties, a
natural question to ask is whether the maps in question are isomorphic. Since the
maps Tα all have an infinite invariant measure, these measures cannot be normalised
and the appropriate notion to consider is that of c-isomorphism, which is defined as
follows (see for example [1]): Two measure preserving dynamical systems (X,B, µ, T )

and (Y, C, ν, S) on σ-finite measure spaces are called c-isomorphic for c ∈ R>0 ∪ {∞}
if there are sets N ∈ B, M ∈ C with µ(N) = 0 = ν(M) and T (X \ N) ⊆ X \ N
and S(Y \M) ⊆ Y \M and if there is a map φ : X \N → Y \M that it invertible,

34



§2.5. Return sequences and wandering rates

C
h
a
pter

2

bi-measurable and satisfies φ ◦ T = S ◦ φ and µ ◦ φ−1 = c · ν. Well known invariants
for c-isomorphism are the Krengel entropy and the asymptotic proportionality classes
of the return sequence and the wandering rate.

We have seen that the Krengel entropy for α ∈ (0, g] is constant and not depending
on α. Also the wandering rate as well as the return sequence do not display any
dependence on α, so that also these invariants do not give us information on the
existence (or non-existence) of isomorphisms between the maps Tα either. Using the
technique from [53] we can show that in general it is not true that for any α, α′ there
is a c ∈ R>0 ∪ {∞} such that Tα and Tα′ are c-isomorphic. Consider for example any
α ∈

(√
2−1, 1

2

)
, so that α ∈

(
1

2+α ,
1
2

)
and any α′ ∈

(
1
3 ,

3−
√

5
2

)
, so that Tα′(α′) > 1−α′,

see Figure 2.5. For a contradiction, suppose that there is a c-isomorphism φ : Iα → Iα′

for some c ∈ R>0 ∪{∞}. Let J = [α,min{Tα(α), 1−α}] and note that any x ∈ J has
precisely one pre-image. Since φ ◦Tα = Tα′ ◦φ and φ is invertible, any element of the
set φ(J) must also have precisely one pre-image. Since Tα′(α′) > 1−α′, there are no
such points, so µα′(φ(J)) = 0. On the other hand, since J is bounded away from 1, it
follows that 0 < µα(J) <∞. Hence, there can be no c, such that µα′ ◦ φ−1 = c · µα.
Obviously a similar argument holds for many other combinations of α and α′, even for
α > 1

2 , and in case the argument does not work for Tα and Tα′ , one can also consider
iterates of the transformation. Hence, even though the above discussed isomorphism
invariants are equal for all α ∈

(
0, 1

2

)
, in general one cannot conclude that any two of

the maps Tα are c-isomorphic.

α α′ 1

1− α

Tα(α)

(a) α ∈
(√

2− 1, 1
2

) α′ 1

1− α′

Tα′(α
′)

(b) α′ ∈
(
1
3
, 3−
√
5

2

)

Figure 2.5: Maps Tα and Tα′ that are not c-isomorphic for any c ∈ R>0 ∪ {∞}.

§2.5.2 Final observations and remarks
We have seen that the natural extension is a powerful tool to find invariant measures
for families of continued fractions. Though, for α > 1

2

√
2 the domain becomes more

complicated. In other families of continued fractions (α-continued fractions or Ito
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Tanaka’s α-continued fractions studied in Chapter 3) similar behaviour is seen for
certain values of the parameter space.

What one can do with the natural extensions that we found, is the study of Diophant-
ine approximation. Using for example tools from [29] one can study the quality of
convergence for typical points. One can show that for any α ∈ (0, 1) the convergence
of a typical point in Iα is not exponential. Though, maybe more can be said about
the quality.

Something we did not study in this chapter is matching. Though, matching can
be easily found. For example on the interval (0, 1

2 ) matching holds with exponents
(1, 3). In the study of other families, matching often has implications for the entropy
whereas for our family we did not observe a relation between the Krengel entropy
and matching. Maybe there is another observable which is related to matching in our
case.

In an upcoming paper we show a very close connection between matching intervals
for our family and for α-continued fractions. By using this relation we can prove that
matching holds almost everywhere, even though it is unclear to us how these families
are exactly related.
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CHAPTER 3
Matching and Ito Tanaka’s

α-continued fraction expansions

This chapter is joint work with Carlo Carminati and Wolfgang Steiner.

Abstract

Two closely related families of α-continued fractions were introduced in 1981: by
Nakada on the one hand, by Ito and Tanaka on the other hand. The entropy and
matching for Nakada’s family has been studied extensively, whereas the study of Ito
Tanaka’s family remained on the fringe. This chapter has two parts. In the first
part we focus mostly on the similarities; algebraic conditions and monotonicity of
the entropy function on matching intervals. The second part focuses mostly on the
Ito Tanaka α-continued fraction. We show that the parameter space is almost com-
pletely covered by matching intervals. In other words, the set of parameters for which
the matching condition does not hold, called the bifurcation set, is a zero measure
set (even if it has full Hausdorff dimension). These properties are shared by Na-
kada’s α-continued fractions, though the proof is different. In contrast to Nakada’s
α-continued fractions, the bifurcation set of Ito Tanaka’s α-continued fractions con-
tains several non zero rational values. Moreover, it contains numbers of which the
regular continued fraction expansion ends in a sequence that is bounded from below.
We give several characterisations of the bifurcation set and have dimensional results
for neighbourhoods of the small golden mean and rationals in the bifurcation set.
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§3.1 Introduction

Various variants of the regular continued fraction (RCF) have been considered. The
most famous ones are the nearest integer continued fraction (NICF) and the backward
continued fraction (BCF). Starting from the 80s, some attention has been devoted
to families of continued fraction algorithms; even if different authors have focused on
different families one can describe most1 of these families using the same setting as
follows. Let Tα : [α− 1, α]→ [α− 1, α] be defined by

Tα(x) =

{
S(x)− bS(x) + 1− αc for x 6= 0,

0 for x = 0.
(3.1.1)

Different choices of S in formula (3.1.1) give rise to different generalisations of the
classical continued fraction algorithms:

(N) for S(x) = 1
|x| one gets the α-continued fractions first studied by Nakada [82],

(KU) for S(x) = − 1
x one finds a subfamily of (a, b)-continued fractions (corresponding

to the choice b = α and a = α − 1), which were first studied by Katok and
Ugarcovici [54],

(IT) for S(x) = 1
x one gets the α-continued fractions first studied by Ito and Tanaka [103].

(a) the branches of (N) (b) the branches of (KU) (c) the branches of (IT)

Figure 3.1: The different branches for the different transformations.

In Figure 3.1 the different transformations are displayed. In all of the above three
cases, for all α ∈ (0, 1), the dynamical system defined by the map (3.1.1) admits
an absolutely continuous invariant probability measure and is ergodic. For the (IT)
case this is proven in an unpublished article by Nakada and Steiner. Therefore, we
can study the metric entropy hµα(Tα). This determines the speed of convergence
of the continued fraction algorithm of typical points (in the same way as in the
regular continued fraction case (1.2.1) on page 12). The higher the entropy, the
better the convergence. An issue which has been in the spotlight in recent years is
the dependence of the entropy on the parameter α. In Figure 3.2 the entropy plotted
as a function of α is shown for the Ito Tanaka continued fractions.

1Actually some authors, such as the authors of [81], studied the so called folded algorithms which
are not of the type (3.1.1), however from the metric viewpoint there is hardly any difference between
the folded and the unfolded version (see § 3.1 of [9] for a discussion of this issue).
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Figure 3.2: The entropy as a function of α for the Ito Tanaka continued fractions.

The behaviour of the entropy is by now quite well understood in case (N), which is by
far the most studied [18, 19, 65, 79, 81, 82, 84]. The same is true for the case (KU),
which was considered much more recently [17, 54, 56]. However, not much progress
has been made in the case (IT) for which there are only partial results dating back
to 1981 (see [103]). This chapter studies the similarities and differences between the
families, where the results on (IT) are new. As in the cases (N) and (KU), also for Ito
Tanaka continued fractions the matching property plays a central role; a parameter
α ∈ [0, 1] satisfies the matching condition with matching exponents N,M if

TNα (α) = TMα (α− 1). (3.1.2)

The peculiar (and somehow surprising) feature of these systems is that a condition
like (3.1.2) holds on intervals with non-empty interior; thus what is actually relevant
is the definition of a matching interval.

Definition 3.1.1 (Matching). Let J ⊂ [0, 1] be a non-empty open interval. We say
that J is a matching interval (with exponents N,M) if TNα (α) = TMα (α − 1) for all
α ∈ J , TN−1

α (α) 6= TM−1
α (α − 1) for almost all α ∈ J , and J is not contained in

a larger open interval with these properties. The difference ∆ := M − N is called
matching index. We call the matching set the union of all matching intervals; its
complement will be called the bifurcation set and will be denoted by E.

Observe that we do not impose conditions on the derivative of TNα and TMα , as in
Definition 1.2.8 on page 13, since these are automatically satisfied whenever matching
holds on an open interval (this is proved in Section 3.2). The following lemma shows
that two matching intervals cannot overlap (for any choice of S(x) above).

Lemma 3.1.2. Let M,M ′, N,N ′ be such that M − N 6= M ′ − N ′. Then there are
at most countably many α ∈ [0, 1] such that TNα (α) = TMα (α − 1) and TN

′

α (α) =

TM
′

α (α− 1).

41



3. Matching and Ito Tanaka’s α-continued fraction expansions

C
h
a
pt

er
3

Figure 3.3: Matching intervals, plotted as arcs from a to b for a matching interval (a, b), for
the Ito Tanaka continued fractions.

Proof. Assume w.l.o.g. that N ′ ≥ N . Then we have TM+N ′−N
α (α − 1) = TN

′

α (α) =

TM
′

α (α − 1). Since M −N 6= M ′ −N ′, this implies that α is a rational or quadratic
number. �

By definition, matching is an open condition. For the α-continued fractions (N) it is
conjectured in [84] and shown in [18] that matching holds almost everywhere; the same
is true in the case of (KU) (see [17, 54, 56]). In Section 3.3 we show that this is also
true for the α-continued fractions of Ito and Tanaka. However, for the bifurcation set
the situation is different. Not only does each of the three variants (N), (KU) and (IT)
have a different bifurcation set (we denote them by EN , EKU and EIT respectively) but
these bifurcation sets display quite a few differences. For instance, it is not difficult
to show that both EN and EKU do not intersect Q ∩ (0, 1) and are made of badly
approximable numbers; this is not the case for EIT : not only does it contain infinitely
many rational values (such as the values 1/n for n ≥ 3) but it also contains numbers
for which the tail of the regular continued fraction expansion has digits bounded
from below. In the following subsection, we shall focus on the specific features of
the Ito Tanaka case as well as stating the results on the exceptional set EIT . In this
section we also state our theorems. In Section 3.2 we show that the entropy formula
in terms of qn is true for all three families as well as the fact that matching implies
monotonicity of the entropy. Furthermore, we shed light onto algebraic conditions.
Each family comes with different algebraic conditions that hold for α ∈ Q ∩ (0, 1).
They will illustrate the fact that the (IT) case is more complicated than the others.
The results displayed in this section in the case of (KU) and (N) are already known
but added for comparison. The study of the so called exceptional set is specific for
every family and is the focus of the second part of this chapter (Section 3.3 and 3.4).
In Section 3.3 we prove the results on the exceptional set EIT as well as the fact that
matching holds almost everywhere for which the proof is specific for the (IT) case.
Section 3.4 is dedicated to dimensional results for the exceptional set.

§3.1.1 Ito Tanaka continued fractions: old and new
results

In this section Tα will always denote the map (3.1.1) for the Ito Tanaka case, i.e.,
with S(x) = 1/x. Let us point out that the dynamical systems of α and 1 − α are
isomorphic. Indeed, setting τ(x) = −x gives

τ ◦ Tα = T1−α ◦ τ.
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For this reason, it is enough to study this family for the parameter α ∈ [1/2, 1].
Setting dα(x) = bS(x) + 1− αc, for every x ∈ [α− 1, α], we use the shorthand dα,n =

dα,n(x) = dα (Tnα (x)) to write the continued fraction expansion

x =
1

dα,1 +
1

dα,2 +
1

. . .

.

Note that T1 is the Gauss map and T 1
2
is the map for Hurwitz continued fraction

expansions [48]. Furthermore, dα,n(x) is called the nth digit of x and can be both
negative and positive. We define the nth convergent as

cα,n(x) =
pα,n(x)

qα,n(x)
=

1

dα,1(x) +
1

dα,2(x) +
1

. . . +
1

dα,n(x)

.

Let g =
√

5−1
2 . For the speed of convergence for any x ∈ [α− 1, α] we have∣∣∣∣x− pα,n

qα,n

∣∣∣∣ ≤ 2√
5 |qα,n|2

for
1

2
≤ α ≤ g

and ∣∣∣∣x− pα,n
qα,n

∣∣∣∣ ≤ 1

|qα,n|2
for g < α ≤ 1 (3.1.3)

with |qα,n(x)| ≥ (g+ 1)n (see [103]). By symmetry, analogous results could be stated
for the convergence of the algorithms when α ∈ [0, 1

2 ). Now let us turn to matching
and state our first theorem.

Theorem 3.1.3. Matching holds almost everywhere on [0, 1] and the only possible
indices are −2, 0 and 2. More precisely, the matching indices are 0 or 2 for α ≤ 1/2

and 0 or −2 for α ≥ 1/2.

Let us recall from [103] that the symmetric parameter interval (1 − g, g) is (almost)
covered by the three adjacent matching intervals (1 − g,

√
2 − 1), (

√
2 − 1, 2 −

√
2)

and (2−
√

2, g) see Figure 3.3; so the interesting part of the bifurcation set is in the
ranges of [0, 1−g] and [g, 1]. Since the problem is symmetric with respect to α = 1/2,
we can focus on EIT ∩ [g, 1]. We prove the following characterisations of this set.

Theorem 3.1.4. The bifurcation set on [g, 1] is given by

EIT ∩ [g, 1]

= {α ∈ [g, 1] : Tnα (α− 1) ≤ 1
α+1 and Tnα ( 1

α − 1) ≤ 1
α+1 for all n ≥ 1} (3.1.4)

=
{
α ∈ [g, 1] : Tng (α− 1) ≥ α− 1 and Tng ( 1

α − 1) ≥ α− 1 for all n ≥ 1
}
. (3.1.5)
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While the characterisation in terms of Tα is natural from the definition of the bifurc-
ation set, the characterisation with a fixed map Tg will be more useful. In particular,
from the ergodicity of Tg it easily follows that EIT is a Lebesgue measure zero set.
Note that there is a clear connection with holes namely that EIT contains those α
for which α and α − 1 are contained in the survivor set when iterating over Tg with
hole [g − 1, α− 1). Using this characterisation, we retrieve the following dimensional
results for EIT .

Theorem 3.1.5. We have that EIT is a Lebesgue measure zero set and
dimH(EIT ) = 1. Moreover, for all δ > 0 we have dimH (EIT ∩ (g, g + δ)) = 1.

This is similar to the behaviour of Nakada’s continued fractions around zero (see [18]).
What is different however, is the presence of rationals in the bifurcation set. For those
points we have the following theorem.

Theorem 3.1.6. The bifurcation set EIT contains infinitely many rational values and
the set of rational bifurcation parameters EIT ∩ Q has no isolated points. Moreover,
for all r ∈ EIT ∩ Q and for all δ > 0 we have that dimH(EIT ∩ (r − δ, r + δ)) > 1/2.

Theorem 3.1.3 and 3.1.4 are proved in Section 3.3. In Section 3.4 we prove the
theorems on dimensional results (Theorem 3.1.5 and 3.1.6).

§3.2 Algebraic relations, an entropy formula and
matching implies monotonicity

Even though the results in this section will be focused on Ito Tanaka α-continued
fractions, most of the results also hold for other continued fraction expansion families.
Therefore, we will generalise some results to fit a more general framework or refer to
other continued fraction expansion families after a proof. We will first prove that for
all α ∈ (0, 1) ∩ Q an algebraic condition holds. In the case of Ito Tanaka α-continued
fractions this results in 6 different algebraic relations. For KU-continued fractions and
Nakada’s α-continued fractions the situation greatly simplifies. We find 2 algebraic
relations for each family. They are used in the proof of monotonicity on matching
intervals later on in this section. But before proving monotonicity we will prove an
entropy formula as in (1.2.1) for all three families.

To find the algebraic relations we work with Möbius transformations and matrices.

Definition 3.2.1 (Möbius transformation). Let A =

[
a1 a2

a3 a4

]
be a matrix

with ai ∈ Z. The Möbius transformation induced by A is the map A : R→ R given by

A(z) =
a1z + a2

a3z + a4
.

Now let d ∈ Z. We define the following matrices in SL2(Z):

Bd =

[
0 1
1 d

]
, R =

[
1 1
0 1

]
, S =

[
0 1
1 0

]
.
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Note that
Rd =

[
1 d
0 1

]
which gives us Bd = SRd. Fix α and x ∈ [α− 1, α] and let
Mα,x,n = Bdα,1(x)Bdα,2(x)Bdα,3(x) · · ·Bdα,n(x). An easy check shows that Mα,x,n(0) =

cα,n(x).

Lemma 3.2.2 (Recurrence relations). We have the recurrence relations

pα,−1 := 1; pα,0 := 0; pα,n(x) = dα,n(x)pα,n−1(x) + pα,n−2(x), n ≥ 1,
qα,−1 := 0; qα,0 := 1; qα,n(x) = dα,n(x)qα,n−1(x) + qα,n−2(x), n ≥ 1.

The recurrence formulas are also given in [103] however without a proof. We provide
a proof using the Möbius transformations. This proof is analogous to the proof for
the regular continued fraction given in [29].

Proof. We can obtain the recurrence relations by writing

Mα,x,n =

[
rα,n(x) pα,n(x)
sα,n(x) qα,n(x)

]
.

Now

Mα,x,n = Mα,x,n−1Bdα,n(x) =

[
rα,n−1(x) pα,n−1(x)
sα,n−1(x) qα,n−1(x)

] [
0 1
1 dα,n(x)

]
=

[
pα,n−1(x) dα,n(x)pα,n−1(x) + rα,n−1(x)
qα,n−1(x) dα,n(x)qα,n−1(x) + sα,n−1(x)

]
.

This gives us rα,n = pα,n−1 and sα,n = qα,n−1 and the recurrence formulas are found.
�

Just as in the classical case we have the following equation

pα,n−1(x)qα,n(x)− pα,n(x)qα,n−1(x) = (−1)n. (3.2.1)

Note that this implies that pα,n(x) and qα,n(x) are co-prime for all n ∈ N as well as
qα,n(x) and qα,n−1(x). The equation is found by looking at the determinant ofMα,x,n

det(Mα,x,n) = det
(
Bdα,1(x)Bdα,2(x) · · ·Bdα,n(x)

)
= (−1)n.

Also the following equation holds

x =
pα,n(x) + pα,n−1(x)Tnα (x)

qα,n(x) + qα,n−1(x)Tnα (x)
. (3.2.2)

Note that Tα(x) = B−1
dα,n(x)(x) and so x = Bdα,n(x) (Tα(x)). This gives us

x = Mα,x,n (Tnα (x)) =
pα,n(x) + pα,n−1(x)Tnα (x)

qα,n(x) + qα,n−1(x)Tnα (x)
.

Let us now turn to the algebraic conditions. For (N) and (KU) continued fractions
one can define Mα,x,n in the same way as for the (IT) case. The following lemma
holds for all three families.
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Lemma 3.2.3 (Pre-algebraic condition). Let α ∈ [0, 1] and suppose matching oc-
curs. Let b = TNα (α) = TMα (α− 1) then the following equation holds

Mα,α,N (b) = RMα,α−1,M (b). (3.2.3)

Proof. We write

α = Mα,α,N (b)

α− 1 = R−1α = Mα,α−1,M (b)

which gives us (3.2.3). �

From the evaluation in b we get the algebraic conditions (for the (IT) case) that hold
for Mα,α,N and Mα,α−1,M .

Theorem 3.2.4 (Algebraic conditions). Let α = p
q ∈ Q ∩ (0, 1) with TNα (α) =

TMα (α − 1) = 0 and N,M minimal. Then one of the following algebraic conditions
holds

(a) Mα,α,N = RMα,α−1,M (b) Mα,α,N = RMα,α−1,MSRS

(c) Mα,α,N = RMα,α−1,MSR
−1S (d) Mα,α,N = RMα,α−1,MV SRS

(e) Mα,α,N = RMα,α−1,MV SR
−1S (f) Mα,α,N = RMα,α−1,MV

with V =

[
−1 0
0 1

]
.

Proof. Let α = p
q ∈ Q∩ (0, 1) with TNα (α) = TMα (α− 1) = 0 and N,M minimal. Now

(3.2.3) gives us

Mα,α,N =

[
a1 p
a2 q

]
RMα,α−1,M =

[
b1 p
b2 q

]
for some a1, a2, b1, b2 ∈ Z\{0}. We have that a2 = qα,N−1(α) and b2 = qα,M−1(α−1).
We prove that |qα,N−1(α)| < |qα,N (α)| and |qα,M−1(α − 1)| < |qα,M (α − 1)| which
gives us

0 < |a2| < q, 0 < |b2| < q. (3.2.4)

This is used in all 6 cases. We have∣∣∣∣pα,N (α)

qα,N (α)
− pα,N−1(α)

qα,N−1(α)

∣∣∣∣ =

∣∣∣∣pα,N (α)qα,N−1(α)− pα,N−1(α)qα,N (α)

qα,N (α)qα,N−1(α)

∣∣∣∣
=

∣∣∣∣ (−1)N

qα,N (α)qα,N−1(α)

∣∣∣∣ ≤ 1

qα,N (α)2
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from (3.2.1) and the speed of convergence (Equation (3.1.3) on page 43) for (IT) . This
gives us |qα,N−1(α)| ≤ |qα,N (α)| . Suppose that equality holds. From the recurrence
formulas we find

±qα,N−1(α) = qα,N (α) = dα,N (α)qα,N−1(α) + qα,N−2(α)

which implies (±1− dα,N (α)) qα,N−1(α) = qα,N−2(α). This contradicts with qα,N−1(α)

and qα,N−2(α) being co-prime. Therefore we find

|qα,N−1(α)| < |qα,N (α)| .

Now
det(Mα,α,N ) = (−1)N and det(RMα,α−1,M ) = (−1)M .

Whenever N −M is odd we find det(Mα,α,N ) = − det(RMα,α−1,M ) and if N −M is
even we find det(Mα,α,N ) = det(RMα,α−1,M ). Furthermore, we either have a2b2 > 0

or a2b2 < 0. These different cases lead to different algebraic conditions. Table 3.1
shows which algebraic condition we find in which case. Left to prove is that this table
holds.

a2b2 > 0 a2b2 < 0
det(Mα,α,N ) = det(RMα,α−1,M ) (a) (b,c)

det(Mα,α,N ) = −det(RMα,α−1,M ) (d,e) (f)

Table 3.1: The different cases.

When det(Mα,α,N ) = det(RMα,α−1,M ) we find

(a1 − b1)q = (a2 − b2)p (3.2.5)

by writing out the determinants. Since p and q are co-prime, a2 − b2 is a multiple of
q. Together with (3.2.4) we get that a2− b2 ∈ {−q, 0, q}. If a2b2 > 0, then a2− b2 = 0

and so a2 = b2. Note that this also gives us a1 = b1 using (3.2.5). This results in

Mα,α,N = RMα,α−1,M

which is condition (a). Now suppose a2b2 < 0. We find that (a2 − b2) = ±q. In case
a2 − b2 = q we have a1 − b1 = p by (3.2.5) which gives us

Mα,α,N =

[
b1 + p p
b2 + q q

]
and so

Mα,α,N =

[
b1 p
b2 q

] [
1 0
1 1

]
.

We find
Mα,α,N = RMα,α−1,MSRS

which is case (b). In case a2 − b2 = −q we have a1 − b1 = −p which gives

Mα,α,N =

[
b1 − p p
b2 − q q

]
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and so
Mα,α,N =

[
b1 p
b2 q

] [
1 0
−1 1

]
.

We find
Mα,α,N = RMα,α−1,MSR

−1S

which is case (c). When det(Mα,α,N ) = −det(RMα,α−1,M ) we get

(a1 + b1)q = (a2 + b2)p.

This time a2 + b2 is a multiple of q and together with (3.2.4) this gives a2 + b2 ∈
{−q, 0, q}. Now assume that a2b2 > 0. We find a2 + b2 = ±q. In case a2 + b2 = q we
have a1 + b1 = p which gives

Mα,α,N =

[
p− b1 p
q − b2 q

]
and so

Mα,α,N =

[
b1 p
b2 q

] [
−1 0
1 1

]
.

This results in
Mα,α,N = RMα,α−1,MV SRS

which is case (d).
Suppose a2 + b2 = −q. Then a1 + b1 = −p which gives

Mα,α,N =

[
−p− b1 p
−q − b2 q

]
and so

Mα,α,N =

[
b1 p
b2 q

] [
−1 0
−1 1

]
.

This results in
Mα,α,N = RMα,α−1,MV SR

−1S

which is case (e). If a2b2 < 0 then a2 + b2 = 0 and so a1 + b1 = 0 which gives us

Mα,α,N = RMα,α−1,MV

which is case (f). �

For (N) continued fractions we know that qn(x) > 0 for all choices of α and x. With
the same reasoning as above we find that a2b2 > 0. Furthermore, a2 + b2 = −q is
excluded. The two algebraic relations that remain are (a) and (d). For details see the
appendix of [18] and [84].
For KU-continued fractions we have that det(Mα,x,k) = 1 for any allowed triple
(α, x, k). With the above reasoning we can find that either (a),(b) or (c) holds.
In [17] it is shown that (b) holds for a special class of rationals Q ⊂ Q ∩ (0, 1). For
other rationals (a) holds. Beware that the matrix S is defined slightly differently in
the (KU)-case since S(x) = − 1

x .

Theorem 3.2.4 results in the following corollary.

48



§3.2. Algebraic relations, an entropy formula and
matching implies monotonicity

C
h
a
pter

3

Corollary 3.2.5. Let α ∈ Q∩(0, 1) with TNα (α) = TMα (α−1) = 0 and N,M minimal
and x in the neighbourhood of α. Then

if (a) holds, TNx (x) = TMx (x− 1) if (b) holds, TN+1
x (x) = TM+1

x (x− 1)

if (c) holds, TN+1
x (x) = TM+1

x (x− 1) if (d) holds, TN+1
x (x) = −TM+1

x (x− 1)

if (e) holds, TN+1
x (x) = −TM+1

x (x− 1) if (f) holds, TNx (x) = −TMx (x− 1).

Proof. Fix α ∈ Q∩ (0, 1). We first prove that there is a neighbourhood of α such that
for every x in this neighbourhood we have

Mx,x,N = Mα,α,N and Mx,x−1,M = Mα,α−1,M . (3.2.6)

In other words, the functions TNz (z) and TMz (z−1) are continuous in z = α. Suppose
that TNz (z) is not continuous in z = α then there exists a k ≤ N such that T kα(α) =

α− 1. This gives

α =
1

dα,1 +
1

. . . +
1

dα,k + α− 1

which is an infinite (periodic) expansion of α and so α is irrational. In the same way
we find a contradiction for TMz (z − 1).
Now pick x in the neighbourhood of α so that (3.2.6) holds. We write

x = Mx,x,N (TNx (x)) (3.2.7)

and
x = RMx,x−1,M (TMx (x− 1)). (3.2.8)

Since x is in the neighbourhood of α we have that

Mx,x,N = Mα,α,N and Mx,x−1,M = Mα,α−1,M .

