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11 Introduction

1.1 Introduction

For almost a century, scientists have used computational machines as a tool to con-
duct scienti�c research. In part driven by national security concerns during the First
and Second World Wars, as well as the Cold War, increasingly complex comput-
ers have been designed. Early computers were entirely designed for application-
speci�c tasks, with a considerable drive behind them being hydrodynamics simula-
tions for the �rst Hydrogen bomb. In 1945, the popular Von-Neumann[1] architec-
ture was developed to make Monte Carlo simulations easier to develop and to facil-
itate general-purpose computing. This architecture was a signi�cant improvement
over previous computers where changing the program required physically �ipping
switches and changing cables on the computer itself. One of the �rst computers
built according to the von-Neumann architecture was the MANIAC[2] computer
commissioned by Los Alamos National Laboratory, seen on the left in Figure 1.1.

With the advancement of an architecture that treats code and data identi-
cally, it was possible to create more complex programs including compilers: pro-
grams that could create machine code from human-readable code. As the ’50s and
’60s passed, general-purpose computers were increasingly used in science. From
weather dynamics[3] to �uid dynamics[4], from chaos theory to game theory, these
computers were being adopted by a wide range of scienti�c �elds. Astronomy was,
likewise, also a driving force for computational innovation. In 1953, for example,
the �rst high-level programming language for IBM computers was developed by
John Backus, a programmer frustrated with the di�culty of accurately calculating
the moon’s position using only machine code. John Backus’ ‘Speedcode’ was a di-
rect predecessor of Fortran[5], a language developed at IBM in the ’50s and still used
by the scienti�c community today. Another important discovery on our road was

1
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the Fast Fourier Transform (FFT), discovered by two researchers from Princeton
and IBM[6]. The FFT has been described as ‘the most important numerical algo-
rithm of our lifetime’ and the author’s personal favourite ‘an algorithm the whole
family can use’[7]. As we will soon see, Radio Astronomers quickly became part of
this family.

Figure 1.1: Two supercomputers sixty years apart. On the left is the MANIAC computer
from 1952 at Los Alamos, while on the right is the Cartesius cluster at SURFsara, Amster-
dam in 2018.

As computers became more widely available, they became increasingly
adopted by universities and research institutes. In the ’70s, computers began to talk
to each other over a network connection. This capability not only made scienti�c
collaboration easier but also made it possible to distribute computation across
multiple sites. Moreover, the development of the integrated circuit and subsequent
drop in price/performance of computers made it �nancially feasible for scienti�c
institutes to purchase multiple computers dedicated to scienti�c research. As hard-
ware, networks, and software matured, clusters of computers became more widely
used[8]. In part because of their cost-e�ectiveness, and potential for parallelization,
computer clusters became more widely used as the ’80s wound down. By then,
general-purpose computing was widely adopted by the astronomical community.
In the ’80s several astronomical software suites have been developed, with software
such as AIPS[9] and IRAF[10] and standards such as FITS[11] used to this day.

The ’90s continued the distributed computing trend with the appearance
of commodity compute clusters, with virtual ‘supercomputers’ being created from
Commercial-O�-The-Shelf (COTS) hardware, and networking. These clusters be-
came quickly adopted by scientists to perform simulations and data processing.
Around the same time, the idea of ‘grids’ was created[12]. The concept was that
of a country, continent, or even worldwide network of hardware that can trans-
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parently handle distributed tasks, and provide researchers with a vast pool of re-
sources. CERN pioneered Grid processing to meet the computational and storage
requirements of their High Energy Physics modelling and data reduction. While
this infrastructure was built initially for HEP experiments, it is also useful for other
scienti�c projects, particularly low-frequency Radio Astronomy.

1.1.1 Astronomy and Computing

Since the early days of computing, the �eld of astronomy has embraced digitization
of data acquisition and processing. Being able to store astronomical data digitally
makes it possible to transfer, copy, backup, and process them e�ciently. While op-
tical astronomy entered the digital age in the ’80s with the rapid development of
CCDs, thanks to the extensive availability of Analog-Digital Converters (ADCs), ra-
dio astronomy has been digital since the 1970s. By the end of the ’70s, the Very
Large Array (VLA) in New Mexico and the Westerbork Synthesis Radio Telescope
(WSRT) had consistently been using processing pipelines, running on IBM main-
frames, Digital Equipment Corporation’s line of PDP, and later VAX, minicomput-
ers. Notably, their imaging algorithms were taking advantage of the FFT developed
a decade earlier[13].

With the complete digitization of astronomical observations, over the past
decade, all of astronomy has entered the big data regime. As of 2019, there are
multiple planned and ongoing large-scale sky surveys across the electromagnetic
spectrum, each expecting to produce multiple tens of petabytes. This breadth of
data is poised to expand the frontiers of astronomy and astrophysics and allow us to
study and understand various phenomena in more detail.

The longest wavelength of the spectrum accessible to Earth observatories
lies in the Megahertz range, starting at 10 MHz, up to 300 MHz. This regime cor-
responds to wavelengths of 30 meters up to 1 meter. In astronomy, this range is
termed the low-frequency or meter-wave regime. These wavelengths help uncover
physical phenomena invisible to telescopes in the X-ray, Visible, Infrared, or Mi-
crowave. In particular, long-wavelengths can be used to study supermassive black
holes, galaxy formation and evolution, magneto-hydrodynamics, solar physics, ra-
dio spectroscopy, and many more science cases. Additionally, data in this domain
can complement other telescopes in multi-wavelength studies.

Photons provide us with rather few independent properties. We can use
them to record the wavelength, the direction, the intensity, and the polarization of
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a distant source. We can, moreover, record the change of those properties with
time. Astronomers need to measure properties accurately and use the data to model
distant sources better and validate or reject astronomical theories. The accuracy of
these models, or the rejection power of our observations, depends critically on how
accurately we can measure the four properties listed above.

Astronomical observations in the long-wavelength regime have always been
at the mercy of the di�raction limit, an e�ect that relates the wavelength of light,
the diameter of the aperture, and angular resolution obtained with that aperture.
The angular resolution of a telescope determines how accurately the direction of an
incoming photon can be determined. Unfortunately, the di�raction limit dictates
that the angular resolution of a telescope with a �xed aperture decreases inversely
proportional to the wavelength observed. For example, if one takes a telescope at
100MHz and one at 10GHz, the 100MHz telescope would need to have 100 times
the radius of its higher frequency counterpart in order to reach the same angular res-
olution. In other words, for a low-frequency telescope (at 100 MHz) to match the
100-m E�elsberg telescope (at 10GHz), it would need a dish with a diameter of 10
kilometres. Constructing, and operating a telescope of that size is currently outside
our engineering capabilities, and thus low-frequency astronomers have developed a
method to synthesize a telescope aperture of arbitrary size, termed ‘Aperture Syn-
thesis.’

1.1.2 Aperture Synthesis

Aperture synthesis is the practice of combining the signal of multiple antennas to
produce data with the angular resolution of a much larger antenna, as seen in Figure
1.2. More speci�cally, the maximum angular resolution achievable is proportional
to the distance between the furthest two antennas. This technique is used in a wide
wavelength range, from the near- and mid-infrared (e.g., VLTI), sub-millimeter
(e.g., ALMA) and radio wavelengths (e.g., VLA, GMRT, LWA).

Aperture synthesis can be used to increase the angular resolution of individ-
ual radio telescopes; however the resulting data requires signi�cant post-processing.
A single telescope operates in the ‘image’ domain, meaning the data collected at its
focus is directly related to an area on the sky. Conversely, an array of telescopes
records correlated signals between pairs of antennas. We need to transform this
data to obtain a map of the radio sky. The equation relating the data recorded by
these arrays and the ‘true’ sky distribution is the Radio InterferometryMeasurement
Equation, RIME. This equation describes propagation e�ects from the source B to
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Figure 1.2: We can simulate a single dish with an array of antennas. These antennae are
pointed in di�erent directions by introducing a corresponding hardware delay in each an-
tenna feed. While this process can enable us to synthesize an arbitrarily large telescope, it
produces artefacts in the �nal image that need extensive processing to remove.

two antennas, p and q, with n e�ects towards antenna p andm e�ects towards antenna
q. Each e�ect is described by a 2x2 ‘Jones’ matrix describing the transformation of
the original signal. This formulation is shown in Equation 1.1. When expressed
in terms of the directions (l,m), and a continuous sky model, B, the measurement
equation becomes Equation 1.2[14] .

Equation 1.2 neatly separates the direction-independent terms (Gp and
GH
q ) seen by antenna p and q, and the direction-dependent e�ects that correspond

to directions l and m inside the integral. A comparison between equations 1.2 and
1.3 shows the similarity between the RIME and the Fourier Transform. Speci�cally,
f(x) represents the sky brightness B, ξ represents our directions l and m, and the
transformed function f(ξ) are the visibilities (Vpq) measured by the telescope (Equa-
tion 1.3). This formalism also separates the direction-dependent and independent
e�ects, and further shows how we can use Fourier transforms to obtain a model of
the radio sources. As Fourier Transforms are computationally expensive, an e�cient
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solution is to use the Fast Fourier Transform algorithm mentioned above.

An aperture synthesis telescope consisting of N antennas will also have
N2−N

2 baselines, each baseline being de�ned by a unique pair of antennas. The
length and orientation of each of these baselines corresponds to a single location in
Fourier space. Earth’s rotation helps sampling the Fourier space by changing the
(projected) baseline length and orientation with each time sample[15]. Because the
telescope doesn’t completely �ll the Fourier space, its point spread function (PSF)
will have large, extended side-lobes. The �nal image is convolved with this PSF,
creating artifacts such as those seen in Figures 1.3 and 1.5. Removing these arti-
facts from raw data requires estimating gain parameters by LM-minimization and
�tting[16], followed by multiple cycles of convolutions, subtractions and deconvo-
lutions[17–19].

Vpq = Jpn(...(Jp2(Jp1BJH
q1)JH

q2)...)JH
qm (1.1)

Vpq = Gp

(∫∫
lm

1
n

EpBEH
q e
−2πi(upql+vpqm+wpq(n−1))dldm

)
GH
q (1.2)

f̂(ξ) =
∫
f(x)e−2πixξdx (1.3)

In this work, we will discuss the technical challenges of creating radio im-
ages of astronomical sources and our solutions to these challenges. In the following
section, we aim to introduce LOFAR, the European Low-Frequency Array, the data
sizes and processing challenges that come with LOFAR data as well as our solutions
to these challenges. We will conclude with the scienti�c results this work has led to,
as well as suggestions for future large-scale astronomical projects.

1.2 LOFAR

LOFAR is a large low-frequency radio telescope centered near Dwingeloo, Dren-
the, in the Netherlands[20]. It is designed to operate between 10 and 240 MHz,
but it cannot observe in the FM radio bands from 80-120 MHz. Thus, LOFAR is
split into two arrays: the Low Band Array (LBA) operating from 10 to 80 MHz and
the High Band Array (HBA) with antennas sensitive to frequencies from 120 to 240
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MHz. In the Netherlands alone LOFAR has more than 5000 antennas: 1824High-
Band antennas and 3648 Low-Band antennas. These are grouped in core (near
Dwingeloo) and remote stations[21]. Additionally, LOFAR has 13 international
stations across Europe, spanning from Ireland to Latvia, Sweden to France[22].
These international stations make it possible to create images of radio sources with a
similar angular resolution to leading higher frequency telescopes. LOFAR was also
designed to support a variety of science cases, such as studying the Epoch of Reion-
ization[23], performing large scale extragalactic surveys[24–26], studying cosmic
magnetism, radio spectroscopy[27–30] and transient detection[31, 32].

LOFAR stores its broadband observations at one of several Long-Term
Archive locations. These locations store the data on tape, due to its large size and in-
frequent access. Typical broadband observations are up to 16TB in size, which can
drop down to 10TB with compression. While individual researchers use this data
to study their object of interest, the majority of the broadband data will be imaged
to produce the LOFAR Two-Meter Sky Survey (LoTSS).

1.2.1 LoTSS

The LOFAR Two-Meter Sky Survey, LoTSS[25], is an ambitious project to map
the Northern Radio sky at low frequencies, namely 120-168 MHz. Expected to
produce more than 3000 8-hour observations, LoTSS will create radio maps with a
median sensitivity of 70 µJy/beam. This survey will help study supermassive black
holes and their impact on galaxy formation in the early Universe. Additionally, ad-
dressing questions related to the formation and evolution of galactic clusters and
the interaction of galaxies within these clusters will be made possible with this low-
frequency data. Furthermore, the survey will enable us to study star formation in
nearby and distant galaxies and galactic sources such as supernova remnants. Fi-
nally, LoTSS will help study and discover patterns in the large-scale structure of the
Universe.

Processing Requirements

With its 3000+ observations, the LoTSS project requires a large amount of process-
ing, bandwidth, and storage infrastructure in order to complete its scienti�c goals
within the survey timespan. The total size of raw data is more than 30 petabytes,
while the total size of the �nished products will be on the order of 10s of terabytes.
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Furthermore, moving all the raw data to a processing facility is limited by the band-
width of the connection between the archive site and the processing facility. Fi-
nally, producing a high �delity image from each data set requires roughly 3500
core-hours. In total, this means that the LoTSS project will take more than 10 mil-
lion core-hours to produce scienti�c results, assuming no re-processing of data.

In addition to the raw hardware requirements, an ambitious project as such
needs to be able to track the status and location of data products, automate processing
and make results readily available. As multiple locations store LOFAR data, it is also
essential that the framework tasked with processing LoTSS data is portable and can
run independently of the infrastructure details.

1.2.2 SURFsara

One of the archive locations storing LOFAR data is SURFsara at the Amsterdam
Science Park. Aside from an extensive storage archive, SURFsara also supports
several clusters, including the Gina cluster, part of the Dutch Grid infrastructure.
Grid computing is a non-interactive application-oriented computational paradigm
for distributed computing where a ’grid’ consists of a large pool of nodes where users
can submit batch jobs. A grid can consist of one cluster or groups of clusters at one
or multiple geographical locations, connected with high-speed links and a standard
job management interface. Using this interface, users can scale out their projects,
given that their processing is massively parallel. Computational resources on such a
platform are granted based on the quality of a scienti�c proposal and are used freely
across the Grid, while jobs are scheduled based on the job requirements and the
current resource availability of the grid nodes. This processing paradigm is perfect
for extensive grid-search simulations, but also the �rst steps of LOFAR processing.
Furthermore, the high-speed connection to the LOFAR archive and available stor-
age makes SURFsara a logical location to orchestrate large scale LOFAR projects
and distribute processed data.

1.2.3 LoTSS Processing

The observations produced by LoTSS will total more than 30 petabytes and require
extensive processing before completing the survey. Each observation is stored as
a set of 244 individual �les spanning frequency space from 120MHz to 168MHz.
Each of these �les, named a Subband, is a CASA Measurement set[33] and is iden-
ti�ed by its three-digit Subband number, starting from 000. Each Subband, thus,



1

1.2. LOFAR 9

contains a sub-sample of the data in frequency space, stored at a resolution of 1 sec-
ond and 12.2 kHz per sample. While this high-resolution data is useful for some
science cases, our processing algorithms scale with data size, and thus it is necessary
to average our data in order to complete the LoTSS processing within the project’s
time-frame.

In order to create an image from an archived data set, the data needs to be
staged, retrieved, and processed. Staging the data refers to sending a request to the
archive site to move the data from tape to disk. Once all the data is on disk (’staged’),
it is ready to be transferred from the storage to the processing cluster. On this cluster,
a science-ready image is produced by processing the raw data through two pipelines.
The �rst pipeline, Direction-Independent Calibration pipeline removes artifacts
created by ‘direction-independent’ e�ects, i.e. e�ects that are constant across the
�eld of interest. This pipeline is followed by the Direction-Dependent Calibration
pipeline, which removes e�ects that change within the �eld of view.

The Direction-Independent Calibration pipeline (DI pipeline) consists of
two main stages. The �rst stage is calibration on the calibrator, which uses a short
observation of a bright calibration source to determine systematic e�ects that are
independent of the direction of the pointing. These e�ects include phase errors due
to station clock o�sets and Direction Independent ionospheric corrections. The
solutions obtained from this step can be applied to the scienti�c target, improving
the data quality. The second step of the DI pipeline is the calibration of the target
�eld against a skymodel produced by a previous survey. This calibration determines
the gain parameters of all antennas; however it does not correct for e�ects that vary
across the �eld of view.

In order to create a high �delity radio image, we need to correct for e�ects
that not only change in time but also across the �eld of view. These e�ects, such
as the ionosphere or the beam response can be modelled and removed, and their
removal is the responsibility of the Direction-Dependent pipeline (DD pipeline).
Upon successful completion, the DD pipeline produces a radio image to be used for
further scienti�c studies.

There are a few software packages used to process LOFAR data, typically
used in a series of steps creating a processing pipeline. The LOFAR processing
pipeline steps use the software, each step encoding the processing parameters in
a parameter-set (parset). A pipeline is de�ned by the list of steps, along with the
parameters of each step concatenated together into a parset �le. The LoTSS DI
pipeline, prefactor contains a set of scripts used to remove direction-independent
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e�ects from LOFAR data. Many of the prefactor steps can be executed on the
data in parallel: each Subband can be processed independently. Because of the large
amount of data, the best architecture for these steps is a cluster of isolated machines
with dedicated disks and a high-speed connection to the data. Later we will show
the bene�t of automating these steps on the Dutch Grid infrastructure.

1.2.4 The life of a data set

Figure 1.3: Raw data for LOFAR observation L229587. We only image half of the band-
width, from Subband 061 to Subband 183. This data was retrievered directly from the
LOFAR archive and thus has minimal corrections applied to it. The bright rings around
most sources are an indication that the data has not been calibrated to remove Direction
Independent (DI) or Direction Dependent (DD) e�ects.

Figure 1.4: Preprocessed data for the same observation as �gure 1.3. This image was pro-
duced by by applying the calibrator solutions to the raw data. These solutions are generated
from a short observation of a bright standard calibration source. Note the corrected scale
bar, and the reduced prominence of artifacts around most sources.
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Figure 1.5: Data from L229587 after calibration against a global skymodel. This model,
obtained from a survey by a previous telescope, is used to determine the antenna phases that
result. This calibration removes the direction-independent e�ects.

In this section, we will show the progress of one observation1 from raw data
to a �nal scienti�c image. We run this observation through the prefactor pipeline2

to perform the Direction Independent correction, followed by the ddf-pipeline3

for Direction Dependent corrections. For this work, we only use half of the band-
width (from 132.2MHz to 156.1MHz) to speed up the DD calibration.

Figure 1.6: Full direction-dependent calibrated image of the L229587 data, done at a high
resolution. This image shows a drastic reduction in imaging artifacts as well as a low image
noise level. Some of the leftover artifacts are due to skipping the �ux bootstrapping step,
and using half the bandwidth

Figure 1.3 shows an image of the data downloaded from the LOFAR Long
Term Archive. There have been minimal corrections done to this data, only re-

1The target is P18Hetdex03, observed on 2014-05-28 with phase centre 11h55m41.282, +049d44m52.908
2prefactor v3.0 beta 1.
3https://github.com/mhardcastle/ddf-pipeline

https://github.com/lofar-astron/prefactor/releases/tag/V3.0-beta1
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moving radio frequency interference before archiving the observation. The lack of
phase and amplitude corrections result in a large amplitude o�set (see scale bar be-
low �gure) and distinct artifacts around bright sources. In order to decrease these
artifacts and calibrate the brightness of the sources, we use calibration data from a
known bright radio source and apply these solutions to our data. The resulting data
produces Figure 1.4. We remove Radio Frequency Interference (caused by man-
made sources) from our data and correct for bright o�-axis radio sources. Finally,
we use a model of the radio sky obtained by a previous survey to calibrate all our
direction-independent gain parameters. The resulting data produces Figure 1.5.

After the Direction-Independent calibration, we perform a correction for
Direction-Dependent e�ects. This correction is done by the ddf-pipeline scripts
using the DDFacet and killMS software packages. To produce the images, we use
the ‘tier1-jul2018’ parameters. To speed up processing, we turn o� the bootstrap-
ping step, which loads �ux estimates from previous surveys[34]. Once all the DD
calibration completes, it produces a high resolution, high �delity image of the target
observation, shown in Figure 1.6.

1.3 Problem Statement and Research Questions

Radio Astronomy data sets are too large to process in bulk on individual workstations
and often strain the resources of small clusters at universities and other institutions.
This limitation in resources requires high throughput processing capability, and au-
tomation in order to serve processed data in bulk to astronomers. The LOFAR radio
telescope acquires data at a rate of roughly a terabyte per hour. This data is stored
in a Long Term Archive as it can serve multiple science cases. Our goal is to create
the tools for scientists to be able to process this data with their scripts and software
e�ciently. As such, these tools need to be fast, easy to use, general, and scalable.

Problem Statement: How can we e�ciently process
broadband LOFAR data in a generic way?

1.3.1 Research Question 1

To e�ciently process LOFAR data, we need to take advantage of the data level par-
allelism of the early processing steps, each of which can be parallelized by a factor of
244. Because of the large sizes of LOFAR observations, transfer time can be com-
parable to the processing time. To minimize transfer time, we need to study how to
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deploy processing pipelines at the LTA storage sites. In this research question, we
ask how to best build a framework for a massively distributed shared platform for
LOFAR, and how to deploy LOFAR processing in parallel when possible.

Research Question 1: How can we use a distributed
shared infrastructure for e�cient LOFAR data processing?

1.3.2 Research Question 2

Once we have determined the utility of distributed processing for the LOFAR case,
we ask how to automate complex LOFAR work�ows. The LOFAR radio telescope
serves multiple science cases, each of which is served by a multi-step pipeline with
a broad set of parameters. Running an entire pipeline on a single computational
node is ine�cient; thus, a work�ow orchestration software is needed to parallelize
the appropriate steps. In this research question, we ask how to build software to e�-
ciently integrate scienti�c pipelines with a massively parallel distributed processing
platform.

Research Question 2: How can we build software to ef-
fortlessly accelerate complex pipelines for Radio Astronomy?

1.3.3 Research Question 3

Once complex pipelines can be executed on a distributed environment, researchers
may ask whether the software concurrently running on hundreds of systems is run-
ning optimally. Manuallymonitoring automated runs is not possible, hence software
is needed to collect this performance data per pipeline step. Furthermore, some of
the processing parameters for LOFAR pipelines result in large data sets. In order to
serve LOFAR processing to the scienti�c community, we need to understand how
our resource usage scales with each of the processing parameters. We ask whether it
is possible to integrate monitoring tools to our processing framework in a way that
we can transparently collect performance data along with scienti�c processing.

Research Question 3: Can we automatically collect per-
formance information during massively distributed process-
ing and predict run times for future data sets?
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1.4 Contributions

1.4.1 Software Contributions

For this work, we built several software packages to de�ne, launch, and orchestrate
jobs on a high throughput cluster. The software packages built are GRID_LRT4,
GRID_PiCaS_Launcher5, and AGLOW6. They are available on GitHub, and their
documentation is hosted on ReadTheDocs.

1.4.2 Statement of Originality

I hereby certify that the content of this thesis is my own original work, consisting of
six manuscripts submitted to peer-reviewed journals and conferences. This thesis
and the works therein have not been submitted to any other degree program. Fi-
nally, I certify that the intellectual content in this work and all software referenced
therein are of my own work unless explicitly cited otherwise and that all assistance
in compiling this work has been adequately acknowledged.

1.4.3 Results

Chapter 2 describes our �rst attempts to do large-scale distributed LOFAR pro-
cessing on a shared infrastructure. We detail our successes with the LOFAR Radio
Recombination Lines and Pre-Processing Pipelines, our software set-up as well as
the limitations and future uses of this platform. This work is currently in prep.

Chapter 3 is our implementation for portable LOFAR processing on a
massive scale. We show early results encapsulating LOFAR processing pipelines,
and discuss future uses on other clusters. It is based on: A.P. Mechev, J.B.R. Oonk,
et al. “An Automated Scalable Framework for Distributing Radio Astronomy Pro-
cessing Across Clusters and Clouds”. In: Proceedings of the International Symposium on
Grids and Clouds (ISGC) 2017, held 5-10March, 2017 at Academia Sinica, Taipei, Tai-
wan (ISGC2017). Online at https: // pos. sissa. it/ cgi-bin/ reader/ conf.
cgi? confid= 293 , id.2. Mar. 2017, p. 2. arXiv: 1712.00312 [astro-ph.IM].

Chapter 4 discusses collecting and studying detailed performance statis-
tics from automated LOFAR processing. It is based on: A.P. Mechev, A. Plaat,

4https://github.com/apmechev/GRID_LRT/
5https://github.com/apmechev/GRID_PiCaS_Launcher
6https://github.com/apmechev/AGLOW

https://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=293
https://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=293
https://arxiv.org/abs/1712.00312
https://github.com/apmechev/GRID_LRT/
https://github.com/apmechev/GRID_PiCaS_Launcher
https://github.com/apmechev/AGLOW
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et al. “Pipeline Collector: Gathering performance data for distributed astronomical
pipelines”. In: Astronomy and Computing 24 (2018), pp. 117–128. issn: 2213-
1337. doi: https://doi.org/10.1016/j.ascom.2018.06.005. url: http:
//www.sciencedirect.com/science/article/pii/S2213133718300490.

Chapter 5 describes the capabilities of the initial work�ow manager for
automatic processing of LOFAR SKSP data. It shows several di�erent scienti�c
work�ows and is based on: A.P.Mechev, J.B.R. Oonk, et al. “Fast and Reproducible
LOFARWork�ows with AGLOW”. in: 2018 IEEE 14th International Conference on
e-Science (e-Science). Oct. 2018, arXiv:1808.10735. doi: 10 . 1109 / eScience .
2018.00029. arXiv: 1808.10735 [astro-ph.IM].

Chapter 6 describes a parametric model of resource usage for the LOFAR
prefactor pipeline. We discuss di�culties that may arise from scaling LOFAR
data, as well as the utility of ourmodellingmethod for SKA-size data. This chapter is
based on A.P. Mechev, T.W. Shimwell, et al. “Scalability model for the LOFAR di-
rection independent pipeline”. In: Astronomy and Computing 28 (2019), p. 100293.
issn: 2213-1337. doi: https://doi.org/10.1016/j.ascom.2019.100293. url:
http://www.sciencedirect.com/science/article/pii/S2213133719300290.

Finally, Chapter 7 demonstrates the �exibility of our AGLOW software
by implementing a full Continuous Integration pipeline for LOFAR software con-
tainers and LOFAR scienti�c pipelines. This pipeline can verify software pipelines
against a test data set and can be used to track the data quality of data products as the
processing software evolves. This work is submitted to Astronomy and Computing.

https://doi.org/https://doi.org/10.1016/j.ascom.2018.06.005
http://www.sciencedirect.com/science/article/pii/S2213133718300490
http://www.sciencedirect.com/science/article/pii/S2213133718300490
https://doi.org/10.1109/eScience.2018.00029
https://doi.org/10.1109/eScience.2018.00029
https://arxiv.org/abs/1808.10735
https://doi.org/https://doi.org/10.1016/j.ascom.2019.100293
http://www.sciencedirect.com/science/article/pii/S2213133719300290
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2 Radio astronomical reduction on

distributed and shared processing
infrastructures: a platform for LOFAR

The contents of this chapter are based on a manuscript to be submitted to
Astronomy and Computing

2.1 Introduction

In recent years, the need for multi-user oriented surveys supporting a large astro-
nomical community with diverse scienti�c topics has increased, as this may maxi-
mize the scienti�c return value for a given amount of observation time. However,
to encompass a large range in scienti�c topics within a single survey, it is often nec-
essary to take the data at a common resolution (in terms of space, frequency and
time) that supersedes the needs of the individual use cases. Such surveys therefore
also require an increase in data transport, storage capabilities and (post-)processing
power.

Here we will discuss the need for, and implementation of a large-scale
compute platform to process data sets obtained with the Low Frequency Array
(LOFAR). LOFAR is a modern radio telescope observing the radio sky at low fre-
quencies from 10 to 240 MHz [20]. Its �exible observing setup means that it sup-
ports a large range in observing modes and settings that are utilized by a diverse
user community with a broad range of scienti�c interests and goals. Some of the
main science goals for LOFAR are established through the large key science projects
[KSP; 20], but many other independent projects are also performed through open
skies time observing.

17
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We present the LOFAR distributed, shared processing (LOFAR-DSP)
platform. This platform represents a �rst step towards facilitating radio astronomical
processing on high-throughput compute infrastructures within the Netherlands and
across Europe. The implementation of LOFAR-DSP has initially focused on pro-
cessing interferometric imaging data for the LOFAR Surveys Key Science Project
(SKSP). However, being a generic high-throughput data processing platform, it also
pertains to a broader scienti�c audience and next generation Big Data experiments
such as the square kilometre array (SKA)[39].

For the SKSP, the typical ∼8-14 TB size (depending on the level of com-
pression) of a single 8 hr data set and the ∼50 PB size for the full SKSP survey
imply that the traditional way of processing, where radio astronomers use their own
interactive recipes and facilities1, is neither e�cient nor feasible. In this light, the
value of well de�ned and robust pipelines that run on a scalable platform, delivering
tractable, science-ready data products can not be overstated. This is even more so
with future radio telescopes, such as the SKA, through which radio astronomy will
enter the Exabyte-scale era.

As radio astronomy software development remains on a fast moving track
[e.g. 19, 40], we have developed LOFAR-DSP as a light-weight solution that allows
for easy integration with rapidly evolving pipelines. The technical setup chosen
borrows many elements that have been developed for distributed Grid computing.
The reasons for doing this are explained in more detail in Sections 2.2 and 2.3.