If condition (a) holds, we find

Mx,x,N = Mα,α,N = RMα,α−1,M = RMx,x−1,M .

This gives us, together with (3.2.7) and (3.2.8), that

TNx (x) = TMx (x− 1).

In the second case we get from condition (b) and (3.2.7), (3.2.8) that

SRSTNx (x) = TMx (x− 1)

and so
TNx (x)

TNx (x) + 1
= TMx (x− 1)
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which implies

TNx (x) =
TMx (x− 1)

1− TMx (x− 1)
. (3.2.9)

Now

TN+1
x (x) =

1

TMx (x− 1)
− 1− dx,N+1(x),

TM+1
x (x− 1) =

1

TNx (x)
+ 1− dx,M+1(x− 1).

This gives

TN+1
x (x)− TM+1

x (x− 1) =
1

TMx (x− 1)
− 1

TNx (x)
− 2− dx,N+1(x) + dx,M+1(x− 1).

Using (3.2.9) we find

TN+1
x (x)−TM+1

x (x−1) =
1

TMx (x− 1)
− 1

TMx (x− 1)
+ 1−dx,N+1(x) +dx,M+1(x−1).

so
TN+1
x (x)− TM+1

x (x− 1) = r

for some r ∈ Z. Since TN+1
x (x), TM+1

x (x− 1) ∈ [x− 1, x) we find r = 0. Case (c),(d)
and (e) can be found in a similar way as case (b). Case (f) is similar to case (a). �

Note that from (3.2.9) it follows that TNx (x) 6= TMx (x− 1) whenever (b) holds. In the
same manner we find that whenever (c) holds TNx (x) 6= TMx (x− 1). For (d), (e) and
(f) we also find TNx (x) 6= TMx (x−1). We can conclude that on a matching interval (a)
must hold, otherwise not all points in that matching interval have the same matching
exponents. Simulations suggest that (b) only holds for α = 1

2 and (c) only holds for
α ∈ { 2

5 ,
3
5}.

We now prove the fact that if det(Mα,α,N ) = det(Mα,α−1,M ) for α ∈ (0, 1) ∩ Q, then
the condition on the derivatives, as in Definition 1.2.8 on page 13, of TNα (α) and
TMα (α− 1) are satisfied. This lemma holds for all three families.

Lemma 3.2.6. Fix α ∈ (0, 1) and let N,M be minimal such that TNα (α) = TMα (α−
1) = 0 with det(Mα,α,N ) = det(Mα,α−1,M ) = t with t ∈ {−1, 1}. Then (TNα )′(α) =

(TMα )′(α− 1).

Proof. We know that there are a, b, . . . , f ∈ Z such that

TNα (x) =
ax+ b

cx+ d
, TMα (x) =

ex+ f

gx+ h
.

We have that TNα (α) = 0 gives α = − b
a and TMα (α − 1) = 0 gives α − 1 = − fe . For

any choice of S we have that ad− bc = t and eh− fg = t. This gives us

(TNα )′(x) =
t

(cx+ d)2
, (TMα )′(x) =

t

(gx+ h)2
.
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Filling in α = − b
a and α− 1 = −de respectively gives

(TNα )′(α) =
t

(−cba + d)2
=

ta2

(ad− cb)2
= ta2

and

(TMα )′(α− 1) =
t

(−fge + h)2
=

te2

(eh− fg)2
= te2.

Furthermore, note that a and b are co-prime and f and e are co-prime. Since α− 1 =
−b−a
a = − fe we find a = ±e so that a2 = e2. This finalises the proof. �

Note that on a matching interval the determinants are equal (since condition (a)
holds). Let us now turn to the entropy formula. We prove it for the (IT) and (N)
case and show where the proof fails to work for the (KU) case.

Lemma 3.2.7. Let Tα be as in (3.1.1) with S(x) = 1
x or S(x) = 1

|x| . For almost
every x ∈ [α− 1, α] we have that

h(α) := h(Tα) = 2 lim
n→∞

1

n
|log(qα,n(x))| . (3.2.10)

where qα,n(x) is the denominator associated to the nth convergent of x for the corres-
ponding map S.

The proof of Lemma 3.2.7 is very similar to the proof in the classical case (see [29]).

Proof of Lemma 3.2.7. Let T be Tα for some choice of S and α ∈ (0, 1) and let x be
a typical point. For all three cases one has recurrence relations for the convergents of
the following form

pα,−1 := 1; pα,0 := 0; pα,n(x) = dα,n(x)pα,n−1(x) + εn−1(x)pα,n−2(x), n ≥ 1,
qα,−1 := 0; qα,0 := 1; qα,n(x) = dα,n(x)qα,n−1(x) + εn−1(x)qα,n−2(x), n ≥ 1.

Here dα,n(x) = dα,1(Tn−1(x)) and εα,n(x) = εα,1(Tn−1(x)) where dα,1(x) and εα,1(x)

depend on the choice of S and ε0 := 1. In the proof we will omit the dependence of
α in our notation. First we show that for all n ∈ N we have

pn(x) = qn−1(T (x)) (3.2.11)

by using induction. For n = 0 we find p0(x) = 0 = q−1(T (x)), for n = 1 we
find p1(x) = ε0 = 1 = q0(T (x)). We assume pn(x) = qn−1(T (x)) and pn−1(x) =

qn−2(T (x)) to find

pn+1(x) = dn+1(x)pn(x) + εn(x)pn−1(x)

= dn+1(x)qn−1(T (x)) + εn(x)qn−2(T (x))

= dn(T (x))qn−1(T (x)) + εn−1(T (x))qn−2(T (x))

= qn(T (x))
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which finalises the induction. Using (3.2.11) we write

1

qn(x)
=

1

qn(x)

pn(x)

qn−1(T (x))

pn−1(T (x))

qn−2(T 2(x))
· · · p1(Tn−1(x))

q0(Tn(x))

=
pn(x)

qn(x)

pn−1(T (x))

qn−1(T (x))
· · · p1(Tn−1(x))

q1(Tn−1(x))
.

Taking the absolute value and the logarithm on both sides we find

− log |qn(x)| = log

∣∣∣∣pn(x)

qn(x)

∣∣∣∣+ log

∣∣∣∣pn−1(T (x))

qn−1(T (x))

∣∣∣∣+ . . .+ log

∣∣∣∣p1(Tn−1(x))

q1(Tn−1(x))

∣∣∣∣ . (3.2.12)

Now we write

− log |qn(x)| = log |x|+ log |T (x)|+ · · ·+ log |Tn−1(x)|+ E(n, x) (3.2.13)

and determine the error term E(n, x) by substituting the right hand side of (3.2.12)
for − log |qn(x)| in (3.2.13) and rewriting the equation. We get

E(n, x) = log

∣∣∣∣pn(x)

qn(x)

∣∣∣∣− log |x|+ · · ·+ log

∣∣∣∣p1(Tn−1(x))

q1(Tn−1(x))

∣∣∣∣− log |Tn−1(x)|. (3.2.14)

Now we prove that for any y ∈ [α− 1, α]\Q we have∣∣∣∣log

∣∣∣∣pn(y)

qn(y)

∣∣∣∣− log |y|
∣∣∣∣ ≤ 1

|qn(y)|
. (3.2.15)

First we prove that if we write |x| = | dqn | then d > 1 for n ≥ 2. We have∣∣∣∣|x| − |pnqn |
∣∣∣∣ ≤ ∣∣∣∣d− pnqn

∣∣∣∣ ≤ 1

q2
n

. (3.2.16)

For the (IT) case this follows from 3.1.3 and for the (N) case this estimate can be
found in [81]. We do not have this estimate for the (KU) case where only |x− pn

qn
| < 1

qn
is proven in [54]. Now (3.2.16) gives |d− pn||qn| ≤ 1. Now suppose |pnqn | ≤ |x|. Using
the Mean Value Theorem with f(x) = log |x| on [|pnqn |, |x|] we find

0 ≤
∣∣∣∣log |x| − log |pn

qn
|
∣∣∣∣ =

∣∣∣∣|x| − |pnqn |
∣∣∣∣ 1

c
≤
∣∣∣∣x− pn

qn

∣∣∣∣ 1

c
≤ 1

q2
n

1

c
≤ 1

q2
n

| qn
pn
| ≤ 1

|qn|

for some c ∈ [|pnqn |, |x|]. Suppose |x| ≤ |pnqn |. Using the Mean Value Theorem with
f(x) = log |x| on [|x|, |pnqn |] we find

0 ≤
∣∣∣∣log |x| − log |pn

qn
|
∣∣∣∣ =

∣∣∣∣|x| − |pnqn |
∣∣∣∣ 1

c
≤
∣∣∣∣x− pn

qn

∣∣∣∣ 1

c
≤ 1

q2
n

1

c
≤ 1

q2
n

|qn
d
| ≤ 1

|qn|
.

In both cases we find that (3.2.15) holds. Using this estimate in (3.2.14) we find

|E(n, x)| ≤ 1

|qn(x)|
+ · · ·+ 1

|q1(Tn−1
α (x))|

.
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Since for all choices of S and α ∈ (0, 1] we have that the sequence |qn(x)| grows
exponentially fast (see [54, 80, 103]2 ) there is a b ∈ R>1 such that |qn| > bn−1 for
n > 1. Furthermore q1 ≥ 1 and so we get

|E(n, x)| ≤ 1 +
1

b
+ · · ·+ 1

bn−1
<

∞∑
k=0

1

bk
=

b

b− 1
. (3.2.17)

Using Rohlin’s formula and Birkhoff’s formula we find

h(α) =

∫
log |T ′(x)|dµ = lim

n→∞

1

n

n∑
i=1

log |T ′(T i(x))|.

With (3.2.13) this gives us

h(α) = −2 lim
n→∞

1

n
(− log |qn(x)| − E(n, x)) .

Since (3.2.17) holds we can now conclude

h(α) = 2 lim
n→∞

1

n
log |qn(x)|

which is equation (3.2.10).
�

Now we will prove that on a matching interval the entropy is monotonic. The general
idea is the same as for the α-continued fractions (see [84]).

Theorem 3.2.8. Let A ⊂ [0, 1] be a matching interval for (N),(KU) or (IT). Then
the entropy is monotonic on A. Furthermore, if the matching index is positive h(α)

is increasing, if the matching index is zero h(α) is constant and if the matching index
is negative h(α) is decreasing.

Proof. Fix s ∈ Q\E , where E ∈ {EN , EKU , EIT } depends on the choice of S, with
TNα (α) = TMα (α − 1) = 0 and N,M minimal and let (l(s), r(s)) be such that s ∈
(l(s), r(s)) where l(s) and r(s) are chosen in such a way that Mα,α,N = Ms,s,N and
Mα,α−1,M = Ms,s−1,M for all α ∈ (l(s), r(s)). Note that this implies that (l(s), r(s))

is contained in a matching interval. Let α, β ∈ (l(s), r(s)) and define Tmα (α) = αm
and Tmβ (β) = βm. We prove the following equation holds for m ≤M

|αm − βm| <
|α− β|

|p2
α,m−1 − 2pα,m−1qα,m−1|

. (3.2.18)

From (3.2.2) and the fact that αm and βm have the same partial quotients we can get

αm = ε̂
αqα,m − pα,m

pα,m−1 − qα,m−1α
, βm = ε̂

βqα,m − pα,m
pα,m−1 − qα,m−1β

,

2Actually, in [54, 80] linear growth is proven, but the proof can be adjusted easily to get expo-
nential growth since, in the sequence of digits for any x ∈ [α− 1, α], a sequence of consecutive 2’s or
−2’s is uniformly bounded for a fixed α < 1. All proofs are based on the recurrence relations.
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where ε̂ ∈ {−1, 1} depending on the family (always 1 for (IT), always −1 for (KU)
and εα,m(α) for (N)). This gives us by (3.2.1)

|αm − βm|= |
αqα,m − pα,m

pα,m−1 − qα,m−1α
− βqα,m − pα,m
pα,m−1 − qα,m−1β

|

= | (αqα,m − pα,m)(pα,m−1 − qα,m−1β)− (βqα,m − pα,m)(pα,m−1 − qα,m−1α)

(pα,m−1 − qα,m−1α)(pα,m−1 − qα,m−1β)
|

= | (qα,mpα,m−1 − qα,m−1pα,m)α+ (qα,m−1pα,m − qα,mpα,m−1)β

p2
α,m−1 − pα,m−1qα,m−1(α+ β) + q2

α,m−1αβ
|

= | (−1)mα− (−1)mβ

p2
α,m−1 − pα,m−1qα,m−1(α+ β) + q2

α,m−1αβ
|

< | α− β
p2
α,m−1 − 2pα,m−1qα,m−1

|.

Fix α and let us define the set L(α) = ∪Nn=1T
n
α (α) ∪ ∪Mn=1T

n
α (α − 1). We show that

there is an ε > 0 such that for all β ∈ (α− ε, α) we have that L(α) ⊂ (α− 1, β) and
L(β) ⊂ (α−1, β). Let ε′ > 0 such that the minimum of L(β) is attained after the same
amount of iterations for all β ∈ (α − ε′, α) so that when Tmα (α) = αm = min(L(α))

then Tmβ (β) = βm = min(L(β)) for β ∈ (α− ε′, α). This can be done since the maps
Tnz (z) and Tn

′

z (z−1) are continuous in z = α for n ≤ N and n′ ≤M . If the minimum
is attained in a point of the orbit of α− 1 and β − 1 the proof works the same.
We now find an ε1 > 0 such that |αm−βm| < |α−1−αm| for all β ∈ (α−ε1, α)∩(α−
ε′, α) ∩ (l(s), r(s)) which implies L(β) ⊂ (α − 1, β). Let c = 1

|p2
α,m−1−2pα,m−1qα,m−1|

and set ε1 := |α−1−αm|
c . We find for β ∈ (α− ε1, α) and from equation (3.2.18) that

|αm − βm| < c|α− β| < cε1 = |α− 1− αm|.

Now let ε2 = α − max(L(α)), then L(α) ⊂ (α − 1, β) for all β ∈ (α − ε2, α). Let
ε = min(ε1, ε2, ε

′) then we have L(α) ⊂ (α − 1, β) and L(β) ⊂ (α − 1, β) for all
β ∈ (α− ε, α).
Fix β ∈ (α−ε, α)∩(l(s), r(s)) and pick x ∈ (β, α) such that x is a typical point for the
system (Tα, (α−1, α), µα) and x−1 is a typical point for the system (Tβ , (β−1, β), µβ).
By typical we mean that limn→∞

1
n#{i < n : T iα(x) ∈ (β, α)} = µα ((β, α)). We

iterate x over Tα and x′ = x− 1 over Tβ . Let nk be the kth return time of x to (β, α)

and mk the kth return time of x′ to (β−1, α−1). We show that nk−mk = (N−M)k

and qα,nk−1,(x) = qβ,mk−1(x′).

Because L(α), L(β) ⊂ (α − 1, β) we have that x will not return to (β, α) before N
iterations of Tα and x′ will not return to (β − 1, α − 1) before M iterations. On the
interval (α−1, β) we have that Tα(x) = Tβ(x) whenever Tα(x) ∈ (α−1, β). This gives
us that TNα (x) = TMβ (x′) and Tn1−1

α (x) = Tm1−1
β (x′) and we find n1 −m1 = N −M .

Furthermore, since x is contained in the same matching interval as s we have that
condition (a) holds and so

Mx,x,N = RMx,x−1,M
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which gives us qx,N (x) = qx,M (x′) and so qα,N (x) = qβ,M (x′). Since the orbits
of x and x′ coincide after N and M iterations respectively we have that also the
fractional transformations coincide. This results in qα,n1−1(x) = qβ,m1−1(x′). Now
Tm1

β (x′) + 1 = Tn1
α (x) and Tm1

β (x′) ∈ (β − 1, α − 1) is a typical point for (Tβ , (β −
1, β), µβ) and Tn1

α (x) ∈ (β, α) is a typical point for (Tα, (α − 1, α), µα). This means
we are in the same situation as we started and so we can repeat this process and find
nk −mk = (N −M)k and qα,nk−1,(x) = qβ,mk−1(x′). We will now prove

h(Tα) = (1 + (M −N)µα ((β, α)))h(Tβ).

It follows from Birkhoff’s Theorem that for typical x we have

lim
n→∞

1

n
#{i < n : T iα(x) ∈ (β, α)} = µα ((β, α)) .

This gives us

lim
k→∞

k

nk
= µα ((β, α)) .

We find the following limit:

lim
k→∞

mk

nk
= lim

k→∞

(
1 +

mk − nk
nk

)
= lim

k→∞

(
1 +

(M −N)k

nk

)
= 1 + (M −N)µα ((β, α)) .

We will now use Lemma 3.2.7 to find the wanted result

h(Tα) = 2 lim
nk→∞

1

nk − 1
| log (qα,nk−1(x)) |

= lim
k→∞

mk − 1

nk − 1

1

mk − 1
| log (qβ,mk−1(x′)) |

= (1 + (M −N)µα(β, α))h(Tβ).

This finalises the proof. �

In the next section we primarily focus on the (IT) case. Most techniques used cannot
be mimicked to prove statements for the other two families.

§3.3 Matching almost everywhere and characterisa-
tions of the bifurcation set

The main tool that lies at the basis of the results in this section is the following
technical lemma. It can be used both to compare α-continued fractions of two numbers
(in particular of α − 1 and Tα(α) = 1

α − 1) as well as to translate an α-continued
fraction into a β-continued fraction. Recall that g =

√
5−1
2 .

Lemma 3.3.1. Let g ≤ α ≤ β ≤ 1, x ∈ [α− 1, α), y ∈ [β − 1, β).
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(i) If x = y, then Tβ(y)− Tα(x) ∈ {0, 1}.
(ii) If y − x = 1, then (x+ 1)(Tβ(y) + 1) = 1.

(iii) If (x+ 1)(y + 1) = 1 or x+ y = 0, then Tα(x) + Tβ(y) ∈ {0, 1}.
(iv) If x+ y = 1, then

Tβ(y)− T 2
α(x) ∈ {0, 1} if x > 1

α+1 ,

T 2
β (y)− Tα(x) ∈ {0, 1} if y > 1

β+1 ,(
Tα(x) + 1

)(
Tβ(y) + 1

)
= 1 otherwise.

Figure 3.4: A diagram for Lemma 3.3.1.

In Figure 3.4 one can see which condition can imply which other condition.

Proof. Case (i). We have Tβ(y)− Tα(x) ∈ Z ∩ (β − 1− α, β − α+ 1) = {0, 1}.
Case (ii). Since x ≥ α− 1, we have y ≥ α, thus (x+ 1)(Tβ(y) + 1) = x+1

y = 1.

Case (iii). Dividing the equations by xy gives us 1
x + 1

y = −1 and 1
x + 1

y = 0

respectively. This implies that Tα(x) + Tβ(y) ∈ Z ∩ [α+ β − 2, α+ β) = {0, 1}.
Case (iv). If x > 1

α+1 , then
1

Tα(x) = 1
1
x−1

= x
1−x = 1−y

y = 1
y − 1, thus 1

y −
1

Tα(x) = 1

and so Tβ(y)−T 2
α(x) ∈ Z∩ (β− 1−α, β−α+ 1) = {0, 1}. Similarly, y > 1

β+1 implies
that T 2

β (y)− Tα(x) ∈ {0, 1}.
If x ≤ 1

α+1 and y ≤ 1
β+1 , then x = 1 − y ≥ β

β+1 ≥
g
g+1 = 1

g+2 ≥
1

α+2 and y =

1 − x ≥ α
α+1 ≥

1
g+2 ≥

1
β+2 . We cannot have x = 1

α+2 because this would imply
that α = g = β = y, contradicting that y < β. Similarly, we cannot have y = 1

β+2 .
From x ∈ ( 1

α+2 ,
1

α+1 ] and y ∈ ( 1
β+2 ,

1
β+1 ], we infer that (Tα(x) + 1)(Tβ(y) + 1) =

( 1
x − 1)( 1

y − 1) = 1. �

Lemma 3.3.1 greatly simplifies when taking α = β and only looking at the orbits of
α− 1 and 1

α − 1 before exceeding 1
α+1 . We use the notation

xn := Tnα (α− 1), yn := Tnα ( 1
α − 1).

Lemma 3.3.2. Let α ∈ (g, 1] and m ∈ N be such that

xn ≤ 1
α+1 and yn ≤ 1

α+1 for all 0 ≤ n < m. (3.3.1)
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Then for any 0 ≤ n ≤ m the pair (xn, yn) satisfies one of the following relations:

(A) (xn + 1)(yn + 1) = 1,
(B) xn + yn = 0,
(C) xn + yn = 1.

If xm > 1
α+1 or ym > 1

α+1 , then xm + ym = 1.

Figure 3.5: A diagram for Lemma 3.3.2.

In Figure 3.5 one can see from which state to which state you can get.

Proof. The proof is a straightforward application of Lemma 3.3.1. The pair (x0, y0)

satisfies (A), condition (i) in Lemma 3.3.1. Let 0 ≤ n < m then yn − xn = 1

is impossible since xn, yn ∈ [α − 1, α). Also xn = yn is impossible since we have
xn ≤ 1

α+1 and yn ≤ 1
α+1 which implies that (xn, yn) always are in state (A), (B) or

(C). We find that if (xn, yn) satisfies (A) or (B), then (xn+1, yn+1) satisfies (B) or (C).
If (xn, yn) satisfies (C), then (A) holds for (xn+1, yn+1).
Now suppose that xm > 1

α+1 and (B) holds. Then ym < − 1
α+1 < α − 1 which

contradicts with ym ∈ [α−1, α). If xm > 1
α+1 and (A) holds we find ym = 1

xm+1−1 <
1

1
α+1 +1

− 1 = − 1
2+α < α− 1 since α > g which also contradicts with ym ∈ [α− 1, α).

Note that the role of xm and ym are interchangeable. We find that if xm > 1
α+1 or

ym > 1
α+1 , then xm + ym = 1. �

We focus now on the complement of the set

Ẽ = {α ∈ [g, 1] : xn ≤ 1
α+1 and yn ≤ 1

α+1 for all n ≥ 1}

and show that it belongs to the matching set (Ẽ is the set in (3.1.4)).

Proposition 3.3.3. Let α ∈ (g, 1] with m ∈ N such that (3.3.1) holds and ε ∈
{−1, 1}. If Tmα (αε−1) > 1

α+1 , then α belongs to a matching interval J with exponents
M = m + 2 − 1−ε

2 , N = m + 2 + 1−ε
2 . Furthermore, let f(z) = Tmz (zε − 1). The

boundaries of J satisfy f(z) = 1
z+1 and f(z) = z respectively.

See Figure 3.6 for an example. For the proof of the proposition, we use the following
lemma.
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5−
√

13
2

1
2

√
27

10

y = z

y = 1
z+1

f(z)
....................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................

Figure 3.6: An example of Proposition 3.3.3 for α = 7
10

with m = 1, ε = 1 and matching
exponents (3, 3) where f(z) = 1

z−1
+ 4.

Lemma 3.3.4. Let α ∈ (g, 1], m ∈ N such that (3.3.1) holds, and xm > 1
α+1 or

ym > 1
α+1 . Then the maps Tmz (z − 1) and Tmz ( 1

z − 1) are continuous at z = α.

Proof. The maps Tnz (z−1) and Tnz ( 1
z −1) are continuous at z = α for all 1 ≤ n ≤ m if

and only if xn 6= x0 and yn 6= x0 for all 1 ≤ n ≤ m. Suppose that xn = x0 or yn = x0

for some 1 ≤ n ≤ m. If (xn, yn) satisfies (C) and xn = x0 then xn+yn = α−1+yn = 1

and so yn = 2 − α > α. Since we can use the same reasoning for yn = x0 we
find that (xn, yn) satisfies (A) or (B). This gives n < m and xn+1 + yn+1 ∈ {0, 1},
x1 + y1 ∈ {0, 1}. We find xn+1 + yn+1 − (x1 + y1) ∈ {−1, 0, 1}. If xn = x0, then
we have xn+1 = x1 and xn+1 + yn+1 − (x1 + y1) = yn+1 − y1 ∈ {−1, 0, 1} where
we can exclude ±1 since yn+1, y1 ∈ [α − 1, α) and thus yn+1 = y1; if yn = x0, then
we have yn+1 = x1 and thus xn+1 = y1. We get that {xm−n, ym−n} = {xm, ym},
contradicting (3.3.1). �

Proof of Proposition 3.3.3. By Lemma 3.3.2, we have xm+ym = 1. Then Lemma 3.3.1
gives that xm+2 = ym+1, i.e., Tm+2

α (α − 1) = Tm+2
α (α), if xm > 1

α+1 , and that
xm+1 = ym+2, i.e., Tm+1

α (α− 1) = Tm+3
α (α), if ym > 1

α+1 .
Let f be the linear fractional transformation satisfying f(z) = Tmz (zε − 1) around
z = α, which exists by Lemma 3.3.4. By Lemma 3.3.4, we also get that Tmz (z − 1)

and Tmz ( 1
z − 1) are continuous at all points z with 1

z+1 < f(z) < z. Note that (3.3.1)
holds for these points because Tnz (z±1 − 1) = 1

z+1 implies that Tn+1
z (z±1 − 1) is not

continuous. Since the maps z 7→ Tn+1
z (z±1 − 1) are continuous at all points z̄ for

58



§3.3. Matching almost everywhere and characterisations of the bifurcation set

C
h
a
pter

3

which 1
z̄+1 < Tn+1

z (z̄±1 − 1) < z̄ holds. Therefore, f is expanding at these points
and we have some z−, z+ with f(z−) = 1

z−+1 and f(z+) = z+; let J be the open
interval with boundaries z−, z+. Since (3.3.1) holds for all points in J , the interval J
has matching exponents N = m+ 2 + 1−ε

2 ,M = m+ 2− 1−ε
2 .

Arbitrarily close to z− and z+, we can find points z where the minimal n such that
Tnz (z−1) ≥ 1

α+1 or Tnz ( 1
z−1) ≥ 1

α+1 is different fromm. Therefore, these points are in
matching intervals with different matching exponents than J . Hence, by Lemma 3.1.2,
they are not in J , and J is a matching interval. �

Proposition 3.3.3 shows that EIT ∩ [g, 1] ⊂ Ẽ .

Lemma 3.3.5. Let α ∈ (g, 1], z ∈ [α−1, g). The following conditions are equivalent:

(i) Tnα (z) = Tng (z) for all n ∈ N.

(ii) Tng (z) ≥ α− 1 for all n ∈ N.

(iii) Tnα (z) < g for all n ∈ N.

(iv) Tnα (z) ≤ 1
α+1 for all n ∈ N.

In particular, we have

Ẽ =
{
α ∈ [g, 1] : Tng (α− 1) ≥ α− 1 and Tng ( 1

α − 1) ≥ α− 1 for all n ≥ 1
}
.

Proof. The equivalences (ii) ⇔ (i) ⇔ (iii) are direct consequences of the definition
of Tα. Since 1

1+α < g, we have (iv) ⇒ (iii). For the converse, suppose that Tnα (z) >
1

α+1 for some n. Then we have Tn+1
α (z) = 1

Tnα (z) − 1, thus Tnα (z) ≥ g or Tn+1
α (z) >

1
g − 1 = g, hence (iii) does not hold. �

Now we prove that matching is prevalent and the only indices are −2, 0, 2.

Proof of Theorem 3.1.3. We have

EIT ⊂ Ẽ ⊂ {α ∈ (g, 1] : Tng (α− 1) ≥ α− 1 for all n ≥ 1}

⊂
∞⋃
k=1

{α ∈ (g, 1] : Tng (α− 1) ≥ g − 1 + 1
k for all n ≥ 1}.

Since Tg is ergodic (with respect to an invariant measure that is equivalent to the
Lebesgue measure), all the sets in this union have Lebesgue measure zero. Therefore,
by Proposition 3.3.3 and Lemma 3.3.5, the matching set has full measure on [g, 1].
Since matching is an open condition, Lemma 3.1.2 tells us that Proposition 3.3.3 gives
all matching exponents on [g, 1], hence the only possible indices are 0,−2. Recalling
that for almost all matching parameters in (1 − g, g) we have matching index 0, we
can exploit the symmetry to conclude the proof of the theorem. �

Next we prove Theorem 3.1.4.
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Proof of Theorem 3.1.4. Proposition 3.3.3 gives us EIT ∩ [g, 1] ⊂ Ẽ and the set Ẽ is
the set in (3.1.4) so left to show is Ẽ ⊂ EIT . Let x ∈ Ẽ and suppose x 6∈ EIT then
x ∈ (a, b) for some matching interval (a, b). From the proof of Theorem 3.1.3 we find
that the complement of Ẽ covers almost everything. Furthermore, the complement
is the union of matching intervals. We find that (a, b) ⊂ [0, 1] \ Ẽ and in particular
x ∈ [0, 1] \ Ẽ which gives a contradiction. We find Ẽ ⊂ EIT . Lemma 3.3.5 gives the
second characterisation (3.1.5). �

§3.4 Dimensional results for EIT
Now that we established several characterisations of EIT we will focus on dimensional
results of EIT in this section. We make use of two sets and the following proposition:

Proposition 3.4.1. Let us consider the sets

Fn = {x ∈ [0, 1] : x = [0; a1, a2, . . .] such that aj ≥ n for all j ∈ N},
Cn = {x ∈ [0, 1] : x = [0; a1, a2, . . .] and aj , . . . , aj+2n−1 6= 12n for all j ∈ N}.

where [0; a1, a2, . . .] denotes the regular continued fraction. For these sets we have
dimH(Fn) > 1

2 and limn→+∞ dimH(Cn) = 1.

Proof. In [45] it is shown that dimH(Fn) > 1
2 + 1

2 log(n+2) for n > 20. Since Fn+1 ⊂ Fn
we find that dimH(Fn) > 1

2 for all n ∈ N.
Let BAD(g) = {x ∈ [0, 1] : g 6∈ {Tn(x) : n ∈ N}} where T denotes the Gauss map.
Then [47] gives us that BAD(g) is α-winning and therefore it has Hausdorff dimension
1. On the other hand, it is not difficult to check that BAD(g) = ∪nCn and since Cn
is an increasing sequence of sets we get

1 = sup
n

dimH(Cn) = lim
n→+∞

dimH(Cn).

�

We will now give a lemma to prove Theorem 3.1.5.

Lemma 3.4.2. Let x ∈ [g− 1, g) have the RCF expansion x = [a0; a1, a2, a3, ...] with
a0 ∈ {0,−1}, aj ∈ N ∀j ≥ 1. Furthermore, let {x} = x for x ≥ 0 and {x} = x + 1

for x < 0. Then there is

• a sequence jk → +∞ such that 0 ≤ jk − jk−1 ≤ 2,

• a sequence of prefixes Pk ∈ {∅, (1), (a), (1, a)},

such that {T kg (x)} = [0;Pk, ajk , a1+jk , a2+jk , ...] for all k.

Proof. Let us set xk := T kg (x) and j−1 = 0 and proceed by induction. It is clear
that the statement holds for k = 0. Now suppose the statement holds for xk then
{xk} = [0;Pk, ajk , a1+jk , a2+jk , ...]. We treat the following cases:
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(a) if xk > 0 then {Tg(xk)} = {T (xk)} = T (xk) and xk = {xk} so we find the
desired form for {xk} with jk = jk−1 + 1.

(b) if xk ∈ (g−1,− 1
3 ) then {xk} ∈ (g, 2

3 ) and so we can write {xk} = [0; 12i+1, a,X]

with i ≥ 1. This implies that Tg(xk) = 1
xk

+ 3 = [0; a+ 1, X] in case i = 1 and
Tg(xk) = 1

xk
+ 3 = [0; 2, 12i−3, a,X] otherwise. We find {xk+1} = {Tg(xk)} =

Tg(xk) so it has the desired form with jk = jk−1 + 2.

(c) if xk ∈ (− 1
3 , 0) then {xk} is of the form {xk} = [0; 1, a,X] which gives us

xk = −[0; a+ 1, X] and so {Tg(xk)} = 1− [0;X]. Using the relation 1− [0; c1 +

1, c2, c3, ...] = [0; 1, c1, c2, c3, ...] we find that {xk+1} has the desired form with
jk+1 = jk + 1 if c1 = 0 and jk+1 = jk otherwise.

So in any case the RCF expansion of xk+1 is a short prefix (possibly empty) followed
by the tail of the RCF expansion of x. �

g − 1 g

1− g

0

0

1
2+g

1
3+g

−1
4−g −1

5−g

−1
6−g

· · · · · ·

........................................................................................................................................................................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................................................................................................

Figure 3.7: The map Tg.

Proof of Theorem 3.1.5. Let fa : [0, 1]→ [0, 1] be defined as fa(x) = 1
a+x with a ∈ N

and let Ĉn := f2n+5
1 ◦ f2(Cn). We first prove that Ĉn ⊂ EIT . Let α ∈ Ĉn then we

can write α = [0; 12n+5, 2, X] for some string X without any subsequence 12n. From
Lemma 3.3.5 we get that if {T kg ( 1

α − 1)} 6∈ (g, α) and {T kg (α − 1)} 6∈ (g, α) for all k
then α ∈ EIT . Suppose there is a k such that {T kg ( 1

α − 1)} ∈ (g, α). Then k > 2

since Tg( 1
α − 1) = −[0; 2, 12n+1] and T 2

g ( 1
α − 1) = [0; 2, 12n−2]. Furthermore, we can

write {T kg ( 1
α − 1)} = [0; 12n+5, Y ] for some string Y . From Lemma 3.4.2 we find

{T kg ( 1
α − 1)} = [0;Pk+1, ajk+1

, a1+jk+1
, a2+jk+1

, . . .].
We find that ajk+1

, a1+jk+1
, a2+jk+1

, . . . , a2n−1+jk+1
= 12n which is not a part of the

initial string. This contradicts with α ∈ Ĉn. Since α − 1 = −[0; 2, 12n+2, X] we can
find the same contradiction for α − 1. Together with Lemma 3.3.5 and the proof of
Theorem 3.1.4 we can conclude α ∈ EIT . Of course, if Ĉn ⊂ EIT then ∪Ĉn ⊂ EIT .
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Since fa is bi-Lipschitz for all a ∈ N, the same is true for any finite composition of
these maps. Since bi-Lipschitz maps preserve the Hausdorff dimension we find

dimH(Cn) = dimH(Ĉn). (3.4.1)

From (3.4.1) and Proposition 3.4.1 it follows that

dimH

(
∪n>20Ĉn

)
= sup
n>20

dimH(Ĉn) = sup
n>20

dimH(Cn) = 1.

Since Ĉn ⊂ EIT we find dimH(EIT ) = 1. Now let δ > 0. For sufficiently large N
we have that Ĉn ⊂ (g, g + δ] for all n ≥ N and so dimH ((g, g + δ) ∩ EIT ) = 1 which
finishes the proof.

�

To get results on the Hausdorff dimension around a point b ∈ EIT ∩ Q we need more
insight in the behaviour around such a point. We establish this with the following
lemma.

Lemma 3.4.3. If α0 ∈ EIT ∩Q∩ (g, 1] has RCF expansion α0 = [0; a1, a2, ..., ak] then
there is a c ∈ N such that

Eα0
:= {α ∈ [g, 1] : α = [0; a1, a2, ..., ak, c, c1, c2, ...] with cj > a2 + 1 ∀j} ⊂ EIT

with c1, c2, . . . either a finite (possibly empty) or an infinite sequence. Furthermore,
we have that matching condition (3.1.2) holds for α0 with N −M = 1.

Proof. Let α0 ∈ EIT ∩Q∩ (g, 1] and define xn = Tnα0
(α0− 1) and yn = Tnα0

(
1
α0
− 1
)

=

Tn+1
α0

(α0). Since α0 ∈ Q, both the Tα0 -orbit of α0 − 1 and the Tα0 -orbit of 1/α0 − 1

will eventually reach zero, and since α0 ∈ EIT this will happen in one of the states
(A), (B) or (C) from Lemma 3.3.2. Let m be minimal such that xm = 0. From the
equations for (A), (B), (C) we have that (C) cannot happen and that ym = 0. This
gives us that Tmα0

(α0 − 1) = Tm+1
α0

(
α0

)
and matching condition (3.1.2) holds with

N −M = 1.

Now observe that Lemma 3.3.5 (ii) gives us that {Tng (α0)} 6∈ [g, α0] and {Tng (α0−1)} 6∈
[g, α0] for all n ∈ N. This implies that there is a δ > 0 such that for all α ∈ (α0−δ, α0+

δ) we have {Tng (α)} 6∈ [g, α] for 0 ≤ n ≤ m′+1 and {T jg (α−1)} 6∈ [g, α] for 0 ≤ j ≤ m′

withm′ minimal such that Tm
′

g ( 1
α0
−1) = 0. Pick c ∈ N such that Eα0

⊂ (α0−δ, α0+δ)

and α0 and α have the same partial quotients in their g-expansion up to m′ for all
α ∈ Eα0

. Let α ∈ Eα0
. From Lemma 3.4.2 we find {Tm′g ( 1

α−1)} = [0;Pm′ , c, c1, . . .] or
{Tm′g ( 1

α −1)} = [0;Pm′ , c1, . . .]. In the first case we find Tm
′

g ( 1
α −1) > 0 and Pm′ = ∅.

Since {T jg (α − 1)} 6∈ [g, α] for 0 ≤ j ≤ m′ we find T jg ( 1
α − 1) 6∈ [g − 1, α − 1] and so

T jg ( 1
α − 1) = T jα( 1

α − 1) for 0 ≤ j ≤ m′. This gives us Tm
′

α ( 1
α − 1) = [0; c, c1, c2 . . .].

It follows that Tm
′+j

α ( 1
α − 1) = [0; cj , cj+1, . . .] for all j ∈ N. Note that matching did

not happen before Tm
′

α ( 1
α −1) so that (Tm

′

α ( 1
α −1), Tm

′

α (α−1)) is in one of the states
(A), (B), (C) from Lemma 3.3.2. State (C) would imply that Tm

′

α (α − 1) > α so we
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can exclude it. If we are in state (A) we find Tm
′

α (α − 1) = −[0; c, c1, c2 . . .] and so
Tm

′+j
α (α − 1) = −[0; c, c1, c2 . . .]. We find α ∈ EIT . If we are in state (B) we have
Tm

′

α (α−1) = −[0; c+1, c1, c2 . . .] and we can draw the same conclusion. In the second
case we find Pm′ = c+ 1 and no difference to the proof of the first case.

�

Now Theorem 3.1.6 follows almost directly.

Proof of Theorem 3.1.6. The fact that there are infinitely many rationals in EIT is
given by the fact that n−1

n ∈ EIT for all n ∈ N≥3. Furthermore, EIT ∩Q∩(g, 1] does not
have isolated points since in Lemma 3.4.3 one can take a string c1 with c1 arbitrarily
high. For the dimensional result we reason as follows. The composition fa1 ◦. . .◦fak is
bi-Lipschitz. Furthermore, from Lemma 3.4.3 it follows that fa1 ◦ . . . ◦ fak

(
Fn
)
⊂ EIT

for all n > N for some N . Using Proposition 3.4.1 and symmetry the theorem now
follows. �

§3.5 Final observations and remarks

In the first part of this chapter, we have seen that a lot of machinery works for all
three families. In the second part we have seen some differences. Since for the (KU)
and (N) case the set of possible matching indices is Z we cannot expect that we can
obtain a tool like Lemma 3.3.1 for these families.

Note that this chapter was concerned mostly with matching and the non-matching
set rather than the entropy as a function of α. We do know that the set for which
the entropy as a function of α is not locally monotonic is a subset of EIT however we
do not know whether equality holds. Furthermore, we did not prove the fact that the
entropy function is continuous. For the matching set this should follow from the fact
that we have

h(Tα) = (1 + (M −N)µα ((β, α)))h(Tβ)

for β < α on the same matching interval and the fact that µα ((β, α)) is continuous
in β. To prove continuity on the non-matching set might be more challenging.

Worth mentioning is that Wolfgang Steiner and Hitoshi Nakada have (unpublished)
results on the natural extension for Ito Tanaka’s continued fractions. In particular
they can show that for every α ∈ [0, 1] there is a solid rectangle [α − 1, α] × [A,B]

that is fully contained in the domain of the natural extension. This implies that the
invariant measure has full support.

Now it is proven that for all three families matching holds almost everywhere, one
can take the challenge of mixing the maps. When, instead of iterating over one fixed
map, you flip a coin to decide whether you pick S(x) = 1

x or S(x) = − 1
x the orbit of

α and α − 1 become random. Can we prove that for almost every α ∈ [0, 1] we have
matching almost surely? And what does matching imply in this case? A different
toolbox would be needed to tackle this problem.
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CHAPTER 4
N -expansions

This chapter is based on joined work with Cor Kraaikamp and has appeared as a paper
in Journal of Mathematical Analysis and Applications [64], except for Section 4.3.3
“why is it so difficult” where we explain why the methods of Chapter 3 fail to work.

Abstract

As in Chapter 2, we will look at expansions with flips (in the first part) and expansions
with digits from a finite alphabet. In this chapter it is combined with N -expansions.
By using the natural extension, the density of the invariant measure is obtained in a
number of examples. In case this method does not work, a Gauss-Kuzmin-Lévy based
approximation method is used. Convergence of this method follows from [99] but the
speed of convergence remains unknown. For a lot of known densities the method gives
a very good approximation in a low number of iterations. In the second part of this
chapter, a subfamily of the N -expansions without flips is studied. In particular, the
entropy as a function of a parameter α is estimated for N = 2 and N = 36. This
is done in a similar flavour as Chapter 3. For N = 2 we find a matching interval
with matching index 0. We show that the entropy is constant on this interval by
using the natural extension. We also show that the methods from Chapter 3 to prove
that matching is prevalent fail to adapt to this case. This is followed by a numerical
exploration. Several conjectures are stated.
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§4.1 Introduction

In general, studies on continued fraction expansions focus on expansions for which
almost all x have an expansion with digits from an infinite alphabet. A classical
example is the regular continued fraction, see [29, 50, 98] and Chapter 1. An example
of continued fraction expansions with only finitely many digits has been introduced
in [71] by Joe Lehner, where the only possible digits are 1 and 2; see also [28] and, of
course, the expansions from Chapter 2. More recently, continued fractions have been
investigated for which all x in a certain interval have finitely many possible digits.
In [33] the following 4-expansion has been (briefly) studied. Let T : [1, 2] → [1, 2] be
defined as

T (x) =


4

x
− 1 for x ∈ ( 4

3 , 2],

4

x
− 2 for x ∈ [1, 4

3 ]

, (4.1.1)

see also Figure 4.1.

1 2

2

4
3

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................



Figure 4.1: The CF-map T from (4.1.1).

By repeatedly using this map we find that every x ∈ [1, 2] has an infinite continued
fraction expansion of the form

x =
4

d1 +
4

d2 +
. . .

with dn ∈ {1, 2} for all n ≥ 1. The class of continued fractions algorithms that
give rise to digits from a finite alphabet is very large. In this chapter we will give
examples of such expansions and in Section 4.3 we will take a closer look at an
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interesting sub-family. Most of the examples will be a particular case of N -expansions
(see [3, 15, 33]). Other examples are closely related and can be found by combining
the N -expansions with flipped expansions (cf. [68] for 2-expansions; see also [27] for
flipped expansions). For all these examples we refer to [27] for ergodicity (which can
be obtained in all these cases in a similar way) and existence of an invariant measure.
In a number of cases however, it is difficult to find the invariant measure explicitly,
while in seemingly closely related cases it is very easy. In case we cannot give an
analytic expression for the invariant measure, we will give an approximation using
a method that is very suitable (from a computational point of view) for expansions
with finitely many different digits. This method is based on the Gauss-Kuzmin-Lévy
Theorem. For greedy N -expansions this theorem is proved by Dan Lascu in [69]. The
method yields smoother results than by simulating in the classical way (looking at
the histogram of the orbit of a typical point as described in Choe’s book [22], and
used in his papers [21, 23]). We also give an example in which we do know the density
and where we use this method to show its strength.

In Section 4.2 we will give the general form of the continued fraction maps we study
in this chapter. After that we give several examples of such maps and a way of finding
the density of the invariant measure by using the natural extension. In Section 4.2.2
we will see how we simulated the densities in case we were not able to find them
explicitly. In the second part of the chapter we will consider a subfamily of the N -
expansions which can be parameterized by α ∈ (0,

√
N − 1]. We study the entropy as

function of α. We give some partial results and also show why we cannot adapt the
methods from Chapter 3. We proceed by analysing the problem on a numerical basis.

§4.2 The general form of our maps

Within this chapter we will look at continued fraction algorithms of the following
form. Fix an integer N ≥ 2 and let [a, b] be a subinterval of [0, N ] with b − a ≥ 1.
Let T : [a, b]→ [a, b] be defined as

T (x) =
ε(x)N

x
− ε(x)d(x)

where ε(x) is either −1 or 1 depending on x and d(x) is a positive integer such that
T (x) ∈ [a, b]. Note that if b − a = 1 then there is exactly one positive integer such
that T (x) ∈ [a, b) if ε(x) is fixed. For N = 2 we find the family that is studied in [68]
and for ε(x) = 1 for all x we find the N -expansions from [33]. Whenever a > 0

this map can only have finitely many different digits. This family is closely related
to the (a, b)-continued fractions introduced and studied by Svetlana Katok and Ilie
Ugarcovici in [54, 55, 56]. For (a, b)-continued fractions we have that ε(x) = −1 for
all x ∈ [a, b] and N = 1. Also there are restrictions on a, b. These are chosen such
that a ≤ 0 ≤ b, b− a ≥ 1 and −ab ≤ 1.

Note that this family is rather “large”. For the examples in the next section ε(x)

will be plus or minus one on fixed interval(s). In Section 4.3 other restrictions are
imposed.
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§4.2.1 Two seemingly closely related examples and
their natural extension

In [33], using the natural extension the invariant measure of the 4-expansion map T
given in (4.1.1) was easily obtained. To (briefly) illustrate the method and the kind
of continued fraction algorithms we are interested in we consider a slight variation of
this continued fraction. Let T̃ : [1, 2]→ [1, 2] be defined as

T̃ (x) =


4

x
− 1 for x ∈ ( 4

3 , 2],

5− 4

x
for x ∈ [1, 4

3 ],

(4.2.1)

i.e. we “flipped” the map T on the interval [1, 4
3 ]; see also Figure 4.2.

1 4
3

2

2
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.......
.......
.......
.......
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.......
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.......
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.......
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........


Figure 4.2: The CF map T̃ from (4.2.1).

Setting

ε1(x) =

{
1 for x ∈ ( 4

3 , 2]
−1 for x ∈ [1, 4

3 ]
and d1(x) =

{
1 for x ∈ ( 4

3 , 2]
5 for x ∈ [1, 4

3 ],

we define εn(x) = ε1

(
T̃n−1(x)

)
and dn(x) = d1

(
T̃n−1(x)

)
.

From T̃ (x) = ε1 ·
(

4
x − d1

)
, it follows that

x =
4

d1 + ε1T̃ (x)
= . . . =

4

d1 +
4 ε1

d2 +
. . . +

4 εn−1

dn + εnT̃
n(x)

.
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Taking finite truncations, we find the so called convergents

cn =
pn
qn

=
4

d1 +
4 ε1

d2 +
. . . +

4 εn−1

dn

of x. One can show that limn→∞ cn = x; see [68] for further details. Therefore we
write

x =
4

d1 +
4 ε1

d2 +
. . .

, (4.2.2)

or in short hand notation x = [4/d1, 4ε1/d2, . . .] or x = [d1, ε1/d2, . . .]4.

Using the natural extension to find the invariant measure

As in Chapter 2, we will use the method of natural extensions to find the dens-
ity for some of our dynamical systems. We briefly recall this procedure using T̃

from (4.2.1). The idea is to build a two-dimensional system (the natural extension)
(Ω = [1, 2]× [A,B], T ) which is almost surely invertible and contains ([1, 2], T̃ ) as a
factor (see Definition 1.1.11 on page 8). In [33] it was shown that a suitable candidate
for the natural extension map T is given by

T (x, y) =

(
T̃ (x),

4ε1(x)

d1(x) + y

)
.

Now we choose A and B in such a way that the system is indeed (almost surely)

........................................................................................................................................................
.......................

....T

A

B

1 2
A

B

1 2

∆1∆−5

T (∆1)

T (∆−5)

Figure 4.3: The suitable domain for T .

invertible. We define fundamental intervals ∆n = {(x, y) ∈ Ω : d1(x) = n} if ε = 1

and ∆−n = {(x, y) ∈ Ω : d1(x) = n} if ε = −1. When the fundamental intervals fit
exactly under the action of T , the system is almost surely invertible; see Figure 4.3.
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An easy calculation shows that A = −1 and B = ∞ is the right choice here. It is
shown in [33], that the density of the invariant measure (for the 2-dimensional system)
is given by

f(x, y) = C
4

(4 + xy)2
, for (x, y) ∈ Ω,

where C is a normalising constant (which is 1
log(3) in this example). Projecting on the

first coordinate yields the invariant measure for the 1-dimensional system ([1, 2], T̃ ),
with density

1

log(3)

(
1

x
+

1

4− x

)
, for x ∈ [1, 2].

Note that if we would consider the map

T̂ (x) =


4− 4

x
for x ∈ ( 4

3 , 2],

4

x
− 2 for x ∈ [1, 4

3 ],

(4.2.3)

1 2

2

4
3

................................................................................................................................................................................................................................................................................................................................................................................................
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........
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........
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.........
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.........
.........
.........
.........
.........
.........
.........
.......

Figure 4.4: The CF map T̂ from (4.2.3).

which is a “flipped version” of the map T from (4.1.1) where we flipped the branch
on the interval ( 4

3 , 2], we get another continued fraction of the form (4.2.2) but now
with digits dn ∈ {2, 4}; see Figure 4.4. Our approach now gives A = −2 and B =∞
which shows that the underlying dynamical system has a σ-finite infinite measure
with “density” f(x), given by

f(x) =
1

x
+

1

2− x
, for x ∈ [1, 2].

The method from [33] we just used does not always “work”. As an example we will
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use an expansion given in [68]. Let T̄ (x) be defined as

T̄ (x) =



2

x
− 3 for x ∈ ( 1

2 ,
4
7 ],

4− 2

x
for x ∈ ( 4

7 ,
2
3 ],

2

x
− 2 for x ∈ ( 2

3 ,
4
5 ],

3− 2

x
for x ∈ [ 4

5 , 1],

(4.2.4)

see Figure 4.5.
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Figure 4.5: An expansion map on [ 1
2
, 1].

When trying to construct the domain of the natural extension one quickly notices
that “holes” appear. This is not an entirely new phenomenon in continued fractions,
it also appears in constructing the natural extension of Nakada’s α-expansions when
α ∈ (0,

√
2 − 1); see [79]. One might hope that there are finitely many holes, but a

simulation of the domain indicates otherwise; see Figure 4.6.

Although the method might still work in this case, it does not really seem to help us
to find a description of the invariant density. In order to get an idea of the density,
we will use two different approaches. One will be based on the Gauss-Kuzmin-Lévy
Theorem. The other will be a more classical approach based on Choe’s book [22].
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Figure 4.6: A simulation of the domain of the natural extension for the map T̄ from (4.2.4).

§4.2.2 Two different methods for approximating the
density

The first way is based on the Gauss-Kuzmin-Lévy Theorem. This theorem states
that for the regular continued fraction the Lebesgue measure of the pre-images of a
measurable set A will converge to the Gauss measure.

λ
(
T−n(A)

)
→ µ(A) as n→∞.

There are many proofs of this theorem and refinements on the speed of convergence;
see e.g. Khinchine’s book [58], or [50] for such refinements.
The idea for our method is to look at the pre-images of [ 1

2 , z] for our map T̄ from (4.2.4)
and take the Lebesgue measure of the intervals found. Note that the number of
intervals doubles every iteration. Also the size of the intervals shrink relatively fast.
Fortunately it seems that a low number of iterates (around 10) is already enough
to give a good approximation; see Figure 4.8 where the theoretical density and its
approximation are displayed and Figure 4.7, where both methods of approximating
are compared for a density we do not know the theoretical density of.

The other way of finding an approximation is by iterating points and looking at the
histogram of the orbits. The way we iterated is that we used a lot of points and iterated
them just a few times. To be more precise we iterated 2500 uniformly sampled points
20 times, repeated this process 400 times and took the average density of all points.
Then we redid the process but instead of sampling uniformly we sampled from the
previously found density (see also [32]). In Figure 4.7 we see both methods applied
to our example.
The two methods give results that are relatively close but the approximation found
with the Gauss-Kuzmin-Lévy method is far more smooth. Since we do not know the
density we cannot compare the theoretical density with the approximation and since
the Gauss-Kuzmin-Lévy method is the new method we will look at how well this
method performs in an example in which we know the invariant density explicitly.
For the map T from (4.1.1) we know the density which was given in [33].
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0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

Figure 4.7: Approximations of the density of the invariant measure of T̄ (x) using the Gauss-
Kuzmin-Lévy method (red) and the classical way (blue).

In Figure 4.8 we see a plot of both the theoretical density and the approximation
found by the Gauss-Kuzmin-Lévy method.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Figure 4.8: An approximation of the true density for the CF map T from (4.1.1) and the
true T -invariant density.

The difference can barely be seen by the naked eye. If we look at the difference in
2-norm we get (∫ 2

1

(f(x)− f̂(x))2 dx

) 1
2

= 1.1235 ∗ 10−5

where f(x) is the true density and f̂(x) the approximation.

§4.3 A sub-family of the N-expansions

In this section we study a subfamily of the N -expansions (so ε(x) = 1 for all x in the
domain) with digits from a finite alphabet and an interval [α, β] as domain. For our
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subfamily we want that it has finitely many digits. Furthermore we would like that
there is a unique digit such that T (x) ∈ [α, β). This results in α > 0 and β − α = 1.
In this way the map is uniquely determined by the domain. With these restrictions
we define for α ∈ (0,

√
N − 1] the map Tα,N : [α, α+ 1]→ [α, α+ 1] as

Tα,N =
N

x
−
⌊
N

x
− α

⌋
.