LOFAR-DSP was developed primarily by and for the SKSP and the ra-
dio recombination line (RRL) processing teams. However, the platform supports
a larger variety of complex LOFAR processing pipelines that require large-scale,
distributed, high-throughput compute infrastructures [e.g. 27–30, 41, 42]. For the
SKSP case we will show how this platform, together with the GRID_LRT process-
ing framework [35] and the AGLOW LOFAR work�ow orchestrator [37], has en-
abled the petabyte-scale processing of LOFAR data. Since 2017 more than 8 peta-
bytes of SKSP data have been processed using LOFAR-DSP. For the recent SKSP
LOFAR Two Metre Sky Survey (LoTSS) data release I [24], our solution directly
contributed to 17 of the 26 accompanying papers.

This paper is structured as follows. In Sect. 2.2, we discuss the nature
of radio astronomical observations and their intrinsic parallelism in the context of
LOFAR SKSP interferometric data. In Sect 2.3, we introduce the Grid infrastruc-
ture in the Netherlands. The components of the LOFAR-DSP platform and its

1These facilities typically range from a laptop computer to small clusters comprised of a handful of large desktop
machines.
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implementation are described in Sect. 2.4. In Sect. 2.5, we show two pipeline ex-
amples that are built on top of LOFAR-DSP and in Sect. 2.6, we discuss the deploy-
ment of LOFAR-DSP across di�erent infrastructures. We end with a discussion of
the current platform and possible future improvements in Sect. 2.7 and present our
conclusions in Sect. 2.8.

2.2 LOFAR observations and archive

The raw and/or reduced data for observed LOFAR projects is ingested by the
LOFAR radio observatory in to the LOFAR long term archive (LTA). The LTA is
a federated and distributed data archive that is hosted by three data centers: SURF-
sara2 in the Netherlands, Forschungszentrum Jülich3 (FZJ) in Germany and the
Poznań Super computing and Networking Center4 (PSNC) in Poland.

The goal of the LOFAR SKSP team is to perform a tiered survey of the
entire northern hemisphere aimed at imaging the low-frequency sky at unprece-
dented spatial resolution, depth, and frequency coverage. This survey serves the
scienti�c goals of about 200 researchers across Europe and its details are described
in Rottgering, Braun, et al. [43].

The �rst tier of the survey, carried out with the LOFAR high band an-
tenna array (HBA), is described in Shimwell, Röttgering, et al. [41] and Shimwell,
Tasse, et al. [24]. The SKSP HBA data is observed with 1 sec and 3 kHz resolution.
This is subsequently pre-processed by the radio observatory �agging and averaging
pipeline [44, 45] that performs a �rst round of radio frequency interference re-
moval and then averages the data in frequency to 12.2 kHz. Given the broad range
in SKSP science goals, requiring di�erent processing strategies, the LOFAR radio
observatory does not process the data beyond this initial pre-processing stage and
ingests it in to the LTA.

2.2.1 Archived data sizes and transport

The archived LOFAR measurements are managed using dCache5 as a front-end
data storage manager and protected by a combination of access control lists (ACL)

2https://www.surf.nl
3https://www.fz-juelich.de
4https://www.man.poznan.pl
5https://www.dcache.org/
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and Grid native X.509 based certi�cates. The measurements themselves are stored
on tape backends and need to be moved to temporary disk storage prior to retrieval.
This data staging is handled via a request through the LTA archive interface6. The
staging service interacts with dCache, which enables seamless integration between
disk and tape storage. After staging, the user can download the data via either the
LOFAR download server or through a variety of Grid data transfer tools. The for-
mer provides URLs that can be resolved thorugh HTTP for data retrieval. The
latter use SURLs (Storage URLS) and TURLs (Transfer URLs) that are resolved
via Srm (Storage Resource Manager) and gridftp for data retrieval7.

The size of a typical, archived LOFAR SKSP data set is in excess of 8 TB
for a single 8 hr observation of a 5 degree by 5 degree area of the sky8. These data
sizes are often too large to allow for e�cient transport from the LTA sites to the com-
pute facilities at the home institutes of LOFAR users, unless dedicated (and often
costly) network connections are considered. Furthermore, signi�cant storage space
would be required at these institutes, especially when considering that the processing
pipelines in�ate the data by factors 2–3 during processing.

This data size and transport problem implies that a di�erent solution has
to be found in order to further process and reduce these large datasets before the
data is served to the user. With this goal in mind in 2015 we created the LOFAR
e-infra group9 to develop a bulk processing solution enabling LOFAR processing at
the LTA sites themselves. These sites also provide access for researchers to HTC
and HPC compute facilities that have fast connections to the data storage systems
holding the LOFAR data, thus eliminating the data transfer and storage issues.

2.2.2 Radio astronomical data & parallelization

Interferometric radio astronomical observations measure visibilities. These visibili-
ties are samples of the Fourier transform of the sky and are represented by complex
numbers consisting of measured phases and amplitudes as a function of frequency
and time. The independent nature of each visibility measurement allows for a nat-
ural separation of the data along time and frequency. We use this intrinsic paral-
lelization of the data to e�ectively spread (signi�cant parts of) the processing of each

6The web interface is hosted at https://lta.lofar.eu In addition a python based application programming interface
(API) also exists.

7https://www.dcache.org/manuals/Book-3.2/con�g/ch13s07-fhs.shtml
8For related working groups such as the RRL processing group a single data set can be as large as 100 TB
9https://www.universiteitleiden.nl/en/research/research-facilities/science/lofar-e-infrastructure-group
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large data set over many small, independent jobs. This setup has been demonstrated
in the framework presented in [35].

The embarrassingly parallel nature of the data processing, coupled with the
large data sizes and I/O intensive nature of the processing means that HTC clus-
ters are most suitable to carry out radio astronomical processing of LOFAR data.
Furthermore, considering the fact that the archived data is stored in dCache man-
aged Grid storage naturally leads us to consider a Grid computing solution for the
LOFAR Surveys processing.

The Grid computing solution invoked here is based on elements that were
originally designed for the Worldwide LHC Computing Grid (WLCG) project by
the WLCG collaboration [46] and the various Grid initiatives. The Grid elements
that are part of LOFAR-DSP are described in more detail in Sect. 2.4. The Grid
connects a network of heterogeneous and distributed compute clusters to meet the
massive compute requirements of I/O intensive data processing projects, such as
the WLCG collaboration. Each compute node within and across Grid sites can be
seen as an isolated island, i.e. it has contact to the outside world via internet and the
workload manager, but it is not connected to the other compute nodes through an
interconnect or a shared �lesystem. This has advantages in that the use of a local
�le system and local scratch space is very e�cient for I/O intensive jobs. However,
this also has disadvantages in that the orchestration and movement of data, software
and processing scripts becomes more elaborate, as compared to having access to the
compute nodes over a shared �le system.

Radio astronomical work�ows di�er from traditional high energy physics
(HEP) jobs in that, in many cases, they are not completely parallel. Although, ini-
tially the SKSP work�ows, on archived data, start out as highly parallel there are
typically several tasks within these work�ows that require all data to be brought to-
gether in order to derive better solutions and hence deeper imaging. Examples of
such work�ows are provided in e.g., [18], [35], [24] and [40]. In these, more com-
plex work�ows it is an advantage to also have the (large) intermediate data products,
that need to be combined, collected at a site with high speed data transfer connec-
tions between the (temporary) storage back-end and the compute cluster.

2.3 LOFAR processing on distributed compute systems

The intrinsic data parallelism, I/O intensive nature of the work�ow tasks and large
data sizes involved for LOFAR all imply that we need a solution suitable for high
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throughput compute that is connected over a fast network to the LTA. As discussed
in Sect. 2.2.2, Grid computing o�ers this solution. In addition to the data size and
transport issues, the LOFAR work�ow tasks executed on the data can also be de-
manding in terms of memory and scratch space. For example, the SKSP direction
dependent DDF pipeline discussed in [19] and [24] requires minimally 256 GB
RAM and 3 TB of scratch space to complete. Contrary to this, the parallelized
implementation of the SKSP direction independent prefactor pipeline discussed in
[35] only requires a minimum of 8 GB RAM memory and 50 GB of scratch space
for the most demanding tasks.

Having been optimised for less demanding HEP processing tasks not all
Grid clusters are capable of handling the requirements for SKSP processing tasks.
Here we will focus on the Grid infrastructure in the Netherlands that is able to satisfy
these requirements. Other Grid clusters and facilities will be discussed in Sect. 2.7.

2.3.1 SURFsara & the Dutch Grid infrastructure

TheDutch National Grid Initiative (NGI) is a node of the European GRID initiative
(EGI). It is hosted by SURFsara and Nikhef in Amsterdam. The Grid infrastructure
provided at SURFsara is well suited for LOFAR data processing10. The Grid com-
pute resources at SURFsara are provisioned on a per core basis to Grid jobs. This
provisioning guarantees minimally 8 GB RAM memory and 80 GB scratch space
per requested core. Compute nodes with up to 40 cores are available. In total the
cluster provides 58 TB RAM memory, 2.3 PB scratch storage and 7400 cores.

The Grid cluster has a fast connection to the more than 60 dCache disk
pool nodes that are also con�gured as doors and that serve the dCache managed
data at SURFsara11. Each Grid compute node has a 2×25 Gbit s−1 network con-
nection and the total network bandwidth between the dCache managed Grid storage
at SURFsara and the Grid cluster is 1.2 Tbit s−1.

SURFsara also provides a dedicated user interface (UI) machine for Grid
projects. This UI is aimed at easing the interaction between the Grid architecture
and its users by having a rich set of Grid software and tooling pre-installed. The
UI setup is identical to that of the worker nodes on the Grid cluster in terms of the
supported software con�guration. This enables the users to test and debug their
processing pipelines on the UI before porting them to the Grid.

10http://doc.grid.surfsara.nl/en/latest/Pages/Service/system_specs.html
11dCache currently manages over 50 petabytes of data at SURFsara.
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LOFAR has a dedicatedUI called loui, and LOFARGrid jobs are submit-
ted from loui to the SURFsara Grid cluster using the gLite middleware software.
From loui it is also possible to submit Grid jobs to other Grid clusters; we will
discuss this in Sect 2.7. Here we consider loui itself to be part of the SURFsara
infrastructure (Seein in Figure 2.1). The LOFAR-DSP platform at SURFsara is
deployed on loui (see Sect. 2.4).

2.4 LOFAR distributed shared processing platform

The processing framework (Grid_LRT) and work�ow orchestrator (AGLOW) for
our LOFAR Grid processing solution have previously been presented in [35] and
[37]. Here we present the underlying platform that we have named LOFAR-DSP.
This platform re-uses and combines individual building blocks that were designed
for high throughput GRID processing. LOFAR-DSP was �rst built in 2015 by the
LOFAR e-infra group and has been continuously updated and re�ned since then.

Large experiments, such as LOFAR, that generate petabyte-sized datasets
typically have lifetimes in excess of 10 years. However, compute technologies and
their underlying software and hardware have a typical lifetime of maximally �ve
years. This mismatch implies that portability becomes a very important aspect in
the design of a long-term processing solution.

The overall aim of our LOFARGrid_LRTprocessing framework is to have
as few dependencies as possible and thereby enable portability across Grid clusters
and other compute facilities. The LOFAR-DSP platform provides the interface
between this dedicated processing framework and the (generic) compute infrastruc-
ture. The platform itself is also portable, as we will discuss in Sect. 2.4.6 and 2.7.

LOFAR-DSP consists of 4 elements, the: (i) LOFAR software, (ii) work-
load manager, (iii) PiCas client, and (iv) Grid tools. These four elements are shown
graphically in Figure 2.1. Here we will �rst discuss the requirements imposed upon
the platform by the Grid_LRT framework. Following this we will describe each of
the four main elements that together comprise the platform, their connection and
their interfaces.

2.4.1 LOFAR Grid_LRT requirements

The LOFAR Grid processing framework, as presented in [35], has a few basic re-
quirements. These are, (a) access to the LOFAR dCache managed Grid storage, (b)
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a VOMS client, (c) access to the LOFAR software, (d) Python 2.7 or higher, and
(e) outbound internet connectivity to connect the local job to the main job manage-
ment database. This job management database is hosted on a CouchDB instance at
SURFsara, accessed through an HTTP connection, and considered here to be part
of the infrastructure.

The concept of Pilot jobs, see Sect. 2.4.5 and Figure 2.2, within the setup
of the framework means that pilot job submission is part of the platform rather than
the framework. Similarly pilot job scheduling is considered here to be part of the
infrastructure. Job de�nition (e.g. input and tasks), orchestration and management
however are handled by the Grid_LRT framework 12 and the AGLOW13 work�ow
orchestrator.

The LOFAR-DSP platform ful�ls the requirements of the Grid_LRT
framework by providing the software tools necessary to access to the software, data,
job scheduler and the job management database.

2.4.2 Grid tools

The LOFAR-DSP platform de�nes the interface between the data storage system
and the processing framework. Archived LOFAR data is stored at the LTA sites
(Sect. 2.2). For e�ciency reasons we have chosen the Grid tools for data transfers
in the Grid_LRT framework.14

The Grid native data transfers tools are generic and are therefore consid-
ered to be part of the platform rather than the framework. The data transport tools
selected as part of the LOFAR-DSP platform are globus-url-copy15, uberftp16

and GFAL217. The authorisation necessary to access LOFAR data requires a valid
X.509 certi�cate and membership of the LOFAR virtual organisation (VO) in or-
der to create an associated X.509 proxy. The proxy is created using the client
voms-client3 and the tools mentioned above will then use this proxy to authenti-
cate with the Grid data storage system (i.e., via dCache).

12https://github.com/apmevhev/GRID_LRT
13https://github.com/apmevhev/AGLOW
14The limited connectivity of the LOFAR download server means that the Grid data transfer tools provide data

transfers that are on average more than order of magnitude faster when the network allows for it.
15https://www.globus.org/
16https://github.com/JasonAlt/UberFTP
17https://dmc.web.cern.ch/projects/gfal-2/home
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2.4.3 Workload management

The LOFAR-DSP platform de�nes the interface between the workload manage-
ment system (or job scheduler) and the processing framework. At SURFsara, access
to the Grid cluster is provisioned via a variety of middleware software. This mid-
dleware software does not directly schedule the jobs on a local Grid cluster. Instead,
the middleware provides and translates the Grid job to a format that can be under-
stood by the job scheduler (e.g. torque, pbs, Slurm) of the local Grid cluster. The
LOFAR-DSP platform uses the gLite18 middleware and hence contains this soft-
ware to interact with the Grid workload management system. In order to submit
jobs to a Grid cluster via gLite we need a valid X.509 proxy and the LOFAR VO
needs to be registered on that cluster. The current gLite software is nearing its end
of life and in Sect. 2.7 we will discuss possible alternative software.

The local job scheduler typically varies between di�erent clusters and for
non-Grid clusters there is no middleware layer to translate jobs to the required local
format. Therefore this part of the LOFAR-DSP platform is less generic and can
only be applied to Grid-published clusters. Fortunately, our use of Pilot jobs means
that it is straightforward to change this part of the platform and accommodate dif-
ferent workload management systems and job schedulers. In Sect. 2.6 we provide
an example where we run a modi�ed version of the LOFAR-DSP platform on a
cloud-based compute cluster with Slurm as the local job scheduler.

2.4.4 LOFAR Software

The LOFAR-DSP platform de�nes the interface between the LOFAR software dis-
tribution and the processing framework. The Grid resources, both locally and glob-
ally, are inherently heterogeneous and not accessible through a shared �lesystem. In
order to have a consistent LOFAR software stack available on all worker nodes we
need a uniform way to distribute and compile the software.

To compile the LOFAR software we initially used the Softdrive19 virtual
drive solution o�ered by SURFsara. Softdrive o�ers a software environment that
is identical to that of the SURFsara Grid cluster. Software compiled within this
environment is therefore less likely to encounter errors upon execution locally at
SURFsara.

18http://repository.egi.eu/
19http://doc.grid.surfsara.nl/en/latest/Pages/Advanced/grid_software.html
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The compiled software on Softdrive is then distributed across the Grid
worker nodes via the softdrive.nl directory as part of the CERN VM-Filesystem20

(CVMFS). CVMFS is optimised to deliver software in a fast, scalable and reliable
way. It is implemented as a POSIX read-only �le system in user space. Files and
directories in CVMFS are hosted on standard web servers and mounted in the uni-
versal namespace /cvmfs. For LOFAR-DSP, we host our software in /cvmfs/soft-
drive.nl. The softdrive.nl directory is linked to the Softdrive virtual drive and main-
tained by SURFsara.

CVMFS can be mounted on most computers and clusters. However,
the software compiled within the Softdrive environment typically only applies to
systems with a matching operating system and similar hardware. To deploy the
LOFAR software across di�erent infrastructures the Softdrive solution for compila-
tion is therefore insu�cient. Software containerization, as provided by for example
Singularity and Docker, enables software to be abstracted from the environment in
which they run. This allows us to port the LOFAR software across di�erent com-
pute systems. Since late 2017 we have containerized the LOFAR software using
Singularity and provided software images21 that we distribute via the softdrive.nl
directory in CVMFS. We chose Singularity as, contrary to Docker, it enables us to
execute the software image in user space.

Containerized software and the associated images provide an excellent �rst
step in abstracting the LOFAR software from the local operating system and soft-
ware environment. However, it does not fully abstract the LOFAR software from
the underlying hardware. Important here are for example CPU instruction sets. If a
software image is compiled on a system that has a CPU instruction set which is not
compatible with that of the compute system where the image is executed then the
software will very likely fail.22 To eliminate this problem for the LOFAR software
we have setup a KVM-based virtual machine (VM) that emulates the lowest com-
mon denominator in the accessible Grid hardware for LOFAR Grid jobs. This VM
is used for LOFAR software compilation and hosted on the HPC Cloud23 system
at SURFsara.

We have tested the performance of common LOFAR processing tasks for
both natively compiled and CVMFS-hosted software in [38]. In that work, we
found no signi�cant di�erence in performance between native compilation and soft-

20https://cernvm.cern.ch/portal/�lesystem
21Our full LOFAR Singularity images have sizes of 5–10 GB. Removing unnecessary source ode and invoking

squash-fs compression we can reduce these images to sizes of 1–2 GB.
22Typically an error of the ’illegal instruction’ is cast by the system.
23TBD - provide weblink for HPC cloud
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image on
SingularityHub

image on
Softdrive

image on
Grid Storage

CVMFS install

Authentication none none grid proxy none
Download time ∼minutes instant ∼seconds instant
Requirements singularity Singularity

and cvmfs
singularity

and gridtools
cvmfs

Deployment time instant ∼minutes instant ∼minutes

Table 2.1: Pros and cons of the di�erent distribution methods for the LOFAR software.
Deployment time refers to the time taken for the compiled software to be accessible at the
processing nodes. The size of the software image is 1.3GB. Likewise, the entire CVMFS
install is 1.7GB.

ware distributed by CVMFS. Similarly no signi�cant di�erences in performance are
found between natively compiled software and Singularity-based software images
for LOFAR software.

Singularity images can also be compiled, hosted and versioned on Singu-
larityHub. The downside of remote hosting of software images is the transfer time
for those images, which can become comparable to the processing time for short
jobs. We visualise the pros and cons of di�erent distribution methods in Table 2.1.

2.4.5 Job management: PiCas & CouchDB

The LOFAR-DSP platform de�nes the interface between the job management
database and the processing framework. The Grid_LRT framework makes use of
the PiCas pilot job work�ow24 and the LOFAR-DSP platform therefore includes
the PiCas client.

The PiCas pilot job work�ow was created by SURFsara as a light-weight
Pilot job framework25 that is easily adaptable and extendable. The central server
for the PiCas framework is based on a web accessible CouchDB26 database. For
LOFAR-DSP this central job database is hosted by SURFsara and considered to be
part of the underlying infrastructure, see Fig. 2.1.

Prior to pilot job submission, the central job database has to be populated.
This is done by a set of dedicated PiCas CouchDB scripts that generate so-called
job tokens27 containing the required job input and tasks for a pilot job. Pilot jobs

24http://doc.grid.surfsara.nl/en/latest/Pages/Practices/picas/picas_overview.html
25http://doc.grid.surfsara.nl/en/latest/Pages/Practices/pilot_jobs.html
26http://couchdb.apache.org/
27These Tokens are CouchDB documents
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submitted to a compute cluster are like regular jobs, but instead of executing a task
directly they contact a central server once they are running on a worker node. Then,
and only then, will they be assigned a task, retrieve data and start executing.

The central server handles all requests from pilot jobs and keeps a log of
what tasks are running, are �nished, and can still be handed out. This enables a
powerful way of conducting central administration and management of jobs across
a set of distributed compute resources. Only one central database is required to
serve job input to pilot jobs running on any of the Grid worker nodes and across
Grid clusters. Similarly, the same database is used to serve job input to pilot jobs
running on any other type of compute cluster. Examples of LOFAR-DSP pilots
jobs that run on cloud-based compute clusters and HPC systems are provided in
Sect. 2.6

At SURFsara, LOFAR-DSP based pilot jobs are submitted via gLite to the
Grid cluster. Once the job lands on a worker node it contacts the PiCas server for
job input. During execution the status of a pilot job is tracked via the PiCas client
and the associated job token is updated in real-time within the CouchDB database.
The web frontend interface of PiCas also enables quick sorting of all job tokens into
user de�ned views that provide real-time monitoring of all jobs within the database.

Light-weight pilot job frameworks, such as PiCas, excel at orchestrating
very large numbers of independent pilot jobs. The generic PiCas framework is not
intended to handle dependencies between individual pilot jobs in the queue that are
considered to be tasks within a larger interconnected, complex work�ow. To provide
this higher level of orchestration we have built the AGLOW work�ow orchestrator
on top of PiCas [37].

2.4.6 LOUI & SPUI

Together, the elements mentioned above comprise the LOFAR-DSP platform.
Given that all these elements are software, they can easily be bundled and deployed
via a VM or a container solution. At SURFsara, we have chosen to deploy LOFAR-
DSP as part of the loui VM. This VM is also the login node for all LOFAR Grid
users and uses a generic test environment for deploying new LOFAR work�ows to
the Grid.

The generic LOFAR user environment o�ered by loui is not optimal for
operating continuous LOFAR processing in a stable and automated sense. This
is due to the limited resources available on the VM and interference from other
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users. To achieve continuous processing, a managed and dedicated environment is
needed. This environment is provisioned via a second VM called spui (surveys
processing user interface). This VM, managed by SURFsara and accessible to only
the SKSP processing team, contains the stable and validated versions of the LOFAR-
DSP platform. To enable continuous and automated LOFAR SKSP processing on
spui, a robot proxy has been installed that automatically renews the validity of the
X.509 proxy, and regular LOFAR-DSP pilot job submission is scheduled via cron.

The use of the latest validated LOFAR surveys work�ows and processing
software is not yet part of a fully developed and implemented continuous integration
and continuous deployment (CI/CD) process. However, successful attempts, using
Github, Travis, Jenkins and Singularity, are being explored by the processing team to
�rst achieve continuous integration (Mechev et al. in prep.) and later also continuous
deployment.

2.5 Executing LOFAR work�ows on LOFAR-DSP

The LOFAR-DSP platform provides the foundational layer on which the LOFAR
SKSP processing is run. The implementation of the LOFAR SKSP prefactor
direction independent continuum calibration and imaging pipeline is discussed in
[35] and [37].

The LOFAR-DSP platform can and is supporting a larger variety of
LOFARprocessing pipelines, e.g. pre-processing, spectroscopy, long baseline imag-
ing and polarimetry for interferometric data, as well as spectral-imaging for tied-
array data. As examples we will here brie�y describe two pipelines that make use of
the LOFAR-DSP platform; (i) direction independent spectral calibration (DISC),
and (ii) the LOFAR Grid pre-processing pipeline (LGPPP). Both examples apply
to interferometric data. The second case highlights our �rst approach towards ab-
stracting the users from the compute and storage environment and enabling them
to upload new jobs via interaction with PiCas only.

2.5.1 Direction Independent Spectroscopic Calibration – DISC

One of the goals of the LOFAR spectroscopy group is to use the SKSP measure-
ments to discover and detect radio recombination lines (RRLs). The pipeline for di-
rection independent spectroscopic calibration (DISC) was created to process LOFAR
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data for spectroscopic studies, with a primary use-case of targeting bright, extra-
galactic sources with the high-band antennas [28]. These observations are processed
at a frequency resolution (3 – 12 kHz) that is 4–16 times higher than required by
standard SKSP continuum processing, and additional steps to calibrate the bandpass
are implemented during processing (Emig et al. submitted).

DISC uses the Grid_LRT framework to de�ne the interface between the
processing work�ow and the LOFAR-DSP platform. Parallel jobs are distributed
in some steps to independently process the data e�ciently. However, simultaneous,
band-wide analysis of the full data set is also needed. In total, three steps of parallel
processing the data are interwoven with two steps of band-wide processing. The
intermediate products saved at each step together with the �nal products account
for roughly 740 GB for a typical observation.

The high spectral resolution and detailed bandpass corrections needed in
DISC processing require ∼104 CPU corehours for a typical SKSP data set. This
is an order of magnitude more than required for prefactor direction independent
continuum calibration [35, 38].

2.5.2 LOFAR Grid pre-processing pipeline – LGPPP

LOFAR-DSP supports a range of dedicated, complex processing pipelines for a va-
riety of scienti�c goals. These pipelines have largely been created by specialist teams
and ported to the Grid_LRT framework by the LOFAR e-infra group. Although
these pipelines often are publicly available, it can be daunting for non-specialists to
acquire the necessary insights and skills to run these pipelines. We have therefore
identi�ed two other groups of users, (i) non-expert users a�liated with a specialist
team for the required processing (often a KSP) and (ii) non-expert users with no
a�liation to a specialist team.

The former groupwill typically be served by the specialist teamwith science
ready products, as is the case for the SKSP. For the latter group such a specialist
team is missing28 and on-demand (re-)processing of LOFAR data via a non-expert
interface is not readily available. This means that these users will not be able to
obtain the science ready products that they need. To gain experience with how one
may serve these non-expert users we have created the LOFAR Grid pre-processing
pipeline (LGPPP).

28The LOFAR radio observatory team also o�ers some support for non-expert users, but this is naturally limited
by the available resources
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The LGPPP pipeline, built within the Grid_LRT framework, represents a
�rst step towards abstracting the user/researcher from the details of the processing
and storage environment. It serves as an example of a pre-de�ned pipeline that a
non-expert user can interact with bymodifying only a few basic parameters. LGPPP
is limited in scope to providing LOFAR users with the possibility to reject bad data
points, reduce the LTA-stored data size and retrieve this reduced data. As a test case,
LGPPP is implemented as a single New Default Pre-Processing Pipeline [NDPPP;
45] run, providing, in a prede�ned order, data �agging, averaging and demixing
on a per Subband basis. In LGPPP the user can therefore only modify the step
parameters for averaging and demixing29, decide on whether or not to carry out
demixing, and provide a list of sources to be demixed. In addition, the user needs to
provide as input a list of SURLs for the data sets to be reduced with LGPPP. This
list is be obtained by the user from the standard LTA interface.

An important requirement for LGPPP is that it must be able to run as a
standalone service. Hence, we build on our existing LOFAR-DSP and Grid_LRT
solution and provide the user with the PiCas python client and a LGPPP job token
generation script that takes as input the user de�ned parameters and the SURL list
of datasets. Through a dedicated PiCas username and password the user is then
able to populate the PiCas pilot job queue and monitor this queue via the CouchDB
web interface. On spui, a running cron job activates the LGPPP pipeline that then
checks whether there is work to do in the LGPPP queue and if so executes that
work. The results of the LGPPP pipeline are shared with the user through an open
WebDAV accessible storage managed by dCache.

The LGPPP pipeline and interface have successfully been tested with a se-
lected group of non-expert users and it has been used as a �rst step towards achiev-
ing scienti�c results in [29]. The LGPPP approach can easily be extended to other,
more complex LOFAR pipelines. However, as we will discuss in Sect. 2.7, we �nd
that this is only useful for slow moving, robust pipelines. The fast moving targets
of complex LOFAR pipelines imply that considerable e�ort is needed to maintain
them for pre-de�ned execution and the LOFAR e-infra group decided to only pur-
sue further implementation once this situation has become su�ciently stable.

29Demixing is a process in which contributions from bright o�-axis sources to the observed measurements are
estimated and removed [47]
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2.6 Deploying LOFAR-DSP

Beyond the SURFsara Grid cluster a heterogeneous set of compute resources exist
that could also be used for processing LOFAR data. Here we describe the deploy-
ment of LOFAR-DSP on a variety of systems, focusing on 4 cases: (i) federatedGrid
clusters, (ii) HPC systems, (iii) edge compute systems, and (iv) cloud computing.

2.6.1 Federated Grid clusters – PSNC

PSNC is a partner in the LOFAR LTA. For reasons of data size and transport e�-
ciency, discussed in Sect. 2.2, the LTA partners are natural candidates for processing
LTA data. The Eagle HPC cluster at PSNC has been published as a Grid cluster and
its worker nodes have outbound internet access. It is accessible for Grid jobs through
the gLite middleware via a dedicated CreamCE queue. PSNC has also kindly in-
stalled the necessary Grid tools, CVMFS and Singularity on Eagle.

It is therefore not necessary to port the LOFAR-DSP solution to a feder-
ated Grid site such as PSNC. Instead, we can submit our LOFAR Grid jobs to Eagle
directly from loui in the same manner as for the SURFsara Grid cluster. The
only di�erence here being that we need to select the appropriate CreamCE. This
functionality, of course, is the very essence of Grid computing.

There is one other important di�erence between the SURFsara Grid cluster
and the Eagle cluster. The Eagle cluster, being anHPC system, has very little scratch
space on a worker node for local processing. Instead, Eagle has a shared �le system
with associated globally mounted home and project directories. It was therefore
necessary to adjust the LOFAR work�ow scripts to take the local storage di�erence
into account.

This change in local storage was straightforward to implement in
Grid_LRT and performed by re-mapping the TMPDIR environment variable that
is used for creating a unique, temporary processing space for each of our jobs. The
change is re�ected in the PSNC branch of Grid_LRT scripts repository on Github.
LOFAR SKSP Grid processing jobs on Eagle were successfully tested in 2017 and
2018.
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2.6.2 HPC systems – FZJ

FZJ, via the German GLOW consortium, is also a partner in the LOFAR LTA.
FZJ hosts a variety of compute systems. For LOFAR SKSP data the JUWELS
HPC system is the most suitable. JUWELS is connected to the FZJ storage systems
hosting the LOFAR data via JUDAC (Juelich Data Access Server).