We call the associated continued fractions Nα-expansions. Note that for all these
expansions we have a finite number of digits since α > 0. Also note that this is the
largest range in which we can choose α because for α >

√
N − 1 the digit would be 0

or less (see Section 4.3.2 for a calculation). Simulations show that a lot of maps have
an attractor smaller than [α, α + 1]. When N ≥ 9 we find that if α =

√
N − 1 there

is always an interval [c, d] ( [α, α + 1] for which the Tα,N -invariant measure of [c, d]

is zero. Whenever N > 4 we have that Tα,N always has 2 branches for α =
√
N − 1.

Calculations of these observations are given in Section 4.3.2 in which we take a closer
look at which sequences are admissible for a given N and α. In Section 4.3.3 we study
the behaviour of the entropy as a function of α for a fixed N .

The examples in [33] with “fixed range” are all member of this kind of sub-family of
the N -expansions. Though, these examples are cases for which all the branches of
the mapping are full. In such case the natural extension can be easily build using the
method described previously. If not all branches are full we can still make the natural
extension in some cases. We will start this section with such a case.

§4.3.1 A 2-expansion with α =
√

2− 1

Let T (x) : [
√

2− 1,
√

2]→ [
√

2− 1,
√

2] be defined by

T (x) =



2

x
− 1 for 2(

√
2− 1) < x ≤

√
2,

2

x
− 2 for 2−

√
2 < x ≤ 2(

√
2− 1),

2

x
− 3 for 1

7 (6− 2
√

2) < x ≤ 2−
√

2,

2

x
− 4 for

√
2− 1 ≤ x ≤ 1

7 (6− 2
√

2).

A graph of this map is shown in Figure 4.9. We can find the invariant measure for
this map by using the method as in Section 4.2.1 though we now need to determine 3
“heights” in order to make the mapping of the natural extension almost surely bijective
on the domain (see Figure 4.10). We get the following equations for the heights A,B
and C:

A =
2

4 + C
, B =

2

3 + C
and C =

2

1 +B
.
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Figure 4.9: A 2-expansion on the interval [
√

2− 1,
√

2].

........................................................................................................................................................
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C

A
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C

∆1∆2∆3∆4

T (∆1)

T (∆2)

T (∆3)

T (∆4)

Figure 4.10: Ω and T (Ω).

This results in A = 1
2 (
√

33 − 5), B = 1
6 (
√

33 − 3) and C = 1
2 (
√

33 − 3). We find
the following invariant density up to a normalising constant (which is given in The-
orem 4.3.3)

f(x) =


√

33−3
4+(
√

33−3)x
−

√
33−5

4+(
√

33−5)x
for
√

2− 1 < x ≤ 2(
√

2− 1),
√

33−3
4+(
√

33−3)x
−

√
33−3

12+(
√

33−3)x
for 2(

√
2− 1) < x ≤

√
2.

The graph of the density is given in Figure 4.11. In this case we were lucky. But
in general it seems to be very hard to construct the natural extension explicitly.
Still we can simulate the densities and calculate the entropy for a given α. Also for
the 2-expansions, we can extend the above result to all α ∈ [

√
33−5
2 ,

√
2 − 1]; see

Theorem 4.3.2.
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Figure 4.11: The density of the invariant measure for the 2-expansion on [
√

2− 1,
√

2].

§4.3.2 Admissibility

In this section we look at how the alphabet is determined by α for a fixed N . It turns
out that not all different sequences of such an alphabet will occur in a continued
fraction expansion (or only finitely many times). This is a consequence of some
cylinders having zero mass. The range of the first digits of a continued fraction for
given α and N are easily described since the smallest digit will be attained by the
right end point of the domain and the largest digits will be attained by the left end
point of the domain. Let

nmin =

⌊
N

α+ 1
− α

⌋
and nmax =

⌊
N

α
− α

⌋
.

Note that nmin ≤ 0 when α >
√
N−1 and therefore α =

√
N−1 is the largest value for

which we have positive digits. Furthermore the alphabet is given by {nmin, . . . , nmax}.
Now to see for which N we have that for α =

√
N −1 there are two branches we must

check that nmax = 2. This happens when N√
N−1

− 2 ∈ [
√
N − 1,

√
N ]. We have 2

inequalities

N√
N − 1

− 2 ≤
√
N (4.3.1)

and
√
N − 1 ≤ N√

N − 1
− 2. (4.3.2)

Inequality (4.3.1) gives 4 ≤ N and inequality (4.3.2) gives N − 1 ≤ N . We find that
for all N ≥ 4 we have two branches for α =

√
N − 1. If N ≥ 9 we also have an

attractor which is strictly smaller than the entire interval for α =
√
N − 1 as the
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following calculation shows

Tα,N

(
[α,

N

α+ 2
]

)
=

[
α,
N

α
− 2

]
,

Tα,N

(
[α,

N

α
− 2]

)
=

[
α,
N

α
− 2

]
∪
[

Nα

N − 2α
− 1, α+ 1

]
,

Tα,N

(
[
Nα

N − 2α
− 1, α+ 1]

)
=

[
α,
N2 − (1− 3α)N − 2α

(α− 1)N + 2α

]
.

If we substitute α with
√
N − 1 and the following two inequalities hold we find an

attractor strictly smaller than the interval [α, α+ 1];

N√
N − 1

− 2 <
N(
√
N − 1)

N − 2(
√
N − 1)

− 1,

N2 − (4− 3
√
N)N − 2(

√
N − 1)

(
√
N − 2)N + 2(

√
N − 1)

<
N√
N − 1

− 2,

yielding that N ≥ 9. We take a closer look at N = 9 and α =
√

9 − 1 = 2. This
example is briefly discussed in [33] where it is stated that computer experiments
suggest that the orbit of 2 never becomes periodic and therefore it is hard to find
the natural extension explicitly. However, when simulating the natural extension, it
seems that there are finitely many discontinuities; see Figure 4.12.

Figure 4.12: A simulation of the natural extension for N = 9 and α = 2.

We can also simulate the density of the invariant measure; see Figure 4.13.
Remark that cylinders with zero mass tells us which sequences are not apparent in
any continued fraction of numbers outside the attractor and for those numbers not in
the attractor these sequences only appear in the start of the continued fraction. We

77



4. N -expansions

C
h
a
pt

er
4

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 4.13: A Simulation of the density for N = 9 and α = 2 using the Gauss-Kuzmin-Lévy
method.

can describe which cylinders these are. The hole is given by [2.5, 2.6].
Now 2.5 = [1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, . . .]9
and 2.6 = [1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, . . .]9. The boundary of a cyl-
inder ∆(a1, . . . , an) is given by [a1, . . . , an, 1, r]9 and [a1, . . . , an, 2, r]9 where r is the
expansion of 2. Now a cylinder is contained in [2.5, 2.6] if 2.5 < [a1, . . . , an, 1, r]9 < 2.6

and 2.5 < [a1, . . . , an, 2, r]9 < 2.6. Note that here we can have a clear description of
the attractor and therefore for the admissible sequences. Simulation shows us that
there are a lot of different settings in which you find an attractor strictly smaller than
the interval. In Figure 4.14 simulations for several values of N are shown. On the
y-axis α is given and on the x-axis the attractor is plotted. For example, for N = 9

we see that for α = 1 there is no attractor strictly smaller than the interval. There
is an attractor for α = 1.8 and also for example for α = 2. The pattern seems to be
rather regular. Moreover, more “holes” seem to appear for large N and large α1.

§4.3.3 Entropy and matching

In this section we look at entropy as a function of α ∈ (0,
√
N − 1] for a fixed N and

the relation with matching. We will use the following definition.

Definition 4.3.1 (Matching). We say matching holds for α if there are K,M ∈ N
such that TKα,N (α + 1) = TMα,N (α). The numbers K and M are called the matching

1Recently Jaap de Jonge, Cor Kraaikamp and Hitoshi Nakada studied these holes. The overall
structure seems rather complicated. See the dissertation of Jaap de Jonge for more details [34].
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Figure 4.14: Attractors plotted for several values of N .

exponents, K−M is called the matching index and an interval (c, d) such that for all
α ∈ (c, d) the matching exponents are the same is called a matching interval.

For our family we do not know whether matching holds almost everywhere. In fact,
it is not even clear whether for all N ∈ N we can find a matching interval. Also,
whether matching implies monotonicity is not clear. Certain conditions used to prove
it as in Chapter 3 are not met.

Why is it so difficult?

Note that for the maps studied in Chapter 3 all rationals have a finite expansion for
any choice of α. Therefore, all α ∈ (0, 1)∩Q match in 0 or before. For any rational in
the domain a matching interval is found. Since for all α ∈ (0,

√
N − 1) the expansion

of any number in the interval is infinite, there are no values for which we find matching
“trivially”. Another obstruction is the fact that a necessary condition for a matching
interval is that the derivatives should match (see also Definition 1.2.8 on page 13). To
fix ideas let us fix N = 2. Suppose we want to prove that the derivatives match for
α ∈ (0,

√
2 − 1) ∩ Q. For simplicity assume that there exist a K and an L such that

TK2,α(α) = 1 = TL2,α(α+1). Following the lines in the proof of Lemma 3.2.6 on page 50
we find that we need (a − c)2( 1

2 )2K−1 = (e − g)2( 1
2 )2L−1 in order to find matching

derivatives. One can check that this equation holds for α = 1
n with n ∈ N. On the

other hand, there is no simple way of proving this and no reason to believe it holds
in general.
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If we look back at Lemma 3.2.7 on page 51 it was necessary to have |x − pn
qn
| < 1

q2
n
.

For N,α-expansions we do not have such a good approximation. The sharpest bound
known is |x − pn

qn
| < Nn

q2
n
, therefore we cannot mimic the proof. Lemma 3.2.7 is

needed to prove the monotonicity on a matching interval. The only reason to believe
matching can help us to prove monotonicity is the fact that it works for related
families. In fact, for specific choices ofN and α we can actually find matching intervals
on which the function is monotonic. If we want to mimic the proof of Theorem 3.1.3
which states that matching holds almost everywhere, we find that we start in a state
(x + 1)(y + 1) = 2 whenever we take N = 2. This implies that for the iterates we
have x + y = 1 or x + y = 2. From there, at least 12 other states can be reached.
Computer simulation showed that for arbitrary α we cannot find iterates of α and
α+ 1 that return to these states.
We will now discuss the 2α-expansions in more detail. Moreover, we prove that the
entropy is constant for α ∈

(√
33−5
2 ,

√
2− 1

)
when N = 2.

The entropy of 2α-expansions

We start with an example for which there is no α such that we have an attractor
strictly smaller than the interval. Also, simulation indicates that there seems to be a
plateau in the neighborhood of

√
2−1. For this value we can calculate the entropy since

we have the density for this specific case of α; see Section 4.3.1, also see Figure 4.15
for a plot of the entropy function. When taking a closer look at this plateau we found

Figure 4.15: Entropy as function of α for N = 2.

that on the interval [
√

33−5
2 ,

√
2− 1] the entropy is constant. The point

√
33−5
2 is the

point so that for all smaller α there are always 5 or more branches and for all larger
α there are always 4 branches. If we look at a simulation of the natural extension it
seems that for these values of α we can construct a natural extension. Indeed this
turned out to be the case (see Theorem 4.3.3). For

√
33−5
2 we find matching exponents
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(0, 2) and for
√

2 − 1 we find matching exponents (0, 1). Inside the interval itself we
find (3, 3). These values were first found by simulation, in Theorem 4.3.2 we give a
proof of this.

α 2
α+4

2
α+3

2
α+2 α + 1

α + 1

...............................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

Figure 4.16: The map T0.395,2.

Theorem 4.3.2. Let N = 2 and let α ∈
(√

33−5
2 ,

√
2− 1

)
. Furthermore, denote Tα,2

by T . Then T 3(α) = T 3(α+ 1).

Proof. Note that the interval (α, α+ 1) has as natural partition {I1, I2, I3, I4}, where

I1 =
( 2

α+ 2
, α+ 1

)
, I2 =

( 2

α+ 3
,

2

α+ 2

]
, I3 =

( 2

α+ 4
,

2

α+ 3

]
,

and
I4 =

[
α,

2

α+ 4

]
,

where
T (x) =

2

x
− d, if x ∈ Id for d = 1, 2, 3, 4.

An easy calculation shows that

T (α) =
2− 4α

α
∈ I1,

(and T (α) = 2
α+2 when α =

√
2− 1, and T (α) = α+ 1 when α =

√
33−5
2 ), so that

T 2(α) =
3α− 1

1− 2α
.

Furthermore, we have that

T (α+ 1) =
1− α
α+ 1

∈ I4,
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(and T (α+ 1) =
√

2−1 when α =
√

2−1; T (α+ 1) = 2
α+4 when α =

√
33−5
2 ), so that

T 2(α+ 1) =
6α− 2

1− α
.

Now let

K1 =

(√
33− 5

2
,

√
51− 6

3

]
, K2 =

(√
51− 6

3
,

√
129− 9

6

]
and

K3 =

(√
129− 9

6
,
√

2− 1

)
.

For α ∈ K1 we have that T 2(α) ∈ I3 and so

T 3(α) =
5− 13α

3α− 1

and T 2(α+ 1) ∈ I4 which results in

T 3(α+ 1) =
5− 13α

3α− 1
= T 3(α).

For α ∈ K2 we have that T 2(α) ∈ I2 and so

T 3(α) =
4− 10α

3α− 1

and T 2(α+ 1) ∈ I3 which results in

T 3(α+ 1) =
4− 10α

3α− 1
= T 3(α).

For α ∈ K3 we have that T 2(α) ∈ I1 and so

T 3(α) =
3− 7α

3α− 1

and T 2(α+ 1) ∈ I2 which results in

T 3(α+ 1) =
3− 7α

3α− 1
= T 3(α).

�

Earlier we thought we were just lucky finding the natural extension in case N = 2

and α =
√

2 − 1. Note that from this natural extension we immediately also have
the case N = 2, α =

√
33−5
2 ; just “invert” the time and exchange the two coordinates

in the natural extension we found for N = 2 and α =
√

2 − 1. However, from
Theorem 4.3.2 it immediately follows that we can also “build” the natural extension
for every α ∈

(√
33−5
2 ,

√
2− 1

)
. Clearly, from Theorem 4.3.2 we see that we have

three different cases.
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Theorem 4.3.3. For α ∈
(√

33−5
2 ,

√
2− 1

)
the natural extension can be build as in

Figure 4.17. Moreover the invariant density is given by

f(x) = H(
D

2 +Dx
1(α,T (α+1)) +

E

2 + Ex
1(T (α+1),T 2(α)) +

F

2 + Fx
1(T 2(α),α+1)

− A

2 +Ax
1(α,T 2(α+1)) −

B

2 +Bx
1(T 2(α+1),T (α)) −

C

2 + Cx
1(T (α),α+1))

with A =
√

33−5
2 , B =

√
2 − 1, C =

√
33−3
6 , D = 2

√
2 − 2, E =

√
33−3
2 , F =

√
2 and

H−1 = log
(

1
32 (3 + 2

√
2)(7 +

√
33)(
√

33− 5)2
)
≈ 0.25 the normalising constant.

Proof. We guessed the shape of the domain of natural extension by studying a simu-
lation. For the map on this domain we used T (x, y) =

(
T (x), 2

d1(x)+y

)
.

........................................................................................................................................................
.......................

....T

A

F

B
C

D

E

α α+ 1 α α+ 1T (α + 1)
T2(α + 1) T (α)T2(α)

A

F

B
C

D

E

∆1∆2∆3

∆4

T (∆1)

T (∆2)

T (∆3)

T (∆4)

Figure 4.17: Ω and T (Ω) with α ∈ K1.

For α ∈ K1, we find the following equations:

A = 2
4+E A =

√
33−5
2

B = 2
4+D B =

√
2− 1

C = 2
3+E C =

√
33−3
6

D = 2
2+A implying that D = 2

√
2− 2

E = 2
1+C E =

√
33−3
2

F = 2
1+B F =

√
2.

A similar picture emerges for α ∈ K2 and α ∈ K3. Moreover, you will find the same set
of equations and thus the same heights! Note that for α < 2

5 we have T 2(α) < T (α),
for α = 2

5 we have T 2(α) = T (α) and for α > 2
5 we have T 2(α) > T (α). When you

integrate over the second coordinate you find the density given in the statement of
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the theorem. For the normalising constant we have the following integral

H =

∫ α+1

α

D

2 +Dx
1(α,T (α+1)) . . .−

C

2 + Cx
1(T (α),α+1) dx

= log

(
2 +DT (α+ 1)

2 +Dα

)
+ . . .+ log

(
2 + CT (α)

2 + C(α+ 1)

)
.

It seems that H depends on α but this is not the case as the following calculation
shows

H = − log

(
2 +A 6α−2

1−α
2 +Aα

)
− log

(
2 +B 2−4α

α

2 +B 6α−2
1−α

)
− log

(
2 + C(α+ 1)

2 + C 2−4α
α

)

+ log

(
2 +D 1−α

α+1

2 +Dα

)
+ log

(
2 + E 3α−1

1−2α

2 + E 1−α
α+1

)
+ log

(
2 + F (α+ 1)

2 + F 3α−1
1−2α

)

= − log

(
2− 2α+A(6α− 2)

2 +Aα

)
+ log(1− α)

− log

(
2α+B(2− 4α)

2− 2α+B(6α− 2)

)
+ log(α)− log(1− α)

− log

(
2 + C(α+ 1)

2α+ C(2− 4α)

)
− log(α)

+ log

(
2α+ 2 +D(1− α)

2 +Dα

)
− log(α+ 1)

+ log

(
2− 4α+ E(3α− 1)

2α+ 2 + E(1− α)

)
+ log(α+ 1)− log(1− 2α)

+ log

(
2 + F (α+ 1)

2− 4α+ F (3α− 1)

)
+ log(1− 2α)

= − log

(
2− 2α+

√
33−5
2 (6α− 2)

2 +
√

33−5
2 α

)
− log

(
2α+ (

√
2− 1)(2− 4α)

2− 2α+ (
√

2− 1)(6α− 2)

)

− log

(
2 +

√
33−3
6 (α+ 1)

2α+
√

33−3
6 (2− 4α)

)
+ log

(
2α+ 2 + (2

√
2− 2)(1− α)

2 + (2
√

2− 2)α

)

+ log

(
2− 4α+ (

√
33−3
2 )(3α− 1)

2α+ 2 + (
√

33−3
2 )(1− α)

)
+ log

(
2 +
√

2(α+ 1)

2− 4α+
√

2(3α− 1)

)

= − log(
7−
√

33

2
)− log(

1√
2

)− log(
5 +
√

33

4
) + log(

√
2) + log(

√
33− 5

4
)

+ log(3 + 2
√

2).

�

One might hope that when calculating the entropy using Rohlin’s formula, terms will
cancel as well. These integrals result in Li2 functions depending on α and things are

84



§4.3. A sub-family of the N -expansions

C
h
a
pter

4

not so easy anymore. We provide a more elegant proof to show that the entropy is
constant on

(√
33−5
2 ,

√
2− 1

)
and calculate the entropy for α =

√
2−1 afterwards. We

will use quilting introduced in [65]. Proposition 1 in [65] can be formulated (specific
to our case) in the following way:

Proposition 4.3.4 ([65], Proposition 1). Let (Tα,Ωα,Bα, µ) and (Tβ ,Ωβ ,Bβ , µ)

be two dynamical systems as in our setting. Furthermore let D1 = Ωα\Ωβ and A1 =

Ωβ\Ωα. If there is a k ∈ N such that T kα (D1) = T kβ (A1) then the dynamical systems
are isomorphic.

Since isomorphic systems have the same entropy it will give us the following corollary.

Corollary 4.3.5. For N = 2 the entropy function is constant on
(√

33−5
2 ,

√
2− 1

)
and the value is approximately 1.14.

Proof. We show that for k = 3 we satisfy the condition in Proposition 4.3.4. Define
Di = T i−1

α (D1) and Ai = T i−1
β (A1) for i = 1, 2, 3, 4. We find the following regions

(see Figure 4.18):

D1 = [α, β]× [A,D],

D2 = [Tα,2(β), Tα,2(α)]× [B,C],

D3 = [T 2
α,2(β), T 2

α,2(α)]× [E,F ],

D4 = [T 3
α,2(β), T 3

α,2(α)]×
[

2

3 + F
,

2

3 + E

]
,

A1 = [α+ 1, β + 1]× [C,F ],

A2 = [Tβ,2(β + 1), Tβ,2(α+ 1)]× [D,E],

A3 = [T 2
β,2(β + 1), T 2

β,2(α+ 1)]× [A,B],

A4 = [T 3
β,2(β + 1), T 3

β,2(α+ 1)]×
[

2

4 +B
,

2

4 +A

]
.

Note that since we have matching [T 3
β,2(β), T 3

α,2(α)] = [T 3
β,2(β+ 1), T 3

α,2(α+ 1)]. Now

2

3 + F
=

2

3 +
√

2
=

2

4 +B
=

2

4 +
√

2− 1
,

2

3 + E
=

2

3 +
√

33−3
2

=
2

4 +A
=

2

4 +
√

33−5
2

and so we find D4 = A4.
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Figure 4.18: Illustration of the quilting.

For the value of the entropy we use Rohlin’s formula for α =
√

2− 1 (see [29, 98]);

h(T√2−1,2) =

∫ √2

√
2−1

log |T ′√
2−1,2

(x)|f(x) dx

= H

∫ √2

√
2−1

(log(2)− 2 log(x)) f(x) dx

= log(2)− 2H

∫ √2

√
2−1

log(x)f(x) dx

= log(2)− 2H

∫ √2

√
2−1

log(x)

(
(

√
33− 3

4 + (
√

33− 3)x
−

√
33− 5

4 + (
√

33− 5)x
)1√2−1,2(

√
2−1)

+(

√
33− 3

4 + (
√

33− 3)x
−

√
33− 3

12 + (
√

33− 3)x
)12(

√
2−1),

√
2

)
dx

= log(2)− 2H

(
(Li2(−x(

√
33− 3)

4
) + log(

x(
√

33− 3)

4
+ 1)

−Li2(−x(
√

33− 5)

4
) + log(

x(
√

33− 5)

4
+ 1))|2(

√
2−1)√

2−1

+(Li2(−x(
√

33− 3)

4
) + log(

x(
√

33− 3)

4
+ 1)

−Li2(−x(
√

33− 5)

12
) + log(

x(
√

33− 5)

12
+ 1))|

√
2

2(
√

2−1)

)
≈ 1.14.
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By looking at the graph displayed in Figure 4.15 we cannot find other matching
exponents easily. To check for other matching exponents we can do the following.
Suppose we are interested in finding a matching interval with exponents (n1, n2). We
select a large number of random points (say 10 000) from (0,

√
N−1). Then we look at

Tn1
α,2(α)−Tn2

α,2(α+1) for these random points and we check whether it is very close to
0. Note that if an interval was found this way with matching exponents (n1, n2) then
we also find the same interval for (n1 + 1, n2 + 1). Table 4.1 shows which matching
exponents we found. This is very different from Nakada’s α-continued fractions where

M\K 1 2 3 4 5 6 7 8 9 10
1 0 0 1 0 1 0 0 0 0 0
2 0 0 0 1 0 1 0 0 0 0
3 0 0 1 0 1 0 1 0 1 0
4 0 0 0 1 0 1 0 1 0 1
5 0 0 0 0 1 0 1 0 1 0
6 0 0 0 0 0 1 0 1 0 1
7 0 0 0 0 0 0 1 0 1 0
8 0 0 0 0 0 0 0 1 0 1
9 0 0 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 1 0 1

Table 4.1: observed matching exponents for N = 2: 1 if seen, 0 if not.

you can find all possible matching exponents. The fact that we did not observe them
does not mean they are not there. Maybe they are too small to observe using this
method.

The entropy of 36α-expansions

For N ≥ 9 we expect different behaviour because we know that for some α there is
at least one subinterval on which the invariant measure is zero. If we pick N = 36 we
have a map with only full branches for α = 1, 2, 3. Figure 4.19 shows the entropy as
function of α. The stars indicate those values which we could calculate theoretically.

Clearly, we can observe plateaus however, if we look at the matching exponents we
can observe that for all M,K ≤ 10 the only matching exponents we find are (n, n)

with n ∈ {3, 4, . . . , 10}.

§4.4 Conclusion

We have seen that the general form of the examples given yields a rather large family.
In some examples we were able to construct the natural extension and therefore to
find the invariant measure. In other examples this was not the case. There does not
seem to be an easy rule which tells us when the method works and when it does not.

87



4. N -expansions

C
h
a
pt

er
4

Figure 4.19: Entropy as function of α for N = 36.

The subfamily of the N -expansions we studied is not new, but it has not been studied
in this detail with finitely many digits. Note that having the Gauss-Kuzmin-Lévy
method for approximating the densities allowed us to study the entropy much easier
due to much shorter computation time. We have seen that matching is helpful to prove
monotonicity even though we did not mimic the proof for α-expansions. Motivated
by similar results in the case of Nakada’s α-expansions the following questions about
entropy arise:

• For every N ∈ N≥2 is there an interval in (0,
√
N − 1) for which the entropy

function is constant?
• For a fixed N ∈ N≥2 for which α ∈ (0,

√
N − 1) do we have matching?

• Does matching hold on an open dense set? Does matching hold almost every-
where?

• What is the influence of an attractor strictly smaller than the interval [α, α+ 1]

on the entropy?
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CHAPTER 5
β-expansions

This chapter is joint work with Charlene Kalle, Derong Kong, and Wenxia Li and
has been accepted by the journal Ergodic Theory and Dynamical Systems, except for
Section 5.6.1 where we give some relations to other topics.

Abstract

For β ∈ (1, 2] the β-transformation Tβ : [0, 1) → [0, 1) is defined by Tβ(x) = βx

(mod 1). For t ∈ [0, 1) let Kβ(t) be the survivor set of Tβ with hole (0, t) given by

Kβ(t) := {x ∈ [0, 1) : Tnβ (x) 6∈ (0, t) for all n ≥ 0}.

In this chapter, we characterise the bifurcation set Eβ of all parameters t ∈ [0, 1) for
which the set-valued function t 7→ Kβ(t) is not locally constant. We show that Eβ
is a Lebesgue null set of full Hausdorff dimension for all β ∈ (1, 2). We prove that
for Lebesgue almost every β ∈ (1, 2) the bifurcation set Eβ contains both infinitely
many isolated and accumulation points arbitrarily close to zero. On the other hand,
we show that the set of β ∈ (1, 2) for which Eβ contains no isolated points has zero
Hausdorff dimension. These results contrast with the situation for E2, the bifurcation
set of the doubling map. Finally, we give for each β ∈ (1, 2) a lower and upper bound
for the value τβ such that the Hausdorff dimension of Kβ(t) is positive if and only if
t < τβ . We show that τβ ≤ 1− 1

β for all β ∈ (1, 2).
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§5.1 Introduction

In recent years open dynamical systems, i.e. systems with a hole in the state space
through which mass can leak away at every iteration, have received a lot of attention.
Typically one wonders about the rate at which mass leaves the system and about the
size and structure of the set of points that remain, called the survivor set. In [104, 105]
Urbański considered C2-expanding, orientation preserving circle maps with a hole of
the form (0, t). He studied the way in which the topological entropy of such a map
restricted to the survivor set changes with t. To be more precise, let g be a C2-
expanding and orientation preserving map on the circle R/Z ∼ [0, 1). For t ∈ [0, 1),
let Kg(t) be the survivor set defined by

Kg(t) := {x ∈ [0, 1) : gn(x) /∈ (0, t) for all n ≥ 0}.

Urbański proved that the function t 7→ htop(g|Kg(t)) is a Devil’s staircase, where htop
denotes the topological entropy.

Motivated by the work of Urbański, we consider this situation for the β-transformation.
Given β ∈ (1, 2], the β-transformation Tβ : [0, 1) → [0, 1) is defined by Tβ(x) = βx

(mod 1). When β = 2, we recover the doubling map. In correspondence with [104],
set

Kβ(t) := {x ∈ [0, 1) : Tnβ (x) 6∈ (0, t) for all n ≥ 0}. (5.1.1)

The survivor set Kβ(t) splits naturally into two pieces, Kβ(t) = K0
β(t)∪K+

β (t), where

K0
β(t) ={x ∈ [0, 1) : ∃n Tnβ (x) = 0 and T kβ (x) 6∈ (0, t) for all 0 ≤ k < n},

K+
β (t) ={x ∈ [0, 1) : Tnβ (x) ≥ t for all n ≥ 0}.

(5.1.2)

The set K+
β (t) occurs in Diophantine approximation. Indeed, consider the set

Fβ(t) := {x ∈ [0, 1)
∣∣∣Tnβ (x) ≥ t for all but finitely many n ∈ N}

of points x ≥ 0 such that 0 is badly approximable by its orbit under Tβ . Then Fβ(t)

can be written as a countable union of affine copies of K+
β (t) and thus dimH Fβ(t) =

dimH K
+
β (t) for all t ∈ [0, 1). The approximation properties of β-expansions have been

studied by several authors. In [74] the authors considered the Hausdorff dimension
of the set of values β > 1 for which the orbit of 1 approaches a given target value
x0 at a given speed. This work generalised that of [90], where x0 = 0 and the speed
is fixed. Other results on the Diophantine approximation properties of β-expansions
can be found in [13, 16, 41, 77, 86] among others.

Note that the set valued map ε 7→ Kβ(ε) is weakly decreasing. Further on we show
that this map is locally constant almost everywhere, i.e., for almost all t ∈ [0, 1) there
exists a δ > 0 such that Kβ(ε) = Kβ(t) for all ε ∈ [t − δ, t + δ]. Such a result was
also obtained by Urbański in [104] for C2-expanding circle maps. This fact motivates
the study of the right set valued bifurcation set (simply called bifurcation set) Eβ
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containing all parameters t ∈ [0, 1) such that the set valued map ε 7→ Kβ(ε) is not
locally constant on any right-sided neighbourhood of t, i.e.,

Eβ := {t ∈ [0, 1) : Kβ(ε) 6= Kβ(t) for any ε > t}. (5.1.3)

The local structure of the sets K2(t) and E2 was investigated in detail in [86, 104].
The following results can be found more or less explicitly in [104]. More recently
it was shown in [86] that these properties could be also be dealt with using more
elementary combinatorial methods.

Theorem 5.1.1 (Urbański [104]).

(i) The bifurcation set E2 is a Lebesgue null set of full Hausdorff dimension.

(ii) The function η2 : t 7→ dimH K2(t) is a Devil’s staircase:

• η2 is decreasing and continuous on [0, 1
2 ];

• η′2(t) = 0 for Lebesgue almost every t ∈ [0, 1
2 ];

• η2(0) = 1 and η2( 1
2 ) = 0.

(iii) The topological closure E2 is a Cantor set.

(iv) η2(t) > 0 if and only if t < 1
2 .

Other results on survivor sets for the doubling map T2 can be found in e.g. [2, 14, 20,
37, 44, 100].

An important ingredient for the proofs in [20, 104] is the fact that

E2 = {t ∈ [0, 1) : Tn2 (t) ≥ t for all n ≥ 0}.

This identity does not hold in general for 1 < β < 2. Therefore, we define E+
β by

E+
β := {t ∈ [0, 1) : Tnβ (t) ≥ t for all n ≥ 0}. (5.1.4)

Note that E+
β ⊆ Eβ but in general these sets do not coincide. In this paper we

consider the survivor set Kβ(t) and the bifurcation set Eβ for β ∈ (1, 2). We give a
detailed description of the topological structure of Eβ and E+

β and their dependence
on β. Theorems 5.1.2 to 5.1.5 below list our main results. Our first result strengthens
(i) and (ii) of Theorem 5.1.1.

Theorem 5.1.2. Let β ∈ (1, 2] and t ∈ [0, 1).

(i) The bifurcation sets Eβ and E+
β are Lebesgue null sets of full Hausdorff dimen-

sion.

(ii) The dimension function ηβ : t 7→ dimH Kβ(t) is a Devil’s staircase:

• ηβ is decreasing and continuous in [0, 1);

• η′β = 0 Lebesgue almost everywhere in [0, 1);

• ηβ is not constant.
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Figure 5.1: Left: the numerical plot of ηβ with β ≈ 1.61803 the golden ratio. Right: the
numerical plot of ηβ with β ≈ 1.83929 the tribonacci number.

Figure 5.1 shows numerical plots of the dimension functions ηβ for β ≈ 1.61803, the
golden ratio, i.e. the real root bigger than 1 of the polynomial x2 − x − 1 and for
β ≈ 1.83929, the tribonacci number, i.e. the real root bigger than 1 of the polynomial
x3 − x2 − x− 1.

The analogous statements of (iii) and (iv) of Theorem 5.1.1 for β ∈ (1, 2) do not
always hold. The next main theorems show that in general the topological structure
of Eβ differs from that of E2 and that this structure depends on the value of β.
Theorems 5.1.3 and 5.1.4 imply that (iii) of Theorem 5.1.1 holds only for a very small
set of β ∈ (1, 2).

Theorem 5.1.3. For Lebesgue almost every β ∈ (1, 2) the bifurcation sets Eβ and
E+
β contain infinitely many isolated and accumulation points arbitrarily close to zero

and hence their closures are not Cantor sets. On the other hand,

dimH

(
{β ∈ (1, 2) : ∃δ > 0 such that E+

β ∩ [0, δ] is a Cantor set}
)

= 1.

There are also infinitely many β ∈ (1, 2] such that E+
β is a Cantor set. This is true,

for example, for the countable family of multinacci numbers. In terms of Hausdorff
dimension this set is small.

Theorem 5.1.4. We have dimH

(
{β ∈ (1, 2) : E+

β is a Cantor set}
)

= 0.

In [24] Clark considered the β-transformation and characterised the holes of the form
(a, b) for which the survivor set Kβ((a, b)) is uncountable or not. From the properties
of ηβ given in Theorem 5.1.2 it follows that for each β ∈ (1, 2], there is a unique value
τβ such that dimH Kβ(t) > 0 if and only if t < τβ . By (iv) of Theorem 5.1.1 we know
τ2 = 1

2 . We have the following result on τβ .

Theorem 5.1.5. For each β ∈ (1, 2] we have τβ ≤ 1− 1
β , and τβ = 1− 1

β if and only

if E+
β is a Cantor set.
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In [85] Nilsson studied the critical value τ̃β for the β-transformation with holes of the
form (t, 1). In [85, Theorem 7.11] he proved that for each β ∈ (1, 2) it holds that
τ̃β = 1− 1

β . Many of the proofs use the symbolic codings of the open systems Tβ with
hole (t, 1). The main difficulty that we had to overcome in order to extend the results
from the doubling map to the β-transformation is that the β-transformation is not
coded by the full shift on two symbols. In fact, for most values of β, the associated
symbolic system is not even sofic. This might also explain the difference between the
result from Theorem 5.1.5 and the result from [85, Theorem 7.11].

The paper is arranged as follows. In Section 5.2 we introduce some notation, we recall
some basic properties of β-expansions and prove Theorem 5.1.2. In Section 5.3 we
consider the topological structure of Eβ and E+

β and prove Theorem 5.1.3. By means
of Lyndon words we construct infinitely many nested basic intervals which cover the
interval (1, 2) up to a Lebesgue null set. We can determine all isolated points of
E+
β by determining in which intervals it falls. The largest of these intervals are then

associated to Farey words, the properties of which allow us to prove Theorem 5.1.4
in Section 5.4 and Theorem 5.1.5 in Section 5.5.

§5.2 Preliminaries, β-expansions and first properties
of Kβ(t) and Eβ

In this section we introduce some notation about sequences that is used throughout
the paper. We will recall some basic properties of β-transformations and give some
basic results on Kβ(t) and Eβ . We also prove Theorem 5.1.2.

§5.2.1 Notation on sequences

Let {0, 1}N be the set of sequences of 0’s and 1’s and let σ be the left shift on {0, 1}N

defined by σ((xi)) = (xi+1). We use {0, 1}∗ to denote the set of all finite strings of
elements from {0, 1}, called words. A word w ∈ {0, 1}n is called a prefix of a sequence
(xi) ∈ {0, 1}N if x1 . . . xn = w. For a word w = w1 . . . wn ∈ {0, 1}∗ we write w+ :=

w1 . . . wn−1(wn + 1) if wn = 0 and we write w− := w1w2 . . . wn−1(wn − 1) if wn = 1.
Furthermore, we use w to denote the reflection word w := (1−w1)(1−w2) . . . (1−wn).

Throughout the paper we use the lexicographical ordering ≺,4,� and < between
sequences and words, which is defined as follows. For two sequences (xi), (yi) ∈ {0, 1}N

we write (xi) ≺ (yi) or (yi) � (xi) if x1 < y1, or there is an integer m ≥ 2 such that
xi = yi for all i < m and xm < ym. Moreover, we say (xi) 4 (yi) or (yi) < (xi) if
(xi) ≺ (yi) or (xi) = (yi). This definition can be extended to words in the following
way. For u, v ∈ {0, 1}∗, we write u ≺ v if and only if u0∞ ≺ v0∞.

Let #A denote the cardinality of the set A. For a subset Y ⊆ {0, 1}N, let Bn(Y)

denote the set of all words of length n that occur in a sequence in Y. The topological
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entropy of Y is then given by

h(Y) := lim
n→∞

log #Bn(Y)

n
= inf

n

log #Bn(Y)

n
,

where the second equality holds since by the definition of Bn(Y) the sequence
(log #Bn(Y)) is sub-additive. Here and throughout the paper we will use the base 2
logarithm.

§5.2.2 The β-transformation and β-expansions
Now we recall some properties of the β-transformation. Let β ∈ (1, 2] and let the
(greedy) β-transformation Tβ : [0, 1) → [0, 1) be given as in the introduction, i.e.,
Tβ(x) = βx (mod 1). It has a unique ergodic invariant measure that is equivalent
to the Lebesgue measure (cf. [94]). This measure is the unique measure of maximal
entropy with entropy equal to log β. For each x ∈ [0, 1) the greedy β-expansion of x,
denoted by b(x, β) = (bi(x, β)), is the sequence obtained from Tβ by setting for each
i ≥ 1,

bi(x, β) =

{
0, if T i−1

β (x) ∈ [0, 1
β ),

1, if T i−1
β (x) ∈ [ 1

β , 1).

The name greedy β-expansion stems from the fact that it is the lexicographically
largest sequence (xi) ∈ {0, 1}N satisfying

x =
∑
i≥1

xi
βi

=: πβ((xi)). (5.2.1)

We write b(1, β) for the sequence 1b(β − 1, β).

The set of sequences that occur as greedy β-expansions for a given β can be character-
ised using quasi-greedy β-expansions. For each x ∈ (0, 1] the quasi-greedy β-expansion
of x is obtained dynamically by iterating the map T̃β : (0, 1]→ (0, 1] given by

T̃β(x) =

{
βx, if x ∈

(
0, 1

β

]
,

βx− 1, if x ∈
(

1
β , 1
]
.

The only essential difference between the maps Tβ and T̃β is the value they take
at the point 1

β . For x ∈ (0, 1] the quasi-greedy β-expansion b̃(x, β) = (b̃i(x, β)) is
then obtained by setting b̃i(x, β) = 0, if 0 < T̃ i−1

β (x) ≤ 1
β and b̃i(x, β) = 1, if

1
β < T̃ i−1(x) ≤ 1. The quasi-greedy β-expansion of 1 plays a crucial role in what
follows. For β ∈ (1, 2], write

α(β) := b̃(1, β).

Note that if b(x, β) = b1 . . . bn0∞ with bn = 1, then b̃(x, β) = b1 . . . b
−
nα(β). On the

other hand, if b(x, β) does not end with 0∞, then b(x, β) = b̃(x, β). The following
characterisation of α(β) can be found in [61, Theorem 2.3]. Let Q ⊂ {0, 1}N be the
set of sequences (ai) ∈ {0, 1}N not ending with 0∞ and satisfying

an+1an+2 . . . 4 a1a2 . . . for all n ≥ 0. (5.2.2)
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Lemma 5.2.1. The map β 7→ α(β) is a strictly increasing bijection between the
interval (1, 2] and the set Q.

For a given β, the sequence α(β) determines the set of all greedy β-expansions in
the following way. Let Σβ be the set of all greedy β-expansions of x ∈ [0, 1). Then
(cf. [88])

Σβ = {(xi) ∈ {0, 1}N : σn((xi)) ≺ α(β) for all n ≥ 0}.

Similarly, let Σ̃β be the set of all quasi-greedy β-expansions of x ∈ (0, 1]. Then

Σ̃β = {(xi) ∈ {0, 1}N : 0∞ ≺ σn((xi)) 4 α(β) for all n ≥ 0}.

The following result can be found in [88] (see also [36]).

Lemma 5.2.2. Let β ∈ (1, 2]. The map x 7→ b(x, β) is a strictly increasing bijection
from [0, 1) to Σβ and is right-continuous w.r.t. the ordering topology on Σβ.
On the other hand, the map x 7→ b̃(x, β) is a strictly increasing bijection from (0, 1]

to Σ̃β and it is left-continuous w.r.t. the ordering topology on Σ̃β.

§5.2.3 First properties of Kβ(t) and Eβ

Let t ∈ [0, 1) be given. Recall the definitions of the survivor setKβ(t) = K0
β(t)∪K+

β (t)

from (5.1.1) and (5.1.2). We define the corresponding symbolic survivor sets as the set
of all greedy β-expansions of elements in the setsKβ(t), K0

β(t) andK+
β (t) respectively.

Lemma 5.2.2 gives the following descriptions:

K+
β (t) = {(xi) ∈ {0, 1}N : b(t, β) 4 σn((xi)) ≺ α(β) ∀n ≥ 0},

K0
β(t) = {(xi) ∈ {0, 1}N : ∃n ≥ 0 σn((xi)) = 0∞

and b(t, β) 4 σk((xi)) ≺ α(β) ∀ 0 ≤ k < n},
Kβ(t) =K+

β (t) ∪ K0
β(t).

(5.2.3)

We will often switch from Kβ(t) to Kβ(t) and back. The set Kβ(t) is closed and Tβ
is continuous when restricted to Kβ(t). Under the metric d on {0, 1}N given by

d((xi), (yi)) = β− inf{n≥1 : xn 6=yn},

the map πβ : (Kβ(t), σ)→ (Kβ(t), Tβ) is a topological conjugacy. This gives that

htop(Tβ |Kβ(t)) = htop(Kβ(t)).

For the bifurcation set Eβ , defined in (5.1.3), the following description can implicitly
be found in [104]:

Proposition 5.2.3. Eβ = {t ∈ [0, 1) : t ∈ Kβ(t)} and thus Eβ ∩ [t, 1) ⊆ Kβ(t) for
any t ∈ (0, 1).
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Proof. For all t ∈ (0, 1) it holds that t 6∈ Kβ(ε) for any ε > t. Hence, if t ∈ Kβ(t),
then t ∈ Eβ . Suppose that t 6∈ Kβ(t), i.e., there is an N ≥ 1 such that TNβ (t) ∈ (0, t).
By the right-continuity of TNβ , there is a δ > 0 such that

TNβ (ε) ∈
(
TNβ (t),

TNβ (t) + t

2

)
⊆ (0, t) for all ε ∈ [t, t+ δ].

This implies that Kβ(t)∩ [t, t+ δ] = ∅ and thus, Kβ(t+ δ) ⊆ Kβ(t) ⊆ Kβ(t+ δ). We
conclude that the function ε 7→ Kβ(ε) is constant on [t, t+ δ], so t 6∈ Eβ . �

Corollary 5.2.4. For each β ∈ (1, 2] the set [0, 1) \ Eβ is open.

Proof. Let t 6∈ Eβ . The proof of the previous proposition then gives a δ1 > 0 such
that [t, t + δ1] ∩ Eβ = ∅. From t 6∈ Kβ(t) it follows that there is an N ≥ 1 such
that TNβ (t) ∈ (0, t). Hence T kβ (t) 6= 1

β for any 0 ≤ k ≤ N , which means that TNβ is
left-continuous in t. Then, as in the proof of Proposition 5.2.3, we can find a δ2 > 0

such that [t− δ2, t] ∩ Eβ = ∅. �

In (5.1.4) the set E+
β was defined. By the same proof as given for Proposition 5.2.3

we also get that E+
β is the bifurcation set of K+

β (t), i.e.,

E+
β = {t ∈ [0, 1) : t ∈ K+

β (t)} = {t ∈ [0, 1) : K+
β (ε) 6= K+

β (t) for any ε > t}.

As for Kβ(t) we add a third set E0
β of the elements in Eβ that are pre-images of 0:

E0
β = {t ∈ Eβ : ∃n ≥ 0 Tnβ (t) = 0} = {t ∈ [0, 1) : t ∈ K0

β(t)}.

Then Eβ = E+
β ∪ E0

β and E+
β ∩ E0

β = {0}.

The symbolic bifurcation sets, i.e., the sets of all greedy β-expansions of elements in
Eβ , E+

β and E0
β can be described as follows:

E+
β = {(ti) ∈ {0, 1}N : ∀n ≥ 0 (ti) 4 σ

n((ti)) ≺ α(β)},

E0
β = {(ti) ∈ {0, 1}N : ∃n ≥ 0 σn((ti)) = 0∞

and (ti) 4 σ
k((ti)) ≺ α(β) for all 0 ≤ k < n},

Eβ = E+
β ∪ E

0
β .

(5.2.4)

In the series of papers [91, 92, 93], Raith studied invariant sets for piecewise monotone
expanding maps on the interval [0, 1]. More specifically, in [93] he removed a finite
number of open intervals from [0, 1] and considered piecewise monotone expanding
maps restricted to the survivor set. He then studied the dependence on the endpoints
of the holes of the Hausdorff dimension of the survivor set and of the topological
entropy of the map restricted to the survivor set. Since no x ∈ [0, 1) has Tβ(x) = 1, we
can apply these results to Tβ on [0, 1) with the single hole (0, t) removed. In particular,
applying the results from [93, Corollary 1.1 and Theorem 2] give the following.
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Proposition 5.2.5 ([93]). Let β ∈ (1, 2) be given. The maps Hβ : t 7→ htop(Kβ(t))

and ηβ : t 7→ dimH Kβ(t) are continuous on [0, 1).

In the process of proving [93, Theorem 2], Raith proved in [93, Lemma 3] that Bowen’s
dimension formula also holds in this case, i.e., the Hausdorff dimension of the survivor
set is the unique zero of the pressure function. In our setting this translates to the
following dimension formula:

dimH Kβ(t) =
htop(Tβ |Kβ(t))

log β
. (5.2.5)

Since for any t ∈ [0, 1) the sets K0
β(t) and E0

β contain at most countably many points,
we have the following properties for the sets under consideration. Let λ denote the
one dimensional Lebesgue measure.

dimH Kβ(t) = dimH K
+
β (t) dimH K

0
β(t) = 0

λ(Kβ(t)) = λ(K+
β (t)) λ(K0

β(t)) = 0

dimH Eβ = dimH E
+
β dimH E

0
β = 0

λ(Eβ) = λ(E+
β ) λ(E0

β) = 0

htop(Kβ(t)) = max{htop(K+
β (t)), htop(K

0
β(t))}

This table implies that for Theorem 5.1.2(i) it is enough to consider only Eβ . From
Proposition 5.2.5 and (5.2.5) we also get that t 7→ dimH K

+
β (t) is continuous and that

htop(Kβ(t)) = dimH(K+
β (t)) log β.

The next result specifies the relations between the sets even further.

Proposition 5.2.6. Let β ∈ (1, 2). If t ∈ E+
β , then htop(Kβ(t)) = htop(K+

β (t)).

Proof. Since K+
β (t) ⊆ Kβ(t), it suffices to prove htop(K+

β (t)) ≥ htop(Kβ(t)). For t = 0,
there is nothing to prove. Take t ∈ E+

β \ {0} and write (ti) := b(t, β). Then

(ti) 4 σ
n((ti)) ≺ α(β) for all n ≥ 0.

Hence (ti) does not end with 0∞ and by (5.2.3) we can rewrite K0
β(t) as

K0
β(t) = {(xi) : ∃n ≥ 0 σn((xi)) = 0∞ and (ti) ≺ σk((xi)) ≺ α(β) ∀ 0 ≤ k < n}.

(5.2.6)
We claim that

|Bk(K0
β(t))| ≤

k+1∑
j=1

|Bj−1(K+
β (t))|.
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Take a word a1 . . . ak ∈ Bk(K0
β(t)) and without loss of generality suppose it occurs as a

prefix of a sequence (xi) ∈ K0
β(t), i.e., (xi) = a1 . . . akxk+1xk+2 . . .. Let j ≥ 0 be such

that xj = 1 and the tail xj+1xj+2 . . . = 0∞. If j = 0, then (xi) = 0∞. Avoiding this
trivial case we assume j ≥ 1 and we will prove x1 . . . xj−10 ∈ Bj(K+

β (t)). By (5.2.6)
it follows that

t1 . . . tj−i 4 xi+1 . . . xj−10 ≺ α1(β) . . . αj−i(β) for all 0 ≤ i < j. (5.2.7)

Let i∗ ≤ j be the smallest index such that xi∗+1 . . . xj−10 = t1 . . . tj−i∗ . If strict
inequalities in (5.2.7) hold for all i < j, then we put i∗ = j. Note that (ti) 4
σn((ti)) ≺ α(β) for all n ≥ 0. Then by the minimality of i∗ it follows that

x1 . . . xj−10tj−i∗+1tj−i∗+2 . . . = x1 . . . xi∗t1t2 . . . ∈ K+
β (t).

Observe that x1 . . . xj−1 = a1 . . . aj−1 if j ≤ k and x1 . . . xk = a1 . . . ak if j ≥ k + 1.
This implies that a1 . . . aj−1 = x1 . . . xj−1 ∈ Bj−1(K+

β (t)) if j ≤ k or a1 . . . ak ∈
Bk(K+

β (t)) if j ≥ k + 1 and proves the claim.

By the claim it follows that |Bk(K0
β(t))| ≤ (k + 1)|Bk(K+

β (t))|. Using that Kβ(t) =

K0
β(t) ∪ K+

β (t) we have

|Bk(Kβ(t))| ≤ (k + 2)|Bk(K+
β (t))| for all k ≥ 1.

Taking the logarithms, dividing both sides by k and letting k →∞, we conclude that
htop(Kβ(t)) ≤ htop(K+

β (t)), which gives the result. �

§5.2.4 The size of Eβ

The results from the previous sections are enough to prove Theorem 5.1.2. We start
by proving the following result, which holds for all β ∈ (1, 2). It covers item (i) from
Theorem 5.1.2 as well as part of Theorem 5.1.3.

Proposition 5.2.7. For any β ∈ (1, 2) the bifurcation set Eβ is a Lebesgue null set.
Furthermore, dimH(Eβ ∩ [0, δ]) = 1 for any δ > 0. In particular, dimH Eβ = 1.

Proof. For the first part of the statement, let β ∈ (1, 2) and N ∈ N. The ergodicity
of Tβ with respect to its invariant measure equivalent to the Lebesgue measure λ
implies that λ-a.e. x ∈ [0, 1) is eventually mapped into the interval

(
0, 1

N

)
. Hence,

the survivor set Kβ

(
1
N

)
is a Lebesgue null set for each N ∈ N. This implies that

λ(Eβ) = 0, since by Proposition 5.2.3

Eβ ⊆
∞⋃
N=1

Kβ

( 1

N

)
.

To prove the second part, take a large integer N ≥ 1. Let Eβ,N be the set of x ∈ [0, 1)

with a greedy expansion b(x, β) = (bi(x, β)) satisfying b1(x, β) . . . bN (x, β) = 0N and
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such that the tails bN+1(x, β)bN+2(x, β) . . . do not contain N consecutive zeros. It
immediately follows that Eβ,N ⊆ Eβ . Note that K+

β

(
1
βN

)
is exactly the set of x ∈

[0, 1) for which b(x, β) does not have more than N consecutive zeros. Hence,

Eβ,N =
1

βN
K+
β

(
1

βN

)
and thus dimH Eβ,N = dimH K

+
β

(
1
βN

)
= dimH Kβ

(
1
βN

)
. Moreover, for any δ > 0, we

can find a large integer N such that Eβ,n ⊆ Eβ ∩ [0, δ] for all n ≥ N . Therefore,

dimH(Eβ ∩ [0, δ]) ≥ dimH Eβ,n = dimH Kβ

( 1

βn

)
for all n ≥ N . By continuity of the map ηβ : t 7→ dimH Kβ(t), letting n → ∞ gives
that

dimH(Eβ ∩ [0, δ]) ≥ dimH Kβ(0) = dimH [0, 1) = 1.

�

Proof of Theorem 5.1.2. Item (i) is given by Proposition 5.2.7. For item (ii), the fact
that ηβ decreases weakly immediately follows from its definition and the continuity
of ηβ is given by Proposition 5.2.5. For the second bullet point we have that the
set-valued map t 7→ Kβ(t) is locally constant Lebesgue almost everywhere, since
λ(Eβ) = 0. The last bullet point follows since ηβ(0) = 1 and for t ≥ 1

β we completely
remove the second branch from Tβ , so that obviously dimH(Kβ(t)) = 0 and ηβ(t) = 0.
�

§5.3 Topological structure of Eβ

In this section we prove Theorem 5.1.3. In fact, we prove a stronger result by spe-
cifying the set of β ∈ (1, 2) for which there is a δ > 0 such that E+

β ∩ [0, δ] does not
contain isolated points. This is the set

C3 := {β ∈ (1, 2) : the length of consecutive zeros in α(β) is bounded}. (5.3.1)

From a dynamical point of view C3 is the set of β ∈ (1, 2) such that the orbit
{T̃nβ (1)}∞n=0 is bounded away from zero. Replacing α(β) in the definition of C3 by
b(1, β) gives the set called C3 in [97]. In [97] Schmeling proved that this set has zero
Lebesgue measure and full Hausdorff dimension. Since the two versions of C3 only
differ by countably many points, the same holds for our set C3 from (5.3.1). We prove
Theorem 5.1.3 using Lyndon words, which we will define next.