Similarly to the Eagle HPC system, JUWELS relies on a shared �le sys-
tem for data processing. However, there are other important di�erences in that the
JUWELS cluster is not published as a Grid cluster and hence is not accessible from
loui via gLite. Furthermore, JUWELS does not support Singularity or CVMFS
and its worker nodes do not have outbound internet access.

Given that the JUWELS can not comply with our basic Grid_LRT require-
ments, see Sect. 2.4, we decided not to port the LOFAR-DSP platform to JUWELS.
Instead, we have developed and need to maintain a separate set of tools. These tools
re-use and rely on some of the elements (e.g., PiCas, Softdrive) that are used in
LOFAR-DSP and where possible we have aligned our JUWELS implementation
with LOFAR-DSP.

LOFAR processing on JUWELS (and previously JURECA) is realised in
two steps: (i) Software installation. We use a pre-compiled, non-containerized,
LOFAR installation hosted on Softdrive at SURFsara, using the parrot-connector.
Regular updates can be performed via a simple data transfer (e.g., rsync). (ii) Job
management and execution. We developed a monitoring script,30 continuously
running on JUDAC, which acts as an interface between the PiCas pilot job database
hosted at SURFsara, the LOFAR LTA in Jülich and JUWELS. Upon completion,
the processing jobs at FZJ send the results to the dedicated SKSP Grid storage at
SURFsara for further processing and distribution.

2.6.3 Edge computing

In addition to the large processing facilities at the LTA sites, the LOFAR-DSP plat-
form can perform LOFAR processing on compute facilities located at research in-
stitutes and universities. The usefulness of these edge resources for orchestrated,
large-scale processing depends on the available compute and storage resources, the
network connectivity to the LTA sites and the level of IT support. Typically these

30SKSP_monitoring.py
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resources are local workstations or batch processing clusters that have not been pub-
lished as Grid clusters.

By exchanging the Grid workload manager in LOFAR-DSP with the local
job scheduler the platform can run on these local facilities. This makes it possible
to further scale the scienti�c processing for LOFAR data. We successfully tested
running Grid_LRT prefactor jobs, using LOFAR-DSP, at the Leiden Observatory
LOFAR cluster and the Herts cluster Hertfortshire. However, we found that these
facilities at the edge are fundamentally limited by the bandwidth of their connection
to the LTA.

This network limitation prevents large-scale SKSP processing of LOFAR
data at these sites. Instead these sites are primarily used for performing develop-
ment studies and high-level, post-processing of calibrated datasets obtained from
LOFAR-DSP processing at the LTA sites. These, primarily direction independent
calibrated data, are hosted on the SKSP Grid storage at SURFsara and have typi-
cally been reduced in size by a factor 16. Following this reduction„ these data sets
are much more easily distributed to the edge sites than the original LTA stored data.

2.6.4 Clouds

In the past decade, many public and private IT providers have begun o�ering on-
demand cloud-based VMs for hosting a variety of services, such as web applications
and lightweight data analysis. Cloud users can de�ne the resource requirements
of these VMs, and once launched, they have root access to the VM. This �exibil-
ity makes it possible for a user to tailor the VM to their needs. At the same time,
this type of self-service mode of operations comes at the expense of signi�cantly
increased investment in knowledge, time and expertise from the user to exert the
necessary control to keep their VM’s running, updated and secure.

There are a number of reasons as to why cloud computing has not gained
traction within the more data-intensive sciences such as radio astronomy. In ad-
dition to the expertise issues mentioned above, we can mention that: (i) radio as-
tronomical work�ows require detailed orchestration of complex pipelines. In the
cloud environment, the VMs also require orchestration and thus become an ad-
ditional management burden. (ii) Radio astronomy is pushing the CPU, memory
and local storage limits of individual compute nodes. As such, it is a costly and time
consuming process to get the necessary VMs launched within current cloud environ-
ments. (iii) Radio astronomy is pushing the limits of data throughput and persistent,
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long-term storage. The required network and storage resources to run, for example,
LOFAR SKSP processing can hence become very costly, especially upon consider-
ing that each data set will be processed several times by independent science teams
with di�erent versions of their pipelines.

The LOFAR-DSP platform can treat cloud VMs as processing resources,
as long as the VM instance adheres to requirements listed in Sect. 2.4. The most
straightforward way would be to set the VMs up as a batch processing cluster, install
the required software and publish it as a Grid cluster. In the Helix Nebula Science
Cloud31 project we, together with experts from T-Systems and Rhea, managed to
setup a Slurm32 based batch processing clusters in the T-Systems and Rhea clouds.
Although we did not publish these clusters as Grid clusters we were able to setup all
other parts of the LOFAR-DSP platform and successfully carry out functional tests
for Grid_LRT based LOFAR processing. However, given the above mentioned
investments and limitations we decided not to pursue large-scale cloud processing
beyond these initial tests.

2.7 Discussion

The LOFAR-DSP platform and the Grid_LRT framework, developed by the
LOFAR e-infra group and SURFsara, have now been operational for almost 4 years.
During this period we have processed over 8 PB of LOFAR data and we have ex-
perimented with extending both the framework and the platform to include more
pipelines and additional compute facilities.

On average about 1.5 FTE per year has been dedicated to implementing,
maintaining and further developing this processing project. This limitation in avail-
able human resources has made it di�cult to go beyond the current implementation
described here and make progress towards e.g., a full CI/CD implementation. Be-
lowwe will brie�y discuss some of the challenges that we are facing in the next couple
of years. In particular, we will focus on the future of Grid computing and on reach-
ing the necessary level of robustness and automation for the LOFAR pipelines that
we need to process petabyte datasets in a semi-continuous manner.

31More information about this project can be found in the associated deliverables: D6.2 Integrating commer-
cial cloud services into the European Open Science Cloud: https://zenodo.org/record/2598039#.XVurI3vRYuU,
and D6.3 Demonstration to the EC of the test products resulting from the procured R&D services:
https://zenodo.org/record/2598060#.XVux73vRYuU

32https://slurm.schedmd.com
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2.7.1 Future of our Grid computing for Astronomy

In Sect. 2.2 we discussed that radio astronomical data processing, from nearly raw
data up to and including imaging, is very well suited to high throughput Grid pro-
cessing. In assembling the LOFAR-DSP platform we have gratefully made use of
existing Grid tools. Some of these tools are now nearing their end of life, in terms
of support, and the platform will need to be updated accordingly in coming years
(2020–2021). In particular we mention here that gLite-wms, gLite-ce, CreamCE,
and globus-url-copy will need to be replaced.

The gLite workload management tools we plan to replace with DIRAC33.
For pilot job submission of Grid_LRT-based pipelines this change will be trans-
parent in that the glite-wms-job-submit commands will be replaced by the corre-
sponding dirac-wms-job-submit commands. For AGLOW, our work�ow orches-
trator, this change has a more pronounced e�ect in that the current implementation
of AGLOWmonitors the status of a Grid job via glite-wms-job-status and it parses
the output retrieved from this command. The change in the output retrieved from
dirac-wms-job-status, as compared the glite-wms-job-status, implies that the parser
needs to be updated. Alternatively, it may be considered to move the AGLOW
job monitoring from the workload management level to the (PiCas) job token level.
This would allow for generic AGLOWmonitoring in a manner independent of the
di�erent workload management tools and job schedulers. However, in this case we
would also need to handle interrupts between the workload management tools and
PiCas to ensure that all job tokens are always eventually updated to the correct state
of the corresponding pilot job.

The replacement of the CreamCE, by e.g., ARC-CE or HTCondor-CE,
will be carried out at the infrastructure level. For the LOFAR-DSP platform and
Grid_LRT framework this should only amount to a change in the queue names
provided to dirac-wms. For replacing globus-url-copy and the underlying gridftp
protocol there are several options, but we expect to use gfal2 with either WebDAV
or XROOTD as the underlying protocol. For dCache stored data in particular the
combination of dCache macaroons withWebDAV is attractive as this would remove
the dependence on X.509 certi�cates and enable the use of other more generic data
transfer tools such as rclone and curl. Within the European Open Science Cloud
(EOSC) hub project we are investigating the use of dCache macaroons for not only
the SKSP, but also the wider LOFAR community.

33https://dirac.readthedocs.io
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2.7.2 Further automation and optimisation

Beyond the future of the Grid computing tools there are a number of other rele-
vant developments that could be considered in further improving the LOFAR-DSP
platform, as well as the framework and pipelines built on top. We will brie�y discuss
some of them here.

The dependence of the LOFAR-DSP framework on the Grid workload
management system is both a strong and a weak point. It is strong in that the plat-
form uses an accepted and powerful community standard to submit and distribute
its processing jobs. It is weak in that this approach will only work for Grid clus-
ters on which the LOFAR VO has been enabled and for which compute time has
been granted. We show in Sect. 2.5 that it is straightforward to change the workload
management system, to e.g., Slurm, but this has not yet been automated and would
also require changes in AGLOW (Sect. 2.7.1).

SKSP processing is currently driven by a database that stores the processing
state of all SKSP observations and which is regularly updated by querying the LTA
for newly archived SKSP data. Instead of this poll-and-pull mechanism, there has
been some development within the storage and processing communities to evalu-
ate event driven processing. In the latter case, data arriving in the LTA may self-
generate their processing chain via e.g., LTA ingest events or dCache events. For
large archiving projects, where data is swiftly moved from disk to tape, such event
driven processes may also ensure that the tape to disk staging latency is avoided.

X.509 certi�cates and their derived proxies enable seamless access to Grid
storage and compute. However, they are not heavily used outside of the Grid world.
In recent years the Grid community has been exploring token-based Authentication
& Authorisation Infrastructure (AAI) solutions to replace X.509. If achieved, such
solutions could also be extended to include other services upon which LOFAR-DSP
is reliant, e.g. the PiCas CouchDB server and the LOFAR LTA interface. This may
not only lower the administrative burden for LOFAR processing services, but also
improve the user experience and lower the threshold for new users.

Although some initial progress is being made in generating a well de�ned
chain for the maintaining, validating and deploying the platform, framework and
pipelines, this chain is far from ready. We consider it highly bene�cial for the
LOFAR (SKSP) community at large if such a 3-phased CI/CD process could be
implemented and automated. Such an implementation requires organisation and
human resources beyond what is made available now. A dedicated team is not only
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important during the initiation phases, but also a requirement formanaging this pro-
cess in the long term after the implementation phase. During the four to �ve years
that the LOFAR e-infra group has been operational, this lack of human resources
has been our main bottleneck in moving beyond the current implementation.

Finally we mention that the use of containers and software images have
been a major step forward in our e�ciency and ability to port the complex set of
LOFAR software across di�erentlymanaged infrastructures. One of the future goals
of the LOFAR e-infra group is to o�er all of our software in an as easy as possible
executable format. This would enable a more uni�ed processing environment and
better reproducibility of LOFAR data processing. As such we foresee that we will
also o�er LOFAR-DSP as a software container. One important issue here is that
not all IT providers have yet embraced containers, as these are sometimes seen as
a security risk. However, for large, complex computing projects such as LOFAR
SKSP it is becoming increasingly clear that we can no longer a�ord to continually
optimise and update our software for di�erent infrastructures with di�erent operat-
ing systems and system libraries. This is even more true in the coming years where
�rst LOFAR 2.0 and later the SKA will come online, and provide another increase
in data rate and size.

2.8 Conclusions

The LOFAR radio telescope archives tens of terabytes of data daily, and its LTA
grows by ∼7 PB per year. These rates are too high to transfer and process data at
compute facilities that do not have a dedicated network connection to the LTA sites.
To enable e�cient processing of the archived LOFAR data for the SKSP project
and dissemination of the results, we need to process the incoming LOFAR data
with low latency and serve science-ready data sets and products to the astronomical
community.

Here we have presented the LOFAR-DSP platform, which we show is a
major building block towards enabling massively distributed LOFAR processing.
We describe the underlying technology and our implementation of the platform.
We note the strengths of our solution and provide suggestions for future improve-
ments to make the LOFAR-DSP platform easier to use and scale across multiple
infrastructure sites. The main contributions of the work presented here are the fol-
lowing:
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• We present LOFAR-DSP as a platform for distributed processing of LOFAR
data on a shared IT infrastructure. We focus on the Grid implementation at
SURFsara and show examples of deployments on other IT infrastructures.

• We show the implementation of the PiCas pilot job framework for LOFAR
processing jobs. We highlight how this framework is used as a central
resource to distribute and monitor LOFAR processing jobs across di�erent
IT infrastructures.

• We provide two pipeline processing examples: (i) DISC for spectroscopic data
processing and (ii) LGPPP for pre-processing. We show how these pipelines
interface with LOFAR-DSP. For LGPPP we also show a possible path
towards abstracting the non-expert user from the details of the underlying IT
infrastructure.

• We discuss the process of assembling LOFAR-DSP, the underpinning (Grid)
software life-cycle and provide suggestions for further improvements to the
platform and the processing framework built on top.

The impact of LOFAR-DSP, in combination with the Grid_LRT frame-
work [35] and the AGLOW [37] work�ow orchestrator, is evident from the recent
data releases by the SKSP project [24, 41].

To date the LOFAR-DSP platform has processed over 1000 data sets for
the LOFAR Two-Meter Sky Survey [LoTSS; 24] and a variety of other LOFAR
projects, such as the RRL spectroscopic surveys [27, 28, 30]. The platform has
contributed to the data reduction for more than 40 scienti�c publications. The sci-
enti�c output of the SKSP surveys has been rapidly growing in recent years and
this can be understood through: (i) the improved understanding of calibration and
imaging techniques for LOFAR [e.g. 16, 18, 19, 44, 45], and (ii) the automation
and massive scaling of the LOFAR pipelines [this work; 35, 37, 38].

These achievements indicate that the community is starting to understand
what is needed for the upcoming challenges that will be posed by the SKA in the
next decade and that will deliver data at a rate more than two orders of magnitude
greater than LOFAR. From our experience with LOFAR, and soon LOFAR 2.0, it
is clear that we need to continue to increase our investment in IT knowledge and



40 Chapter 2. LOFAR-DSP platform

Figure 2.1: Structure of the LOFAR-DSP platform as it relates to the rest of the services
used to process LOFAR data on the Dutch grid. Both the LOFAR Reduction Tools and
AGLOWmake direct use of components provided by LOFAR-DSP. Likewise, the LOFAR-
DSP platform interfaces with the infrastructure provided by SURFsara.

infrastructure in order to support the future of radio astronomy and to strengthen
the bonds between two scienti�c domains.
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Figure 2.2: Implementation of pilot job launching by the LOFAR-DSP platform. LOFAR
users log onto the UI machine and de�ne jobs on the PiCaS database. They submit jobs
through the grid middleware, and each job harvests an unprocessed PiCaS token, and exe-
cutes the job de�ned therein. Higher-level orchestration is done by Apache Air�ow running
on the UI machine.
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Original Abstract:
The Low Frequency Array (LOFAR) radio telescope stationed near Exloo,
the Netherlands is an international aperture synthesis radio telescope used
to study the universe at low frequencies. Aperture synthesis requires large
amounts of computation between data acquisition and science ready images.
The LOFAR Two Meter Sky Survey (LoTSS) will require to process 50 PB
of data within �ve years. The data rates demanded by this project require
processing at locations with high-speed access to the data. The current soft-
ware packages are not suited for all cluster architectures, and cannot launch
and monitor processing at multiple locations.
To complete the LoTSS project, the processing software needs to be made
portable and moved to clusters capable of handling the data rates above. This
work presents a framework that makes the LOFAR software portable, and is
used to scale out LOFAR data reduction. The hight throughput achieved will
make imaging 3000 observations possible within �ve years.
This chapter is based on the work of A.P. Mechev, J.B.R. Oonk, et al. “An
Automated Scalable Framework for Distributing Radio Astronomy Process-
ing Across Clusters and Clouds”. In: Proceedings of the International Symposium
on Grids and Clouds (ISGC) 2017, held 5-10 March, 2017 at Academia Sinica,
Taipei, Taiwan (ISGC2017). Online at https: // pos. sissa. it/ cgi-
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3.1 Introduction

The LOFAR radio telescope is the world’s largest aperture synthesis array withmore
than 20,000 antennas and baselines of 60 m to 1000 km[20]. With its unprece-
dented sensitivity and angular resolution at ultra-low frequencies, LOFAR’s goals
are far-reaching: from studying pulsars and supernova remnants to the evolution of
distant galaxies. Additionally, LOFAR is a path�nder for the larger Square Kilome-
ter Array (SKA) radio telescope. The SKA-Low telescope is expected to increase
data size[48] to 400TB per day, creating more than 120PB per year[49].

The LOFAR Two Meter Sky Survey (LoTSS) Survey[41] will observe
3000 di�erent �elds that collectively will map the entire northern radio sky. The
size of each of these data sets is 16TB, making for a total of 48 Petabytes. To com-
plete the LoTSS survey in the project’s anticipated 5 year duration, 1PB of data
need to be processed each month.

To mitigate delays caused by data transfer, the reduction must be done at
a location with a high bandwidth connection to the raw data. Software packages
for the initial processing of LOFAR data already exist[18], however they were not
designed to work on all cluster architectures. To complete the LoTSS project in
time, a framework is needed to automatically process multiple data sets at a cluster
with a fast connection to the data.

Building on previous work [50], we created a framework to launch and
monitor processing for multiple data sets. We present this framework, built to pro-
cess data sets across multiple machines. The framework is named the LOFAR Re-
duction Tools (LRT), and it provides:

• Automation, enabling processing of multiple concurrent jobs
• Portability, enabling processing at di�erent locations
• Scalability, enabling adding worker machines as required by the workload
• Generalization, enabling the integration of software from other scienti�c do-
mains

The LOFAR data reduction software known as ‘pre-FACTOR’[40] was in-
tegrated in this framework. This software has been in use since November 2016 and
at the time of writing (Feb 2017) had processedmore than 100 data sets. This equals
one-quarter of all the LoTSS data gathered from September 2014 to March 2017.
By deploying the LRT framework on a cluster with a high-bandwidth connection
to the data, the entirety of the LoTSS data can be reduced within the �ve year time
span of the project.
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The paper is structured as follows: Section 3.3 outlines the LOFAR data
reduction process and computational requirements. Section 3.4 describes the design
of the LRT framework and its capabilities, Section 3.4.2 describes the modi�cation
of the existing LOFAR software, and the performance and results are in Section
3.4.4. Finally, conclusions and future work are in Section 3.5.

3.2 Related Work

Scienti�c processing is increasingly moving to Grid and cloud-based distributed
computing. With increasing data sizes, researchers have begun focusing on scalable
ways to parallelize their work�ows. From genetic sequencing [51] and bioinformat-
ics[52] to neuroscience[53] and ecology [54], ever growing data sets have driven the
development of distributed work�ow systems in science[55][56].

The framework presented in this publication is built on previous work dis-
tributing LOFAR pre-processing on a computing cluster (Oonk+ in prep) using a
PiCaS server to track progress[57]. The required infrastructure, a PiCaS[57] server
and a CernVM Filesystem client[58] have already been deployed on the target clus-
ter and tested prior to this work. Additionally, continual support for these packages
was provided by the SURFsara science support group.

PiCaS[59] and CouchDB[60] have been used in other distributed com-
puting projects to launch and monitor jobs and exchange metadata. Job monitoring
using PiCaS is also used in projects such as Sim-City[61] and Finite Element mod-
elling for sea dyke design[62]. In these works, pilot jobs were automatically launched
and tracked remotely. The PiCaS framework enabled a high degree of automation
and has helped process large amounts of data.

CouchDB is also successfully used by the LHCb team to monitor the
nightly build process of their software[63] and by Sante et al.[64] to launch asyn-
chronous jobs to visualize and analyze gene sequencing data. As CouchDB doc-
uments can hold arbitrary information and attachments, the use of the CouchDB
platform favours projects requiring the storing of metadata for many concurrent
jobs.

CernVM-FS[58] has been used by projects to package and publish software.
Software such as the ATLAS [65] and the NOνA [66] are compiled on a central
server and published to worker nodes. The LOFAR software has been similarly
packaged (Oonk+ in prep). This makes deployment of processing scripts possible
without compilation on the worker machines.
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Figure 3.1: A schematic of the data �ow through the Direction Independent Pipeline (pre-
FACTOR[40]) and one of the DirectionDependent Pipelines (DDFacet). The Initial Source
Subtraction is only necessary for some DD pipelines and is not currently implemented.

3.3 LOFAR Data Processing

Creating images from data collected by an aperture synthesis array[67] requires sev-
eral steps of calibration and imaging. In order to place this work in the proper radio
astronomy context, a brief introduction to LOFAR data processing follows. Sec-
tion 3.3.1 gives an overview of LOFAR processing from an archived observation to
a �nal image. A schematic of this is in Fig.3.1. Section 3.3.2 details the process-
ing steps currently implemented as well as their computational challenges. Section
3.3.3 contains an overview of the bene�ts of integrating the processing software with
the LRT framework. Finally, section 3.3.4 gives a description of the processing by
focusing on the data �ow. A visualization of the processing detailing the �ow of data
is presented in Fig. 3.2.

3.3.1 Producing Images From LOFAR Data

The raw data is stored in the LOFAR Long Term Archive. Typically, an 8 hour
observation results in a 16 TB data set split into 244 65GB �les. Throughout
the LoTSS data processing, this data is reduced to a 500GB set of calibrated data.
The calibrated data is then imaged, producing a �nal set of a few 1.2GB images of
25k*25k pixels. The calibrated set is archived as it can be re-imaged in the future.
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Data reduction for the LoTSS survey is split into two pipelines: Direction
Independent (DI) calibration and Direction Dependent (DD) calibration (Fig3.1).
The Direction Independent pipeline[40][18] produces images that are limited in
resolution and contain instrumental e�ects[25]. To achieve high �delity continuum
images, the ionospheric and beam errors must be corrected[68]. As those e�ects
vary across the �eld of view, a Direction Dependent calibration step must follow.
Without these corrections, the image quality and resolution is severely limited[18].
We are currently working on a GRID implementation of the Direction Dependent
pipeline and will report on this in a future paper.

3.3.2 Direction Independent Processing

The LOFAR telescope consists of many antennae, each with its own electronic gain.
A gain calibration needs to be performed by observing a bright calibrator source be-
fore or after the science target[68]. Using this observation, the antenna gains for
the telescope are calculated. This is performed by the Calibration pipeline of the
pre-FACTOR software[40]. The results from this step are applied to the science
target, and target observation is averaged and processed. This consists of remov-
ing Radio Frequency Interference and subtraction of bright o�-axis sources, and
�nally, calibration against a sky model derived from surveys conducted with pre-
vious telescopes[68][18]. These steps are performed by the Target pipeline of the
pre-FACTOR software[40]. The result is a calibrated data set which is up to 64
times smaller than the uncalibrated archived data.

A 16TB data set cannot �t into a machine’s memory, which is typically less
than 128GB. Because of this, the Direction Independent processing is be split by
dividing the original full-bandwidth observation into independent chunks of nar-
rower bandwidth. A typical observation spanning 48 MHz is split into 244 �les
called Subbands, each of which spans 0.1953 MHz. These Subbands are processed
simultaneously, as each undergoes the same processing steps. This is a form of data-
level parallelism.

The Direction Independent calibration pipeline (Fig.3.2) consists of an ex-
isting set of scripts which use the LOFAR software suite[69] to process the initial
data sets. These scripts also handle the post-processing and application of the cal-
ibration results[18]. These scripts are contained in the package pre-FACTOR[40].
The order of the scripts and their parameters are contained in a parameter-set �le
(henceforth ’parset’). The parset de�nes a sequence of procedures, each launching
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one or more executables. The execution of the procedures in a parset de�nes a step
in the Direction Independent Pipeline.

3.3.3 Implementing the DI Calibration on the GRID

The LoTSS survey is mainly conducted by a team at Leiden University. The band-
width between a University cluster and the LOFAR data archive is too low to down-
load the data, 10 MB/s in the case of Leiden University. At Leiden University,
downloading of one data set would take ten times longer than the processing. The
processing was moved to the SURFsara grid location at the Amsterdam Science
Park1 as there were previous successes in processing LOFAR data at SURFsara
(Oonk+ in prep). In order to take advantage of the computational resources at the
SURFsara Gina cluster[70], the LOFAR pre-FACTOR pipeline was modi�ed as
part of the development LRT framework. The two steps of the DI reduction, the
Calibrator and Target, were each split in two parts. The �rst part of the Calibrator
and Target processing is parallelized by running one �le per node, and the second
runs combine these results. This takes advantage of the data level parallelism of
LOFAR processing.

Additionally, splitting the computation makes it more robust. In the case
that the download or processing of one job fails, it can be restarted without disrupting
parallel jobs. When a step has �nished processing, the next step can be launched
automatically enabling the massive processing of LOFAR Surveys data.

The pre-FACTOR software was designed to be run on single machines or
clusters with a shared �le system. Because the worker machines at the SURFsara
cluster have isolated storage, scripts are included in the LOFAR Reduction Tools to
load the relevant data on the worker node before processing. After a job is �nished,
the scripts save intermediate results to a storage location external to the cluster.

3.3.4 Data Flow and Processing Steps

A researcher interested in processing LOFAR data needs to download it from the
LOFAR Long Term Archive. Leiden University leads the LoTSS survey and has
a computer cluster dedicated for LOFAR processing. The connection between the
Leiden location and the LOFAR data archive is typically 10 MB/s. At this rate,

1http://docs.surfsaralabs.nl/projects/grid/en/latest/Pages/Service/system_specs.html
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downloading a single 16TB LoTSS data set completes in two weeks. At this rate,
transferring 3000 data sets would take over a century.

Unlike at Leiden University, the SURFsara clusters have a gigabit connec-
tion to the data archive, accelerating the data retrieval to 1.5 days. Additionally, hav-
ing two orders of magnitude more processing nodes than at Leiden, the reduction
can be further parallelized. This has accelerated the processing of one (downloaded)
data set from more than two days to less than half a day.

Using intermediate storage to hold the results from each step, the pre-
FACTOR DI pipeline (Fig.3.1) was split into four steps as in Fig. 3.2. The Calib
1 and Target 1 steps download the raw data at one piece per worker machine and
store the processing results (Calibration Tables and Processed data respectively) in
storage. The second Calibration and Target steps combine these results and process
them producing the calibration solutions and data sets respectively.
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Figure 3.2: Data �ow and parallelization of the Direction Independent Processing. The
Calibrator 1 and Target 1 steps run concurrently as independent jobs. Calibrator 2 and
Target 2 combine these results. Note that the Target 1 step requires the solutions produced
by the Calibrator 2 step. This places a strict ordering on the processing steps.

3.4 Framework Design

The LRT framework (Fig. 3.3) was developed to automate the LOFAR Direction
Independent calibration by processing the data at the Gina cluster SURFsara[70].
The goal of the framework was to adapt the pre-FACTOR package to take advan-
tage of the large computational resources and high bandwidth at this site. Thanks
to the data-level parallelism, using the computational resources at the Gina cluster
accelerates the data reduction.
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Figure 3.3: Overview of the design of the LRT framework.

3.4.1 Framework Elements

The LRT framework consists of a set of modules responsible for di�erent parts of
the data reduction. The srmlist module handles the links to the data. If the data
is on tape, it sends a command to stage it to disk. The sandbox module creates
an archive of processing scripts and uploads it to storage. The Token module is
responsible for managing metadata, which de�nes a processing job. Appendix 3.A
contains information on the functionality of each module and their use.

Storing Job Metadata

The LRT framework is e�ective for pipelines that execute the same processing steps
on a large data set split across many machines. Each part of the data set is processed
on a single machine, and the metadata of this job is stored in a remote database
which can be read from and written to by the worker machine. By using a concur-
rent document-oriented database such as CouchDB[60], each document can store
the metadata regarding a single processing job. This is not possible with relational
databases such as MySQL. These documents are called Tokens, as de�ned by the
PiCaS framework[57].

The �rst implementation of PiCaS and CouchDB for LOFAR data reduc-
tion was carried by J. B. R. Oonk and N. Danezi in the context of the LOFAR
spectroscopy project and custom user processing (Oonk et al. in prep). This �rst
implementation focused on processing individual data sets and required a high level
of user interaction. Here we extend this implementation to automatically handle
and connect multiple runs (calibrator and target) and their products.
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By logging the name of the pipeline step in the job description, each job
is aware of which pipeline step it is processing and executes the appropriate scripts.
Important to note is that the CouchDB documents can store text and integer values
as well as �le attachments. The LOFAR implementation uses attachments to store
diagnostic �les produced by the worker machines, lists of links to the data and parset
�les that de�ne the pre-FACTOR work�ow.

Creating Job Tokens

The �rst step to automating batch processing is to create the job tokens which hold
the processing metadata and load them into the database. In order to track multiple
concurrent reductions, these tokens are combined in sets. Once this set is given a
name, a batch of tokens can be created for each pipeline step and uploaded into
the PiCaS server. These tokens are set in the ‘todo’ state, indicating the processing
has not yet started. The speci�c implementation of the ‘pre-FACTOR’ software is
discussed in Appendix 3.A.

Packing Scripts

While the PiCaS database can hold metadata which di�ers across jobs, pipelines or
observations; the processing scripts need to be stored in a location where the worker
machines have access to them. These scripts are archived and uploaded to storage
and their location is added to the job token. After a worker machine locks a job
token, it downloads and extracts the processing scripts, reads the metadata from the
token and begins the processing (Fig.3.4).

The location of the scripts is stored in the job token. This allows di�erent
steps of the pipeline to use di�erent sets of scripts. The bene�ts from this design is
that as long as the worker node has access to the URI (Universal Resource Identi�er)
of the scripts, it can process the data, making data reduction portable over a variety
of distributed computing environments, including the GRID. This capability will be
used in the future to move processing to the location of the archive (Section 3.5.2).
Implementation of this process is summarized in Appendix 3.A.

Processing

Processing is launched with a launch script executed on a worker node. This script is
responsible for locking a job token, taking it from the ‘todo’ state to the ‘locked’ state.
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Figure 3.4: Starting processing on workermachines. Currently processing is done on SURF-
sara Gina nodes, however the framework has been tested at the Leiden University cluster.

After the token is locked, the launch script downloads the script archive and launches
the processing. For the LOFAR pre-FACTOR software, the scripts include the
latest version of the pre-FACTOR repository. Additionally, there are helper scripts
that set up the processing environment, download the data, post-process the output
and upload the data to intermediate storage. The metadata stored in the PiCaS job
token is fed into the setup and processing scripts.

Since the processing scripts and metadata are stored remotely, the same
small launch script can load many di�erent reduction pipelines simply by changing
the group of tokens it should lock. This design choice makes it easy to create other
script archives for the Direction Dependent pipeline or other LOFAR processing
work�ows.

Intermediate Data Storage

Splitting the processing into multiple steps requires intermediate data to be stored
at a location accessible to the worker machines. As the current processing is done
at the Gina cluster, the intermediate results are stored in several dedicated storage
pools hosted by SURFsara. The LRT processing scripts check for the availability
of an initial data set or intermediate data product on launch and download it. This
avoids unnecessary repetition of reduction steps and allows to restart a failed job.
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Figure 3.5: Processing of LOFAR data from the Long Term Archive with results stored at
an intermediate storage location.

Since the data location is static, the paths of the data are hard coded into
the scripts. The framework design, however, also allows a job to log the location
of its output data into the CouchDB database. Jobs in subsequent steps can read
the location of their input data from the tokens of the previous job. This will be
implemented when the LOFAR data processing becomes distributed acrossmultiple
locations.

3.4.2 LOFAR Surveys Use Case

The LOFAR Two Meters Sky Survey requires the processing of more than 8 PB of
data each year in order to keep up with the data produced by the telescope. As there
are more than 3000 observations planned, processing them manually is untenable.
Additionally, the large raw data sizes require the data be reduced in parallel before
the Direction Dependent calibration step since the data will not �t in the memory
of a single machine.

Re-purposing the LOFAR pre-FACTOR software to take advantage of the
GRID computing resources by leveraging the automation provided by the LRT
framework has allowed the processing of more than a hundred data sets in the time
span of four months. Additionally, this was done in the time frame that an as-
tronomer would normally produce less than 10 Direction Independent calibrated
observations, hence a providing a necessary speed up by an order of magnitude.
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3.4.3 Framework Capabilities

The LRT implementation is designed to be as platform-independent as possible.
It allows for easy extensions enabling LOFAR reduction schemes other than the
LoTSS reduction. Two examples of this are the updated LOFAR GRID spec-
troscopy and LOFAR GRID pre-processing pipelines (Oonk+ in prep). The GRID
pre-processing pipeline runs �agging of bad data and averaging, however performs
no calibration. The spectroscopy pipeline uses an independent set of scripts to per-
form calibration, bandwidth correction and imaging.

Thanks to the abstraction of the metadata and scripts storage, processing
is also possible at other locations. The pre-FACTOR scripts require an installa-
tion of the LOFAR software stack[71]. These requirements are met by mounting
a CernVM-FS[58][72] installation of the LOFAR stack. The CVMFS service pro-
vides a portable pre-compiled copy of the LOFAR software. With the CVMFS
prerequisite satis�ed and an active grid proxy, any computer can download data and
process a job in any data reduction step.

3.4.4 Initial Results

Automatically launching jobs has made it possible to process more than 100 data
sets between November 2016 and February 2017. Without a framework to auto-
mate and distribute the processing and a cluster at a Grid location, these data sets
would need to be downloaded to an institute’s cluster. Such standalone runs of the
‘pre-FACTOR’ scripts typically process one observation in two weeks, taking into
account the data transfer time. At the 10MB/s connection (The sustained speed
at Leiden University), the downloading would take over 5 years alone. Porting the
LOFAR LoTSS data reduction to a Grid location using the LRT framework has
resulted in a 15x increase in data throughput. Suggestions on further increasing the
throughput are presented in Section 3.5.2.

3.5 Conclusion and Future Work

The goal of the LRT Framework is to create an automated software which can be
used to port LOFAR processing to a massively distributed compute environment.
The Direction Independent calibration of the LOFAR Two Meter Sky Survey was
used as a demonstration of the capabilities of the LRT software.
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Combining the ‘pre-FACTOR’ scripts with the LRT tools resulted in a 15x
increase in throughput compared to previous data reduction strategies. Thanks to
the automation provided, it is possible to process hundreds of observations, neces-
sary for large astronomical survey projects such as the 3000+ observations of the
LoTSS.

The scalability of this framework allows launching multiple data reductions
concurrently and easily monitor their progress. The portability of the LRT frame-
work makes it easy to move processing to archive locations, further increasing the
throughput. Finally, as the framework is general, other LOFAR projects can in-
crease throughput and automation by integrating their software.

3.5.1 Throughput Improvement

Using the LRT framework, more than 100 data sets have passed through the Direc-
tion Independent calibration. This is more than a 15 fold increase compared to the
throughput at an institution with limited bandwidth to the data archive. From these
data sets, 30 images have been produced since November 2016. The Direction De-
pendent pipeline, responsible for the imaging of the DI calibrated data, is not yet
automated using the LRT framework. The topic of this automation will be handled
in future work. Future improvements (Section 3.5.2) are expected to increase the
throughput to one image per day.

Currently, data reduction is launched manually. There are upcoming plans
to create a trigger launched by theObservatory at the end of a successful observation.
Using this trigger, the processing can be integrated with the data acquisition and
launched automatically at the end of the observation. Doing so enables producing
an image less than a week after the observation has completed without requiring
human interaction.

3.5.2 Future Work

Most of the LoTSS data is not stored at the SURFsara Grid location. Because of
the high data sizes, the 1 Gbps transfer between these remote sites and SURFsara is
insu�cient to process the 3000+ data sets. The proposed solution is to launch the
initial reduction steps (Calibrator 1 and Target 1 in Fig.3.2) on compute clusters at
the archive locations. Running the Target 1 step at these sites will reduce the data
size from 16TB to 0.5TB. The resulting intermediate data can easily be transferred
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over a 1 Gbps connection in 1 hour compared with the 35 hours for the original
data.

While the LRT framework successfully automated the Direction Indepen-
dent calibration pipeline, it still needs to implement the Direction Dependent pro-
cessing scripts. The DI data can be easily split into pieces and processed concur-
rently, however current Direction Dependent pipelines cannot split the data easily.
This means they will only bene�t from the automation aspect of the framework.
Because of this limitation of the algorithms, (Direction Dependent) processing of
each data set needs to be done on a single machine. This part of the processing
currently takes more than four days per data set per node. To process all 3000
observations within �ve years, the DD reduction will need at least eight dedicated
machines continuously processing data. Nevertheless, the input data is only 200-
500GB making it easier to store and transfer to institutes not part of the European
Grid Infrastructure.

The Xenon framework[73] allows launching jobs at multiple clusters from
a single location. Thanks to the portability of the LRT software, it will be possible
to integrate the LOFAR reduction with Xenon. This will automate the launching
of Direction Dependent processing at multiple institutions. Automatically launch-
ing these jobs will make e�cient use of the computer resources at SURFsara and
other sites. Using this strategy, the LoTSS project data can be processed within the
anticipated time.

Finally, as the reduction is automated, it can be started right after the tele-
scope �nishes the observation. Launching jobs immediately after an observation will
minimize the time staging the data from tape to disk. Currently, the staging process
can take up to a week. Triggering the processing immediately after observation, an
image will be produced less than a week after the data is acquired.

Minimizing the latency between observation and science quality images will
bene�t the LOFAR community immensely by allowing radio astronomers to focus
on their speci�c science case. An all-sky survey at the 150 MHz range will cre-
ate a multitude of targets for follow-up with optical telescopes and result in many
discoveries in the �eld of Radio Astronomy. A full list of science results expected
from the LoTSS project can be found in[25]. E�cient high-throughput processing
of LOFAR data will empower the above science cases opening the way to exciting
discoveries.
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3.A Execution of LOFAR Reduction Tools

The LRT framework handles staging of LOFAR data, packaging and uploading
worker node scripts (named sandboxes), creating PiCaS job tokens and launch-
ing pilot jobs on the SURFsara Gina cluster. The framework is modular, al-
lowing a user to execute any of the previous steps manually, or alternatively
launch an automated reduction. It can be downloaded from the Github page
(github.com/apmechev/GRID_LRT) and installed with
python setup.py build && python setup.py install . Documentation on
the usage of the tools can be found at the Github page.

https://github.com/apmechev/GRID_LRT
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4 Pipeline Collector : Gathering
performance data for distributed

astronomical pipelines

Original Abstract: Modern astronomical data processing requires complex
software pipelines to process ever growing data sets. For radio astronomy,
these pipelines have become so large that they need to be distributed across
a computational cluster. This makes it di�cult to monitor the performance
of each pipeline step. To gain insight into the performance of each step, a
performance monitoring utility needs to be integrated with the pipeline exe-
cution. In this work, we have developed such a utility and integrated it with
the calibration pipeline of the Low Frequency Array, LOFAR, a leading ra-
dio telescope. We tested the tool by running the pipeline on several di�erent
compute platforms and collected the performance data. Based on this data, we
make well informed recommendations on future hardware and software up-
grades. The aim of these upgrades is to accelerate the slowest processing steps
for this LOFAR pipeline. The pipeline_collector suite is open source and will
be incorporated in future LOFAR pipelines to create a performance database
for all LOFAR processing.
This chapter is based on the work of A.P. Mechev, A. Plaat, et al.
“Pipeline Collector: Gathering performance data for distributed astronomical
pipelines”. In: Astronomy and Computing 24 (2018), pp. 117–128. issn: 2213-
1337. doi: https://doi.org/10.1016/j.ascom.2018.06.005. url: http:
//www.sciencedirect.com/science/article/pii/S2213133718300490
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4.1 Introduction

Astronomical data often requires signi�cant processing before it is considered ready
for scienti�c analysis. This processing is done increasingly by complex and au-
tonomous software pipelines, often consisting of numerous processing steps, which
are run without user interaction. It is necessary to collect performance statistics for
each pipeline step. Doing so will enable scientists to discover and address software
and hardware ine�ciencies and produce scienti�c data at a higher rate. To identify
these ine�ciencies, we have extended the performance monitoring package tcollec-
tor1[74]. The resulting suite, pipeline_collector, makes it possible to use tcollector to
record data for complex pipelines. We have used a leading radio telescope as the
test case for the pipeline_collector suite. The discoveries made with our software will
help remove bottlenecks and suggest hardware requirements for current and future
processing clusters. We summarize our �ndings in Table 4.1 in Section 4.3.

Over the past two decades, processing data in radio astronomy has increas-
ingly moved from personal machines to large compute clusters. Over this time,
radio telescopes have undergone upgrades in the form of wide-band receivers and
upgraded correlators [75, 76]. In addition, several aperture synthesis arrays such
as the Low Frequency Array [LOFAR, 77], Murchison Wide�eld Array [MWA 78,
79] and MeerKAT [80] have begun observing the radio sky, leading to an increase
of data rates by up to 3 orders of magnitude [81, 82].

As the data acquisition rate has increased, data size has entered the Petabyte
regime, and processing requirements increased to millions of CPU-hours. In order
for processing to match the acquisition rate, the data is increasingly processed at
large clusters with high-bandwidth connections to the data. An important case where
data processing is done at a high throughput (HTC) cluster is the LOFAR radio
telescope.

The LOFAR telescope is a European low frequency aperture synthesis ra-
dio telescope centered in the Netherlands with stations stretching across Europe.
This aperture synthesis telescope requires signi�cant data processing before pro-
ducing scienti�c images [17, 18, 83, 84]. In this work, we will use our performance
monitoring utility, pipeline_collector2, to study the �rst half of the LOFAR process-
ing, the Direction Independent (hereafter DI) pipeline.

1https://github.com/OpenTSDB/tcollector
2https://gitlab.com/apmechev/pipeline_collector.git
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One major project for the LOFAR telescope is the Surveys Key Science
Project (SKSP) [25]. This project consists of more than 3000 observations of 8
hours each, 600 of which have been observed. These observations need to be pro-
cessed by a DI pipeline, the results of which are calibrated by a Direction Dependent
(DD) pipeline. The DI pipeline is implemented in the software package prefactor3.
The prefactor pipeline is itself split into four stages and implemented at the SURF-
sara Grid location at the Amsterdam e-Science centre [35, 85]. The automation and
simple parallelization has decreased the run time per data set from several days to
six hours, making it comparable to the observation rate. To better understand and
optimise the performance of the prefactor pipeline, we require detailed performance
information for all steps of the processing software. We have developed a utility to
gather this information for data processing pipelines running on distributed com-
pute systems.

In this work, we will use the pipeline_collector utility to study the LOFAR
prefactor pipeline and suggest optimisation based on our results. To test the software
on a diverse set of hardware, we will set up the monitoring package on four di�er-
ent computers and collect data on the pipeline’s performance. Using this data, we
discuss several aspects of the LOFAR software which we present in Table 4.1. Fi-
nally, we discuss the broader context of these optimisations in relation to the LOFAR
SKSP project and touch on the integration of pipeline_collector with the second half
of the data processing pipeline, the DD calibration and imaging.

4.1.1 Related Work

Scienti�c �elds that need to process large data sets employ some type of data pro-
cessing pipelines. Such pipelines include e.g. solar imaging [86], neuroscience
imaging [87] and infrared astronomy [88]. While these pipelines often log the start
and �nishing times of each step (using tools such as pegasus-kickstart [89]), they do
not collect detailed time series performance data throughout the run.

At a typical compute cluster the performance of every node in a distributed
systems is monitored using utilities, such as Ganglia [90]. These tools only mon-
itor the global system performance. If one is interested in speci�c processes, then
the Linux procfs [91] is used. The procfs system can be used to analyze the per-
formance of individual pipeline steps. Likewise, the Performance API [PAPI, 92]
is a tool which collects detailed low level information on the CPU usage per pro-
cess. Collecting detailed statistics at the process level is required to understand and

3available at https://github.com/lofar-astron/prefactor

https://github.com/lofar-astron/prefactor
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Result # Description

R1 Native compilation of the software performs comparably to pre-
compiled binaries on two test machines.

R2 The processing steps do not appear to accelerate signi�cantly on a
faster processor or with larger cache size.

R3 Both calibration steps (calib_cal and gsmcal_solve) show linear corre-
lation between speedup and memory bandwidth.

R4 Disk read/write speed does not a�ect the completion time of the
slowest steps.

R5 Both calibration steps do not use large amounts of RAM despite pro-
cessing data on the order of Gigabytes.

R6 The calib_cal step can su�er up to 20% of Level 1 Instruction Cache
misses, while gsmcal only has 5% of these misses.

R7 Both calibration steps are impacted by Level 2 Cache eviction at
comparable rates.

R8 The calib_cal step stalls on resources 70% of cycles while the gsmcal
step only 30% of them.

R9 The calib_cal uses the CPU at full e�ciency for only 10 % of the CPU
cycles.

Table 4.1: A table of all the results presented in Section 4.3.

optimise the performance of the LOFAR pipeline and we will integrate PAPI into
pipeline_collector in the future. Finally, DTrace[93] is a SunMicrosystems tool which
makes it possible to write pro�ling scripts that access data from the kernel and can be
used to monitor process or system performance at run time with minimal overhead.
As DTrace was not installed on either of the processing clusters, we have not used it
to monitor the pipeline’s performance.

The Linux procfs system and PAPI record data which is alreadymade avail-
able by the Linux kernel. This option incurs insigni�cant overhead as it uses data the
kernel and processor already log. Likewise PAPI reads performance counters that
the CPU automatically increments during processing. These pro�ling utilities can
run concurrently with the scienti�c payload without using more than 1-2% of system
resources. Their low overhead is why we choose to use them to collect performance
data.

Other tools for performance analysis such as Valgrind [94] collect very de-
tailed performance information. This comes at the expense of execution time: run-
ning with Valgrind, the processing time slows by up to two orders of magnitude. As
such, we do not use Valgrind along the LOFAR software.
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4.2 Measuring LOFAR Pipeline performance with

pipeline_collector

We developed the package pipeline_collector as an extension of the performance col-
lection package tcollector. pipeline_collector makes it possible to collect performance
data for complex multi-step pipelines. Additionally, it makes it easy to record per-
formance data from other utilities. A performance monitoring utility that we plan
to integrate in the future are the PAPI tools described in section 4.1.1. The resulting
performance data was recorded in a database and analyzed. For our tests, we used
the LOFAR prefactor pipeline, however with minor modi�cations, any multi-step
pipeline can be pro�led.

tcollector is a software package that automatically launches ’collector’ scripts.
These scripts sample the speci�c system resource and send the data to the main
tcollector process. This process then sends the data to the dedicated time series
database. We created custom scripts to monitor processes launched by the prefactor
pipeline (4.A.1).

In this work, we use a sample LOFAR SKSP data set as a test case. A partic-
ular focus was to understand the e�ect of hardware on the bottlenecks of the LOFAR
data reduction. To gain insight into the e�ect of hardware on prefactor performance,
the data was processed on four di�erent hardware con�gurations (Table 4.2). As
typical upgrade cycle for cluster hardware is �ve years, our results will be used to
select optimal hardware for future clusters tasked with LOFAR processing.

4.2.1 Prefactor Pipeline

The LOFAR prefactor pipeline [18] is a software pipeline that performs direction
independent calibration using the LOFAR software. The LOFAR software stack is
a software package containing commonly used processing software used by LOFAR
pipelines [44, 95]. These tools are built and maintained by ASTRON4.

The prefactor pipeline performs a sequence of four stages, namely the cali-
brator and target calibration. The �rst half of prefactor processes data from a calibra-
tion source and the second half processes a science target. Altogether, this processing
takes six hours on a high-throughput cluster. The �nal result is a data-set ready for

4ASTRON: Netherlands Institute for Radio Astronomy, urlhttps://www.astron.nl/
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creating images of the sky at radio wavelengths. Figure 4.1 shows a graphical view
of the prefactor pipeline’s Calibrator and Target stages.

The Calibrator stage consists of the ndppp_prep_cal and the calib_cal step.
The former �ags radio interference and averages the data, and the latter performs
gain calibration on a bright calibration source. It is followed by the �tclock step which
�ts a clock-TEC model to the calibration solutions [18].

The Target stage consists of a ndppp_prep_targ step, predict_ateam, gsm-
cal_solve and gsmcal_apply steps. The �rst two of these steps �ag and average the
target data and calculate contamination by bright o�-axis radio sources. The gsm-
cal_solve step determines phase solutions for each antenna using a model of the tar-
get and the results of the ndppp_prep_targ step. Finally, the gsmcal_apply step applies
these solutions to the target data. Figure 4.2 shows the percentage of time spent by
these steps for the four prefactor stages.
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Figure 4.1: The four processing stages that make up the prefactor pipeline. The Calibrator
stages (top) process a known bright calibrator to obtain the gain for the LOFAR antennas.
The Target stages (bottom) process the scienti�c observation to remove Direction Indepen-
dent e�ects. The pref_cal1 and pref_targ1 stages are massively parallelized across nodes
without the need for an interconnect. The pref_cal2 step runs only on one node, while
pref_targ2 is parallelized on 25 nodes. As the LOFAR software does not use MPI, we can
run each processing job in isolation.
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Figure 4.2: Portion of processing time taken by each step for the four prefactor stages, as
reported by the Prefactor software. For each stage, the majority of processing time is spent
during one or two steps. This is due to the fact that each prefactor stage also has intermediate
book-keeping steps explicitly included in the pipeline. For each pipeline stage, the mean
processing time for the longest-running steps at SURFsara is also indicated. It should be
noted that while faster, pref_cal1 runs ten times as many jobs as pref_targ2.

4.2.2 Performance suite

Cluster performance is frequently monitored using utilities such as Ganglia [90,
discussed in Section 4.1.1]. These tools cannot access individual processes and
thus cannot collect data on a per-process basis. To collect such data, each process
launched by the active pipeline step needs to be pro�led individually. Our utility is
designed to gather such performance data.

Our monitoring package, pipeline_collector adds custom performance col-
lectors (4.A.1) to the performance collection framework tcollector. We use these col-
lectors to monitor individual pipeline steps as de�ned by the user5. The tools attach
to processes launched by the pipeline and record performance data at a one second
interval. This sampling frequency is at high enough resolution to detect trends and
anomalies in hardware utilization, and still result in a reasonable database size. The
performance data is uploaded to a remote time series database, OpenTSDB [96].
Details on the data collection can be found in 4.A.

5https://gitlab.com/apmechev/pipeline_collector.git
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Location CPU Speed (MHz) CPU Model Micro-architecture Cache Size RAM Speed7 Disk Speed8

Leiden 2200 E5-4620 Sandy Bridge 16 MB 1.4 GB/s 99.7 MB/s
SURFsara 2500 E5-2680 Sandy Bridge 30 MB 2.5 GB/s 65.4 MB/s
Hat�eld 2900 E5-2660 Sandy Bridge 20 MB 2.4 GB/s 155 MB/s
Laptop 3300 E3-1505M Skylake 8 MB 4.7 GB/s 822 MB/s

Table 4.2: CPU, Cache, RAM and Storage speci�cations of the four test machines. The
tested machines span a factor of 1.5x in CPU speed, 4x in cache and RAM Speed and 10x
in Disk speed.

Performance API

The time-series database is also used to collect low-level CPU information for each
process. This information is collected by the PAPI interface (discussed in Section
4.1.1). This was done through the papiex utility6 [97]. This utility records the
CPU’s internal performance counters. A CPU’s performance counters record in-
formation on how e�ciently the software uses the CPU’s resources. The results
from this test are detailed in Section 4.4.

4.2.3 Test Hardware

In order to study the e�ect of di�erent hardware con�gurations on the performance
of LOFAR processing, the prefactor pipeline was run on four di�erent sets of hard-
ware. The four machines tasked with processing LOFAR data comprised nodes at
three computational clusters and a personal computer. The tests were run while the
systems were idle to make sure there is no interference of other software with the
LOFAR processing. Table 4.2 details the speci�cs of the four test machines.

4.3 LOFAR Prefactor Test Case

With the test set described in Section 4.2, we aim to understand processing bottle-
necks in the prefactor pipeline and make informed decisions on future hardware and
software upgrades. To do so, we processed a sample observation at institutes that
typically process LOFAR data.

From the data collected by processing the sample observation, we deter-
mined the slowest pipeline steps. These steps were the calib_cal and gsmcal_solve,
seen in Figure 4.2. The calib_cal step is implemented by the software bbs-reducer

6Available at https://bitbucket.org/minimalmetrics/papiex-oss
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[95, 98] and the gsmcal_solve step is implemented by NDPPP [95, 99]. Both
bbs-reducer and NDPPP are part of the LOFAR software suite.

We collected performance statistics using the pipeline_collector suite as dis-
cussed in Section 4.2. The run time of the slowest prefactor steps on the four ma-
chines is shown in �gure 4.3. The results discovered using pipeline_collector are listed
in Table 4.1 and discussed in Section 4.3.2. Using the PAPI interface (discussed in
Section 4.2.2) CPU performance data was collected. The results from this test are
detailed in Section 4.4.

We will present a number of insights into the performance of the LOFAR
software collected by the pro�ling suite. The results are presented in Table 4.1 and
are grouped in threemain areas. The e�ect of compilation on the run time was result
R1. The set of results R2, R3, R4 and R5 were obtained using the pipeline_collector
package. Results R6, R7, R8 and R9 were collected with the PAPI package, which
will be integrated into pipeline_collector in the future.

4.3.1 Pre-compiled vs native compilation

The performance trade-o� between pre-compiled and native compilation was stud-
ied �rst. The majority of the processing for the LOFAR SKSP Project [25] is
done at the SURFsara gina cluster in Amsterdam. This location is part of the
European Grid Initiative (EGI)[85]. At this location, the software is deployed by
compiling on a virtual machine and mounting it on all worker nodes through the
CernVM FileSystem (CVMFS) service [100]. The CVMFS server allows any client
to mount a fully compiled LOFAR installation, making it easy to distribute and
version control the software within and outside of SURFsara. An alternative is to
locally compile the LOFAR packages on each cluster. The performance of the na-
tively compiled9 vs CVMFS installations was compared on the laptop test machine
using pipeline_collector. In order to validate this result, the two compilations of the
same software were also tested at the Data Science Lab at the Leiden Institute of
Advanced Computer Science (LIACS)10.

7benchmarked using dd
8sequential disk read, benchmarked using fio - �exible I/O tester:

fio –randrepeat=1 –ioengine=libaio –direct=1 –gtod_reduce=1 –name=test –filename=test
–bs=4k –iodepth=256 –size=4G –readwrite=read –ramp_time=4

9The software was compiled using -march=native and -O3 compilation �ags. On the laptop, gcc resolves
-march=native as broadwell. The CVMFS installation resolves -march=native as core-avx-i.

10https://www.universiteitleiden.nl/en/science/computer-science/about-us/our-facilities
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Figure 4.3: Job completion times for calib_cal and gsmcal_solve steps tested on four hard-
ware setups. The calib_cal step ran 244 times. The gsmcal_solve ran 24 times as the data is
concatenated from 244x1 to 24x10 sets. The step with the longest latency is gsmcal_solve
while calib_cal consumes a comparable number of core-hours over 244 jobs.

An interesting discovery is that the LOFAR software did not process data
faster when compiled natively. This is despite the fact that the local install was com-
piled with advanced processor instructions available on the host machine. Figure
4.4 shows a histogram of its processing time with the two di�erent compilation op-
tions for the calib_cal software running on the sample data set. The same test was
done for the software performing the gain calibration (gsmcal_solve), seen in Figure
4.5. The result of this experiment is shown in Figures 4.4a and 4.5a. The software
compiled at SURFsara showed a minor improvement for the calib_cal step on the
laptop machine, however this improvement is not seen on the computational cluster
node.

Overall, the software for both steps shows no signi�cant improvement when
compiled natively. This is result R1 in Table 4.1. The second run at LIACS also
con�rms this result for both steps (Figures 4.4b and 4.5b). This result suggests that
the slowest prefactor steps are not optimised for modern processors.

4.3.2 Prefactor Run time and Hardware Parameters

Next, we studied the dependence of run time on di�erent hardware parameters.
With software that collects per-step performance statistics for the LOFAR pipeline,
the dependence of the pipeline processing on hardware performance can be easily
pro�led and studied. Using pipeline_collector we determined the pipeline’s slowest
steps with respect to di�erent hardware parameters.
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(a) Two compilation options on a Laptop (b) Two compilation options on cluster node

Figure 4.4: Di�erence in processing time for calib_cal when compiled remotely and natively.
calib_cal was run 244 times with the native software and 40 times with the CVMFS com-
pilation. Two tests were done: one on the personal laptop (4.4a) and one on a cluster node
at the LIACS Data Science Lab (4.4b). The test on a cluster node shows no signi�cant dif-
ference in run time between compilation options. The laptop test suggests that the remotely
compiled software may run 5% faster than the local compilation.

(a) Two compilation options on a Laptop (b) Two compilation options on cluster node

Figure 4.5: Di�erence in processing time for gsmcal_solve when compiled remotely and na-
tively. gsmcal_solvewas run 50 times with the native software and 120 times with the CVMFS
compilation. Two tests were done: one on the personal laptop (4.5a) and one on a cluster
node at the LIACS Data Science Lab (4.5b). Just like with the calib_cal step, the gsmcal_solve
step also doesn’t accelerate signi�cantly when natively compiled.



4

70 Chapter 4. Pipeline Collector

The system parameters studied here are the CPU speed, memory through-
put, cache size and disk speed. Modern computers can have a complex memory
hierarchy, as demonstrated in Figure 4.6 [101]. This is due to the cost trade-o�
between memory size and memory speed. Because of this trade-o�, the full data
set is stored on disk, while the working set is placed in RAM. This is the data that the
processor needs to access at the current time [102]. The most frequently accessed
parts of the data are stored in the CPU cache, which evicts the oldest data when full
[103].

The CPU processing speed is faster than the RAM latency, so a hierarchy
of caches exist. Caches store small subsets of the working set and have a fast connec-
tion to the processor. The fastest data link is between the CPU and the L1 Cache,
with the link to RAM being slower and the disk read speed slower still. The lim-
ited memory capacity of the di�erent levels of the memory hierarchy as well as the
throughput between them will lead to performance bottlenecks. These bottlenecks
will lead to the processor waiting on memory. Such stalls lead to longer processing
times.

Figure 4.6: A model of the memory hierarchy, as described in [104].

CPU

The CPU speed is usually the primary factor determining how fast computations
can be made. In general, a faster CPU will result in faster data processing.

However, Fig. 4.7a shows that the run time of the calibration of the cal-
ibrator does not strongly depend on the CPU frequency. While the test nodes at
SURFsara and Leiden run at the same CPU frequency, running on a cluster node at
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(b) gsmcal_solve

Figure 4.7: Performance of the bottleneck steps compared with the CPU speeds of the four
test machines. The values are the mean of 244 runs (Standard prefactor run) and the error
bars show the 1-sigma of the distribution of the run time.

SURFsara takes half the time as on a node at Leiden. Even more surprisingly, the
gsmcal_solve step does not bene�t signi�cantly from a faster CPU, despite being the
most computationally heavy prefactor step (R2). This step does the gain calibration
on the target �eld using the StEFCal algorithm [105]. Figure 4.7b shows only a
slight improvement over faster CPU clock speeds for both steps. The correlation
between completion time and CPU speed is similar for both steps.

Cache

The CPU has a hierarchy of caches consisting of Level 1, Level 2 Cache and LLC
Cache. For the four processors tested, the Level 1 and 2 caches were all the same
size, thus the only di�erence is the Last Level Cache (LLC or just Cache in Figure
4.6). This cache stores data needed by the CPU, so the larger it is, the less the
processor needs to wait for RAM to return data.