Recall from (5.2.4) that

E+
β = {(ti) ∈ {0, 1}N : (ti) 4 σ

n((ti)) ≺ α(β) for all n ≥ 0}.

In other words, any sequence in E+
β is the lexicographically smallest sequence in Σβ

under the shift map σ. For this reason we recall the following definition (cf. [76]).

101



5. β-expansions

C
h
a
pt

er
5

Definition 5.3.1. A word s is called Lyndon if s is aperiodic and σn(s∞) < s∞ for
all n ≥ 0.

The following lemma lists some useful properties of Lyndon words. The first and third
items easily follow from the definition and we omit their proofs.

Lemma 5.3.2.

(i) s1 . . . sm is a Lyndon word if and only if

si+1 . . . sm � s1 . . . sm−i for all 0 < i < m.

(ii) If s1 . . . sm is a Lyndon word, then for any 1 ≤ n < m with sn = 0 the word
s1 . . . s

+
n is also Lyndon.

(iii) If v, w are Lyndon words and vw ≺ wv then for all n ∈ N we have that vnw is
a Lyndon word.

Proof. To prove (ii), suppose sn = 0 for some 1 ≤ n < m. Since 1 is a Lyndon word,
the statement holds for n = 1. If 2 ≤ n < m, then by (i) it follows that

si+1 . . . s
+
n � si+1 . . . sn < s1 . . . sn−i for all 0 < i < n.

Therefore, again by (i) s1 . . . s
+
n is a Lyndon word as required. �

By taking i = m − 1 in Lemma 5.3.2 (i) it follows that s1 = 0 and sm = 1. So any
Lyndon word of length at least two starts with 0 and ends with 1. We use Lemma 5.3.2
to show that any isolated point in E+

β has a periodic greedy β-expansion.

Proposition 5.3.3. Let β ∈ (1, 2]. If t is an isolated point of E+
β , then its greedy

β-expansion b(t, β) is periodic. Moreover, no element from E+
β is isolated in Eβ.

The proof of this proposition is based on the following two lemmas. Together they say
that any point in E+

β with aperiodic β-expansion can be approximated from below
by a sequences of points in E+

β that have a periodic orbit under Tβ .

Lemma 5.3.4. Let (ti) ∈ E+
β be an aperiodic sequence. For each m ≥ 1 we have

(t1 . . . tm)∞ ≺ (ti) and (t1 . . . tm)∞ ∈ Σβ .

Proof. Let (ti) ∈ E+
β be an aperiodic sequence. Then by (5.2.4) we have

(ti) ≺ σn((ti)) ≺ α(β) for all n ≥ 1. (5.3.2)

Fix m ≥ 1. By taking n = m, 2m, . . . in (5.3.2) it follows that

(t1 . . . tm)∞ = t1 . . . tm(t1 . . . tm)∞

4 t1 . . . tmtm+1 . . . t2m(t1 . . . tm)∞

4 t1 . . . t2mt2m+1 . . . t3m(t1 . . . tm)∞ 4 · · · 4 (ti).
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Since (ti) is not periodic, we conclude that (t1 . . . tm)∞ ≺ (ti).

For the second statement, (5.3.2) and the first part of the proposition give that

σn((t1 . . . tm)∞) = tn+1 . . . tm(t1 . . . tm)∞ ≺ tn+1 . . . tmtm+1tm+2 . . . ≺ α(β)

for each 0 ≤ n < m, hence (t1 . . . tm)∞ ∈ Σβ . �

From [102, Proposition 2.2] we have the following lemma:

Lemma 5.3.5. Let (ti) ∈ E+
β be an aperiodic sequence. Then there exist infinitely

many m ∈ N such that t1 . . . tm is a Lyndon word.

Note that both previous lemmas do not hold for Eβ . Let (ti) ∈ E0
β be such that

σn((ti)) = 0∞. Then for any m > n we have (t1 . . . tm)∞ � (ti), contradicting the
statement of Lemma 5.3.4. As for the statement of Lemma 5.3.5, for all m ≥ 2n we
have that t1 . . . tm is not Lyndon.

Proof of Proposition 5.3.3. Let t ∈ E+
β be a point with aperiodic greedy β-expansion

b(t, β) = (ti). Since (ti) ∈ E+
β , by Lemma 5.3.5 there exists a sequence (mj) such

that t1 . . . tmj is Lyndon for all j ≥ 1. Furthermore, by Lemma 5.3.4 we have
(t1 . . . tmj )

∞ ∈ Σβ for each j ≥ 1. Hence, for all j ≥ 1 we have (t1 . . . tmj )
∞ ∈ E+

β and
thus πβ

(
(t1 . . . tmj )

∞) ∈ E+
β . Letting j → ∞ we conclude that πβ((t1 . . . tmj )

∞) →
πβ((ti)) = t which implies that t is not isolated in E+

β .

Now assume that t ∈ E+
β has a periodic greedy β-expansion b(t, β) = (t1 . . . tm)∞,

where m is chosen minimal. We will show that t is not isolated in Eβ . If m =

1, then we have b(t, β) = 0∞, i.e., t = 0. In this case the result trivially follows
from Proposition 5.2.7. Now assume m ≥ 2. Let a1 . . . am be the maximal cyclic
permutation of t1 . . . tm. Then there exists a j ∈ {0, 1, . . . ,m−1} such that a1 . . . am =

tj+1 . . . tmt1 . . . tj . Note that σn((t1 . . . tm)∞) ≺ α(β) for all n ≥ 0. Then

(a1 . . . am)∞ ≺ α(β), (5.3.3)

which implies a1 . . . am 4 α1(β) . . . αm(β). We claim that a1 . . . am ≺ α1(β) . . . αm(β).

If a1 . . . am = α1(β) . . . αm(β), then (5.3.3) together with Lemma 5.2.1 gives

a1 . . . am 4 αm+1(β) . . . α2m(β) 4 α1(β) . . . αm(β) = a1 . . . am.

So, a1 . . . a2m = (a1 . . . am)2. Iterating this argument with Lemma 5.2.1 and (5.3.3)
gives that α(β) = (a1 . . . am)∞, leading to a contradiction with (5.3.3). This proves
the claim.

For N ∈ N, define the sequence tN := (t1 . . . tm)N t1 . . . t
+
j 0∞. Since tj = 0, the

sequence tN is well-defined. By Lemma 5.3.2(iii) it follows that that σn(tN ) � tN
for all 0 ≤ n < mN + j. Moreover, a1 . . . am ≺ α1(β) . . . αm(β) it follows that
σn(tN ) ≺ α(β) for all n ≥ 0. So, tN ∈ E0

β for all N ∈ N. Since πβ(tN ) ↘ t as
N →∞, the point t ∈ E+

β is not isolated in Eβ . �
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The next proposition says that no point from E0
β \ {0} can be approximated from

above by elements from Eβ and that a point t ∈ E0
β \ {0} is isolated in Eβ if the orbit

of 1 enters (0, t).

Proposition 5.3.6. Let t ∈ E0
β \{0}. Then there is a δ > 0 such that Eβ∩ [t, t+δ] =

{t}. Moreover, if β − 1 6∈ Kβ(t), then t is isolated in Eβ.

Proof. If t ∈ E0
β \ {0}, then there is a smallest n ≥ 0 such that Tnβ (t) = 1

β . By the
right continuity of Tβ , there is a δ > 0 such that all ε ∈ (t, t + δ] satisfy Tn+1

β (ε) ∈
(0, t) ⊆ (0, ε). Hence, ε 6∈ Kβ(ε) and thus, ε 6∈ Eβ .

The first statement implies that to prove an element from E0
β \ {0} is isolated, it is

enough to prove that it cannot be approximated from below. If again n is such that
Tnβ (t) = 1

β , then for a small enough δ, we know that for any point ε ∈ [t − δ, t) the
point Tn+1

β (ε) is close to 1. Let m be the smallest integer such that Tmβ (β−1) ∈ (0, t).
Then there is a 0 < δ < t− Tmβ (β − 1) such that any ε ∈ [t− δ, t) satisfies

Tn+1+m+1
β (ε) ∈ (0, Tmβ (β − 1)) ⊆ (0, ε).

Hence, ε 6∈ Eβ and Eβ ∩ [t− δ, t] = {t}. �

From now on we focus on the set E+
β . We first construct subintervals of (1, 2) such

that E+
β contains isolated points whenever β is in one of these intervals. We start

with a couple of lemmas.

Lemma 5.3.7. Let (ti), (αi) ∈ {0, 1}N be given. Suppose there is an m ≥ 1 such that
αm = 1 and σm((αi)) 4 (ti). Define the sets

K := {(xi) ∈ {0, 1}N : (ti) 4 σ
n((xi)) ≺ (αi) for all n ≥ 0},

Xm := {(xi) ∈ {0, 1}N : (ti) 4 σ
n((xi)) 4 (α1 . . . α

−
m)∞ for all n ≥ 0}.

Then K = Xm.

Proof. Obviously, Xm ⊆ K. We show that K \ Xm = ∅. Suppose that this is not the
case and let (xi) ∈ K\Xm. Then there is a j ≥ 1 such that xj+1 . . . xj+m = α1 . . . αm.
Since (xi) ∈ K, the assumption that σm((αi)) 4 (ti) implies that

xj+m+1xj+m+2 . . . ≺ αm+1αm+2 . . . 4 (ti),

which contradicts (xi) ∈ K. Hence K \ Xm = ∅. �

Let β ∈ (1, 2) and t ∈ [0, 1). The previous lemma has the following consequence for
K+
β (t). If there is a smallest m ≥ 1 such that

αm+1(β)αm+2(β) . . . 4 b(t, β),

or equivalently T̃mβ (1) ≤ t, then we can rewrite K+
β (t) as

K+
β (t) = {(xi) : b(t, β) 4 σn((xi)) 4 (α1(β) . . . αm(β)−)∞ for any n ≥ 0}.
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Hence, any point in the survivor set K+
β (t) then has the property that its entire orbit

lies between t and the point πβ((α1(β) . . . αm(β)−)∞). We need two more lemmas.
Recall the definition of the set Q from (5.2.2) as the set of sequences that occur as
α(β) for some β ∈ (1, 2].

Lemma 5.3.8. Let (a1 . . . am)∞ ∈ Q with minimal period m. Then

ai+1 . . . a
+
m 4 a1 . . . am−i for all 0 < i < m.

Proof. Let β ∈ (1, 2) be such that α(β) = (a1 . . . am)∞. Then b(1, β) = a1 . . . a
+
m0∞.

Hence, for each 0 < i < m we have b(T iβ(1), β) = ai+1 . . . a
+
m0∞ and T iβ(1) < 1. The

result then follows from Lemma 5.2.2. �

Note that for any non-periodic word b1 . . . bm ∈ {0, 1}∗ there is a 0 ≤ j ≤ m− 1 such
that bj+1 . . . bmb1 . . . bj is the smallest among its cyclic permutations and therefore
Lyndon. We denote this word by S(b1 . . . bm) and call it the Lyndon word for b1 . . . bm.
Similarly, there is a 0 ≤ k ≤ m− 1 such that bk+1 . . . bmb1 . . . bk is the largest among
its cyclic permutations. We denote this by word by L(b1 . . . bm). In what follows
we will sometimes use the property that for any word b1 . . . bm ∈ {0, 1}m and any
sequence (xi) ∈ {0, 1}N it holds that

σn((xi)) < b1 . . . bm0∞ ∀n ≥ 0 ⇐⇒ σn((xi)) < (b1 . . . bm)∞ ∀n ≥ 0. (5.3.4)

Lemma 5.3.9. Let s1 . . . sm be a Lyndon word and write a1 . . . am = L(s1 . . . sm).
Let 0 ≤ j < m be such that s1 . . . sm = aj+1 . . . ama1 . . . aj and set

Zm := {(xi) ∈ {0, 1}N : s1 . . . sm0∞ 4 σn((xi)) 4 (a1 . . . am)∞ ∀n ≥ 0}.

(i) If (xi) ∈ Zm has prefix aj+1 . . . am, then (xi) = (s1 . . . sm)∞;

(ii) if (xi) ∈ Zm has prefix a1 . . . aj, then (xi) = (a1 . . . am)∞.

Proof. Since the proofs of (i) and (ii) are similar, we only give the proof of (i). Let
aj+1 . . . amx1x2 . . . ∈ Zm. Then

s1 . . . sm0∞ 4 σn(aj+1 . . . amx1x2 . . .) 4 (a1 . . . am)∞ for all n ≥ 0. (5.3.5)

In particular,

aj+1 . . . amx1 . . . xj < s1 . . . sm = aj+1 . . . ama1 . . . aj ,

which gives
x1 . . . xj < a1 . . . aj .

On the other hand, by taking n = m − j in (5.3.5), we get x1 . . . xm 4 a1 . . . am.
Hence

x1 . . . xj = a1 . . . aj and xj+1 . . . xm 4 aj+1 . . . am.

Again, by (5.3.5) now with n = m, we have xj+1 . . . xm < s1 . . . sm−j = aj+1 . . . am.
Therefore, x1 . . . xm = a1 . . . am. By iteration we conclude that

aj+1 . . . amx1x2 . . . = (aj+1 . . . ama1 . . . aj)
∞ = (s1 . . . sm)∞

as required. �

105



5. β-expansions

C
h
a
pt

er
5

We now construct infinitely many nested intervals (βL, βR] such that E+
β has isolated

points whenever β ∈ (βL, βR]. Figure 5.2 shows some of these intervals. We will
later show that these basic intervals cover the whole interval (1, 2) up to a set of zero
Lebesgue measure.

Figure 5.2: Some of the basic intervals (βL, βR]. The numbers near the arches indicate the
words a1 . . . am such that α(βL) = (a1 . . . am)∞. The intervals that are not contained in
any other interval are the Farey intervals. They are the ones for which a1 . . . am is a Farey
word. The the arches corresponding to Farey intervals are shown in black, the lighter coloured
arches correspond to words that are Lyndon, but not Farey.

Proposition 5.3.10. Let s1 . . . sm be a Lyndon word and write
a1 . . . am = L(s1 . . . sm). Then both (a1 . . . am)∞ and a1 . . . a

+
m(s1 . . . sm)∞ belong

to Q, hence there are uniquely defined bases βL, βR ∈ (1, 2] such that α(βL) =

(a1 . . . am)∞ and α(βR) = a1 . . . a
+
m(s1 . . . sm)∞. Moreover,

(i) (s1 . . . sm)∞ ∈ Σβ if and only if β > βL;

(ii) if β ∈ (βL, βR], then πβ((s1 . . . sm)∞) is an isolated point of E+
β ;

(iii) if β > βR, then πβ((s1 . . . sm)∞) is not an isolated point of E+
β .

Proof. Let βL be as in the proposition. First we show that the interval (βL, βR] is
well-defined, i.e., βR exists and that βL < βR. We use the characterisation from
Lemma 5.2.1, so it suffices to show that the sequence a = a1 . . . a

+
m(s1 . . . sm)∞ ∈ Q,

i.e., it satisfies σn(a) 4 a for all n ≥ 0. Since s1 . . . sm is a Lyndon word, any word of
length 1 ≤ n ≤ m− 1 occurring in a1 . . . am = L(s1 . . . sm) is lexicographically larger
than or equal to s1 . . . sn. Combining this with Lemma 5.3.8 and Lemma 5.3.2 (i)
gives

an+1 . . . a
+
ms1 . . . sn 4 a1 . . . am−nam−n+1 . . . am ≺ a1 . . . a

+
m

for all 0 < n < m . So σn(a) ≺ a for each 0 < n < m. Moreover, since

σn((s1 . . . sm)∞) 4 (a1 . . . am)∞ ≺ a1 . . . a
+
m(s1 . . . sm)∞

for all n ≥ 0, we get σn(a) ≺ a for all n ≥ 1 and thus a ∈ Q. Lemma 5.2.1
then implies that a is indeed the quasi-greedy expansion of 1 for some base βR, i.e.,
α(βR) = a1 . . . a

+
m(s1 . . . sm)∞. Since α(βL) ≺ α(βR), Lemma 5.2.1 also gives that

βR > βL. Hence, the interval (βL, βR] is well-defined.

Let 1 ≤ j ≤ m− 1 be such that

s1 . . . sm = aj+1 . . . ama1 . . . aj .
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For (i), note that if β ≤ βL, then (s1 . . . sm)∞ 6∈ Σβ since

σj((s1 . . . sm)∞) = (a1 . . . am)∞ < α(β).

For β ∈ (βL, βR] it follows immediately that (s1 . . . sm)∞ ∈ Σβ , since s1 . . . sm is the
smallest permutation of a1 . . . am and (a1 . . . am)∞ ≺ α(β).

For (ii), let β ∈ (βL, βR] and set t = πβ((s1 . . . sm)∞). Then b(t, β) = (s1 . . . sm)∞ ∈
E+
β , so t ∈ E

+
β . By Lemma 5.2.2 and since t has a periodic β-expansion, there exists a

small δ > 0 such that for any x ∈ [t− δ, t+ δ] the greedy expansion b(x, β) has prefix
s1 . . . sm. By Lemma 5.3.7 it follows that

K+
β (t− δ) ⊆ {(xi) : s1 . . . sm0∞ 4 σn((xi)) ≺ a1 . . . a

+
m(s1 . . . sm)∞ ∀n ≥ 0}

= {(xi) : (s1 . . . sm)∞ 4 σn((xi)) ≺ a1 . . . a
+
m(s1 . . . sm)∞ ∀n ≥ 0}

= {(xi) : (s1 . . . sm)∞ 4 σn((xi)) 4 (a1 . . . am)∞ ∀n ≥ 0}
= {(xi) : s1 . . . sm0∞ 4 σn((xi)) 4 (a1 . . . am)∞ ∀n ≥ 0},

(5.3.6)

where we have used the fact from (5.3.4) in the first and last equality. Since for any
x ∈ [t − δ, t + δ] the greedy expansion b(x, β) begins with s1 . . . sm, by Lemma 5.3.9
(i) and (5.3.6) we obtain that

K+
β (t− δ) ∩ [t− δ, t+ δ] ⊆ {t}.

Since t ∈ E+
β ∩ [t− δ, t+ δ] ⊆ K+

β (t− δ) ∩ [t− δ, t+ δ], we conclude that t is isolated
in E+

β for any β ∈ (βL, βR].

For (iii), let β > βR and again set t = πβ((s1 . . . sm)∞). We construct a sequence
(tn) in E+

β such that tn ↘ (s1 . . . sm)∞ in the order topology as n→∞. Let

tn := ((s1 . . . sm)ns1 . . . s
+
m−j)

∞ = ((aj+1 . . . ama1 . . . aj)
naj+1 . . . a

+
m)∞.

We claim that there is an N ∈ N such that tn ∈ E+
β for all n > N . By Lemma 5.3.2

(ii) and (iii) it follows that tn is Lyndon. Left to show is that tn ∈ Σβ . Note that the
largest permutation of tn is given by

dn = (a1 . . . a
+
m(aj+1 . . . ama1 . . . aj)

n−1aj+1 . . . am)∞

= (a1 . . . a
+
m(s1 . . . sm)n−1s1 . . . sm−j)

∞.

For β > βR either α1(β) . . . αm(β) � a1 . . . a
+
m or there exists an N ≥ 1 such that

α(β) = a1 . . . a
+
m(s1 . . . sm)N−1b1 . . . bm with b1 . . . bm � s1 . . . sm. In the first case

obviously dn ≺ α(β). In the second case we have dn ≺ α(β) for all n > N . Hence
tn ∈ Σβ for all n > N .

We have found a sequence (tn) ⊆ E+
β decreasing to b(t, β) = (s1 . . . sm)∞ as n → ∞

and accordingly, a sequence (πβ(tn)) ⊆ E+
β decreasing to t = πβ((s1 . . . sm)∞) as

n→∞. Therefore, t is not isolated in E+
β . �
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Recall from (5.3.1) that C3 is the set of β ∈ (1, 2) such that the length of consecutive
zeros in the quasi-greedy expansion α(β) is bounded.

Theorem 5.3.11. If β ∈ (1, 2)\C3, then both Eβ ∩ [0, δ] and E+
β ∩ [0, δ] contain both

infinitely many isolated and accumulation points for all δ > 0.

Proof. By Proposition 5.2.7 it follows that Eβ ∩ [0, δ] and E+
β ∩ [0, δ] contain infinitely

many accumulation points for all δ > 0, so we focus on the isolated points. Fix
β ∈ (1, 2) \ C3. Then α(β) contains consecutive zeros of arbitrary length. Hence,
α(β) is not periodic and the orbit of 1 under T̃β will come arbitrarily close to 0.
This implies that for any t > 0, β − 1 6∈ Kβ(t) and thus by Proposition 5.3.6 any
t ∈ E0

β \ {0} will be isolated in Eβ . Note that for any n ≥ 1 we have 1
βn ∈ E

0
β . This

gives the statement for Eβ .

To prove that E+
β contains infinitely many isolated points arbitrarily close to 0, we

construct by induction a sequence of intervals (βL,k, βR,k), k ≥ 1, such that β ∈
(βL,k, βR,k) for all k ≥ 1, where (βL,k, βR,k) is defined as in Proposition 5.3.10. Write

α(β) = 1l10m11l20m2 . . . 1lk0mk . . . . (5.3.7)

Since α(β) does not end with 0∞, we have mk ∈ {1, 2, . . .} for all k ≥ 1. Furthermore,
from β /∈ C3 we get supk≥1mk =∞.

Set i0 = 1 and let i1 > i0 be the smallest index for which mi1 > m1. Set a1 :=

1l10m1 · · · 1li1−10. Note that α(β) begins with a+
1 and by Lemma 5.2.1 σn(α(β)) 4

α(β) for all n ≥ 0. This implies σn(a∞1 ) 4 a∞1 for all n ≥ 0. So by Lemma 5.2.1 the
sequence a∞1 is the quasi-greedy expansion of 1 for some base βL,1, i.e., α(βL,1) = a∞1 .
Note that the word a1 contains consecutive zeros of length at most m1. So the
Lyndon word s1 = s1 . . . sl1+m1+···+li1 for a1 begins with 0m11. Again, one can
check that σn(a+

1 s
∞
1 ) 4 a+

1 s
∞
1 for all n ≥ 0. So there exists βR,1 ∈ (1, 2) such that

α(βR,1) = a+
1 s
∞
1 . By using mi1 > m1 and (5.3.7) it follows that

α(βL,1) = a∞1 = (1l10m1 · · · 1li1−10)∞ ≺ 1l10m1 · · · 1li1 0 · · · = α(β)

and

α(βR,1) = a+
1 s∞1 = 1l10m1 · · · 1li1 0m11 · · · � 1l10m1 · · · 1li1 0mi1 1 · · · = α(β).

By Lemma 5.2.1 we have β ∈ (βL,1, βR,1). Moreover, by Proposition 5.3.10 we have
that πβ(s∞1 ) is an isolated point of E+

β . Now we pick ik using ik−1. Let ik > ik−1

be the smallest index such that mik > mik−1
. Then by the definitions of i1, . . . , ik−1

it follows that mik > mj for all j < ik. Set ak := 1l10m1 · · · 1lik−10. Then the
block ak contains consecutive zeros of length at most mik−1

. So the Lyndon word
sk = s1 . . . sl1+m1+···+lik for ak begins with 0mik−1 1. By the same argument as above
we can find two bases βL,k, βR,k ∈ (1, 2) such that

α(βL,k) = a∞k = (1l10m1 · · · 1lik−10)∞ ≺ 1l10m1 · · · 1lik 0 · · · = α(β),

α(βR,k) = a+
k s∞k = 1l10m1 · · · 1lik 0mik−1 1 · · · � 1l10m1 · · · 1lik 0mik 1 · · · = α(β).

108



§5.4. When E+
β does not have isolated points

C
h
a
pter

5

Therefore, β ∈ (βL,k, βR,k) and by Proposition 5.3.10 we have that πβ(s∞k ) is an
isolated point of E+

β .

By induction we construct a sequence of intervals (βL,k, βR,k), k ≥ 1, such that β ∈
(βL,k, βR,k) for all k ≥ 1. Moreover, the points πβ(s∞k ) are isolated in E+

β . Note that
sk begins with a block 0mik−1 1 for any k ≥ 1 and mik−1

strictly increases to ∞ as
k →∞. This implies that E+

β ∩ [0, δ] contains infinitely many isolated points for any
δ > 0. �

Theorem 5.3.12. For β ∈ C3 there is a δ > 0 such that E+
β ∩ [0, δ] has no isolated

points.

Proof. Fix β ∈ C3. Then the length of consecutive zeros in α(β) is bounded by some
large integer M . Set δ = 1

βM+3 = πβ(0M+210∞). To show that E+
β ∩ [0, δ] has no

isolated points, suppose on the contrary that t is an isolated point of E+
β ∩ [0, δ]. By

Proposition 5.3.3 it follows that the greedy β-expansion b(t, β) of t is periodic, namely

b(t, β) = (t1 . . . tm)∞ ∈ E+
β

with minimal period m. Moreover, t1 . . . tm is Lyndon. For m = 1 we get that
t = 0, which by Proposition 5.2.7 is not isolated in E+

β . Let m ≥ 2 and let
a1 . . . am = L(t1 . . . tm). Then (a1 . . . am)∞ ∈ Q, so by Lemma 5.2.1 it is the quasi-
greedy expansion of 1 for some base βL, i.e., α(βL) = (a1 . . . am)∞. By Proposi-
tion 5.3.10 it follows that β ∈ (βL, βR], where βR is the unique base satisfying

α(βR) = a1 . . . a
+
m(t1 . . . tm)∞.

Hence,
(a1 . . . am)∞ ≺ α(β) 4 a1 . . . a

+
m(t1 . . . tm)∞. (5.3.8)

Since t ≤ δ = πβ(0M+210∞), we have (t1 . . . tm)∞ = b(t, β) 4 0M+210∞. So t1 . . . tm
begins with M + 2 consecutive zeros and a1 . . . am contains M + 2 consecutive zeros.
By (5.3.8) we conclude that α(β) contains M + 1 consecutive zeros, leading to a
contradiction with our hypothesis that the number of consecutive zeros in α(β) is
bounded by M . �

Proof of Theorem 5.1.3. The first part of the statement follows from Proposition 5.2.7
and Theorem 5.3.11, since λ(C3) = 0 by the results from [97]. The fact from [97] that
dimH C3 = 1 together with Theorem 5.3.12 gives the last part of the result. �

§5.4 When E+
β does not have isolated points

In this section we prove Theorem 5.1.4, which states that the set of β ∈ (1, 2) for
which E+

β has no isolated points is rather small, it has zero Hausdorff dimension. The
theorem is obtained by showing that the intervals (βL, βR] introduced in the previous
section cover all but a Hausdorff dimension zero part of the interval (1, 2). Figure 5.2

109



5. β-expansions

C
h
a
pt

er
5

suggests that the basic intervals are nested. In Proposition 5.4.1 below we prove that
this is indeed the case. Subsequently, we identify those intervals (βL, βR] that are
not contained in any other basic interval, which turn out to be the ones given by a
specific subset of the Lyndon words, called Farey words.

Proposition 5.4.1. Let I1 = (βL, βR] and I2 = (β̃L, β̃R] be two different basic inter-
vals. If I1 ∩ I2 6= ∅, then I1 ⊂ I2 or I2 ⊂ I1.

Proof. Suppose I1 = (βL, βR] is parameterised by the word a1 . . . am and I2 = (β̃L, β̃R]

is parameterised by the word b1 . . . bn, i.e.,

α(βL) = (a1 . . . am)∞, α(βR) = a1 . . . a
+
m(s1 . . . sm)∞;

α(β̃L) = (b1 . . . bn)∞, α(β̃R) = b1 . . . b
+
n (t1 . . . tn)∞,

where s1 . . . sm = S(a1 . . . am) and t1 . . . tn = S(b1 . . . bn) are the Lyndon words for
a1 . . . am and b1 . . . bn respectively. Since I1 ∩ I2 6= ∅, by symmetry we may assume
β̃L ∈ I1 = (βL, βR]. We are going to show that β̃R < βR, which by Lemma 5.2.1 is
equivalent to showing

b1 . . . b
+
n (t1 . . . tn)∞ ≺ a1 . . . a

+
m(s1 . . . sm)∞. (5.4.1)

Since βL < β̃L ≤ βR, by Lemma 5.2.1 it follows that

(a1 . . . am)∞ ≺ (b1 . . . bn)∞ 4 a1 . . . a
+
m(s1 . . . sm)∞. (5.4.2)

We claim that n > m.

• If n < m, then by (5.4.2) we have b1 . . . bn = a1 . . . an. Write m = un + r

with u ≥ 1 and 1 ≤ r ≤ n. By Lemma 5.3.8 and (5.4.2) it follows that
a1 . . . aun = (b1 . . . bn)u and b1 . . . br = a1 . . . ar = aun+1 . . . a

+
m, so

a1 . . . am = (b1 . . . bn)ub1 . . . b
−
r .

By using that s1 . . . sm = S(a1 . . . am) we obtain that

a1 . . . a
+
m(s1 . . . sm)∞

= (b1 . . . bn)ub1 . . . br(s1 . . . sm)∞

4 (b1 . . . bn)ub1 . . . br(br+1 . . . bnb1 . . . b
−
r (b1 . . . bn)u−1b1 . . . br)

∞

≺ (b1 . . . bn)∞,

leading to a contradiction with (5.4.2).

• If n = m, then by (5.4.2) we have b1 . . . bm = a1 . . . am or b1 . . . bm = a1 . . . a
+
m.

Both cases contradict (5.4.2).

Therefore we find n > m. Write n = km + j with k ≥ 1 and 1 ≤ j ≤ m. By (5.4.2)
we have

b1 . . . bn 4 a1 . . . a
+
m(s1 . . . sm)k−1s1 . . . sj .
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From
sj+1 . . . sms1 . . . sj 4 a1 . . . am ≺ a1 . . . a

+
m

one can easily see that

(a1 . . . a
+
m(s1 . . . sm)k−1s1 . . . sj)

∞ � a1 . . . a
+
m(s1 . . . sm)∞ < (b1 . . . bn)∞.

So b1 . . . bn 6= a1 . . . a
+
m(s1 . . . sm)k−1s1 . . . sj and hence,

b1 . . . b
+
n 4 a1 . . . a

+
m(s1 . . . sm)k−1s1 . . . sj . (5.4.3)

If strict inequality holds in (5.4.3), then (5.4.1) follows immediately and we are done.
Suppose that the equality holds in (5.4.3). We split the proof of (5.4.1) into the
following two cases.
(I) 1 ≤ j ≤ m

2 . Since s1 . . . sm is a Lyndon word, it follows that

s1 . . . s
−
j ≺ s1 . . . sj 4 sj+1 . . . s2j .

Furthermore, t1 . . . tn is the Lyndon word for

b1 . . . bn = a1 . . . a
+
m(s1 . . . sm)k−1s1 . . . s

−
j .

Then

(t1 . . . tn)∞ 4 (s1 . . . s
−
j a1 . . . a

+
m(s1 . . . sm)k−1)∞

≺ (sj+1 . . . s2js2j+1 . . . sms1 . . . sj)
∞.

By (5.4.3) this proves (5.4.1) as required.
(II) m

2 < j ≤ m. Since s1 . . . sm and t1 . . . tn are both Lyndon words, by Lemma 5.3.2
(i) it follows that

(t1 . . . tn)∞ 4 (s1 . . . sm−jsm−j+1 . . . s
−
j a1 . . . a

+
m(s1 . . . sm)k−1)∞

≺ (sj+1 . . . sms1 . . . sj)
∞.

Again we established (5.4.1). �

§5.4.1 Farey words
The set of Farey words is constructed recursively as follows. Let F0 be the ordered
set containing the two words 0 and 1, i.e., F0 := (0, 1). For each n ≥ 1, Fn =

(v1, . . . , v2n+1) is the ordered set obtained from Fn−1 = (w1, . . . , w2n−1+1) by:

v2i−1 := wi for 1 ≤ i ≤ 2n−1 + 1,
v2i := wiwi+1 for 1 ≤ i ≤ 2n−1,

where wiwi+1 denotes the concatenation of the words wi and wi+1. For example,

F0 = (0, 1), F1 = (0, 01, 1), F2 = (0, 001, 01, 011, 1).
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Then a word w ∈ {0, 1}∗ is a Farey word if there is an n ≥ 0 such that ω ∈ Fn.
For each n ≥ 0 the words in Fn are listed from left to right in a lexicographically
increasing order (cf. [17, Lemma 2.2]). In particular, no Farey word is periodic. Let

F :=
⋃
n≥0

Fn \ {0, 1}

be the set of non-degenerate Farey words. Clearly, any w1 . . . wm ∈ F has w1 = 0 =

1−wm. It is well known that Farey words are balanced, i.e., if for i = 0, 1 we use |u|i to
denote the number of occurrences of the symbol i in the word u, then any w ∈ F has
the property that for any two subword u and v of w of the same length and i = 0, 1,
||u|i − |v|i| ≤ 1. We recall from [17, Proposition 2.3] the following definition.

Definition 5.4.2. Let w = w1 . . . wm ∈ F . A decomposition w = uv is called the
standard factorisation of w if u and v are both Farey words.

By the construction of Fn the standard factorisation of a non-degenerate Farey word
w1 . . . wm is unique. We list some properties of Farey words. The proofs can be found
in [17, Propositions 2.8 and 2.9].

(f1) For w1 . . . wm ∈ F , both w1 . . . wm−10 and 1w2 . . . wm are palindromes, i.e.,

w2 . . . wm−1 = wm−1 . . . w2.

(f2) Suppose w1 . . . wm ∈ F has standard factorisation (w1 . . . wm1)(wm1+1 . . . wm).
The lexicographically largest cyclic permutation of w1 . . . wm is given by

wm−m1+1 . . . wmw1 . . . wm−m1
= wmwm−1 . . . w2w1.

(f3) Suppose w1 . . . wm ∈ F has standard factorisation (w1 . . . wm1
)(wm1+1 . . . wm).

Then w1 . . . wm is a Lyndon word and its lexicographically second smallest cyclic
permutation is wm1+1 . . . wmw1 . . . wm1

.

Recall that for w1 . . . wm ∈ {0, 1}∗, w1 . . . wm = (1 − w1)(1 − w2) . . . (1 − wm) and
note that by symmetry in the set F ,

w1 . . . wm ∈ F ⇒ wm . . . w1 ∈ F .

By Lemma 5.3.2 (i) it follows that if w1 . . . wm ∈ F , then (w1 . . . wm)∞ ∈ Q, i.e.,
σn((w1 . . . wm)∞) 4 (w1 . . . wm)∞ for all n ≥ 0. Properties (f1), (f2), (f3) imply the
following.

Lemma 5.4.3. Let s1 . . . sm ∈ F with a1 . . . am = L(s1 . . . sm). Suppose

s1 . . . sm = (s1 . . . sm1
)(sm1+1 . . . sm)

is the standard factorisation of s1 . . . sm.

(i) The words a1 . . . am−11 and 0a2 . . . am are palindromes, i.e.,

a2 . . . am−1 = am−1 . . . a2.
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(ii) The Lyndon word associated to a1 . . . am is given by

am−m1+1 . . . ama1 . . . am−m1 = amam−1 . . . a1.

(iii) (a1 . . . am1
)∞ ∈ Q.

Proof. (i) and (ii) immediately follow from (f1) and (f2) respectively. For (iii), we
know that s1 . . . sm1 is a Lyndon word and therefore (s1 . . . sm1)∞ 4 σn((s1 . . . sm1)∞)

for all n ∈ N. This gives (a1 . . . am1)∞ < σn((a1 . . . am1)∞) for all n ∈ N. �

For Farey words we obtain a strengthened version of Lemma 5.3.9, which will be useful
in the proofs of Theorems 5.1.4 and 5.1.5. We define a family {Ψp} of substitutions
first. For each p ≥ 1, set

Ψp(0) = 0p+11 and Ψp(1) = 0p1. (5.4.4)

We extend this definition to words b1 . . . bn ∈ {0, 1}∗ by

Ψp(b1 . . . bn) = Ψp(b1) . . .Ψp(bn)

and similarly for sequences in {0, 1}N. One easily shows that τk preserves the lexico-
graphical ordering {0, 1}N: For any two sequences (bi), (di) ∈ {0, 1}N we have

(bi) 4 (di) ⇔ Ψp(bi) 4 Ψp(di). (5.4.5)

Proposition 5.4.4. Let w = s1 . . . sm ∈ F . Then setting

Zw := {(xi) ∈ {0, 1}N : w0∞ 4 σn((xi)) 4 (sm . . . s1)∞ for all n ≥ 0},

we have that Zw := {σj(w∞) : 0 ≤ j < m}; in particular #Zm = m.

Proof. It is clear that {σj(w∞) : 0 ≤ j < m} ⊆ Zw. The other inclusion we prove by
induction on the level of the Farey words. For w = 01 the statement is trivial. Let
n ≥ 2 be given and assume that the statement is true for all non-degenerate Farey
words of Fj , j < n. Let w = s1 . . . sm ∈ Fn. Note that if w = 0m−11 or w = 01m−1,
then the statement is obviously true, so we exclude this case. Since all Farey words
are balanced, there is a p such that w is of the form

w = 0p+110p11 . . . 0pN 10p1 or w = 01p01p1 . . . 01pN 01p+1

for some N ∈ N ∪ {0}, where p1 . . . pN ∈ {p, p + 1}N is a palindrome. Assume
that w = 0p+110p11 . . . 0pN 10p1, the proof for the other case is similar. Recall the
substitution Ψp defined in (5.4.4). There is a word v = 0t1 . . . tN1 ∈ {0, 1}∗ with
Ψp(v) = w. In [17, Lemma 2.12] it is proven that v is a Farey word, so v ∈ Fk for
some k < n. Moreover, since w 6= 0p+11 we have v 6∈ {0, 1}. Recall that

sm . . . s1 = 1s2 . . . sm−10 = 10p10p11 . . . 0pn10p+1,

so that
σ((sm . . . s1)∞) = Ψp((1t1 . . . tN0)∞).
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Let x ∈ Zw be given. Then by the form of w any two 1’s in x are separated by at
least p and at most p+ 1 0’s. Assume first that x1 . . . xp+2 = 0p+11, so that there is
a y ∈ {0, 1}N such that Ψp(y) = x. Note that for any r ≥ 1 there corresponds a j ≥ 1

such that σj(x) = Ψp(σ
r(y)), since any digit in y corresponds to a block 0p+11 or 0p1

in x. From (5.3.4) we get that

Ψp(σ
r(y)) = σj(x) < w∞ = Ψp(v

∞),

which by (5.4.5) above implies that σr(y) < v∞ for all r ≥ 0. On the other hand,
from σj(x) 4 (sm . . . s1)∞ for all j ≥ 0 it follows that σr(y) 4 (1t2 . . . tN0)∞ for all
r ≥ 0. Hence, y ∈ Zv and by the induction hypothesis there is an ` ∈ {0, 1, . . . , N}
such that y = σ`(v∞). This implies that

x = Ψp(y) = σi(w∞),

where

i =

 0 if ` = 0,
p+ 2 if ` = 1,
(p+ 2) + (p1 + 1) + (p2 + 1) + . . .+ (p`−1 + 1) if 2 ≤ ` ≤ N.

(5.4.6)

If x is such that x1 . . . xj+1 = 0j1 for some 0 ≤ j ≤ p, then there is a y ∈ {0, 1}N such
that Ψp(y) = σj+1(x) and by the same arguments as above we get that

x = 0j1σj+1(x) = 0j1Ψp(y) = 0j1σi(w∞) = σi
′
(w∞),

where, in view of (5.4.6), i′ ∈ {0, 1, . . . ,m− 1} is defined by

i′ =

{
m− j − 1 if i = 0,
i− j − 1 otherwise.

This completes the proof. �

§5.4.2 Farey intervals
We now use the Farey words to identify the basic intervals (βL, βR] that are not
contained in any other basic interval.

Definition 5.4.5. Let s1 . . . sm ∈ F with a1 . . . am = L(s1 . . . sm) and let γL and γR
be given by the quasi-greedy expansions α(γL) = (a1 . . . am)∞ and
α(γR) = a1 . . . a

+
m(amam−1 . . . a1)∞ respectively. Then the interval Ja1...am = (γL, γR]

is called the Farey interval generated by a1 . . . am.

The following lemma is used to show that the Farey intervals are the maximal basic
intervals.

Lemma 5.4.6. Let w = s1 . . . sm ∈ F and let a = a1 . . . am = L(s1 . . . sm). If an = 1

for some 1 ≤ n ≤ m, then
(S(a1 . . . a

−
n ))∞ ≺ w∞.

114



§5.4. When E+
β does not have isolated points

C
h
a
pter

5

Proof. We will prove this lemma by induction on the level of the Farey words. For
the word 01 the statement is clear. Let k ≥ 2 be given and assume that the statement
holds for all non-degenerated Farey words in Fj with j < k. Let w = s1 . . . sm ∈ Fk.
If w = 0m−11 or w = 01m−1, then the statement obviously holds. Otherwise, in view
of the fact that any Farey word is balanced, w must have the form

w = 0p+110p110p2 . . . 10pN 10p1 or w = 01p01p101p2 . . . 01pN 01p+1

for some p ∈ N and N ∈ N ∪ {0}, where p1 . . . pN ∈ {p, p+ 1}N is a palindrome. We
split the proof into the following two cases.
(I) w = 0p+110p110p2 . . . 10pN 10p1. Then

a = L(w) = 10p10p110p2 . . . 10pN 10p+1 =: 10p010p110p2 . . . 10pN 10pN+1 . (5.4.7)

Let Ψp be the substitution map from (5.4.4). Then by (5.4.7) there exists a word
v = t0t1 . . . tN tN+1 = 1t1 . . . tN0 such that

σ(a∞) = (Ψp(v))∞.

By [17, Lemma 2.12] it follows that v = L(0t1 . . . tN1) and 0t1 . . . tN1 ∈ Fi for some
i < k. Let 1 ≤ n ≤ m be such that an = 1. Then there is a 0 ≤ j ≤ N + 1 such that

a1 . . . a
−
n = 10p010p1 . . . 10pj−110pj+1.

Observe that pj ∈ {p, p+ 1}. If pj = p+ 1, then the Lyndon word S(a1 . . . a
−
n ) begins

with 0p+21 and w begins with 0p+11. This implies (S(a1 . . . a
−
n ))∞ ≺ w∞. If pj = p,

then tj = 1 and
(S(a1 . . . a

−
n ))∞ = (S(Ψp(1t1 . . . t

−
j )))∞.

By the induction hypothesis it follows that

(S(1t1 . . . t
−
j ))∞ ≺ (0t1 . . . tN1)∞.

Since the map Ψp preserves the lexicographical ordering (see (5.4.5)), this gives

(S(a1 . . . a
−
n ))∞ = (S(Ψp(1t1 . . . t

−
j )))∞ = Ψp(S(1t1 . . . t

−
j ))∞)

≺ Ψp((0t1 . . . tN1)∞) = w∞.

(II) w = 01p01p101p2 . . . 01pN 01p+1. Then the largest cyclic permutation of w is

a = L(w) = 1p+101p101p20 . . . 1pN 01p0 =: 1p001p101p20 . . . 1pN 01pN+10. (5.4.8)

Define the substitution map Ψ̂p by

Ψ̂p(0) = 01p and Ψ̂p(1) = 01p+1

and extend it to words and sequences in the usual way. One easily shows that Ψ̂p

preserves the lexicographical ordering. Then by (5.4.8) there exists a word v =

t0t1 . . . tN tN+1 = 1t1 . . . tN0 such that

σm−1(a∞) = Ψ̂p(v
∞).
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Furthermore, by [17, Lemma 2.12] it follows that v = L(0t1 . . . tN1) and 0t1 . . . tN1 ∈
Fi for some i < k. Let 1 ≤ n ≤ m be such that an = 1. Then by (5.4.8) there exists
0 ≤ j ≤ N + 1 and 0 < ` ≤ pj such that

a1 . . . a
−
n = 1p001p101p20 . . . 1pj−101pj−`0.

Observe that pj ∈ {p, p + 1}. Then 0 ≤ pj − ` ≤ p. If pj − ` < p, then S(a1 . . . a
−
n )

begins with 01pj−`0 and w begins with 01p. So (S(a1 . . . a
−
n ))∞ ≺ w∞. If pj − ` = p,

then pj = p + 1 and tj = 1. Since 0t1 . . . tN1 is a non-degenerated Farey word in Fi
with i < k, by the induction hypothesis we have

(S(1t1 . . . t
−
j ))∞ ≺ (0t1 . . . tN1)∞.

Since the map Ψ̂p preserves the lexicographical ordering, it follows that

(S(a1 . . . a
−
n ))∞ = (S(Ψ̂p(1t1 . . . t

−
j )))∞ = Ψ̂p((S(1t1 . . . t

−
j ))∞)

≺ Ψ̂p((0t1 . . . tN1)∞) = w∞.

This completes the lemma. �

Proposition 5.4.7. Each Farey interval is a maximal basic interval.

Proof. By Proposition 5.4.1 the basic intervals are nested, so it suffices to prove that
a Farey interval can not be contained in any other basic interval. Let (γL, γR] be a
Farey interval generated by a Farey word s1 . . . sm and let a1 . . . am = L(s1 . . . sm).
Then

α(γL) = (a1 . . . am)∞ and α(γR) = a1 . . . a
+
m(s1 . . . sm)∞,

Suppose on the contrary that there exists another basic interval (βL, βR] such that
(γL, γR] ( (βL, βR]. Assume (βL, βR] is generated by the Lyndon word t1 . . . tn and
let b1 . . . bn = L(t1 . . . tn). Then

α(βL) = (b1 . . . bn)∞ and α(βR) = b1 . . . b
+
n (t1 . . . tn)∞.

So by using βL < γL ≤ βR it follows that

(b1 . . . bn)∞ ≺ (a1 . . . am)∞ 4 b1 . . . b
+
n (t1 . . . tn)∞. (5.4.9)

By the same argument as in the proof of Proposition 5.4.1 we obtain m > n.

Now we claim a1 . . . an = b1 . . . b
+
n . By (5.4.9) it follows that b1 . . . bn 4 a1 . . . an 4

b1 . . . b
+
n . So it suffices to prove a1 . . . an 6= b1 . . . bn. Suppose a1 . . . an = b1 . . . bn.

Write m = kn+ j with k ≥ 1 and 1 ≤ j ≤ n. Note that a1 . . . am is the largest cyclic
permutation of a Farey word. Then ai+1 . . . am ≺ a1 . . . am−i for all i < m. So

a1 . . . am 4 (a1 . . . an)kam−j+1 . . . am ≺ (a1 . . . an)ka1 . . . aj = (b1 . . . bn)kb1 . . . bj ,

leading to a contradiction with (5.4.9). This establishes the claim.
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By the claim it follows that an = 1 and t1 . . . tn = S(b1 . . . bn) = S(a1 . . . a
−
n ). Since

s1 . . . sm is a non-degenerate Farey word and a1 . . . am = L(s1 . . . sm), by Lemma 5.4.6
it follows that

(t1 . . . tn)∞ ≺ (s1 . . . sm)∞ 4 (an+1 . . . ama1 . . . an)∞.

Again by the claim we conclude that

b1 . . . b
+
n (t1 . . . tn)∞ ≺ (a1 . . . am)∞.

This leads to a contradiction with (5.4.9). �

Proposition 5.3.10 states that for any β ∈ Ja1...am the set E+
β contains an isolated

point. So the set of β ∈ (1, 2) for which E+
β has no isolated points is a subset of (1, 2)\⋃

s1...sm∈F Jsm...s1 . Suppose on the other hand that β ∈ (1, 2) \
⋃
s1...sm∈F Jsm...s1 .

From Proposition 5.3.3 we know that any isolated point t of E+
β must have a periodic

β-expansion b(t, β). To such a β-expansion we can relate a basic interval (βL, βR] as in
Proposition 5.3.10. From the maximality of the Farey intervals and Proposition 5.3.10
we can then deduce that t is not isolated for E+

β . Thus the set of β ∈ (1, 2) for which
E+
β has no isolated points is in fact equal to the set

(1, 2) \
⋃

s1...sm∈F
Jsm...s1 .

To prove Theorem 5.1.4 it is therefore enough to prove that this set has Hausdorff
dimension zero. We do so by relating each Farey interval Ja1...am to another inter-
val Ia1...am associated to the doubling map and using known results for the union⋃
Ia1...am .

Recall that the doubling map is given by T2(x) = 2x (mod 1) and that π2 : {0, 1}N →
[0, 1] is the projection map defined in (5.2.1). Set

ED :=
{
x ∈

[
0,

1

2

)
: Tn2 (x) ∈

[
x, x+

1

2

]
for all n ≥ 0

}
.

For each Farey word w = w1 . . . wm ∈ F we denote by Iw := (qL, qR) the open interval
associated to w, where

qL = π2((wmwm−1 . . . w1)∞)− 1

2
and qR = π2((w1 . . . wm)∞).

The interval Iw = (qL, qR) is well-defined, since by (f1) it follows that

qL = π2(0wm−1wm−2 . . . w1(wmwm−1 . . . w1)∞)

= π2(w1w2 . . . wm−10(wmwm−1 . . . w1)∞) < π2((w1 . . . wm)∞) = qR.

In [17] we find the following result.

Proposition 5.4.8. [17, Proposition 2.14]
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(i) Each Iw is a connected component of (0, 1
2 ) \ ED. Moreover,(

0,
1

2

)
\ ED =

⋃
w∈F

Iw.

(ii) dimH ED = 0.

Recall that by Lemma 5.2.1 the function α : β 7→ α(β) is a strictly increasing bijection
from (1, 2] to Q. Moreover, π2 : {0, 1}N → (0, 1] is a strictly increasing bijection if
we remove from {0, 1}N all sequences ending with 0∞. Since such sequences do not
occur as quasi-greedy expansions of 1 and since the first digit α1(β) equals 1 for any
β ∈ (1, 2), the map

φ : (1, 2)→
(1

2
, 1
)
, β 7→ π2(α(β)) =

∞∑
i=1

αi(β)

2i

is strictly increasing as well. The image φ((1, 2)) is a proper subset of ( 1
2 , 1).

Lemma 5.4.9.

φ
(

(1, 2) \
⋃

s1...sm∈F
Jsm...s1

)
⊆
(1

2
, 1
)
\

⋃
s1...sm∈F

(1− Is1...sm) = 1− ED.

Proof. Let s1 . . . sm ∈ F with a1 . . . am = L(s1 . . . sm). Note that

qR = π2((a1 . . . am)
∞

) =
∑
n≥1

1

2n
− π2((a1 . . . am)∞) = 1− φ(γL).

Moreover, by Lemma 5.4.3(i) and (ii) it follows that

α(γR) = a1 . . . a
+
m(amam−1 . . . a1)∞ = 1am−1am−2 . . . a1(amam−1 . . . a1)∞.

Then

φ(γR) = π2(1am−1am−2 . . . a1(amam−1 . . . a1)∞)

=
1

2
+ π2((amam−1 . . . a1)∞) =

1

2
+
(
1− π2((amam−1 . . . a1)∞)

)
= 1−

(
π2((amam−1 . . . a1)∞)− 1

2

)
= 1− qL.

Since φ is strictly increasing and bijective from (1, 2) to φ((1, 2)), this implies that

φ−1
(
(1− qR, 1− qL)

)
= (γL, γR).

By Proposition 5.4.8(i) this gives the result. �

Finally, to determine the Hausdorff dimension of (1, 2) \
⋃
s1...sm∈F Jsm...s1 , we prove

that the inverse φ−1 : π2 ◦ α((1, 2)) → (1, 2) is Hölder continuous and combine this
with the following well known result: If f : (X, ρ1)→ (Y, ρ2) is a c-Hölder continuous
map between two metric spaces (X, ρ1) and (Y, ρ2), then dimH f(X) ≤ 1

c dimH X.

118



§5.4. When E+
β does not have isolated points

C
h
a
pter

5

Lemma 5.4.10. For any integer N ≥ 2 the function φ−1 is c-Hölder continuous with
c = log(1+1/N)

log 4 on the set φ(
[
1 + 1

N , 2
)
).

Proof. Fix N ≥ 2 and let β1, β2 ∈ [1 + 1
N , 2) with β1 < β2. Then α(β1) ≺ α(β2). Let

n be the positive integer such that

α1(β1) . . . αn−1(β1) = α1(β2) . . . αn−1(β2) and αn(β1) < αn(β2). (5.4.10)

By using 1 = πβ1(α(β1)) = πβ2(α(β2)) and (5.4.10) it follows that

0 < β2 − β1 = β2

∞∑
j=1

αj(β2)

βj2
− β1

∞∑
j=1

αj(β1)

βj1

≤
∞∑
j=1

αj(β2)

βj−1
2

−
∞∑
j=1

αj(β1)

βj−1
2

=

∞∑
j=n

αj(β2)− αj(β1)

βj−1
2

≤
∞∑
j=n

1

(1 + 1
N )j−1

= N
(

1 +
1

N

)2−n
.

(5.4.11)

On the other hand, by (5.4.10) we also have

π2

(
α(β2)

)
− π2

(
α(β1)

)
=

∞∑
j=1

αj(β2)− αj(β1)

2j
=

∞∑
j=n

αj(β2)− αj(β1)

2j

≥ 1

2n
−

∞∑
j=n+1

αj(β1)

2j
≥ 1

2n(2n − 1)
>

1

4n
,

(5.4.12)

where the second inequality follows by Lemma 5.2.1 and the fact that

αn+1(β1)αn+2(β1) . . . 4 α1(β1)α2(β1) . . . 4 (1n−10)∞.

Combining (5.4.11) and (5.4.12), we conclude that

|π2

(
α(β2)

)
− π2

(
α(β1)

)
| ≥ 1

4n
=
(

1 +
1

N

)− log 4

log(1+ 1
N

)
n

≥
(
N
(

1 +
1

N

)2)− log 4

log(1+ 1
N

) |β2 − β1|
log 4

log(1+ 1
N

) .