In general, numerical codes bene�t from larger cache sizes [104, 106]. In-
terestingly, �gure 4.8b suggests that the gsmcal_solve step does not exclusively de-
pend on larger cache R3 (Table 4.1). On the machines with a larger cache, the
gsmcal_solve step completed processing as quickly as on the machines with smaller
cache, even down to 8MB.
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(b) gsmcal_solve

Figure 4.8: Performance of the two bottleneck steps with respect to Last Level Cache size.
The gsmcal_solve step shows no trend between cache size and completion time. The calib_cal
step runs the fastest on the machine with the smallest cache.

RAM Bandwidth

If the entire data set does not �t into cache, the software needs to transfer data from
RAM to the CPU. In these cases, prefactor bene�ts from a fast bandwidth between
the cache and RAM. For this study, the RAM throughput was benchmarked11. This
command copies dummy data into systemmemory. As this utility exists on all Unix
systems, this is a standardized benchmark of the RAM performance.

Figure 4.9a showed that higher bandwidth is correlated with a faster com-
pletion time for the calib_cal and gsmcal_solve steps (R4). The result is to be expected
as the working set of these steps is 200MB and 1.0GB respectively, and cannot �t
into cache readily, however it is loaded into RAM within the �rst 5 seconds of the
run (Figure 4.10), and is streamed from memory throughout the run.

Disk Read speeds

The slowest link in the memory hierarchy is the disk read speed. For the calib_cal
step, the entire data is loaded into memory during the �rst few seconds of the run,
after which the disk only becomes important when the results need to be written out.
The gsmcal_solve step streams data from the disk to memory throughout the entire
run. The plot of disk read speeds (Fig. 4.11b) also shows that a faster disk does not
speed up the slowest step R5. To verify that disk throughput was not the limiting

11Using the command $> dd if=/dev/zero of=/dev/shm/test bs=1M count=2048
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Figure 4.9: Performance of the two bottleneck steps and RAM bandwidth in GB/s. Both
the calib_cal and gsmcal_solve steps show a trend of faster processing times on machines
with higher RAM bandwidth. Both steps show a trend of decreasing processing time with
increasing RAM throughput.

factor, the entire data set (25 GB) was moved to main memory (using /dev/shm).
The resulting run time for both bottleneck steps did not change.

The calibration steps both stored less than 200MB of data in memory
throughout their run. Figure 4.10 shows the time-series of the total memory used
by these steps. The calib_cal step uses only 200MB of memory and gsmcal_solve
only 35MB. While the gsmcal_solve step works on a 1GB data set, it streams the
data in memory and thus does not require 1GB of RAM. Alternatively, the calib_cal
step loads the entire (200MB) data set into memory for the entire duration of the
run. The RAM usage time-series in Figure 4.10 show that the RAM is �lled for
the �rst 5 seconds of the run, further con�rming that the processing is e�ectively
independent from disk speed.

4.4 CPU Utilization Tests with PAPI

To gain more �ne grained data on the CPU utilization, the calib_cal and gsmcal_solve
steps were tested with the PAPI package. We ran this package as a test, to determine
whether collecting PAPI data is helpful in understanding pipeline performance.
PAPI can record data such as cache performance, branch prediction rate, fraction of
memory/branch instructions and others. This data is complementary to the procfs
information, which is collected by the Linux kernel. As the collected data was useful
in understanding the prefactor pipeline, we will include PAPI in the pipeline_collector
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(a) calib_cal (b) gsmcal_solve

Figure 4.10: Time series of the Virtual Memory Resident Set Size. This is the amount of
data stored in RAM (in Kb) during the calib_cal and gsmcal_solve steps. Both steps show the
same amount of memory use on all test machines. Additionally, after a brief loading of data,
the memory usage remains constant until processing is �nished.

(a) calib_cal (b) gsmcal_solve

Figure 4.11: Performance of the two bottleneck steps and Disk bandwidth in MB/s. There
is no correlation between the Disk read speed and the Run time of the steps.
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(a) Level 1 Data cache misses (b) Level 2 Instruction cache misses

Figure 4.12: Cache miss rates for calib_cal and gsmcal_solve, executed on the SURFsara gina
cluster. The cache is split into instruction and data caches. The �gures above show the
di�erence in the number of cache misses for both instruction cache and data cache for the
slowest prefactor steps. calib_cal su�ers signi�cantlymoreData cachemisses than gsmcal_solve
while the two steps undergo similar instruction Cache misses.

suite in the future. In the following sections we will discuss the results obtained for
the calib_cal and gsmcal_solve steps.

4.4.1 Level 1 Data Misses

The Level 1 Cache is split into cache for instructions and data. For all our test
hardware the L1 Data cache is 32 Kb, and has a direct link to the processor’s com-
putational units [107]. The processor collects information logging how many times
data requested by the CPU is not located into the L1 Data cache. This counter is
called the Level 1 Data Cache Miss rate. To resolve this type of cache miss, the
data needs to be fetched from L2 Cache. When this happens, the processor has
to wait for the requested data. R7: The recorded L1 data misses in Figure 4.12a,
show that the software performing the calib_cal step misses 20% of its L1 data cache
requests, while the software implementing the gsmcal_solve step misses less than 5%
of L1 Cache requests. These cache misses often happens in multi-threaded appli-
cations where there are instructions shared by multiple threads on the same cache
line [108].

4.4.2 Level 2 Instruction Misses

Unlike the Level 1 cache, Level 2 cache stores data and instructions in the same
location. When the cache is full, it evicts the last used element in order to make
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(a) Resource Stall Cycles (b) Full Issue cycles

Figure 4.13: Resource stall cycles and Full Instruction Issue cycles. The two steps were
executed on the SURFsara gina cluster.

space for newly requested data. PAPI also counts these eviction events. Figure 4.12b
shows that for both steps, between 50 and 70% of L2 requests for an instruction do
not match the contents of L2 Cache. This is signi�cantly more than the applications
benchmarked in [109, Table 2]. Because both steps process data of considerable
size, the large amount of data required can evict instructions from the L2 cache
(insight number R7 in table 4.1).

4.4.3 Resource Stalls

Modern processors have multiple computational pipelines on chip, in order to pro-
cess data in parallel [110]. There are times when the processor’s internal pipeline
needs to wait for other instructions to �nish. When this happens, it �ags that it has
’stalled on a resource’. These resource stall cycles are also recorded by PAPI and
represented as a percentage of total cycles. From �gure 4.13a, it can be seen that
calib_cal stalls on 70% of the processor cycles, while gsmcal_solve only on 33% of
cycles (R8).

The Full Issue Cycles counter indicates the percentage of processor cycles,
in which the theoretical maximum number of instructions are executed. During
these cycles, the software uses the CPU optimally. The full issue cycles counter (Fig.
4.13b) also shows the di�erence in e�ciency between the calib_cal and gsmcal_solve
step (R9), with the former only working at peak e�ciency for 10% of the processor
cycles.

The plots in Figures 4.13a and 4.13b indicate that the calib_cal step does
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not use the internal CPU pipelines e�ciently leading to waiting on resources and
sub-optimal use of the CPU’s Computational Units.

4.5 Discussions and Recommendations

With an increase of data acquisition rates and data complexity in radio astronomy, it
is becoming important to thoroughly understand and optimise the performance of
processing pipelines. Using pipeline_collector, data can be collected for each pipeline
step without altering the processing software. We store this data in a time-series
database. The collected data can be studied to help researchers understand the
pipeline performance for di�erent processing parameters, data sets, and on di�er-
ent hardware. The pipeline_collector suite is easy to deploy for mature pipelines and
has minimal impact on pipeline performance. Typical CPU usage is <0.2% with a
memory footprint of ∼ 1-10 MB.

Creating a performance model with the collected data will allow us to to
optimise future clusters for LOFAR data processing. Doing so is necessary given
the current data throughput, number of observations and time-line of the SKSP
project. Similar issues will be encountered with upcoming radio telescopes [111].

To showcase the power of the pipeline_collector suite, the LOFAR prefactor
pipeline was run through a single data set on three clusters and a personal machine.
A number of insights were made using the high resolution timing data collected
from this package (such as in Figure 4.10) and are listed in Table 4.1. In the future,
we’ll apply the pipeline_collector software to the more complex LOFARDD pipeline,
ddf-pipeline12.

The slowest processing steps for the prefactor pipeline were identi�ed as the
calib_cal and gsmcal_solve steps. While the data can �t into the RAM for all of the
processing machines, it is much larger than the processor’s internal cache (Figure
4.6). The discoveries made concerned the memory hierarchy in Figure 4.6. Results
labeled R2, R8 and R9 related to the CPU performance; R2, R6 and R7 related to
the Cache performance; R3 and R5 related to the Memory usage and R4 discussed
the Disk speed.

Faster processors did not accelerate the gsmcal_solve step signi�cantly, as
this step streams data between the RAM and CPU. As the CPU speed increases,
streaming applications become bottlenecked by the throughput of data into the CPU

12https://github.com/mhardcastle/ddf-pipeline
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from RAM. As the gsmcal_solve algorithm iteratively calibrates chunks of the data,
these chunks need to be loaded from disk once, however they are moved from RAM
to CPU multiple times during calibration.

Similarly, the calib_cal step ismore dependent onmemory throughput than
on CPU speed as this step moves data to and from memory frequently. This step
also does minimization looping over the data set. As the data set does not �t in
the cache, parts of it need to be constantly moving from memory and back. Figure
4.8a shows that the machine with the smallest LLC cache runs the calib_cal step the
fastest. This is likely a combination of the bene�t of faster RAM and poor cache
optimisation for this software. The same e�ect is much less pronounced in Figure
4.8b, suggesting that software optimisation at least plays a part in the outliers for the
laptop machine.

4.5.1 Recommendations

Based on these results, the top hardware recommendation is that prefactor’s slowest
steps can be accelerated by running on machines with faster memory or upgrad-
ing the memory of the current machines. The two slowest prefactor steps showed
improvements on machines with faster RAM.

One software recommendation is to improve the e�ciency of the calib_cal
step through refactoring or by replacing the software package used. Unfortunately,
the software used for the gsmcal_solve step cannot be used for the calib_cal step as it is
not yet able to correct for Faraday Rotation [105], making it impossible to currently
use the software used by the gsmcal_solve step. Faraday Rotation has recently been
implemented in a development version of the prefactor pipeline and is currently un-
dergoing testing. This version of the pipeline will be implemented by September
2018.

Additionally, the large number of data cache misses recorded for the
calib_cal step suggests that its source code is not optimised for multi-threaded pro-
cessing. Data cache misses are often encountered when multiple threads have in-
structions on the same cache line13, forcing the memory controller to move this
cache line between cores [109]. This can also explain the large number of stalled
cycles (Fig. 4.13a) and low number of full issue cycles (Fig. 4.13b) for the calib_cal
step. It is recommended to further study the ine�ciencies of calib_cal or to replace
it with a newer software. If the software processing for this step is updated, analyzing

13A cache line is a row of cache memory which is loaded into CPU as a single unit [112]
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the cache and CPU performance of the new software will be necessary to determine
whether it e�ciently uses the available computational resources.

Finally, we discovered that compiling the software on a virtual machine did
not lead to a processing slowdown. Thismeans that the current slowest prefactor steps
are not optimised to use advanced processor instructions. Nevertheless, the result-
ing cross-compatibility is an encouraging result as it will allow to easily distribute
pre-compiled versions of the software without increasing the processing time. We
recommend continuing CVMFS deployment of LOFAR software.

4.6 Conclusions

In this chapter, we present a novel system for automated collection of performance
data for complex software pipelines. We use this suite to study the LOFAR prefac-
tor pipeline. The results are discussed aiming to understand the e�ect of di�erent
hardware parameters on the data processing. To do so, we run the pipeline on four
di�erent machines.

The software automatically collects performance data at the operating sys-
tem level without impacting processing time. Data for each pipeline step is extracted
using the OpenTSDB API, plotted and analyzed. Additionally, the pipeline_collector
suite is easy to extend with new collectors that record more detailed time-series data
for each pipeline step. The performance data is stored in the time series database
OpenTSDB.

Here, we used this data to �nd 9 insights into the LOFAR prefactor pipeline
listed in Table 4.1. The implementation details are described in 4.A.

The prefactor pipeline is used to do the initial processing for over 3000 ob-
servations that are part of the LOFAR SKSP Tier 1 survey. However, this pipeline
is also used for lots of other LOFAR data sets outside the SKSP project. We have
shown that increasing the RAM throughput is the easiest way to speedup prefac-
tor processing. Running the calib_cal step on hardware with RAM faster than 4
GB/s will save up to 700k CPU hours for the 3000+ unprocessed data sets. This
throughput increase will also speedup the gsmcal_solve step by 30% saving an addi-
tional 400k CPU hours. This is a signi�cant fraction of the estimated 2,400k CPU
hours required to process this data with the prefactor pipeline.

As shown in this work, we can correlate the performance of the LOFAR
software with di�erent hardware speci�cations. Additionally, the data sets can vary
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in size and job overheads on the compute cluster can depend on the processing
parameters. All of these parameters a�ect the processing latency for the calibration
and imaging pipelines. As such, a thorough parametric model is required to further
optimise the end-to-end LOFAR processing pipeline and predict processing times
on future clusters.

The design of this utility makes it easy to apply to future LOFAR pipelines.
It is important to note that pipeline_collector is general enough that it can be used
by other scienti�c pipelines, with no modi�cation of the pipeline. Integrating
pipeline_collector with a di�erent pipeline requires only minor work. In future work,
we will integrate pipeline_collector with ddf-pipeline. We will use this data to create
a performance model of the full LOFAR imaging pipeline [lvanweeren2016, 17,
83]. including theDI step, implemented by prefactor, and theDD step, implemented
by ddf-pipeline. This model will make it possible to �rst understand and then opti-
mise the LOFAR pipeline and suggest for hardware and software improvements.

4.A Performance Collection Implementation Details

In this work, we have developed the pipeline_collector suite, aimed at collecting de-
tailed time-series information from distributed scienti�c pipelines.

The tcollector package is a python software suite that can collect system per-
formance data at predetermined intervals. The package is designed to monitor the
performance statistics for web-servers and cluster nodes. The tcollector software
records time series of the di�erent performance metrics and sends them to a Time
Series Database through HTTP. The Time Series Database, OpenTSDB stores the
data in an HBase [113] instance at the performance collection server. Users inter-
ested in plotting time series can plot real time or historical data through an HTTP
interface with OpenTSDB.With a central performance collection server, data from
multiple processing sites can be collected and analyzed.

Tcollector formats the time series information in four �elds. First is the
name of the metric which is measured. Second is the UNIX timestamp. Third is
the time series recorded as an integer or a �oat. Finally, a set of tags (key-value
pairs) can be added to the data point. These four �elds are discussed below and can
be seen on the right side of Figure 4.14.
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tcollector.py

TSDB Server

Time Series Database

LOFAR 
Software

collector 1

collector 2

collector 3pipeline_coll 1

pipeline_coll 2

Worker Nodes

HTT
P P

OST

Metric       timestamp  value   tags
exe.ndppp.2131.io.rchar     1459921234          32                 host=sara.nl
exe.ndppp.5211.io.wchar    1459921234          672               host=sara.nl
proc.net.tcp                         1459921234         123                host=sara.nl
iostat.part.write_requests    1459921235         88                  host=sara.nl
iostat.disk.msec_total          1459921235         8001789        host=sara.nl
net.sockstat.sockets_inuse  1459921235         22                  host=sara.nl
net.stat.tcp.syncookies        1459921237         27                  host=sara.nl
net.stat.tcp.abort                 1459921237         410                host=sara.nl...

...

...

...

Figure 4.14: Communication between worker nodes and the TSDB server, including the
pipeline_collector modules (in red). The pipeline_collector suite collects information on the
running LOFAR pipelines, while the rest of the tcollector package collects system perfor-
mance data. The existing tcollector package and its collectors are shown in gray. The col-
lectors in gray only record metrics from the global system.

4.A.1 The pipeline_collector suite

The tcollector package cannot collect data on individual processes, nor can it asso-
ciate these processes with speci�c steps of a data processing pipeline. We’ve sup-
plemented the software with the pipeline_collector suite14 using an executable that
monitors a pipeline’s running processes15. When an executable that is part of the
LOFAR pipeline launches, a dedicated collector begins reporting information on
the individual process. Every time a new processing step starts, the prefactor pipeline
records the step name in a log �le. pipeline_collector determines the current running
step using this log. Running the LOFAR processing concurrently with the tcollec-
tor package gives us per-step performance data without changing or slowing down
the LOFAR prefactor pipeline. Furthermore, pipeline_collector can be integrated with
any processing pipeline as long as each pipeline step’s name is recorded at its launch.

The pipeline_collector suite sends data to the time series database in the same
format as the rest of the collectors included in the tcollector package.

4.A.2 Setting up for future pipelines

The setup options for pipeline_collector are stored in a con�guration �le in the root
directory of the package. This �le holds the sample interval, executables to monitor
and the location where pipeline_collector can read the current pipeline step

14Located at https://gitlab.com/apmechev/procfs_tcollector.git
15Located at https://github.com/apmechev/procfsamp
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The pipeline_collector suite reads the current pipeline step from a �le, the
location of which is speci�ed in the con�guration. This �le needs to be updated
each time the pipeline begins a new step. For LOFAR we have a script running
with the pipeline, and determining the current step using the pipeline logs. As each
pipeline has a unique sequence of steps, the current step needs to be recorded in a
�le in order for pipeline_collector to report it to the time series database. The location
of the �le recording the current pipeline step is read from the con�guration �le.

Next, the names of the speci�c processes need to be included in the con�g-
uration �le. In the case of LOFAR, we select the NDPPP, bbs-reducer and losoto
processes. The pipeline_collector searches the running processes for the current user
for these process names and launches a collector for each new process launched by
the current step.
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5 Fast and Reproducible LOFAR
Workflows with AGLOW

Original Abstract:
The LOFAR radio telescope creates petabytes of data per year. This data is
important for many scienti�c projects. The data needs to be e�ciently pro-
cessed within the time span of these projects in order to maximize the sci-
enti�c impact. We present a work�ow orchestration system that integrates
LOFAR processing with a distributed computing platform. The system is
named Automated Grid-enabled LOFAR Work�ows (AGLOW). AGLOW
makes it fast and easy to develop, test and deploy complex LOFAR work-
�ows, and to accelerate them on a distributed cluster architecture. AGLOW
reduces the setup time of complex work�ows: typically, frommonths to days.
We lay out two case studies that process the data from the LOFAR Surveys
Key Science Project. We have implemented these into the AGLOW environ-
ment. We also describe the capabilities of AGLOW, paving the way for use
by other LOFAR science cases. In the future, AGLOW will automatically
produce multiple science products from a single data set, serving several of
the LOFAR Key Science Projects.
This chapter is based on the work of A.P. Mechev, J.B.R. Oonk, et al. “Fast
and Reproducible LOFAR Work�ows with AGLOW”. in: 2018 IEEE 14th
International Conference on e-Science (e-Science). Oct. 2018, arXiv:1808.10735.
doi: 10.1109/eScience.2018.00029. arXiv: 1808.10735 [astro-ph.IM]
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5.1 Introduction

Data sets in radio astronomy have increased 1000-fold over the past decade[114].
It is no longer feasible to move, store and process these data sizes at university clus-
ters, nor to process these data manually. LOFAR, the Low-Frequency Array[77] is
a modern and powerful radio telescope that creates more than 5 Petabytes of data
per year. At present, the majority of LOFAR time is allocated to several Key Sci-
ence Projects (KSPs)[25]. These projects need to process hundreds or thousands
of observations. Typical observations produce approximately 14 TB of archived
data. Obtaining high �delity images from this data requires complex processing
steps. To manage and automate the data processing, work�ow management soft-
ware is needed. This software needs to accelerate LOFAR processing on a High
Throughput Computing (HTC) cluster while ensuring it is easy to prototype, test,
and integrate future algorithms and pipelines.

To automate LOFAR data processing, we have worked with the LOFAR
Surveys KSP (SKSP). Together, we designed a software suite that integrates LOFAR
software[95] with the Dutch Grid infrastructure[115]. This software, based on
Apache Air�ow1, makes it easy to add future science cases, extend and modify
pipelines, include data quality checks, and rapidly prototype complex pipelines.
For the SKSP use cases, AGLOW achieves a signi�cant reduction in development
time: from months to days, allowing researchers to concentrate on data analysis
rather than management of processing. Additionally, and perhaps more impor-
tantly, the software versions and repositories used are de�ned within the work�ow.
This makes reproducibility an integral part of the AGLOW software. Finally, the
software is built to leverage an HTC cluster by seamlessly submitting the processing
jobs through the cluster’s job submission system[116]. The work presented here
builds on our previous work parallelizing single LOFAR jobs[35] on a distributed
environment. The majority of processing was done at SURFsara at the Amster-
dam Science Park[85], which is one of the sites used by the LOFAR Long Term
Archive (LTA)2. Ongoing e�orts include scheduling and processing data at clusters
in Poznaǹ in Poland and Jülich in Germany.

Contributions: The main features of the AGLOW software are the follow-
ing:

• Integration of the Grid middleware with Apache Air�ow, allowing us to dy-
1https://airflow.apache.org/
2https://lta.lofar.eu

https://airflow.apache.org/
https://lta.lofar.eu
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namically de�ne, create, submit and monitor jobs on the Dutch national e-
infrastructure.

• Integration of the LOFAR (LTA) utilities in Air�ow, facilitating pipeline devel-
opers to automate staging (moving from tape to disk) and retrieval of LOFAR
data.

• Integration of the SURFsara storage with Air�ow, making LOFAR pipelines
aware of the storage layer available at the Dutch national e-infrastructure.

• Ease of creating simple software blocks, with which users can integrate and test
their pipelines.

• Storing all software versions and script repositories as part of the work�ow to
make LOFAR processing reproducible and portable.

Outline: The organisation of this manuscript is as follows: We provide
background on data processing in radio astronomy and why LOFAR science re-
quires complex work�ows and cover work�ow management algorithms and capa-
bilities (section 5.2). We discuss related work in work�ow management (section
5.3). In section 5.4, we introduce our software and two use cases. Both of our use
cases require acceleration at an HTC cluster and automation by a work�ow orches-
tration software. We follow these examples with details on the integration between
LOFAR software, LOFAR data and the resources at SURFsara in Amsterdam in
section 5.4.2. Finally, we discuss our results (sect. 5.5) and look ahead to the de-
mands of future LOFAR projects and upcoming telescopes in section 5.6.

5.2 Background

This work lies at the intersection of Radio Astronomy and Computer Science. The
goal of the study is to leverage the �exibility of an industry standard work�ow man-
agement software and use CERN’sWorldwide ComputingGrid3 at SURFsara [117]
to accelerate reproducible processing of LOFAR data.

A single LOFAR surveys observation is recorded in distinct frequency
chunks (henceforth called ‘Subbands’), each of which is uploaded to the LTA as
a separate �le. Some of the processing steps require the entire frequency informa-
tion, while other steps can run independently and operate on a single Subband. The

3http://wlcg.web.cern.ch/

http://wlcg.web.cern.ch/
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latter steps can be easily accelerated on an HTC cluster by taking advantage of the
data level parallelism.

Multiple scienti�c projects may desire to run di�erent processing steps on
a single LOFAR observation. To minimize time spent on retrieving data from the
LTA and eliminate re-processing of data, pipelines for multiple science cases need
to be integrated together. This integration should be done by a software that en-
codes the dependencies between di�erent steps and automatically executes process-
ing steps once their dependencies have been met. Software packages that solve these
challenges are called ‘work�ow management software’ (see, e.g., [118–120].)

5.3 Related Work

A work�ow is described by a set of tasks. The dependencies between these tasks are
encoded in a Directed Acyclic Graph (DAG) [121]. This data structure imposes a
strict dependency hierarchy between the tasks [122]. This means that there exists a
well-de�ned execution order and a well-de�ned list of dependencies for each task.
The execution order is typically determined by algorithms such as Kahn’s algorithm
[123] or a depth-�rst search [124].

Work�ow management software is used in various �elds from research to
industry. In biology, gene sequencing and analysis pipelines require automation
of multiple processing steps. In gene sequencing, Toil4 has been successfully used
to automate RNA sequence analysis[125]. Additionally, many software teams in
biotech develop their own in-house work�ow management software [126].

Currently, we can parallelize a single processing step of the pipeline using
the Grid LOFAR Tools (GRID_LRT5) [35]. The LOFAR Surveys science cases
incorporate multiple steps with inter-linked dependencies. Resolving these depen-
dencies can be done e�ciently by a comprehensive work�ow orchestration software.
The purpose of such software is to resolve dependencies between the multiple tasks
in a work�ow, execute these tasks, and track the status, logs, output, and run time of
each task.

In astronomy, work�ow systems have been developed that are telescope
speci�c, such as ESORe�ex[127] by the European Southern Observatory. Other

4https://toil.readthedocs.io
5https://github.com/apmechev/GRID_LRT

https://toil.readthedocs.io
https://github.com/apmechev/GRID_LRT
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projects, such as astrogrid6 and ’Work�ow 4Ever’7, have either been completed or
are no longer supported. The astrogrid project, for example, was a collaboration to
create standards, infrastructure, and software for distributed astronomical process-
ing. Its operation phase spanned 2008-2010. Work�ow4Ever, likewise, has been
out of support since 2013. To ensure continuing support for the LOFAR work-
�ows, we have decided to use a leading enterprise work�ow management software,
Air�ow.

Air�ow is an open source Python software package developed by Airbnb8

to manage complex work�ows. It encodes work�ows in Python �les and makes it
easy to re-use, re-arrange, schedule and execute blocks in a user-de�ned work�ow.
Air�ow is capable of scheduling and executing work�ows by resolving the depen-
dencies between tasks and scheduling these tasks for execution. The software uses a
metadata database9 to retain metadata such as task state, execution date, and output.
While Air�ow allows building work�ows easily from Python and bash functions, it
can easily be extended to support custom processing scenarios. Additionally, Air-
�ow conforms to the Common Work�ow Language (CWL) [128] standard using
the cwl-air�ow package [129], meaning it can execute CWL work�ows as well. Fi-
nally, Air�ow is part of the Apache incubator and upon certi�cation will receive
continual support by the Apache software foundation10.

5.4 AGLOW

Complex astronomical pipelines are time consuming to develop and operate. Fur-
thermore, they may evolve rapidly to incorporate new processing techniques or
requirements. Migrating these pipelines to a distributed, high throughput envi-
ronment is often justi�ed, or even required, in order to meet the timelines set by
scienti�c projects. The time saved by running on a cluster must be balanced by
the �exibility and development time required to implement or update the scien-
ti�c pipelines. To address these concerns, we have developed a software package,
Automated Grid-enabled LOFAR Work�ows (AGLOW)11. AGLOW is based on
Air�ow and the LOFAR software and addresses issues with automation and accel-
eration of LOFAR processing.

6http://www.astrogrid.org
7http://wf4ever.github.io/ro/
8https://www.airbnb.com/
9In our case implemented by Postgresql

10https://www.apache.org/
11https://github.com/apmechev/AGLOW

https://www.airbnb.com/
https://github.com/apmechev/AGLOW
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With AGLOW, we can translate LOFAR pipelines into DAGs. We provide
the tools that enable users to easily implement LOFAR science pipelines and execute
them on a distributed architecture. Using these tools, the data processing required
by various LOFAR science cases is automated and accelerated.

5.4.1 AGLOW: Case Study

For our case-study, we have chosen two ways to process LOFAR Surveys data: cov-
erage and depth. The Surveys Key Science Project (SKSP)[25] is an ambitious
project to map the northern sky at low frequencies using the Dutch LOFAR sta-
tions. These maps will help understand the formation and evolution of massive
black holes, galaxies, clusters of galaxies and large-scale structure of the Universe.

The LOFAR surveys observations consist of several tiers with the widest
Tier (Tier 1) covering the whole sky visible from the Northern Hemisphere with
3168 observations of 8 hours each [25]. The other tiers (Tier 2, Tier 3) consist of
much longer observations of smaller sections of the sky and can collect hundreds
of hours of data for a single direction. The deepest single �eld being analyzed, in
collaboration with the EoR group, is the North Celestial Pole (NCP) �eld which has
∼1700 hrs of observations to date. Processing this data will create an image with
an unprecedented resolution and sensitivity. Here we have implemented processing
pipelines for both the Tier 1 data and Tier 2 data into AGLOW.

The scienti�c importance of these two examples, as well as the large pro-
cessing requirements, make them ideal candidates for acceleration and automation
with AGLOW.

Surveys Project: All Sky Survey

The main driver for the development of AGLOW and its constituent packages has
been the LOFAR SKSP Project. A typical 8-hour observation produces 14 TB of
data. This data is eventually reduced to several hundred gigabytes. Data needs to
be processed by two pipelines: �rst by the Direction Independent (DI) pipeline, and
then by the Direction Dependent (DD) pipeline.

We have split the DI pipeline into four stages, and the DD pipeline into two
subsequent stages. Splitting up the pipelines in stages allows speedup through par-
allelization for the stages that can bene�t from data-level parallelism. Additionally,
this setup allows fault tolerance and easy re-processing.Importantly, with AGLOW,
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adding new functionality to the pipeline is easy and can be done at any time without
disrupting current processing. Current SKSP processing is easily started by launch-
ing a new DAG-run in Air�ow. We schedule these runs daily at midnight, however
they can also be started manually bu users.

Deeper Surveys Fields

To create deep images of a single �eld, minor modi�cations were made to the pro-
cessing pipeline described in the previous section. Scripts were included to re-align
the data in the frequency axis, and the DD processing steps include an extra �nal
combination step that stacks multiple observations. Being able to rapidly test al-
ternative processing strategies is crucial to creating a deep image of the NCP �eld.
With the success of this project, future deep LOFAR observations will be processed
with these pipelines.