�

Proof of Theorem 5.1.4. By Lemma 5.4.9 the only thing left to show is that
dimH φ

−1(1−ED) = 0. This follows from Lemma 5.4.10 and Proposition 5.4.8 (ii) in
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the following way:

0 ≤ dimH φ
−1(1− ED) = dimH

 ⋃
N≥2

(
φ−1(1− ED) ∩

[
1 +

1

N
, 2
))

= sup
N≥2

dimH φ
−1

(
(1− ED) ∩ φ

([
1 +

1

N
, 2
)))

≤ sup
N≥2

log 4

log(1 + 1/N)
dimH

(
(1− ED) ∩ φ

([
1 +

1

N
, 2
)))

≤ sup
N≥2

log 4

log(1 + 1/N)
dimH(1− ED) = sup

N≥2

log 4

log(1 + 1/N)
dimH ED = 0.

�

§5.5 The critical points of the dimension function

Since the map ηβ : t 7→ dimH Kβ(t) is a decreasing, continuous function with ηβ(0) =

1 and ηβ( 1
β ) = 0, there is a unique value τβ such that dimH Kβ(t) > 0 if and only if

t < τβ . Determining the value of τβ would extend the results from [24] for holes of
the form (0, t). For β = γL equal to the left endpoint of one of the Farey intervals,
we show below that τβ = 1− 1

β . This result is based on the following lemma.

Lemma 5.5.1. Let s1 . . . sm ∈ F with a1 . . . am = L(s1 . . . sm). Let 1 ≤ j ≤ m

be such that s1 . . . sm = aj+1 . . . ama1 . . . aj. For each N ≥ 1, define the sequence
tN ∈ {0, 1}N by

tN := (0a2 . . . am(a1 . . . am)Na1 . . . aj)
∞. (5.5.1)

Then for each N ≥ 1, tN ≺ tN+1. Furthermore, any sequence t that is a concatena-
tion of blocks of the form

0a2 . . . am(a1 . . . am)ka1 . . . aj , k ≥ N,

satisfies tN 4 σn(t) ≺ (a1 . . . am)∞ for all n ≥ 0. In particular, we have for each
n ≥ 0 that

tN 4 σ
n(tN ) ≺ (a1 . . . am)∞.

Proof. By Lemma 5.4.3 it follows that

s1 . . . sm = amam−1 . . . a1 = 0a2 . . . a
+
m = aj+1 . . . ama1 . . . aj . (5.5.2)

This implies that for all N ≥ 1,

tN = (0a2 . . . am(a1 . . . am)Na1 . . . aj)(aj+1 . . . ama1 . . . a
−
j (a1 . . . am)Na1 . . . aj)

∞

≺ (0a2 . . . am(a1 . . . am)N+1a1 . . . aj)
∞ = tN+1,

giving the first part of the statement. For the second statement, let t be a sequence
consisting of a concatenation of blocks of the form 0a2 . . . am(a1 . . . am)ka1 . . . aj with
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prefix 0a2 . . . am(a1 . . . am)Ka1 . . . aj for some K ≥ N . We first show that σn(t) ≺
(a1 . . . am)∞ for all n ≥ 0. For n = 0 the statement is clear. By Lemma 5.3.8
it follows that ai+1 . . . am ≺ a1 . . . am−i for each 0 < i < m. This implies that
σn(t) ≺ (a1 . . . am)∞ for each `m < n < (`+ 1)m, 0 ≤ ` ≤ K. For all other values of
n < (K + 1)m+ j we obtain the result from (5.5.2), which implies that

a1 . . . aj0a2 . . . am = a1 . . . ama1 . . . a
−
j ≺ a1 . . . ama1 . . . aj .

The same arguments then give the result for any n ≥ 0. Hence, σn(t) ≺ (a1 . . . am)∞

for all n ≥ 0. We now show that σn(t) < tN for each n ≥ 0. Note that t has prefix

s1 . . . s
−
m(a1 . . . am)Ka1 . . . aj .

For n = 0 the statement follows from (5.5.2). By (5.5.2), Lemmas 5.3.2 and 5.3.8 it
follows that

si+1 . . . s
−
m < s1 . . . sm−i and a1 . . . ai � am−i+1 . . . am = sm−i+1 . . . s

−
m

for all 0 < i < m, giving the statement for all 0 < n < m. Since s1 . . . sm is the
Lyndon word associated to a1 . . . am, we obtain

ai+1 . . . ama1 . . . ai < s1 . . . sm � s1 . . . s
−
m for any 0 ≤ i < m.

Since a1 . . . ajs1 . . . sm−j = a1 . . . am, the conclusion that σn(t) < tN for all n ≥ 0

follows. �

Proposition 5.5.2. Let s1 . . . sm ∈ F with a1 . . . am = L(s1 . . . sm) and let β ∈ (1, 2)

be such that α(β) = (a1 . . . am)∞. Then 1− 1
β ∈ E

0
β and

τβ = 1− 1

β
= maxE+

β .

Proof. Since m is the minimal period of α(β), the greedy β-expansion of 1 is equal to
b(1, β) = a1 . . . a

+
m0∞. Lemma 5.4.3 tells us that a1 . . . a

+
m = 1am−1 . . . a1, so

πβ(amam−1 . . . a10∞) = πβ(1am−1 . . . a10∞)− 1

β
= πβ(a1 . . . a

+
m0∞)− 1

β
= 1− 1

β
.

Recall that amam−1 . . . a1 = 0a2 . . . a
+
m. Then by Lemma 5.3.8 it follows that for each

n ≥ 0, σn(amam−1 . . . a10∞) ≺ (a1 . . . am)∞ = α(β) and hence amam−1 . . . a10∞ is
the greedy β-expansion of 1− 1

β , i.e., b
(
1− 1

β , β
)

= amam−1 . . . a10∞. By Lemma 5.3.2,
b(1− 1

β , β) ∈ E0
β , so 1− 1

β ∈ E
0
β .

The quasi-greedy β-expansion of 1− 1
β is given by

b̃
(

1− 1

β
, β
)

= 0a2 . . . am(a1 . . . am)∞.

Now consider the sequences tN from Lemma 5.5.1. Since tN 4 σn(tN ) ≺ (a1 . . . am)∞ =

α(β) for all n ≥ 0, we have tN ∈ E+
β for each N ≥ 1. Moreover, if we set tN := πβ(tN ),
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then Lemma 5.2.2 gives that tN ↗ 1 − 1
β as N → ∞. So maxE+

β ≥ 1 − 1
β .

Furthermore, the fact that any sequence of concatenations of blocks of the form
0a2 . . . am(a1 . . . am)ka1 . . . aj , k ≥ N , belongs toK+

β (tN ) implies that htop(K+
β (tN )) >

0 for all N ≥ 1 and hence also htop(Kβ(tN )) > 0 for all N ≥ 1. By the dimension
formula (5.2.5) we then get that τβ ≥ 1− 1

β .

On the other hand, by Lemma 5.4.3(ii) and Proposition 5.4.4 we have

K+
β

(
1− 1

β

)
= {(xi) : amam−1 . . . a10∞ 4 σn((xi)) ≺ (a1 . . . am)∞ ∀n ≥ 0} = ∅.

(5.5.3)
Since E+

β ∩ [1− 1
β , 1] ⊆ K+

β (1− 1
β ), this implies that maxE+

β ≤ 1− 1
β . It also implies

that dimH Kβ(1− 1
β ) = 0, which gives that τβ ≤ 1− 1

β and proves the result. �

Remark 5.5.3. Note that the previous lemma also implies that for any t < 1 − 1
γL

we have htop(K+
γL(t)) > 0. We will use this later on.

Next we will give a lower and upper bound for τβ on each Farey interval (γL, γR].

Lemma 5.5.4. Let s1 . . . sm ∈ F with a1 . . . am = L(s1 . . . sm). For each β ∈
(γL, γR], set t∗ = πβ(0a2 . . . am(a1 . . . am)∞) and t� = πβ(0a2 . . . a

+
m0∞). Then

t∗ ∈ E+
β , t

� ∈ E0
β and

1− 1

β
− 1

βm
+

1

β(βm − 1)
≤ t∗ ≤ τβ ≤ t� < 1− 1

β
.

Proof. Take β ∈ (γL, γR]. Then

(a1 . . . am)∞ ≺ α(β) 4 a1 . . . a
+
m(amam−1 . . . a1)∞.

We first show that τβ ≥ t∗. By Lemmas 5.4.3 and 5.3.8, we have

σn(0a2 . . . am(a1 . . . am)∞) 4 (a1 . . . am)∞ ≺ α(β) ∀n ≥ 0.

Hence, b(t∗, β) = 0a2 . . . am(a1 . . . am)∞ and as in the proof of Lemma 5.5.1 we have
that σn(b(t∗, β)) < b(t∗, β) for each n ≥ 0. So t∗ ∈ E+

β .

For each t < t∗ we have by Lemma 5.2.2 that b(t, β) ≺ 0a2 . . . am(a1 . . . am)∞.
This implies that for N large enough, b(t, β) ≺ tN ≺ (a1 . . . am)∞ ≺ α(β). By
Lemma 5.5.1, it follows that tN ∈ K+

β (t) and htop(Kβ(t)) ≥ htop(K+
β (t)) > 0. Thus

dimH Kβ(t) > 0 and τβ ≥ t∗.

On the other hand, for t� we have that 0a2 . . . a
+
m0∞ is admissible for any β ∈ (γL, γR]

and that σn(0a2 . . . a
+
m0∞) � 0a2 . . . a

+
m0∞ for all 0 < n < m, so t� ∈ E0

β . By
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Lemmas 5.4.3 and 5.3.7 we get

K+
β (t�)

⊆ {(xi) : amam−1 . . . a10∞ 4 σn((xi)) ≺ a1 . . . a
+
m(amam−1 . . . a1)∞ ∀n ≥ 0}

= {(xi) : (amam−1 . . . a1)∞ 4 σn((xi)) ≺ a1 . . . a
+
m(amam−1 . . . a1)∞ ∀n ≥ 0}

= {(xi) : (amam−1 . . . a1)∞ 4 σn((xi)) 4 (a1 . . . am)∞ ∀n ≥ 0}
= {(xi) : amam−1 . . . a10∞ 4 σn((xi)) 4 (a1 . . . am)∞ ∀n ≥ 0}.

(5.5.4)

By Proposition 5.4.4 it follows that #K+
β (t�) < ∞, so that dimH Kβ(t�) = 0. This

gives that τβ ≤ t�. Note that

πγR(a1a2 . . . a
+
m(0a2 . . . am)∞) = 1.

Then, we have for each β ∈ (γL, γR] that

t∗ = πβ(0a2 . . . am(a1a2 . . . am)∞)

> 1− 1

β
− 1

βm
+

∞∑
i=1

1

βim+1
= 1− 1

β
− 1

βm
+

1

β(βm − 1)
.

From Proposition 5.5.2 we know that πγL(0a2 . . . a
+
m0∞) = 1 − 1

γL
. For β > γL we

have a1 . . . a
+
m0∞ ≺ b(1, β), so that

t� = πβ(0a2 . . . a
+
m0∞) = πβ(a1 . . . a

+
m0∞)− πβ(10∞) < 1− 1

β
.

�

In Figure 5.3 we see a plot of the lower and upper bounds for τβ found in Lemma 5.5.4.

The next lemma considers the critical point τβ for the remaining values of β, i.e.,
those that are not in the closure of a Farey interval.

Lemma 5.5.5. Let β ∈ (1, 2)\
⋃

[γL, γR] with the union taken over all Farey intervals.
Then maxE+

β = τβ = 1− 1
β .

Proof. Take β ∈ (1, 2) \
⋃

[γL, γR]. First we show that τβ ≥ 1 − 1
β . Let t < 1 − 1

β

with b(t, β) = (bi(t, β)). Since dimH

(
(1, 2) \

⋃
[γL, γR]

)
= 0, there exists a sequence

of Farey intervals ([γL,k, γR,k]) such that γL,k ↗ β as k → ∞. Thus, as k → ∞ we
have

∞∑
i=1

bi(t, β)

(γL,k)i
↘

∞∑
i=1

bi(t, β)

βi
= t and 1− 1

γL,k
↗ 1− 1

β
. (5.5.5)

For each k, we have a sequence (tk,N ) ⊆ E+
γL,k

as given in (5.5.1). Since γL,k < β, we
obtain for each N,n ≥ 1, that

tk,N 4 σ
n(tk,N ) ≺ α(γL,k) ≺ α(β).
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Figure 5.3: A plot of 1− 1
β
and 1− 1

β
− 1

βm
+ 1

β(βm−1)
for basic intervals corresponding to

Farey words of length m with m ≤ 10.

Hence, tk,N ∈ E+
β for all k ≥ 1 and N ≥ 1. This gives that maxE+

β ≥ 1 − 1
β .

Moreover, since t < 1− 1
β , we can find by (5.5.5) a sufficiently large M ∈ N such that

t < t1 :=

∞∑
i=1

bi(t, β)

(γL,M )i
< 1− 1

γL,M
< 1− 1

β
.

Observe that b(t, β) = (bi(t, β)) is a γL,M -expansion of t1, which is lexicographically
less than or equal to its greedy expansion b(t1, γL,M ). Then,

K+
β (t) = {(xi) : b(t, β) 4 σn((xi)) ≺ α(β) ∀n ≥ 0}

⊇ {(xi) : b(t1, γL,M ) 4 σn((xi)) ≺ α(γL,M ) ∀n ≥ 0} = K+
γL,M (t1).

(5.5.6)

Since τγL,M = 1 − 1
γL,M

> t1, by Remark 5.5.3 we know that htop(K+
γL,M (t1)) > 0

and together with (5.5.6) we then find htop(K+
β (t)) > 0, which in turn implies τβ ≥ t.

Since t < 1− 1
β was taken arbitrarily, we conclude that τβ ≥ 1− 1

β .

To prove the other inequality we show that for any t > 1− 1
β we have K+

β (t) = ∅. Take
t > 1− 1

β . There is a sequence of Farey intervals ([γL,k, γR,k]) such that γL,k ↘ β as
k →∞. Thus, when k →∞ we have

∞∑
i=1

bi(t, β)

(γL,k)i
↗

∞∑
i=1

bi(t, β)

βi
= t and 1− 1

γL,k
↘ 1− 1

β
.

Since t > 1− 1
β , we can find a sufficiently large N ∈ N such that

1− 1

β
< 1− 1

γL,N
< t2 :=

∞∑
i=1

bi(t, β)

(γL,N )i
< t.
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Since γL,N > β, b(t, β) is the greedy γL,N -expansion of t2, i.e., b(t, β) = b(t2, γL,N ).
Therefore,

K+
β (t) ⊆ {(xi) : b(t2, γL,N ) 4 σn((xi)) ≺ α(γL,N ) ∀n ≥ 0}

= K+
γL,N (t2) ⊆ K+

γL,N (τγL,N ).

From (5.5.3) we conclude that K+
β (t) = ∅ and hence, maxE+

β , τβ ≤ t. Since t > 1− 1
β

was taken arbitrarily, we have maxE+
β = τβ = 1− 1

β . �

Proof of Theorem 5.1.5. From Proposition 5.5.2, Lemma 5.5.4 and Lemma 5.5.5 we
know that for all β ∈ (1, 2) we have τβ ≤ 1 − 1

β with equality only if β ∈ (1, 2) \⋃
(γL, γR]. We also know that for these points τβ = maxE+

β .

By Proposition 5.3.3 we know that any isolated point of E+
β has a periodic greedy

β-expansion b(t, β). From Proposition 5.3.10 it follows that any t ∈ (0, 1), for which
b(t, β) = (s1 . . . sm)∞ is Lyndon, is isolated in E+

β if and only if β lies in the basic
interval associated to (s1 . . . sm)∞. Since Farey intervals are maximal by Proposi-
tion 5.4.7, if β 6∈

⋃
(γL, γR], then E+

β cannot contain an isolated point and E+
β is a

Cantor set. �

§5.6 Final observations and remarks

With the results from Theorems 5.1.3 and 5.1.4 we have shown that the situation
for β ∈ (1, 2) differs drastically from the situation for β = 2, that was previously
investigated in [19, 86, 104]. There are still several unanswered questions.

Firstly, the structure of E0
β remains illusive to us. We know that t ∈ E0

β is isolated in
Eβ if β−1 6∈ Kβ(t) and in Proposition 5.2.6 we proved that htop(Kβ(t)) = htop(K+

β (t))

for any t ∈ E+
β . It would be interesting to know whether t ∈ E0

β is isolated in Eβ in
case β − 1 ∈ Kβ(t) and to consider htop(K0

β(t)), also in case t 6∈ E+
β .

In the previous section we have investigated the value of the critical point τβ of the
dimension function ηβ : t 7→ dimH Kβ(t). We could determine this value for any β
in the set (1, 2) \

⋃
(γL, γR]. If β ∈ (γL, γR] for some Farey interval (γL, γR], we only

have a lower and upper bound for τβ . With a calculation very similar to the one
in (5.5.4) one can show that for any β ∈ (γL, γR] that satisfies

α(β) ≺ a1 . . . a
+
m(0a2 . . . am)(a1 . . . am)∞,

we have τβ = t∗. However, for larger values of β ∈ (γL, γR] the situation seems
more intricate. It would be interesting to consider this question further by specifying
τβ more precisely also on

⋃
(γL, γR] and by analysing the behaviour of the function

τ : β 7→ τβ . For β = 2 it is shown in [104] that dimH(E2 ∩ [t, 1]) = dimH K2(t).

Motivated by Proposition 5.2.7, we conjecture the following.
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Conjecture 5.6.1. For any t ∈ [0, 1) and any β ∈ (1, 2) we have dimH(Eβ ∩ [t, 1]) =

dimH Kβ(t).

Recently, this conjecture is confirmed for β a multinacci number (see [4]).

§5.6.1 Connections to other topics
In this last section we look at several connections between the work presented in this
chapter and other topics. Undoubtedly there are connections to topics not listed here.
We list the ones that seems to be the most related.

Farey intervals and matching intervals for KU-continued fractions

Through Farey words there is a connection between Farey intervals and matching
intervals for KU-continued fractions that is worth mentioning. Let w ∈ F and recall
that Iw = (qL, qr) with

qL = π2((wmwm−1 . . . w1)∞)− 1

2
and qR = π2((w1 . . . wm)∞)

and
ED :=

{
x ∈

[
0,

1

2

)
: Tn2 (x) ∈

[
x, x+

1

2

]
for all n ≥ 0

}
.

From [17] we have the following proposition.

Proposition 5.6.2. [17, Proposition 2.14]

(i) Each Iw is a connected component of (0, 1
2 ) \ ED. Moreover,(

0,
1

2

)
\ ED =

⋃
w∈F

Iw.

(ii) dimH ED = 0.

We can relate the interval Iw with a matching interval for the KU-continued fractions
studied in [54, 55, 56] and mentioned in Chapter 3. This is shown in [17]. Let
x ∈ [0, 1

2 ] and x̃ be the corresponding binary expansion. The function ϕ : [0, 1
2 ]→ [0, 1]

is defined as ϕ(x) := [0;RL(x̃)] where RL is the so called runlength function. If
x̃ = 0k1 , 1k2 , 0k3 , . . . then RL(x̃) = k1, k2, k3, . . ..

Proposition 5.6.3 ([17], page 20). Let w ∈ F . Then ϕ(Iw) is a maximal match-
ing interval for KU-continued fractions. Furthermore, EKU = ϕ(ED) where EKU is
the set of x ∈ [0, 1] such that x is not contained in any matching interval.

Since Farey intervals are related to ED we find the following proposition. Recall that
φ : (1, 2)→

(
1
2 , 1
)
, β 7→ π2(α(β)) =

∑∞
i=1

αi(β)
2i .

Proposition 5.6.4. Let w ∈ F and Jw the associated Farey interval. Then ϕ(1 −
φ(Jw)) is a maximal matching interval for KU-continued fractions. Furthermore,
EKU = ϕ(1 − φ(Ecant)) where Ecant is the set of β ∈ (1, 2] such that E+

β does not
contain isolated points.
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Doubling map

In a paper of Sidorov, holes around 1
2 are studied for the doubling map [100]. We can

rephrase our studies on Eβ in terms of holes around 1 when we view the doubling map
on a circle. Fix β ∈ (1, 2] and t ∈ [0, 1] and recall that Kβ(t) = πβ(Kβ(t)). If we define
K2(β, t) = π2(Kβ(t)) then K2(β, t) is the survivor set of the hole [0, π2(b(t, β))) ∪
(π2(α(β)), 1) which is wrapped around 1. Therefore we could argue that we studied
holes for the doubling map. Since Farey words play a prominent role in both studies,
it would be interesting to investigate whether there is a more explicit connection.

C-balancedness

Another field of mathematics where the notion of balanced words plays a role is the
field of combinatorics on words. Balanced words can be generalised to C-balanced
words (see [7]). One could wonder whether C-balanced words have a special role
in the topology of Eβ in a similar way balanced words did. They do not seem to
have an effect on the number of isolated points. It is certainly not true that if α(β)

is a 2-balanced word then Eβ has one isolated point. Take for example α(β) =

(11010011001011010010110011010010)∞, then Eβ has 4 isolated points (of period
length 2, 4, 8 and 16) and is 2-balanced.
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Samenvatting

In dit proefschrift staan ontwikkelingen van getallen centraal. Het meest bekende
voorbeeld van ontwikkelingen van getallen is de decimaal ontwikkeling. Een ander
voorbeeld is de binaire ontwikkeling van een getal. Echter zijn er nog veel meer
manieren om getallen op te schrijven. In hoofdstuk 2, 3 en 4 worden variaties op
reguliere kettingbreukontwikkelingen bestudeerd. In hoofdstuk 5 kijken we naar β-
ontwikkelingen. Om ontwikkelingen van getallen te maken gebruiken we dynamische
systemen. Eigenschappen van deze dynamische systemen geven ons informatie over
de ontwikkelingen. Anderzijds kunnen de ontwikkelingen bijdragen aan een beter
begrip van de dynamica van deze systemen. Verschillende systemen hebben ver-
schillende eigenschappen. De waarde van de entropie is een voorbeeld van zo’n ei-
genschap. Matching is een eigenschap voor een verzameling dynamische systemen en
verschillende systemen reageren verschillend wanneer er een gat in het systeem wordt
gemaakt. Het fenomeen matching komt voor in hoofdstukken 2, 3 en 4 en entropie in
hoofdstuk 3, 4 en 5. In hoofdstuk 3 en 5 worden gaten behandeld.

In hoofdstuk 2 wordt een familie van dynamische systemen geïntroduceerd met een
oneindige invariante maat voor ieder systeem uit deze familie. Ieder dynamisch sys-
teem wordt gegeven door een afbeelding (met bijbehorende ontwikkelingen die we
omgedraaide α-kettingbreuken noemen) en in dit hoofdstuk worden deze afbeeldingen
geparameteriseerd door α ∈ [0, 1]. De afbeeldingen interpoleren tussen de klassieke
kettingbreukafbeelding en een afbeelding die isomorf is met de terugwaartse ketting-
breukafbeelding. Voor α < 1

2

√
2 wordt een expliciete uitdrukking voor de invariante

maat die absoluut continu is met betrekking tot de Lebesgue maat gevonden. Deze
maten worden gevonden door gebruik te maken van de natuurlijke uitbreiding. Voor
α <

√
5−2
2 wordt berekend dat de Krengel entropie gelijk is aan π2

6 . Verder laten we
zien dat de afbeeldingen AFN-afbeeldingen zijn. Hieruit volgen een aantal prettige
eigenschappen, zoals een zwakke wet van grote aantallen.

In hoofdstuk 3 worden voornamelijk Ito Tanaka α-kettingbreuken bestudeerd. In het
eerste deel vergelijken we deze familie met de α-kettingbreuken van Nakada. Bepaalde
eigenschappen die voor beide families gelden worden bewezen op een manier zodat
het bewijs werkt voor beide families. Een voorbeeld hiervan is de monotoniciteit
van de entropiefunctie op een matchinginterval. Het tweede deel is gericht op de Ito
Tanaka α-kettingbreuken. We laten zien dat de parameterruimte bijna volledig wordt
overdekt door matchingintervallen. Verder geven we karakterisaties van de verzamel-
ing punten die niet tot een matchinginterval behoren (de uitzonderingsverzamel-
ing). We vinden een opmerkelijk verschil tussen de Ito Tanaka α-kettingbreuken
en de α-kettingbreuken van Nakada. Waar de uitzonderingsverzameling van de α-
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kettingbreuken van Nakada geen rationale punten bevat, bestaan er wel rationale
punten die in de uitzonderingsverzameling van de Ito Tanaka α-kettingbreuken zit-
ten.

In hoofdstuk 4 worden omgedraaide N -kettingbreukontwikkelingen bestudeerd. Ook
in hoofdstuk 2 lieten we omdraaingen toe. Alleen nu combineren we ze met N -
kettingbreukontwikkelingen. Dit geeft een erg grote verzameling dynamische syste-
men. In sommige gevallen kunnen we de invariante maat bepalen door gebruik te
maken van de natuurlijke uitbreiding. Wanneer deze methode niet werkt, gebruiken
we een numerieke methode die gebaseerd is op de Gauss-Kuzmin-Lévy Stelling. Deze
methode geeft in een klein aantal iteraties een goede benadering. In het tweede deel
bestuderen we een deelfamilie die we parameteriseren met α, waarna we de entropie
bestuderen als functie van α. Voor N = 2 vinden we een matchinginterval en voor dit
interval bewijzen we dat de entropie constant is. We laten ook zien dat de methoden
van hoofdstuk 3 niet kunnen worden aangepast om voor deze deelfamilie resultaten te
geven. In plaats daarvan doen we verkennend onderzoek met behulp van de computer
en sluiten we af met vermoedens.

In hoofdstuk 5 worden bifurcatieverzamelingen die gerelateerd zijn aan β-ontwikke-
lingen bestudeerd. We nemen β ∈ (1, 2] en beschouwen de gulzige β-transformatie. De
bifurcatieverzameling Eβ wordt gegeven door de verzameling t ∈ [0, 1] waarvoor geldt
dat Tnβ (t) ≥ t voor alle n ∈ N, waarbij Tβ de gulzige β-transformatie is. We bewijzen
dat voor alle β ∈ (1, 2] geldt dat Eβ Lebesguemaat nul heeft en volle Hausdorff-
dimensie. Verder laten we zien dat voor bijna alle β ∈ (1, 2] geldt dat Eβ oneindig
veel verdichtingspunten heeft in een omgeving van nul en ook oneindig veel geïsoleerde
punten. We karakteriseren die waarden van β waarvoor Eβ geen geïsoleerde punten
heeft en bewijzen dat deze verzameling Hausdorff-dimensie nul heeft. Aan de andere
kant laten we zien dat de verzameling β ∈ (1, 2] waarvoor geldt dat er geen geïsoleerde
punten zijn in Eβ afgezien van een omgeving van nul, volle Hausdorff-dimensie heeft.
Ook deze verzameling wordt gekarakteriseerd. In het laatste deel bestuderen we de
kritieke waarde τβ , gedefinieerd als de waarde waarvoor geldt dat voor alle t < τβ de
Hausdorff-dimensie van de verzameling die het onder iteratie van Tβ niet in het gat
(0, τβ) vallen strikt positief is en voor alle t ≥ τβ de Hausdorff-dimensie nul is. Voor
τβ geven we afschattingen in termen van β.
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