5.4.2 AGLOW: Implementation

AGLOW combines the LOFAR software, the Grid LOFAR Tools (GRID_LRT),
and Air�ow to allow automation and makes large-scale LOFAR processing easily
reproducible. The components of the AGLOW software are shown in Fig. 5.1. In
this section, we will discuss these components and their functions.

Figure 5.1: Design of the AGLOW software, incorporating Air�ow, the GRID_LRT pack-
age[35] and custom operators designed to integrate LOFAR software, Grid middleware and
dCache storage. GRID_LRT is a software package developed to parallelize single LOFAR
jobs at SURFsara. It contains several modules to help set up, and launch jobs on an HTC
cluster at SURFsara. Air�ow is a stand-alone package by Airbnb, which is extended with
several classes that couple Air�ow with the Grid infrastructure. These classes are collectively
named the AGLOW operators/sensors.
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GRID LOFAR Tools and LOFAR software

We have previously developed tools to create LOFAR jobs and launch them on a
distributed infrastructure[35]. These tools havematured to a point where it is easy to
both plug and play existing scripts and extend the framework to add more complex
pipelines. These steps make it possible for a user to batch execute bash or Python
scripts on their LOFAR data in parallel. After the scripts are executed, the results
are uploaded to shared dCache storage[130] at SURFsara[85].

More complex steps use additional Github repositories, such as the pref-
actor12 for direction independent calibration or DDF-pipeline13 for direction-
dependent calibration and imaging. The sequence of steps is encoded in parameter-
set �les (parsets), which can be modi�ed and dropped into AGLOW depending
on the processing requirements. Users have full control over which git repository,
branch and commit number to use for each processing step.

With AGLOW, we can easily include the DDF-pipeline and prefactor
repositories, as well as any other scripts. Since these scripts are tracked by git [131],
a full commit and branch history of the scripts is available. We use this history to
make processing reproducible, by using the same git-commit for all LOFAR data
sets.

In addition to these script repositories, we have integrated the most com-
mon software packages used to process LOFAR data with AGLOW. These are the
Default Pre-Processing Pipeline (DPPP)[95], the LOFAR Solutions Tool (LoSoTo),
WSclean [132], AO�agger[133], CASA[134], pyBDSF[135], DDFacet[19] and
KillMS[83, 136].

Extending Air�ow

Two types of modi�cations were made to Air�ow to allow processing on a Grid
environment. First, functions were added to check the number of �les located in
intermediate grid storage. We use this to decide whether to stage �les, or whether
enough �les have been successfully processed by a previous task.

Second, more complex tasks were implemented as Air�ow operators or
sensors (Figure 5.2). These tasks include creating job description �les, setting up

12https://github.com/lofar-astron/prefactor
13https://github.com/mhardcastle/ddf-pipeline. DDF-pipeline is a leading example of a Direction Dependent

calibration pipeline used for LOFAR data. It uses DDFacet [19], KillMS [83] and to create high quality images.
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job scripts, launching jobs using the gLite workload management system and mon-
itoring the status of these jobs. Future additions will include operators that evalu-
ate the current cluster workload and make decisions on location to launch the data
processing. With the AGLOW package, such tasks are easy to implement without
modifying or interrupting processing. This leads to an easily reproducible, intelli-
gent scienti�c processing that is also e�ciently executed and requires minimal in-
teraction. The operators and sensors added to Air�ow are shown in Fig. 5.2. The
most commonly used ones are described below:

Staging AGLOW stages data through the ASTRON staging API, which is made
available through the GRID_LRT software 14.This API loads the user’s LTA cre-
dentials from a �le. Using these credentials, AGLOW stages the required �les at
the respective LTA site. The AGLOW staging operator waits until all the �les have
been staged before returning a successful exit status.

Sandbox Scripts to retrieve, process and upload the data are stored in a sandbox,
as described in [35]. The LRT_Sandbox operator that builds this sandbox directly
uses the GRID_LRT Sandbox module to build and upload the sandbox according
to the user-provided con�guration �le.

Token Creation Jobs parallelized with GRID_LRT store processing parameters in-
side CouchDB documents called PiCaS Tokens. Each token corresponds to one grid
processing job. These tokens are created by the LRT_Token operator in AGLOW.
This operator uses the GRID_LRTToken module to de�ne tokens and create them
from a list of links to LOFAR data.

Job Submission The job submission at SURFsara is done through the GRID_LRT
submit module. This module is a python interface to the glite job submission sys-
tem. It is wrapped in the glite-submit operator in AGLOW, which returns the ID
number of the job. AGLOW includes a gliteSensor, which uses this ID to wait until
all the processing jobs have �nished.

Using AGLOW to accelerate the execution of a pipeline requires deciding
how to split the processing to bene�t from parallelization. Once the steps to be
parallelized are selected, users can add git repositories of scripts to the con�guration
�le. Next, each step is added to a Python script called theDAG �le. This �le is placed

14https://grid-lrt.readthedocs.io/en/latest/staging.html#grid-lrt-staging-stage-all-lta

https://grid-lrt.readthedocs.io/en/latest/staging.html#grid-lrt-staging-stage-all-lta
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in the Air�ow’s dags folder, which adds it to AGLOW. An example DAG �le can
be found at https://aglow.readthedocs.io/en/latest/dags.html. Users who
want to implement a new work�ow design the DAG �les and add them to Air�ow’s
dags folder. Work�ows are migrated to a new server, by transferring the DAG and
con�guration �les to the new AGLOW instance.

Figure 5.2: Air�ow Operators for Staging LOFAR data, creating job descriptions and sub-
mitting jobs to the Dutch grid. On the left is the input given to each operator. ‘Srm lists’
are lists of links to data at the LOFAR LTA or located on the SURFsara dCache stor-
age. Parsets are �les speci�c to ‘prefactor’ and ‘DDF-pipeline’ and de�ne the process-
ing for each pipeline step. Finally, the ‘Sandbox’ and ‘Token’ operators read their pa-
rameters from a con�guration �le. The use of a scripts sandbox and job description to-
kens is detailed in our previous work[35]. Documentation of the operators is available at
https://aglow.readthedocs.io/en/latest/operators.html

5.4.3 AGLOW: Jobs

Once LOFAR observations are downloaded from the LTA, they are typically pro-
cessed with several packages before producing a science ready data set. We have
integrated these packages with Air�ow to make it easy to create complex LOFAR
work�ows.

Each of the processing steps above requires extra set-up to process on the
Dutch Grid infrastructure. The job scripts setup, job description, and job submis-
sion are done by the GRID_LRT package[35]. With AGLOW, we automate this
setup, enabling users to focus on developing more comprehensive data processing
pipelines. Below we outline several possible steps a user can use in their pipeline.

DPPP Parset

The DPPP software is used extensively in LOFAR data processing. It has many
capabilities such as �agging bad data, averaging data in time and frequency, and

https://aglow.readthedocs.io/en/latest/dags.html
https://aglow.readthedocs.io/en/latest/operators.html
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calibrating the data with a sky-model.

The input parameters of this software are stored in a text �le called a parset.
The input data and the DPPP parset are su�cient to de�ne a DPPP execution step.
As noted in section 5.2, LOFAR data is split in frequency into Subbands. Much of
the DPPP processing, such as averaging and �agging, can be done independently
for each Subband, thus they can be processed on independent machines. This par-
allelization makes these steps a perfect candidate for an HTC cluster. For a data set
that is split into 244 Subbands, 244 jobs are launched concurrently.

In Air�ow, the DPPP parset task is encoded in a DAG (Fig. 5.3). The
DPPP DAG is a linear work�ow that consists of the ’sandbox’ setup, creation of the
job-description documents, uploading of the DPPP parset and job launching and
monitoring.

Figure 5.3: Render of the DPPP parset DAG in the Air�ow User Interface. This view shows
the setup and submission steps. Even this simple DAG can include branching options such
as the branch_if_staging_needed task which checks if the data is not staged and stages it.
All of the operators in this �gure are part of the AGLOW software. Their inputs and outputs
are shown in Fig. 5.2. Using con�guration �les, the NDPPP DAG can be used by di�erent
users for di�erent science cases making it portable and maintainable. These features make
reproducible science with LOFAR data easy.
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WSclean Job

The WSclean[132] package is used to create an image from a LOFAR data set.
This software has a very wide range of parameters options, however, it cannot take
a parset �le as an input. Instead, the parameters are speci�ed in the command line.
In the AGLOW implementation, we parse all the command-line parameters from
a text �le, referred to as the ’wsclean parset’. This �le is added to the jobs in the
same way as the DPPP parset, i.e. using the Token Uploader Operator. The DAG
for the wsclean software uses the same blocks as the DPPP DAG, with di�erent
con�guration and parset �les. The reuse of Air�ow operators makes maintainability
of all tasks easier.

5.4.4 Shell/Python Script

Users that require the run of multiple software packages on a single data set can
craft a custom shell or Python script that executes these steps using the LOFAR
tools during a single distributed job. This option increases �exibility and minimizes
the overhead associated with scheduling and running multiple jobs in sequence. At
the work�ow orchestration level, we use the same Air�ow operators as the above
tasks. The script is uploaded to the job description database using theToken Uploader
Operator. It is executed once the jobs are launched.

Currently only the LOFAR Spectroscopy project uses custom shell scripts
to process LOFAR data. A recent study of carbon recombination lines used a custom
bash script to calibrate and image LOFAR data on the SURFsara GINA15 cluster
[137].

5.4.5 Prefactor parset

The input to the prefactor pipeline software is a parset �le which describes a linear
work�ow. The description of this work�ow consists of a list of processing steps and
their associated parameters. The ‘prefactor’ package uses the LOFAR software to
do the direction-independent calibration of the archived LOFAR datasets. Prefac-
tor steps are executed by the generic pipeline framework[95]. While this framework
can run a sequential pipeline, it is not capable of conditional branching nor paral-
lelization on all cluster architectures. The original goal of the GRID_LRT software

15The GINA cluster is an HTC cluster located at SURFsara integrated with the Dutch Grid initiative. It supports
massively parallel processing which is required to e�ciently process LOFAR data with prefactor.



5

5.4. AGLOW 95

was to tackle the parallelization challenge while AGLOW solves the additional chal-
lenge of pipeline management.

We have already processed more than 50 datasets through the ‘prefactor’
DAG using AGLOW. The full ‘prefactor’ pipeline is shown in �gure 5.4. This DAG
shows the four processing steps as well as additional Python operators that manage
the staging and result veri�cation.

5.4.6 DDF-pipeline

The �nal AGLOW DAG is the implementation of the DDF-pipeline repository
which is a pipeline that is extensively used by the LOFAR surveys KSP and is de-
scribed in detail in [25]. This pipeline operates on the products of the prefactor
pipeline and consists of a series of calibration and imaging loops with the objective
of creating a �nal science quality image. For each of these loops the majority of the
processing time is spent in DDFacet[19] and KillMS[83, 136] steps that perform
the direction-dependent imaging and calibration respectively.

In total, DDF-pipeline takes ∼4 days of processing to complete. As DDF-
pipeline creates large intermediate �les we have so far not divided the pipeline into
too many steps to avoid �lling the storage on the GINA cluster. However, we have
split the pipeline into two steps and there is further potential for parallelization that
will be implemented in the future.

5.4.7 Linking Multiple Jobs

Pre-processing of LOFAR SKSP data can be done by a single DPPP task, with 244
jobs running in parallel. More complex LOFAR pipelines will include multiple pro-
cessing tasks as well as tasks responsible for job setup. Therefore, it is important to
facilitate running multi-step pipelines with AGLOW.

Creating work�ows by de�ning dependencies between tasks is a core Air-
�ow capability. We use this functionality to link multiple steps of a LOFAR pipeline
together. In the SKSP pipeline, we take advantage of the data level parallelism for
the initial processing steps for the calibrator and target. The other two steps are run
as a single grid job. Switching the parallelization for each step is done by changing
the number of datasets per node parameter in the con�guration �le for each step.
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5.5 Results and Discussions

The implementation of AGLOW makes it possible to e�ciently process LOFAR
data with minimal user interaction. The scheduling algorithm automatically
launches pipelines, meaning that there is little time spent between runs. Addition-
ally, controlling/�xing the version of the scripts is done by specifying the commit
of each script repository. This makes data processing easily reproducible. Once the
dependencies of multiple science pipelines have been encoded in a DAG, Air�ow
e�ciently executes this DAG, running tasks in parallel where possible.

An important feature of AGLOW is the loose coupling between pipeline
logic, software versions, pipeline parameters, and datasets. The goal of this de-
coupling is to give users complete control over all the processing variables. With
AGLOW, one can develop the pipeline logic independently of the LOFAR soft-
ware versions and conversely update the LOFAR software and script repositories
independently from the pipeline logic. Finally, the Air�ow operators are them-
selves decoupled from the scienti�c pipelines. As these operators are reused, this
decoupling makes them easy to maintain and extend.

The �rst LOFAR processing pipeline integrated with AGLOWwas a single
linear work�ow, with only one submission to the compute cluster. This work�ow
is used to reduce the data size making data retrieval to research institutes less time
consuming. We o�er this work�ow as a service to LOFAR users who do not have a
high-bandwidth connection to the LOFAR Archive.

A more complex pipeline was implemented: the LOFAR direction inde-
pendent calibration pipeline (‘prefactor’). The scienti�c importance and complexity
of this pipeline make it a good case study for the capabilities of the AGLOW soft-
ware. We show that AGLOW’s design allows integration of more complex data
processing work�ows with the Dutch Grid resources. These work�ows can be ei-
ther used by PIs of LOFAR projects or o�ered as a processing service to the wider
astronomical community. Since March 2018, more than 300 ‘pre-factor’ datasets
have been processed with the SKSP work�ow. With AGLOW, we have been able
to process data with an average cadence of 50 observations per month.

In large part thanks to their �exibility, automation, and Grid integration,
AGLOW and GRID_LRT have become a standard part of the Direction Indepen-
dent processing for the LOFAR SKSP project.
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5.6 Conclusions

In this work, we have detailed a comprehensive work�ow management software for
processing radio astronomy data on a distributed infrastructure. We leverage an
industry standard work�ow management software, Air�ow. Using its capabilities,
we make it possible to build, test, automate and deploy LOFAR pipelines on short
timescales, generally from months to days. With the �exibility of Air�ow’s Python
and Bash operators, users can design their own work�ows, as well as co-ordinate
more complex science cases. In this way, AGLOW facilitates reproducible process-
ing of scienti�c data. In the future, AGLOWwill support additional LOFAR science
cases including Long Baselines and Spectroscopy. In this article, we have described
our implementation of the data processing pipelines used by the LOFAR Surveys
Key Science Project.

Future work includes further de-coupling of the Grid-setup and pipeline
logic. We will do this by creating ‘sub-dags’ (details in 5.6.1) for each type of
LOFAR jobs. Using these sub-dags will reduce the complexity of scienti�c work-
�ows while also making the code even more reusable and thus easier to maintain
and upgrade. E�orts to integrate processing at the other two LTA sites, (Jülich and
Poznań) have already started with ‘prefactor’ runs being performed on Jülich using
a modi�ed version of the SKSP work�ow. The software also currently works on
the Eagle cluster at Poznań. Combining the Jülich and SURFsara work�ows will
be done in the future so that AGLOW can track and start processing at multiple
clusters.

Finally, AGLOW can be used as a ‘LOFAR As A Service’ model. In this
model, users only provide an observation ID and processing parameters and receive
the �nal results upon job completion. This model will build upon previous success
o�ering LOFAR processing to users without login to the GINA cluster [138]. This
previous work was already useful for studying radio absorption in Cassiopeia A [29]
and a ‘data-to-images’ service will be valuable to the whole LOFAR community.

Our experience with automating LOFAR scienti�c work�ows on a dis-
tributed architecture will be valuable when setting up data processing for future Ra-
dio Telescopes such as the Square Kilometer Array [139] .
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Figure 5.4: Work�ow for the prefactor pipeline. Here we show the reuse of AGLOW op-
erators for the four prefactor steps. In addition to the LOFAR processing, we also have
conditional operators to skip processing of the calibrator if it has been previously processed.
This is done by the ‘branch_if_cal_exists’ task. We also have a �nal step that checks if all
the results have been uploaded, done by the ‘all_�les_done’ task. Likewise, quality checks
can be added in this work�ow wherever needed.
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APPENDIX

The LOFAR SKSP work�ow is shown in Figure 5.4. This �gure shows how reuse
of the staging, setup operators, and glite-wms sensors makes maintainability easy
and allows rapid prototyping of complex pipelines.

This work�ow additionally takes advantage of Air�ow’s PythonOperator to
check if the LOFAR data is on disk at the archive and whether all �nal products were
uploaded by each step. AGLOW also allows for staging the calibrator and target �les
concurrently. When the data is staged, Air�ow continues with the processing of that
data.

5.6.1 Sub-DAG

Air�ow allows developers to include entire DAGs as a single task in their work�ow.
Air�ow can trigger a DAG execution based on parameters provided by the parent
DAG. This feature makes it possible to concatenate short, commonly used tasks into
DAGs and call them in a parent work�ow. Using sub-DAGS makes the code more
maintainable and easy to use, while it makes work�ows simpler. For LOFAR, Sub-
DAGs are used to automate job submission, making the resulting scienti�c work�ows
simpler.
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6 Scalability Model for the LOFAR
Direction Independent Pipeline

Original Abstract:
LOFAR is a leading aperture synthesis telescope operated by the Netherlands with stations across

Europe. The LOFARTwo-meter Sky Survey (LoTSS) will producemore than 3000 14 TB data

sets mapping the entire northern sky at low frequencies. All of the data produced by LoTSS

needs to be processed by the LOFAR Direction Independent (DI) pipeline, prefactor. Under-

standing the performance of this pipeline is important when trying to optimise the throughput

for its large projects, such as LoTSS and other deep surveys. Making a model of its completion

time will enable us to predict the time taken to process large data sets, optimise our parameter

choices, help schedule other LOFAR processing services, and predict processing time for future

large radio telescopes. We tested the prefactor pipeline by scaling several parameters, notably

number of CPU’s, data size and size of calibration sky model. We present these results as a

comprehensive model which will be used to predict processing time for a wide range of pro-

cessing parameters. We also discover that smaller calibration models lead to signi�cantly faster

calibration times, while the calibration results do not signi�cantly degrade in quality. Finally,

we validate the model and compare predictions with production runs from the past six months,

quantifying the performance penalties incurred by processing on a shared cluster. We conclude

by noting the utility of the results and model for the LoTSS Survey, LOFAR as a whole and for

other telescopes.

This chapter is based on the work of A.P.Mechev, T.W. Shimwell, et al. “Scal-
ability model for the LOFAR direction independent pipeline”. In: Astronomy
and Computing 28 (2019), p. 100293. issn: 2213-1337. doi: https://doi.
org/10.1016/j.ascom.2019.100293. url: http://www.sciencedirect.
com/science/article/pii/S2213133719300290
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6.1 Introduction

Astronomy has entered the big data era withmany projects creating petabytes of data
per year. This data is often processed by complex multi-step pipelines consisting of
various algorithms. Understanding the scalability of astronomical algorithms the-
oretically, in a controlled environment, and in production is important for making
predictions for the data reduction of future projects and upcoming telescopes.

The Low Frequency Array (LOFAR) [77] is a leading European low-
frequency radio telescope. The majority of LOFAR’s stations are in the Nether-
lands, however the telescope can use stations across Europe to create ultra-high reso-
lution radio maps. LOFAR data needs to undergo several computationally intensive
processing steps before obtaining a �nal scienti�c image.

To create a broadband image, LOFAR data is �rst processed by a Direction
Independent (DI) Calibration pipeline followed by Direction Dependent (DD) Cal-
ibration pipeline [e.g. 17–19, 83]. The goal of DI calibration is to remove e�ects
that are constant across the target �eld such as radio frequency interference, contam-
ination by bright o�-axis sources and antenna gains. After this step, DD Calibration
focuses on removing e�ects which vary across the �eld, such as ionospheric and
beam e�ects. The result of these two pipelines is a science-ready image.

Our implementation of the DI LOFAR processing, prefactor, can be par-
allelized on a high throughput cluster [35]. The Direction Dependent processing,
implemented in ddf-pipeline1, is subsequently performed on a single HPC node.

The LOFARSurveys Key Science Project (SKSP) [24, 25] is a long running
project consisting of several low frequency surveys of the northern sky. The broadest
tier of the survey, LoTSS, will use more than 3000 8-hour observations to create
maps with a noise levels below 100 µJy. We have already processed more than 500
of these observations using the prefactor DI pipeline [16, 40].

While the current LoTSS imaging algorithms can process data averaged
by up to a factor of 64 in frequency and time, it is important to understand how
LOFARprocessing scales with processing parameters, such as averaging parameters.
Since LOFAR data is used by multiple scienti�c teams, not every team can produce
scienti�c results from data averaged by such a high factor. Users from those teams
need to be able to predict the time and computational resources required to process
their data, taking into account the increasing LOFAR observation rates, data sizes
and scienti�c requirements.

1Available at https://github.com/mhardcastle/ddf-pipeline/releases

https://github.com/mhardcastle/ddf-pipeline/releases
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We study the scalability of processing LOFAR data, by setting up process-
ing of a sample SKSP data set on an isolated node on the GINA cluster at SURF-
sara, part of the Dutch national e-infrastructure [140]. We test the software perfor-
mance as a function of several parameters, including averaging parameters, number
of CPUs and calibration model size. Additionally, we test the performance of the
underlying infrastructure, i.e. queuing and download time, for the same parameters.
Finally, we compare those isolated tests with our production runs of the prefactor
pipeline to measure the overhead incurred by running on a shared system.

We discover that the computationally intensive LOFAR processing steps
scale linearly with data size, and calibration model size. Additionally, we �nd that
the time taken by these steps is inversely proportional to the number of CPUs used.
We discover that the time to download and extract data on the GINA cluster is linear
with size up to 32GB, but becomes slower beyond this data size. We also �nd that
the queuing time on the GINA cluster grows exponentially for jobs requesting more
than 8 CPUs. We validate these isolated tests with production runs of LOFAR data
from the past six months. We combine all these tests into a single model and show
its prediction power by testing the processing time for di�erent combinations of
parameters. Finally, we discuss the utility of our method, the results in this work
and applications to the SKSP projects, the broader impact of our results to LOFAR
processing and the applications for other large astronomical surveys. The major
contributions of this work can be summarized as:

• A model of processing time for the LOFAR Direction Independent Calibra-
tion Pipeline.

• A model of queuing time and �le transfer time which is used by current or
future jobs processed on the GINA cluster.

• Quanti�cation of overheads incurred when processing in production.

• Validation of our methods with discussion of future applications.

We introduce LOFARprocessing and other related work in Section 6.2 and
describe our software setup and data processing methods in Section 6.3. We present
our results and performance model in Section 6.4 and discussions and conclusions
in Section 6.5.
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6.2 Related Work

In previous work, we have parallelized the Direction Independent LOFAR pipeline
on a High Throughput infrastructure [35]. While this parallelization has helped
accelerate data processing for the SKSP project, creating a performance model of
our software is required if we are to predict the resources taken by future jobs. This
model will be particularly useful in understanding how processing parameters will
a�ect run time.

Performance modelling on a distributed system is an important �eld of
study related to Grid computing. A good model of the performance of tasks in
distributed work�ows can help more e�ciently schedule these jobs on a Grid en-
vironment [141]. The performance modelling systems require knowledge of the
source code and an analytical model of the slowest parts of the code [142]. Many
systems exist to model the performance of distributed jobs [142–145], with some
employing Black Box testing [146, 147] or tests on scienti�c benchmark cases [148].
Such performance analysis does not require intimate knowledge of the software and
can be applied on data obtained from processing on a Grid infrastructure.

Empirical modelling is useful in �nding performance bugs in parallel code
[149] and modelling the performance of big data architectures [150]. The insights
from these models are used to optimise the architecture of the software system or
determine bottlenecks in processing. Here, we use empirical modelling to determine
how the LOFAR prefactor performance scales with di�erent parameters.

6.3 Processing Setup

Using the LOFAR software installation described in [35], we processed a typical
LOFAR SKSP observation2, while changing the averaging rate in time and fre-
quency. Changing these averaging parameters will change the �nal data size (with
the data sizes studied shown in Table 6.1). We test the processing time for di�erent
averaging parameters by running 15 runs per parameter step.

The data used by the LOFAR surveys is archived at a time resolution of 1
second intervals and frequency resolution of 16 channels per Subband (equivalent
to 12kHz channel width). While some of the processing steps such as �agging of

2LOFAR Observation ID L658492, co-ordinates [17h42m21.785, +037d41m46.805] observed by the
LOFAR High Band Array for 8 hours between 2018-06-20 and 2018-06-21.
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Radio Frequency Interference and removal of bright o�-axis sources produce better
results when performed on the high-resolution data, later steps can be performed on
averaged data with little impact on the �nal product quality. To speed up processing,
the raw data is averaged in time and frequency, decreasing the input data size to
later tasks. The main aims of the LoTSS survey can be accomplished if the �nal
data products from the prefactor pipeline are averaged to a time resolution of 8
seconds per sample and frequency of 2 channels per subband. These averaging
parameters correspond to a reduction in data size by a factor of 64. Nevertheless,
other science cases require less averaging of the data. Our aim is to understand how
the processing of this larger data will scale. To measure the scalability of processing,
we measure the performance of the prefactor pipeline for data sizes between the
raw data of 64GB/subband and the averaged data of 1GB/subband. The tested data
sizes and parameters are shown in table 6.1, and discussed in Section 6.4.1.

We performed the scalability tests on a dedicated node of the SURFsara
GINA cluster, f18-01. The node is a typical hardware node used by our production
LoTSS processing, however it is dedicated for the tests in order to ensure there is
no contamination by other software. The node is described in Section 6.3.3.

We processed the sample data set with the LOFAR prefactor pipeline.
The prefactor version used was the same as we use for the LOFAR SKSP broad-
band surveys [40]. This software consists of several steps executed in sequence,
shown graphically in Figure 6.1. The important prefactor steps are as follows. The
predict_ateam and ateamcliptar steps predict the contamination by bright
o�-axis sources and remove these e�ects respectively. The dpppconcat step is
responsible for concatenating 10 Subband into a single �le which is in turn cali-
brated. The step gsmcal_solve is responsible for calibration of the data against
a model of the radio sky. The solutions produced by gsmcal_solve are used by
gsmcal_apply and applied to the scienti�c observation.

6.3.1 Processing Metrics

The goal for our scalability model is to understand the e�ect of several parameters
on the job completion time of LOFAR software. We do this by testing the processing
time for various values of data size, number of CPUs used and sky model size.

The slowest step of the prefactor pipeline is the gsmcal_solve step,
which performs the gain calibration against a model of the radio sky. This step
operates on a concatenated data set that consists of 10 Subbands. We obtain the



6

106 Chapter 6. Scalability Model for the LOFAR Direction Independent Pipeline

Figure 6.1: The major steps of the prefactor DI pipeline.

Averaging
ratio

Time
averaging
parameter

(sec)

Channels
per

Subband

Averaged
Size (Gb)

64x 8 2 1.235
32x 4 2 2.459
16x 2 2 4.906
8x 1 2 9.802
4x 1 4 18.00
2x 1 8 36.72
1x 1 16 66.88

Table 6.1: Averaging parameters and �nal data sizes tested for the sample LOFAR SKSP
observation. The raw data is 64 GB per subband. The LOFAR SKSP data processing uses
averaging parameters of 8 seconds and 2 channels per subband. This reduces the raw data
by a factor of 64. We highlight the data size used in the LOFAR SKSP survey.

calibration model through the TGSS sky model creator3. By default, this service
creates a text �le describing the sky-model from the TGSS survey [151] as a com-
bination of Gaussians and point sources. By default, it sets a threshold of sources
brighter than 0.3 Jy. Lowering this threshold creates longer sky-model �les with
more faint sources, while increasing it will return only the few brightest sources.

3Accessible at the TGSS ADR portal.

http://tgssadr.strw.leidenuniv.nl/doku.php
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Since sky model calibration requires converting the sky-model into modelled visi-
bilities[e.g. 99, 152, 153], a longer sky model will increase the time taken to gain
calibrate a data set. We created seven sky models with a �ux cuto� ranging between
0.05 Jy and 1.5 Jy. The number of sources in the resulting models are listed in Table
6.2. For production4, we used the minimum sensitivity parameters for model 3.

It is important to note that the complexity and accuracy of the sky model
depend on the direction of observation and the ionospheric conditions in which the
observation was performed. As such, our test is only a heuristic for predicting the
run-time based on the calibration model length. Additionally, it is notable that the
number of sources is exponentially dependent on the minimum sky model sensi-
tivity (seen in Figure 6.2, more in [17, 151]). According to this relationship, even a
modest decrease in sensitivity cuto� can signi�cantly decrease the size of the model.

Sky model # min sensitivity # sources
model 1 0.05 Jy 809
model 2 0.1 Jy 503
model 3 0.3 Jy 180
model 4 0.5 Jy 96
model 5 0.8 Jy 49
model 6 1.0 Jy 34
model 7 1.5 Jy 16

Table 6.2: List of test sky models. Model 3 is created with the parameters used in our
production processing of LOFAR data. All models include objects within 5 degrees from
the centre of the pointing.

Finally, the number of CPU cores (henceforth just ‘CPUs’) used by each
step is a parameter that can be optimised for the entire pipeline. While increasing
the number of CPUs can make some steps run faster, requesting jobs that reserve a
large number of CPUs will take longer to launch on shared infrastructure. In order
to understand the interplay between these e�ects, we study the queuing time and
processing time as a function of the number of CPUs. For the parameter steps we
choose to test 1, 2, 3, 4, 8 and 16 CPUs.

6.3.2 Infrastructure Performance

In production, we run hundreds of LoTSS jobs on a cluster supporting several dif-
ferent use cases. The requested resources on this cluster are allocated by a job queue,

4The query used to obtain model 3 is at the following link http://bit.ly/tgss_model

http://bit.ly/tgss_model
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Figure 6.2: The size of the sky model (measured as the number of sources) increases expo-
nentially as we decrease the �ux cuto� of the model (i.e. increase the sensitivity).

in our case implemented by the glite workload management system [154]. As queu-
ing jobs can take a signi�cant amount of time, we test the queuing time as a function
of the number of requested CPUs. In order to do that, we create test jobs that log
the launch time and submit them, requesting 1, 2, 3, 4, 8 and 16 CPUs. We run
10 to 15 tests for each parameter step to ensure that we capture system variability
at di�erent times of day during the week and the weekend.

Besides queuing, time is also spent during downloading and unpacking
data, as well as packing and uploading the results. Despite using no compression
to pack the data, untarring and tarring large �les still takes time depending on the
system workload. We measure the time taken to transfer and unpack data of dif-
ferent sizes. The data sizes we chose were 0.5GB, 1GB, 2GB, 4GB, 8GB, 16GB,
32GB and 64GB. As our largest data sets are 64GB and our smallest results are
∼0.2GB, these values span a realistic range expected for LOFAR data processing.
We test this by uploading mock data to the dCache storage pool at SURFsara and
launching a small 1 CPU job on the cluster, which downloads and untars the data
and logs the start time of each step. We present the results of this test in the next
section.
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Software Versions

For the current test, we use the LOFAR software stack, version 2.20.2 [95]. This
software was compiled on a virtual machine and distributed using the CERN
CVMFS virtually mounted �le system [58]. We use this software version and dis-
tribution method as it is the same software version and distribution used to process
the data for the LOTSS Data Release 1.

6.3.3 Test Hardware

We test the LOFAR software on a reserved node on the SURFsara GINA cluster.
The node, f18-01 has 348 GB of RAM, 3TB of scratch space5. The CPU is an Intel
Xeon(R) Gold 6148 CPUwith 40 cores clocked at 2.40GHz. As this hardware node
was reserved, there was no other scienti�c processing aside from our tests, meaning
there was no resource contention aside for that inherent in the LOFAR software. In
the results section, we compare these isolated runs with processing results over the
past two years.

6.4 Results

Using a test data set, we tested the LOFAR prefactor target pipeline on the SURF-
sara GINA cluster. First we will present the tests done in an isolated environment and
then compare them to the run time in production on a shared infrastructure. We
will integrate all the results in a complete model which can be used to predict pro-
cessing time for a variety of parameters. Finally, we will make some predictions on
the run time of our processing based on the model and validate these predictions.

Since we are processing a sample data set in the context of the LOFAR
Surveys project, we will compare these tests with the production runs of our pipeline.
In production, we run the gsmcal_solve step with a data size of 1GB, a skymodel
with 180 sources and 8 CPUs.

6.4.1 Isolated Environment tests

We �rst tested the LOFAR software in isolation in order to determine the scalability
of processing time in terms of data size. We run the entire prefactor target pipeline

5More detailed speci�cations are at the GINA speci�cation page linked here

http://docs.surfsaralabs.nl/projects/grid/en/latest/Pages/Service/system_specifications/gina_specs.html
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Tpredict_ateam = 5.19× 10−8S + 4.20× 101 (6.1a)

Tateamcliptar = 4.57× 10−9S − 8.42× 100 (6.1b)

Tdpppconcat = 3.51× 10−8S + 4.20× 101 (6.1c)

Tgsmcal_solve =
{

7.38× 10−7S − 8.20× 101 |S ≤ 1.6× 1010

1.04× 10−6S − 4.04× 103 |S > 1.6× 1010 (6.1d)

Tgsmcal_apply = 2.07× 10−8S − 1.38× 101 (6.1e)

Equation 6.1: Equations describing the processing time of �ve prefactor steps as a function
of the input data size (S) in bytes.

which removes Direction Independent Calibration errors from a LOFAR science
target. In the following sections, we present the models obtained from these tests.

Input Data Size

LOFAR data can be averaged to di�erent sizes based on the scienti�c requirements.
Smaller data sets are processed faster, so it is important to understand the e�ect of
data size on processing time as measured by wall-clock time. We show the process-
ing time for our test data set, averaged to di�erent sizes for several prefactor steps
in Figures 6.3a- 6.3d and 6.4. We run this test using 8 CPUs. The �gures also show
linear �ts for consecutive pairs of parameter steps, in gray dashed lines, used to help
guide the selection of the parametric model.

All of the steps show a linear behavior with respect to input data size, while
the gsmcal_solve step is best �t by two linear relationships, for data smaller
and larger than 16 GB. The linear �t to the run times are shown in Equations 6.1a-
6.1e. The equations show the processing time as a function of the data size (S), with
the slope in the units of seconds/byte. The �ts are also shown in Figures 6.3a to 6.4
as a black dashed line.

Calibration Model Size

To test the e�ect of the calibration model size on run time, we test our calibra-
tion with several di�erent lengths of the sky model �le. We create these models by
changing the minimum sensitivity using values ranging from 0.05 Jy to 1.5 Jy. The
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(a) Tests of the predict_ateam step for
input data size ranging from 1GB to 64
GB. This step calculates the contamination
from bright o�-axis sources. Dashed lines
are shown connecting each pair of points, to
highlight the trend. We can see that the data
can be described well by a linear model. We
show the model in Equation 6.1a in black.
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(b) Tests of the ateamcliptar step for in-
put data size ranging from 1GB to 64 GB.
This step removes the contamination from
bright o�-axis sources. We can see that the
data �ts a linear model. We show the model
in Equation 6.1b in black.
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(c) Tests of the dpppconcat step for input
data size ranging from 1GB to 64 GB. This
step concatenates 10 �les into a single mea-
surement set. We can see that the data �ts a
linear model. We show the model in Equa-
tion 6.1c in black.
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(d) Tests of the gsmcal_solve step for in-
put data size ranging from 1GB to 64 GB.
This step performs gain calibration of the
concatenated data set against a sky model.
It is the slowest and most computationally
expensive prefactor step. We �t two lin-
ear models, for data below 16GB and above
16GB. We can see the two models, shown in
(Equation 6.1d) as two black dashed lines, in-
tersecting at 1GB.

Figure 6.3: Plots of the run time as a function of input data size

most sensitive model (0.05 Jy) had 809 sources, while the 1.5 Jy model had only 16
sources.

Figure 6.5 shows that the calibration time is directly proportional to the
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Figure 6.4: Tests of the gsmcal_apply step for input data size ranging from 1GB to 64 GB. This
step applies the calibration solutions to the data. We can see that the data �ts a linear model, described
in Equation6.1e, as the black dashed line.

length of the sky model. Figure 6.6 shows the run time as a function of the pro-
cessing parameter: the cuto� sensitivity. As the relationship between the number
of sources and cuto� sensitivity is a power law, here we see the same relationship
holding for processing time.

We model the processing time as a function of the cuto� frequency using a
power law, and �t the data to the function y = α ·F−k. Our �t found the best model
to be shown in Equation 6.2, where F value is the cuto� �ux in Jansky and T is the
run time in seconds.

We show four images made from data sets in Figure 6.7. The top left
image is calibrated with a 0.05Jy and the other three show the di�erence between
the top left image and the images created from the 0.3Jy, 0.8 Jy and 1.5 Jy data.
The statistics for the four images, taken from the regions in green on Figure 6.7)
are shown in Table 6.3. We discuss the implication and caveats of these results in
Section 6.5.

6Using the command wsclean -absmem 50 -niter 3 -size 4096 4096 -scale 20asec
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T = 1185 · F−0.854 (6.2)

Equation 6.2: Processing time for the gsmcal_solve step as a function of the �ux cuto�
of the calibration model (F ) in Jansky.
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Figure 6.5: The processing time of the gsmcal_solve step is linear with the size of the
sky model as measured by the number of sources.
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Figure 6.6: The run time of the gsmcal_solve step as a function of the cuto� sensitivity
is not linear. As shown in Figure 6.2, the number of sources increases exponentially as the
minimum sensitivity decreases. The dashed line shows the model �tted in Equation 6.2.

Figure 6.7: Four images made using the wsclean software [132] from the data set6. The
four images were calibrated with sky models of various �ux cuto�s ranging from 0.05Jy (top
left) to 1.5Jy (bottom right). Flux statistics for the green regions in the four images are listed
in Table 6.3. The top right and bottom two quadrants show the pixel di�erence between the
0.05Jy image and the 0.3Jy, 0.8Jy and 1.5Jy images respectively. The four images are all on
the same scale. The green region shows the same area in all four quadrants.
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Calibration Model
Flux Cuto�

# of sources RMS Noise (Jy)

0.05Jy 809 0.00402834
0.3 Jy 180 0.00402311
0.8 Jy 49 0.00404181
1.5 Jy 16 0.00410204

Table 6.3: Statistics for an empty region for the four images shown in Figure 6.7. The 0.3Jy
model, here shown shaded in gray, is the one used in production.

T = 503.37 + 3062.6
N

(6.3)

Equation 6.3: Processing time for the gsmcal_solve step as a function of (N ), the Num-
ber of CPUs used by the process.

Number of CPUs

One further parameter that can be optimised is the number of CPUs requested
when the job is launched. We investigated the processing speedup as a function
of the number of CPUs for the prefactor target pipeline. From the steps tested,
only the gsmcal_solve step shows a signi�cant speedup as the number of CPUs
is increased. The run time of this step is an inverse power law with respect to the
number of CPUs as seen in Figure 6.8. Unlike the solving step, the step applying
the calibration solutions (gsmcal_apply) is constant in time with respect to the
number of CPUs as seen in Figure 6.9. The di�erence in performance is most likely
because the gsmcal_apply code uses a parallel for loop to calculate antenna gains
while gsmcal_apply does not.

We �t a model with processing time inversely proportional to the number
of CPUs used. We show the resulting model in Equation 6.3, with the parameter
(N ) being the number of CPUs used.

6.4.2 Queueing Tests

Aside from the performance of the LOFAR software, wemeasured the queuing time
at the GINA cluster, as a function of the number of CPUs requested. This data was
obtained between 16 Nov 2018 and 10 Dec 2018 for 1, 2, 3 ,4, 8, and 16 CPUs
per job. A histogram of the queuing time for these jobs is shown in Figure 6.10.
Statistics for these runs are in Table 6.4. We use the 75th percentile of the queuing
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Figure 6.8: The processing time of the gsmcal_solve step decreases exponentially with
the number of CPUs requested. The model in Equation 6.3 is shown in a dashed line. As
this is a 1/x model, it shows diminishing returns past 16 CPUs.
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Figure 6.9: The step that applies the calibration solutions, gsmcal_apply, does not show
a speedup when run on multiple cores, as all runs take roughly 30 seconds to complete.
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Figure 6.10: Test randomly submitting jobs to the GINA with di�erent number of requested
CPUs. The long tail for 8 and 16 CPU jobs shows that some jobs can take several hours to
launch.

T =
{

49.3 · N + 120 |N ≤ 4
726 · N − 3071 |N > 4

(6.4)

Equation 6.4: The model for the queueing time as described by two linear models.

time for each parameter step to �t a model. This scenario will include 75% of runs
and is a good trade-o� between ignoring and including outliers.

We �t two linear models for this queuing time. One model for 1-4 CPUs
and one for 4-16 CPUs. The model, as a function of the number of CPUs N is in
equation 6.4. The two models are plotted against the 75th percentile of the queuing
times (last column in Table 6.4) in Figure 6.11.

6.4.3 Transfer and Unpacking Time

We tested the downloading and unpacking time for data sizes ranging from 512MB
to 64GB. We discovered that the unpacking of �les below 64GB scaled linearly
with �le size, however unpacking individual data sets larger than 16GB becomes
considerably slower than downloading it.
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NCPU requested Mean time (sec) Median time (sec) 75th percentile (sec)
1 CPU 150.5 116.2 154.1
2 CPU 201.1 125.8 165.8
3 CPU 296.2 152.0 243.0
4 CPU 498.9 167.7 233.7
8 CPU 1944.2 428.4 2142.4
16 CPU 7079.0 696.4 8750.6

Table 6.4: Statistics for queuing time for di�erent values of CPUs requested. Queueing
time for jobs requesting less than 8 CPUs is typically less than �ve minutes. It can drastically
increase for larger jobs.

T = 5.918× 1020 · S2.336 (6.5)

Equation 6.5: Model of the downloading and extracting time as a function of the data size
(S) in bytes.

Figure 6.12 shows the histogram of the download tests, and Figure 6.13
displays the tests as a function of data size. Both �gures show that extracting of the
32 and 64GB data sets has more slow outliers than the downloading of this data.

We �t a power law model to the time taken to transfer and unpack the data.
In this case, we also consider the 75th percentile of these times in order to capture
the majority of runs and ignore outliers. The plot of the data and our model can be
seen in Figure 6.13 and the model is in Equation 6.5, as a function of the input data
size, S in gigabytes.

6.4.4 Comparison with production runs

Over the past two years, the LOFAR software has been running in production and
collecting data on run time for each processing step. We have saved detailed logs for
these runs starting in July 2018. We can compare this to the isolated model in order
to determine the overhead incurred by processing LOFAR data on shared nodes.

Using the logs recorded by our processing launcher 7, we made plots show-
ing the processing time for the downloading and extracting, and for the slowest steps,
ndppp_prepcal and gsmcal_solve. The results are shown in Figures 6.15 and
6.16. We include predicted extract times from Section 6.4.3 as vertical dashed lines
for both plots. The agreement between our model and production runs are an en-
couraging result for future software performance modelling.

7GRID_PiCaS_Launcher, https://github.com/apmechev/GRID_picastools

https://github.com/apmechev/GRID_picastools
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Figure 6.11: The queuing model built from two linear �ts to the queuing times. We use the
75th percentile of the queuing data as an upper bound of job queuing.

Figure 6.12: A histogram of the download and extracting times of multiple data sizes on
the GINA worker nodes. Download and extract times are comparable for data up to 8GB,
however above that, the extracting time dominates.
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Figure 6.13: A scatter plot of the download and extracting times of multiple data sizes on
the GINA worker nodes. The di�erence between download and extract time for the 32 and
64 GB data sets can be seen.
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Figure 6.14: Fit of an exponential model to the Download and Extraction time for di�erent
data sizes. For the transfer overhead, we took the 75th percentile from the data shown in
Figure 6.12. The model in Equation 6.5 is shown in a dashed line.
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Figure 6.15: Downloading and extracting time for 10 1GB data sets performed in our pro-
duction environment. Data from this test ranges from July 2018 to January 2019. The
dashed red line shows the prediction obtained from section 6.4.3. We see a bimodal dis-
tribution corresponding to 10 GB data (right peak) and data averaged further to 5GB (left
peak).

Finally, we present Figure 6.17 which shows a comparison of gsm-
cal_solve run times and our model’s prediction for a 1GB data set. Figure 6.18
plots the processing time vs data size for these production runs and includes the
model from Equation 6.1d. The signi�cant overhead incurred on a shared infras-
tructure can be noted.

6.4.5 Complete Scalability Model

To incorporate all our data into a completemodel, we consider the slowdown of each
parameter as a multiplier to the time taken to process our base run. We incorporate
the models for each parameter above for the model of the run time. We add the
transfer and queuing time to the processing time to obtain a �nal function of all our
parameters. We can use this function to predict the processing time for an arbitrary
data set.

The �nal performancemodel for the slowest steps, gsmcal_solve, dpp-
pconcat and predict_ateam are in Equation 6.6.
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Figure 6.16: Downloading and extracting time for a 64GB data set performed in our pro-
duction environment. Data from this test ranges from 07/2018-01/2019. The dashed red
line shows the prediction obtained from Figure 6.3d in Section 6.4.3.

6.5 Discussions and Conclusions

The goal of this work is to understand the performance of the LOFAR Direction
Independent Pipeline as processing parameters are changed. Wemodify several pa-
rameters and compare the wall clock time taken to process the data. Finally, we study
data from queuing jobs and downloading data in order to fully model infrastructure
overheads. We compare our model with past runs of the software and discuss the
results and implications. We discuss the utility of this model for current and upcom-
ing LOFAR projects. Finally, we note the e�ectiveness of this modelling technique
for understanding the performance of large-scale processing of astronomical data.

6.5.1 Software Performance

We performed several tests to determine the scalability of LOFAR processing with
respect to several parameters. We outline our �ndings below as well as their im-
plications for processing in the context of the LOFAR surveys and other LOFAR
projects.
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Figure 6.17: Processing time for the gsmcal_solve step in a production environment.
Data from this test ranges from 07/2018-01/2019. The dashed red line shows the predic-
tion for a 1GB run, obtained from section 6.4.3. We see two distributions, which correspond
to data averaged to 1GB and 512 MB. It should be noted that the left peak corresponds to
512MB data, as seen in Figure 6.18.
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Figure 6.18: The scalability model for processing data through the gsmcal_solve step,
shown in a dashed line. The scatter plot shows the performance for production runs of this
step between July 2018 and January 2019. The two large clusters are for data products that
are 1.0 and 2.0 GB respectively.
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tinfrastructure =
{

49.3 · N + 120 |N ≤ 4
726 · N − 3071 |N > 4

+ 2 · 0.056 · S2.336

(6.6a)

tgsmcal_solve = tinfrastructure

+ [3566 · 1
3.012F

−0.854 · (0.1412 + 0.8589
N

)] ·
{

7.38 · 10−7S|S ≤ 16
1.04 · 10−6S|S > 16

(6.6b)

tdpppconcat = tinfrastructure

+ 3.51× 10−8S + 4.20× 101 (6.6c)

tpredict_ateam = tinfrastructure

+ 5.19× 10−8S + 4.20× 101 (6.6d)

Equation 6.6: Model of the total time of the most computationally expensive steps for the
parameters N , Number of CPUs; S , Size of data in bytes and F , cuto� calibration model
�ux in Jansky. These models include processing times, as well as infrastructure overheads.
As the model for the queuing, downloading and uploading time does not change for di�erent
processing steps, we decide to keep it separate for clarity. The complete scalability models
for the rest of the steps can be derived similarly, however are omitted here as they consist of
the minority of processing time for LOFAR DI processing.

Data Size

We tested broadband LOFAR data ranging in size by a factor of 64, and discover
that all our processing steps scale linearly in time with respect of the input data size.
We learn that for input data above 16GB, the slope of our scaling relation is higher
than for the smaller data sets. The linear scaling of our processing suggests that
projects interested in processing massive LOFAR data sets can scale well in terms of
processing time.

As the calibration step concatenates 10 input Subbands, data larger than
16GB shows a higher slope (Figure 6.3d), meaning they take longer to process than
smaller data. This can be attributed to the large memory requirement for data larger
than 160GB which are is likely due to the additional memory requirements of the
minimization algorithm. Splitting the performance model in two also helps make a
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more accurate processing time prediction as �tting a single linear model would have
a large negative y-intercept, predicting negative processing times for data smaller
than 2GB.

Our analysis shows the following results. Overall, the slowest step was the
gsmcal_solve step, and its run time scales more strongly with data size than
the other steps (equation 6.1d has the steepest slope). This suggests that as data
sizes increase, gsmcal_solve will increasingly dominate the processing time over
the other steps (As seen in Figures 6.3a and 6.3d). This e�ect is especially promi-
nent for data larger than 16GB (160GB when 10 Subbands are concatenated). As
such, it is recommended to avoid calibration of data larger than 160GB. This lim-
itation suggests that science requiring operations on non-averaged data sets, such
as long-baseline imaging, will require signi�cant computational requirements for
high-�delity images.

Calibration Model Size

We discover that the calibration time scales linearly in as a function of the length
of the calibration model, however as a power law with respect to the model’s cuto�
sensitivity. This is because of the (expected) power law relation between the number
of sources and cuto� sensitivity, seen in Figure 6.2. We can use this discovery to
accelerate the processing time by increasing the �ux cuto� to the LOFAR direction
independent calibration to 0.5 Jy. Doing so will execute the calibration step in 60%
of the time, saving 83 CPU-h per run. Over the remaining 2000 prefactor runs
left in the LOTSS project, this change in sensitivity will save more than 167k CPU-
hours.

Figures 6.7 show a data set calibrated with sky models with cuto� sensi-
tivities listed in Table 6.3, and �gures 6.19 and 6.21 show the calibration solutions
obtained by calibrating with sky models of cuto� ranging from 0.05 Jy to 1.5 Jy.
These results suggest that performing gain calibration with less complex, and thus
smaller, calibration models will not degrade image and solution quality while taking
less than 20% of processing time. Table 6.3 also con�rms this result.

While this result is encouraging, there are caveats suggesting future study is
required. The results we present are for a single observation and has not been pro-
cessed through the Direction Dependent Calibration pipeline. This pipeline pro-
duces �nal images used for scienti�c research. Future work will need to con�rm
that smaller calibration models used in the prefactor pipeline do not degrade the
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quality of these �nal images. Nevertheless, if this result holds, the calibration model
threshold can be decreased for a wide range of LOFAR projects, signi�cantly saving
processing time and computing resources.

Comparison with production runs

When comparing our model’s prediction with real processing runs over the past six
months, we note that there are considerable overheads when running on a shared
infrastructure vs. when processing data on an isolated (Figure 6.18). The overhead
in processing is roughly a factor of two-three from our model. This discrepancy
suggests that amodel for gsmcal_solve needs to be built using data when running
on a shared environment, to better predict processing time.

6.5.2 Infrastructure Performance

We tested downloading and extracting LOFAR data of various sizes. Both down-
loading and extracting are shown to be linear in time with respect to the data size
for data up to 32 GB. Beyond those sizes, there is more scatter in data extraction
due to high �le-system load. This is because load on the worker node’s �le-system
can be unpredictable and can a�ect the data extraction times negatively. Neverthe-
less, when comparing our extraction tests and processing for the past six months, the
predictions by our models (Figure 6.12) correspond to the production runs (Figures
6.15 and 6.16).

Part of the LOFAR SKSP processing is done on shared infrastructure,
which requires requesting processing time ahead of time for each grant period. Be-
ing able to predict the amount of resources required to process data each grant pe-
riod is required to make a reliable estimate on what resources to request. These
results can be used by other projects sharing the SURFsara GINA cluster to predict
their processing time before submitting jobs.

6.6 Applications and Conclusions

Our performance model shows that it is possible to predict the processing time and
computational resources used by a complex astronomical pipeline. Our results sug-
gest that LOFAR LoTSS processing can be further optimised without sacri�cing the
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quality of the �nal product. Additionally, our results are transferable to other sci-
enti�c pipelines that process LOFAR data with di�erent parameters. Any pipeline
that performs gain calibration or application of calibration solutions will bene�t from
these results.

In order to provide LOFAR processing as a service to scienti�c users, we
need to estimate the processing time for each request. We need this estimation in
order to determine whether the user has su�cient resources left in their resource
pool. Knowing the performance of the software pipelines as a function of the input
parameters will help predict the run time for each request and the resources con-
sumed. Knowing this will make it possible to notify users how long the request will
take and how much of their quota will be depleted. It is important to note that while
this model is speci�c to LOFAR processing, the method we detail can be used by
other scienti�c teams in order to predict the computational requirements for their
pipelines. Doing this is necessary if large scale scienti�c processing is to be o�ered
as a service to the wider community.

Finally, a performance model of the LOFAR software will help make pre-
dictions on the time and resources needed to process data for other telescopes such
as the Square Kilometer Array (SKA). Once operational, the SKA is expected to pro-
duce Exabytes of data per year. Processing this data e�ciently requires understand-
ing the scalability of the software performance to facilitate scheduling and resource
allotment. Overall, we show that our method helps guide algorithm development
in radio astronomy, can be used to predict resource usage by complex pipelines and
will be promising in optimising data processing by future telescopes.

6.A Calibration Solutions for the sky model tests

The output of the calibration step is a data set corrected for direction independent
e�ects, as well as a set of calibration solutions. Figures 6.19 and 6.21 show the
calibration solutions for core stations obtained when calibrating with sky models
with minimum �ux cuto�s of 0.05, 0.3, 0.8 and 1.5Jy. Much like in Figure 6.7,
we can see that there is no signi�cant di�erence between the calibration solutions
for these stations. As a note, the naming scheme for LOFAR stations is CS/RS for
core/remote stations, three digits for station number, HBA0/HBA1 for High Band
antennas and LBA0/LBA1 for low-band antennas. The 0,1 su�xes correspond to
sub-arrays in the core stations, which can be correlated separately. Additionally, the
CS/RS is replaced with the 2-letter country code for international stations[155].
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Figure 6.19: The calibration (phase) solutions for the test data set obtained when calibrating
with sky models of 0.05 Jy cuto� (left) and 0.3Jy cuto� (right). The data shows the phase
solutions for baselines including stations CS003HBA0, CS003HBA1 and CS004HBA0,
with respect to the reference station, CS001HBA0. The right solutions were obtained using
the production calibration model. We do not see any improvement in results in the left
�gure, which took twice as long to obtain.

We compare the phase solutions for stations CS032HBA0 and
CS003HBA0 and the reference station for two di�erent calibrations in Fig-
ure 6.20. We note that this di�erence is within 0.3 rad for the entire observation.
Combined with the results in the other two plots, our results suggest that the
calibration solutions do not degrade when calibration is done with a smaller sky
model.

6.B Parametric model parameters and �t accuracy

In this section, we note the uncertainties to the models �t in Equations 6.1-6.5.

6.B.1 Fits quality of run time vs input size model

The models of the processing time vs input size were �t as a linear regression. In
this work we present such models for the gsmcal_solve, gsmcal_apply, dpp-
pconcat, predict_ateam and ateamcliptar, the �ve slowest steps. The re-
sulting models, calculated by the scipy linregress[156] routine, are shown in
Equation 6.1. We present the R2 values, P values and standard error below, in Ta-
ble 6.5.



6

130 Chapter 6. Scalability Model for the LOFAR Direction Independent Pipeline

Figure 6.20: Di�erence of phase solutions between calibrations with the 0.3Jy and 0.8Jy
sky models. The solutions for both stations are around zero phase for the duration of the
observation.

Figure 6.21: The calibration (phase) solutions for the test data set obtained when calibrating
with sky models of 0.8 Jy cuto� (left) and 1.5Jy cuto� (right). The data shows the phase
solutions for baselines including stations CS003HBA0, CS003HBA1 and CS004HBA0,
with respect to the reference station, CS001HBA0. We can see that the calibration solutions
shown here are not signi�cantly di�erent than those shown in 6.19, despite taking a fraction
of the processing time.
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prefactor
step

R2 P value Standard Er-
ror

predict_ateam 0.996 0 1.92× 10−10

ateamcliptar 0.979 0 3.94× 10−11

dpppconcat 0.999 1.2× 10−128 1.78× 10−10

gsmcal_solve
<=16GB

0.995 3.12× 10−75 6.80× 10−9

gsmcal_solve
>16GB

0.951 7.07× 10−40 1.58× 10−8

gsmcal_apply 0.989 5.6× 10−82 3.12× 10−10

Table 6.5: Fit parameters for the models in Equation 6.1.

[
6.83× 102 −1.94× 10−1

−1.94× 10−1 5.81× 10−5

]
(B.7)

Equation 6.7: The covariance matrix of the parameters in model in Equation 6.2.

6.B.2 Fit of run time vs calibration model �ux cuto�

The run time vs Flux cuto� model shown in Equation 6.2 is de�ned by the equa-
tion y = a · x−k and two parameters, a and k. The covariance matrix for these
two parameters is shown in Equation 6.7. The standard deviation for the �t of the
parameters a and k is 26.134 and 7.624× 10−3 respectively.

6.B.3 Fit of the NCPU model

The covariance matrix for the �t parameters of equation 6.3, a and k in y = a+ k
N

are shown in Equation 6.8. The standard deviation of the �ts for a and k are 13.11
and 48.20 respectively.

[
171.94 −504.11
−504.11 2322.95

]
(B.8)

Equation 6.8: The covariance matrix for the parameters for the model predicting run time
vs Number of CPUs used, shown in Equation 6.3.
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[
2.53× 10−4 1.08× 10−3

1.08× 10−3 4.60× 10−3

]
(B.9)

Equation 6.9: The covariance matrix for the parameters for the model for Download and
Extract time, shown in Equation 6.5.

6.B.4 Fit for the queuing time model

The statistics of the model �t parameters for the queuing time model (Equation
6.4) are in Table 6.6. The queuing model is �t to the 75th percentile of the queuing
times for each parameter step. Since this results in a single number for each step,
the model’s P values are larger than the models from the other sections.

Value of N R2 P value Standard Er-
ror

N ≤ 4 0.382 0.381 37.086
N > 4 0.986 0.075 86.293

Table 6.6: Goodness of �t parameters for the model in Equation 6.4. Since the model is
split into two parts, we treat each section as a single linear model.

6.B.5 Fit of the download and extract model

Equation 6.9 shows the covariance matrix for the two parameters a and k, y =
a × 10k with the best �t values shown in Equation 6.5. The standard deviations of
the �ts for a and k are 0.016 and 0.068 respectively.
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7 Automated testing and quality control
of LOFAR scienctific pipelines with

AGLOW

Original Abstract:
Data collected by modern radio telescopes are typically many terabytes in
size. Testing even simple processing tasks on data of this size is computa-
tionally expensive. LOFAR is a modern low-frequency radio telescope that
produces petabytes of data per year. The LOFAR radio telescope uses several
complex pipelines to process archived data. The development pace of these
pipelines is such that their code and parameters can change multiple times
per week. To ensure that LOFAR scienti�c pipelines preserve data quality,
we require automated testing and validation of output data. We introduce a
method to automate testing of large radio data sets and their accompanying
pipelines. Our software is integrated with a leading High-Throughput com-
puting cluster and can scale according to the processing requirements of the
scienti�c pipeline. Using our method, we discover a change in output data
quality and track this change to a speci�c processing software packa, ge.
The contents of this chapter are based on a manuscript to be submitted to
Astronomy and Computing.

7.1 Introduction

Modern astronomical instruments produce increasingly large sets of data, often in
the range of petabytes per year. Scienti�c insights into this data are obtained typi-
cally by individual researchers or small groups, using their custom-tailored process-
ing scripts. These scripts can evolve into a data reduction pipeline which becomes

133
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a standard processing step used to produce scienti�c products, serving the broader
scienti�c community. Often these scripts evolve into complex scienti�c pipelines
before implementing rigorous checks on the quality of the data products. Moreover,
the lack of existing automation infrastructure makes it likely that software updates
can change the quality of the processed data without the knowledge of the scienti�c
developers or larger scienti�c collaborations. In this work, we describe an imple-
mentation of an e�cient automated system focused on testing complex scienti�c
pipelines for radio astronomy. Our tests cover the initial processing pipeline neces-
sary for producing LOFAR broadband images; however, this implementation can
be used by other large scale astronomical telescopes.

The Low Frequency Array (LOFAR) radio telescope is a European low fre-
quency aperture synthesis telescope operated by the Netherlands[77], that observes
astronomical objects in the 10MHz-240MHz frequency range. It is designed as
a �exible telescope able to serve multiple science cases, such as extensive surveys,
transient studies, studies of galactic and extra-galactic sources, radio spectroscopy,
as well as long-baseline interferometry.

LOFAR data is stored as a Measurement Set [33] and archived at one of
the three Long Term Archive locations1. The Measurement Set standard and the
high time and frequency resolution of the archived data allow a single observation to
serve multiple science cases. Additionally, the standard data structure is supported
by several software packages which canmanipulate the data in theMeasurement Sets
according to the scienti�c goal and include their data products to the Measurement
Set.

The scienti�c data products for each project are produced by a series of
transformations of the raw data. These transformations are performed by a set of
scripts termed a scienti�c pipeline. These pipelines are typically written as Python
scripts which call various software packages with parameters speci�c to the pipeline
and science case.

One crucial scienti�c pipeline is the prefactor2 [16] Direction Indepen-
dent (DI) calibration pipeline. It aims to remove e�ects from the broadband data
that do not depend on direction, such as removing radio interference, �agging bad
data and antennas, removing contamination from bright o�-axis sources, and cal-
ibrating the data against a model of the radio sky [17, 18]. Correcting for these
e�ects is a necessary step in obtaining a scienti�c image. These steps remove image

1https://lta.lofar.eu/
2https://github.com/lofar-astron/prefactor/

https://github.com/lofar-astron/prefactor/
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artifacts caused by direction-independent e�ects. The resulting data is processed
by a Direction Dependent (DD) Calibration pipeline, which corrects for direction-
dependent e�ects such as ionospheric disturbances.

Scienti�c pipelines, such as prefactor, consist of a set of scripts that use
compiled LOFAR software, expected to be installed in the processing environment.
Separation of processing scripts and compiled software may result in incompatibil-
ity, as they are developed by separate groups. Incompatibilities can often lead to
either failure in the pipeline or corrupted data. Often these errors are discovered
weeks or months after the introduction of the bug, due to the lack of integrated
testing of the pipelines. A further issue is that both the scienti�c pipelines and the
underlying processing software are developed at a high pace. Often, this develop-
ment pace produces a mismatch between the software and pipelines, creating errors
in the scienti�c images. Automated testing is required to ensure the interoperability
of LOFAR software and LOFAR scienti�c pipelines.

The large data sizes of LOFAR observations pose two challenges to auto-
mated testing of scienti�c software and complex pipelines: (1) the processing time
required for continuous testing is signi�cant when compared to the resources avail-
able; and (2) no framework exists to automate LOFAR processing. We aim to solve
these challenges by integrating automated software quality tests at the Dutch Na-
tional Grid Infrastructure at SURFsara, Amsterdam.3 We build on previous ad-
vances in automated High Throughput astronomical work�ows, such as the integra-
tion of a work�ow orchestration software (Apache Air�ow) with a High Throughput
Computing (HTC) cluster[37]. We show that our work overcomes processing chal-
lenges, and automates testing of scienti�c software and pipelines. These advances
allow us to detect processing errors early, and to ensure that the scienti�c pipelines
do not degrade the data products.

Contributions: The main features of this work are the following:

• Design of a platform to perform integration tests of (multiple) complex scien-
ti�c pipelines on a High-Throughput architecture.

• A system for automatic versioning of the releases with a possibility of au-
tomating deployment and versioning, making data reduction of LOFAR re-
producible.

• Methods for performing automated data quality checks. This makes fast de-
velopment cycles of scienti�c pipelines possible.

3https://userinfo.surfsara.nl
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Outline: The organisation of this manuscript is as follows: We provide de-
tails about the LOFAR use case and corresponding scienti�c aims in Section 7.2.
We describe previous work in Continuous Integration and automation of scienti�c
processing in Section 7.3. We detail the work�ow in Section 7.4. We discuss our
results and show quality metrics for several regions in Section 7.5. Finally, we con-
clude and make remarks on future development in Section 7.6.

7.2 Background

One of the major Key Science Projects for the LOFAR telescope is the Surveys
Key Science Project (SKSP)[157]. The goal of the SKSP project is to create multi-
ple large-scale maps of the northern sky at low frequencies and unmatched angular
resolution and sensitivity. To reach this high sensitivity, and to serve multiple sci-
ence cases, each observation is integrated for roughly eight hours. Observations are
stored at a high time and frequency resolution, at 1 second and 2 kHz per sam-
ple. This is done to be able to serve multiple scienti�c goals with the same archived
data set. One of the surveys projects is the LOFAR Two-Meter Sky Survey, LoTSS
[25]. This survey is expected to produce more than 3000 8 hour observations, each
of which is up to 16TB in size. The size and number of the LoTSS data sets pose a
signi�cant infrastructure and processing challenges, for which a solution is described
in our previous work [35].

Over the past two years, we have processed the bulk of LoTSS data on
the GINA high throughput cluster4 located at SURFsara, the Dutch national High
Performance Computing Centre. To help automate this processing, we have built
a work�ow management system, AGLOW, which is based on Apache Air�ow, a
work�ow orchestration software, able to schedule and execute multiple work�ows.

Like Air�ow, AGLOW can implement arbitrary work�ows encoded in Di-
rected Acyclic Graphs (DAGs). DAGs are a type of directed graph, without internal
cycles. A work�ow can be encoded in a graph, by having each of its constituent tasks
mapping to a node on the graph, and the prerequisites for each task mapping to the
incoming edges to that node. Software such as Air�ow resolves the requirements
for each task, schedules, and executes them e�ciently. In production, AGLOW im-
plements the prefactor pipeline as a DAG. In AGLOW, we take advantage of the
parallelization available on the GINA HTC cluster to process LOFAR data e�ciently.
Speci�cally, we implement the prefactor scienti�c pipeline, which consists of two

4Speci�cations of the GINA cluster can be found at http://docs.surfsaralabs.nl/.

http://docs.surfsaralabs.nl/projects/grid/en/latest/Pages/Service/system_specifications/gina_specs.html
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main steps: calibration of a short calibrator observation and the calibration of the
science target. Because of the frequency independence of these steps, calibration of
both these observations can be done in parallel.

In software engineering, Continuous Integration is the practice of setting up
tests that automatically run as code when a repository is updated. These tests ensure
that new code added to the repository do not introduce bugs or errors in the data
processed with the code. Because of the complexity of modern scienti�c pipelines,
performing automated tests is necessary to ensure the quality of the output data
is preserved. Running these tests on a highly parallel platform, such as the GINA
cluster at SURFsara, makes it possible to e�ciently test scienti�c pipelines using
large data sets and ensure the quality of the data products is preserved despite the
fast development pace of software.

The LOFARSurveys project distributes its software in the form of pre-built
images using Singularity[158]. Singularity is a containerization software allowing
the user to build and distribute software images that can be used by an unprivileged
user to access the contained software. Singularity is successfully used at multiple
university clusters, and is already installed and tested at the GINA cluster. Before
safely deploying software images to multiple scienti�c teams, we need to verify that
the compiled software is compatible with scienti�c pipelines, and do not degrade the
quality of the �nal scienti�c image.

7.3 Related Work

Continuous Integration (CI) [159] and Continuous Delivery (CD)[160] are con-
cepts that have been used by software developers over the past decade and a half.
Continuous Integration allows for large teams to collaborate on software without
worrying about introducing bugs in their development process. This method relies
on unit tests and integration tests being shipped with the software, and includes a
system that runs such tests every time code is updated. Continuous Delivery builds
on this process to automatically validate output products in a production environ-
ment, and release a working software package.

Large scienti�c teams have begun introducing CI work�ows in their de-
velopment cycle with many previous successes [161–164] in various �elds from
genetics to telescope control. These works show the power of CI systems to enable
rapid software iteration in an academic environment.
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Commercial integration services such as TravisCI[165], CircleCI[166],
and GitLabCI[167] are widely used in industry and combined with GitHub or Git-
Lab for source control. Additionally, automation suites such as Jenkins[168] are
typically used to automate CI pipelines on dedicated infrastructure. While Jenkins
is a fully-featured automation suite, it needs to be installed and managed by a user
with elevated privileges. These advances can also be seen in the new drive to pro-
vide a Platform As A Service cloud infrastructure to scientists [169]. Our own work
creating a distributed platform for LOFAR processing [50] describes solutions to
the technical requirements of large scale LOFAR processing.

Apache Air�ow5 is an Apache work�ow orchestration software built in
Python. It allows building and scheduling generic work�ows, and in previous work
we implemented the full LOFAR prefactor pipeline running on a distributed in-
frastructure using Air�ow (which we named AGLOW) [37]. We deploy this soft-
ware in user-space, allowing us to easily build and manage LOFAR work�ows with-
out requiring elevated privileges. AGLOW has been proven useful in running
LOFAR processing on a shared cluster.

With the advancements in containerization, more and more groups have
begun distributing scienti�c software in pre-built containers. Docker is a common
way to package, version, and distribute scienti�c software, and its use has ensured
that research is easily reproducible [170]. A competing, open standard is Singularity
[158], built by Berkley National Lab. Unlike Docker, Singularity images can be used
without elevated privileges and can be distributed as an executable �le. Due to its
�exibility, many scienti�c groups now use Singularity in their scienti�c work�ows
[126, 171–173]. Because we use shared infrastructure to process LOFAR data, we
do not have exclusive, administrative access to our processing machines. As such, we
opt to use Singularity for software distribution. Because Singularity images are built
from text-�le recipes, we store these recipes in a GitHub repository which makes it
easy to determine the changes between software images.

7.4 Automated testing with AGLOW

We use our previous success in automating complex LOFAR pipelines with
AGLOW and build a Continuous Integration work�ow. We deploy this work-
�ow on the shared infrastructure available at SURFsara. Thus, our tests run on

5http://air�ow.apache.org/



7

7.4. Automated testing with AGLOW 139

the same cluster used for the LOFAR SKSP processing, which ensures compati-
bility of deployed software with our processing infrastructure. The source code of
our CI work�ows is located in the AGLOW software repository located at https:
//github.com/apmechev/AGLOW/tree/master/AGLOW/airflow/dags.

Our software tracks the version history of one or several scienti�c pipelines
using the API provided by GitHub. Using this API, we check for new updates to the
software pipeline(s) and trigger the test work�ow associated with each pipeline. In a
similar manner, the build scripts for our Singularity images are stored on GitHub.
In the case that these images have been updated, we trigger the test work�ow for
all scienti�c pipelines ensuring that we verify that a change in the software does not
corrupt the data produced by any of the scienti�c pipelines.

7.4.1 Distributed CI Work�ow

Figure 7.1 shows a run of the CI work�ow in progress. The work�ow checks the
latest commit of both the prefactor repository and software image and compares
it with the date of the last completed run of both. If testing is required, the work�ow
sends a request to bring the test data (observations of a calibrator source) to disk.
Once the calibrator data is available, the calibrator part of the prefactor pipeline
is tested.

Once the calibration is completed, the same steps are repeated with
the prefactor scripts for the science target. Upon successful completion, the
‘move_results’ task uploads the software image to our distribution repository. We
currently distribute software on aWebDAV[174] server hosted by SURFsara, mak-
ing LOFAR software easily available to users worldwide.

7.4.2 Nightly Builds

Because running the prefactor pipeline on our test data set (described in the Ap-
pendix) takes several hours and several hundred CPU-hours, we only test the soft-
ware on a nightly basis. We run this nightly build process at midnight every day.
If the tests succeed, we upload the new software images, scienti�c images, and an
archive of the pipeline scripts to a deployment area identi�ed by the date of the run.
A diagram of the test process is shown in Figure 7.3. In this work, we compare
scienti�c data produced with our CI pipeline over the span of �ve months. The re-
sults presented in Section 7.5 indicate the utility of automated tests of LOFAR data
processing.

https://github.com/apmechev/AGLOW/tree/master/AGLOW/airflow/dags
https://github.com/apmechev/AGLOW/tree/master/AGLOW/airflow/dags
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Figure 7.1: The work�ow responsible for testing the prefactor pipeline as well as the cur-
rent LOFAR software image. The tasks in this work�ow check if the software image or the
scienti�c pipelines have been updated. The work�ow stops if there have been no updates.
In the case that tests need to be run, the data is requested from the LOFAR archive and the
prefactor steps are executed on the test data. The three processing steps are the calibra-
tor calibration (‘launch_cal’), Target pre-processing (‘launch_targ1’) and Target calibration
(‘launch_targ2’). In between each step, there are checks whether the required data products
have been produced.



7

7.5. Results 141

7.4.3 Testing of Software Images

We build the LOFAR software on Singularity-Hub by integrating a GitHub repos-
itory containing the build scripts6 with the Singularity-Hub builders, and storing
the completed image directly in Singularity-Hub7. Singularity-Hub allows multiple
versions of an image to be hosted and di�erentiates releases by their MD5 hashes.
We use the ‘frozen’ version of a container as a stable release and the most recent
version as a test release.

In addition to the prefactor pipeline, we also run the unit tests of the
numpy[175], scipy[156] and astropy[176] scienti�c libraries. We import and run
the tests module for each of these libraries. Testing the underlying libraries is nec-
essary to ensure that we maintain the numerical accuracy of all LOFAR processing.

7.4.4 Testing of Scienti�c Pipelines

To test scienti�c scripts, we use the latest commit of the GitHub repository. These
scripts take as input a set of parameters that can be modi�ed by the user. We use
the same parameters as in the LoTSS processing, to ensure that the image qual-
ity obtained during our tests will match the quality of our production run. Once
the data is processed, our tools store the intermediate products with a time-stamp.
This allows future comparison between data processed with di�erent versions of the
software and scripts.

7.5 Results

Here, we present our results, implementing the �rst automated testing of LOFAR
data processing on a High Throughput infrastructure. We discuss our solutions to
the challenges of automatically processing large volumes of data, as well as discov-
eries made from the analysis of the resulting data. The infrastructure described
is suited for projects using complex, computationally intensive scienti�c pipelines
interested in preserving the quality of processed data even at a high development
pace. The tools we have built are general in that they can test any complex pro-
cessing pipeline as long as it is hosted on a git server. Speci�cally, it can accelerate
massively parallel pipelines and handle data sets of up to several terabytes.

6located at https://github.com/tikk3r/lofar-grid-hpccloud
7Images are hosted at http://singularity-hub.org/collections/1999
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Figure 7.2: An image of the test set created on 2019-04-23. We sample the di�use region
selected to get statistics in Figure 7.5. The image contains some calibration artifacts that will
be removed by the Direction Dependent Calibration that follows the prefactor pipeline.
The images produced between March 2019 and August 2019 do not appear qualitatively
di�erent, however the measurements shown in Figures 7.5 show there are some changes in
the resulting data.

Figure 7.3: Figure showing three scienti�c pipelines, hosted on GitHub tested on a High
Throughput infrastructure. We access GitHub through the GitHub REST API, store test
data and results on dCache [130] storage at the site of our processing infrastructure. Scien-
tists can use their custom scripts to test the quality of the �nal data products.
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Figure 7.4: Images created by the CI runs from 2019-03-29 (left column) and 2019-04-
23 (right column). The green region shows a bright source of ∼6 Jansky, which we use to
validate the extracted �ux for point sources. The cyan region is an empty part of the sky
that we use to obtain noise measurements of the image. We show measurements such as the
integrated, peak �ux as well as the RMS noise of the region.

Figure 7.5: Pixel statistics for the region circled in Figure 7.2 obtained from calibrated im-
ages produced by the AGLOW CI runs from 2019-03-29 to 2019-08-01. The sharp de-
crease in data quality corresponds to an update of the underlying software image. We con-
�rm this by running 2019-04-16 pipeline with the image from 2019-08-20 and obtain the
same quality as with the 08-01 pipeline. The plots of the other scienti�cally important re-
gions, the bright source and source-free background, show a similar change. Scientists can
use these plots to quickly detect changes in image quality.
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7.5.1 Pipeline Automation and Implementation

The goal of this work is to present the �rst automated solution for automated test-
ing of sophisticated scienti�c software and pipelines. We implement the complex
LOFAR prefactor pipeline as a �rst use case. Performing a full test of this pipeline
is both computationally expensive and challenging to automate, which is why we
leverage previous successes in large scale distributed automation of LOFAR pro-
cessing to enable this study.

7.5.2 Data Quality

Astronomers use multiple methods when comparing data quality of �nal images.
While the results from the prefactor pipeline need further processing to obtain
a �nal scienti�c image, the intermediate results produced by our tests can still be
compared across di�erent software versions. This comparison will give early bounds
on the �nal image quality and is an essential part of producing a high �delity �nal
image.

The primary way to compare data processed by prefactor is by eye, how-
ever quantitative metrics such as the background noise and integrated �ux around
sources are also used to compare results. In addition to images, the resulting data in-
cludes calibration solutions. The statistics, such as the mean phase, phase variance,
and quartile range of these solutions are useful scientists to determine calibration ac-
curacy. This work presents a method to automatically track these metrics and report
any deviations.

One large deviation in the metrics was introduced by updates to software
or pipelines, appears as a jump in Figure 7.5. These �gures suggest that an update
in software between April and June 2019 has a�ected the scienti�c results. We con-
�rm this result by processing the April 2019 version of prefactor with the August
software image. The results of this test are the same as the automated runs from
August, which rules out changes in prefactor as the cause. When comparing the
GitHub repository containing the recipes of the software images, we discover that
the software performing ionospheric �tting has been updated between April and
August. Without our automated testing, this change in image quality will likely not
have been discovered, and the underlying software change would have been di�cult
to trace.

We show the images obtained from our automated runs in Figures 7.2 and
7.4. The former �gure shows 13 CI runs, highlighting a region of di�use emission,
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while the latter shows a bright point source and an empty region for calculating
noise statistics. Using statistics from all three regions, we can track the ability for
the pipeline to image di�use sources, compact sources, and retrieve faint sources.
All three types of sources are important for di�erent radio astronomy science cases.
Measurements around the di�use source indicate how accurately the software ex-
tracts fainter, di�use sources. We have also chosen a bright point source (the quasar
4C 49.22) in our �eld to show the ability for prefactor to retrieve bright point
source �uxes. Likewise,the change in software between April and August 2019 has
increased the �ux extracted around this point source, as well as the noise in around
it.

7.6 Discussion and Conclusions

In this work, we present a method to automatically test complex scienti�c pipelines
on large datasets leveraging a High Throughput infrastructure.

During the �rst �ve months of prefactor Continuous Integration tests,
we produced more than 30 data sets, each processed with a di�erent version of the
prefactor pipeline, using two di�erent software images. We automatically created
images of these data sets and compared di�erent metrics for each image. From
those results, we could detect the e�ects of changing processing parameters such
as the time and frequency resolution of the data. We discovered that an update in
the LOFAR software, speci�cally a package named LoSoTo, in May 2019 has led
to a signi�cant change in image quality. LoSoTo8 is a tool for processing LOFAR
solutions and for �tting and removing ionospheric e�ects.

Continuous automated testing is crucial for determining whether changes
in software or processing scripts and parameters will a�ect the quality of the scien-
ti�c data. In our case, the quality metrics we track are the noise levels and peak/in-
tegrated �ux levels. Our framework supports arbitrary processing scripts, and thus
allows scientists to de�ne and deploy their metrics of interests. Running these tests
every night makes it possible to create the �rst time series of data quality for LOFAR
data. These results can be used to notify astronomers when the quality of the scien-
ti�c products changes or degrades signi�cantly.

Additionally, the AGLOW software allows for multiple scienti�c pipelines
to be tested concurrently. Each pipeline will produce its own set of images and qual-

8https://github.com/revoltek/losoto

https://github.com/revoltek/losoto
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ity metrics, which are used by astronomers to verify their scripts. As all LOFAR sci-
enti�c pipelines are hosted on GitHub, they are easy to integrate with our software.
In the event of a change in data quality, developers can easily track down the cause
by checking the commit history of the scienti�c pipeline or software image recipe.

7.6.1 Conclusions

In this chapter, we describe the �rst automated, high throughput testing of LOFAR
scienti�c pipelines. We can test LOFAR pipelines and software, create radio images,
upload and version software, and report image quality and statistics automatically.
Our work shows that it is easy to detect changes in image quality caused by software,
algorithm, or parameter changes in the prefactor scienti�c pipeline. Using our
results, astronomers can gain insights and help detect degradation of image quality
caused by software updates. We support this claim by detecting a noticeable decrease
in image quality caused by a software update between April and June 2019. Without
our automated tests, this degradation will likely not have been detected or reported.

The �exibility of our solution allows testing commits of scienti�c pipelines
in the past, comparing the data products from historical versions of the software to
the current version. Moreover, we can see that most changes in the pipeline do not
have a noticeable e�ect on the data quality, meaning that the scienti�c quality of
the �nal images is expected to be stable across most commits. Having a time series
of image statistics makes it easier to detect, understand, and �x code that leads to
signi�cant changes in image quality.

Our successes testing the prefactor pipeline was the �rst case of Contin-
uous Integration used to verify scienti�c data quality for the LOFAR surveys. The
extensibility of the AGLOW systemmakes it easy to add further pipelines or quality
checks to ensure the high development pace does not result in degradation of the
scienti�c products. The work described in this chapter is designed to help large as-
tronomical collaborations ensure high data quality of scienti�c products, even when
confronting considerable data sizes.

APPENDIX

We test our processing pipelines on a standard LOFAR surveys observation des-
ignated L229587 in the direction of the HetDex �eld[177] in the direction
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(11h55m41.282, +049d44m52.908). The data is stored at the SURFsara Long-
Term Archive location and can be accessed through the following URI:

srm : / / srm . g r i d . s a r a . n l :8443/ pnf s / g r i d . s a r a . n l / da t a /
l o f a r / ops / p r o j e c t s / lc2_038/229587/

To minimize processing time and resources, we only use a fraction of the entire
frequency bandwidth corresponding to Subbands 100-110. This corresponds to
a frequency between 139.844 and 141.602 MHz. The data was observed on 28-
May-2014 between 15:00 and 23:00. The initial data was 150GB and the �nal
averaged data set was 2.3 GB.

We make images with the following software and parameters:

wsc l ean − s i z e 2560 1080 −maxuv− l 7000 −ba s e l i n e−
ave r ag ing 5.34930608721 − l o c a l−rms−method rms−with−
min −mgain 0.8 −auto−mask 3.3 −pol I −weight ing−
rank− f i l t e r 3 −auto−t h r e s ho l d 0.5 − j 5 − l o c a l−rms−
window 50 −mem 20 −weight b r i g g s 0.0 − s c a l e 0.00208
−n i t e r 5000 −no−update−model−r equ i r ed
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8 Conclusion

As astronomical observatories produce ever-growing data-sets, the processing chal-
lenges for these data will continue to increase. Extensive astronomical surveys, ex-
pected to create petabytes of data, can no longer be processed on a single machine or
small dedicated clusters at scienti�c institutions. Serving the scienti�c requirements
of these surveys will require large scale distributed processing.

CERN’s World-Wide computing Grid provides su�cient resources for
such projects; however, its focus is on distributed Monte-Carlo simulations. This
high-throughput infrastructure o�ers opportunities for parallel processing of radio
astronomy data sets. To take advantage of these resources and implement com-
plex astronomical work�ows to a grid-like environment requires a framework to
distribute and monitor jobs. Furthermore, processing and re-processing thousands
of observations e�ciently requires work�ow orchestration software. We aim to en-
able the 30+ petabyte LOFAR Two-meter Sky Survey (LoTSS) by combining high
throughput processing infrastructure with modern work�ow orchestration software.

8.1 Summary of Thesis Contributions

The work in this thesis focuses on software built to accelerate, parallelize, and auto-
mate LOFAR processing as well as the insights obtained into large scale processing
of LOFAR data. We have built a scalability model which we use to understand the
performance of LOFAR broadband processing pipelines. Our model brings novel
insights into the limits of our current pipelines, as well as suggestions to improve
processing throughput.

We have built a platform for processing a radio astronomy data on a hetero-
geneous, distributed infrastructure. We exploit the data-level parallelism of com-
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putationally intensive processing tasks, and our work makes several LOFAR scien-
ti�c projects possible. Additionally, our insights into distributed execution of com-
plex pipelines are crucial for enabling sizeable astronomical surveys. We expect
distributed processing will become an increasingly important paradigm in astron-
omy.

Finally, we created an automated work�ow system with the goal to auto-
matically produce high �delity images from LOFAR observations. This system was
a successful integration of industry software into radio astronomy, one of the goals
of this thesis and its associated grant. Bringing open-source tools used in industry
is crucial to keeping long-lived scienti�c projects maintainable and productive. Our
results were an important step in enabling high throughput, automated processing
of LOFAR scienti�c work�ows.

Our advances in understanding LOFAR processing ine�ciencies, exploit-
ing data-level parallelism, and automating work�ows are important steps tomodern-
izing LOFAR scienti�c processing. The lessons learned in this work can be directly
applied in other scienti�c �elds that need to process data at overwhelming rates.

8.2 Answers to Research Questions

Research Question 1: How can we use a distributed
shared infrastructure for e�cient LOFAR data processing?

In Chapters 2 and 3, we present our results enabling massively distributed
processing of LOFAR data. We describe the underlying platform, inherited from
the High Energy Physics community and the modi�cations to these tools that were
required to host sophisticated processing software. We describe these modi�cations
and discuss the resulting increase in throughput. Finally, we estimate the time saved
by parallelizing LOFAR data processing. The work described in these chapters is
essential to producing scienti�c data sets at a high rate, particularly considering the
high data rates produced by LOFAR.

Research Question 2: How can we build software to ef-
fortlessly accelerate complex pipelines for radio astronomy?

Chapters 5 and 7 present our work on parallelizing LOFAR scienti�c
pipelines on a distributed shared infrastructures. We integrate a mature work�ow
orchestration package with distributed LOFAR processing. We discuss the need for
this orchestration, as well as the abilities to support additional complex pipelines.
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As an example application, we build a Continuous Integration pipeline tasked with
verifying and validating the initial steps of LOFAR processing.

Research Question 3: Can we automatically collect per-
formance information during massively distributed process-
ing and predict run times for future data sets?

Chapters 4 and 6 describe a performance monitoring suite for LOFAR
data and our scalability model for LOFAR processing. When running massively
distributed processing, scientists are unable to monitor the performance of the un-
derlying software. Collecting these statistics is necessary for understanding process-
ing ine�ciencies and suggest ways to accelerate data processing. Performance data
can also be used to understand the e�ect of processing parameters on the resource
usage of complex pipelines. We study this in detail, building a model that can be
used to understand the scalability of multiple processing steps. This model shows
the limitations imposed by available processing resources as well as suggestions on
decreasing processing time without sacri�cing scienti�c data quality.

8.3 Limitations

Using the software described, the LOFAR Surveys team was able to process several
petabytes of archived data and produce scienti�c quality images. Despite the suc-
cesses of the project, several issues occasionally impede data processing and prevent
rapid deployment of software pipelines.

High throughput processing of LOFAR data requires the initial process-
ing steps to be performed at the data archive locations. While deploying new ver-
sions of the LOFAR software and pipelines at SUFRsara is straightforward, the
same is not true for other LTA locations. LOFAR data needs to be processed at
LTA locations that do not support any modern containerization software nor other
software distribution methods. This makes deploying new software is di�cult and
time-consuming. Additionally, orchestrating jobs at these sites requires additional
integration with our job monitoring tools due to lack of internet access from some
HTC clusters. Integrating locations not suited for large scale distributed processing
is an ongoing challenge for the LoTSS survey and other LOFAR projects.

A further limitation is the authentication of our processing software and
the authentication requirements for data access. Distributed processing of large data
sets requires having access to the data at multiple locations, however the intermedi-
ate products produced by our work�ows are not public and require an active x.509
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certi�cate authorised by the LOFAR SKSP project. The current workaround to this
limitation is to maintain active certi�cates at each processing location. Upcoming
features of the dCache storage system, bearer tokens called macaroons, will make it
possible to overcome this limitation.

Finally, our current software distribution does not assign long-term version
numbers to software images and scripts, nor is there a way to store these images or
cite them in related papers. Implementing proper versioning is crucial to not only
making data processing easily reproducible, but also make it possible to recognize
the e�ort put into building and distributing software images. Overcoming these
limitations will enable FAIR science with LOFAR data[178].

8.4 Future Work

This work focuses on the substantial gains possible by parallelization of LOFAR
data processing. We take in mind the complexity of our processing work�ows, the
full range of scienti�c pipelines and the heterogeneous nature of the underlying in-
frastructure. Because of these factors, a wide range of astronomical pipelines can
use the software presented in this work. Future automation of the LoTSS pro-
cessing requires deciding on data quality requirements at each step and automated
re-processing strategies in case a data quality check fails. Implementing intelligent
re-processing strategies will reduce the human supervision currently necessary to
provide high-quality large-scale surveys such as LoTSS.

Scienti�c projects with signi�cant data rates such as Gaia and LSST provide
users with an integrated environment to e�ciently process archived observations.
Having such an environment is a necessary step to gain fast and easy to gain insights
into LOFAR data. This work presents a method enabling scientists to incorporate
processing hosted at scienti�c institutions and cloud providers to scale scienti�c pro-
cessing horizontally.

One application for such large scale distributed processing is the Square
kilometre Array. The Square Kilometer Array, (SKA) is a planned aperture synthesis
radio telescope expected to have a total collecting area of one square kilometre. It
is expected to produce more than 160 TB per day [179], data which needs to be
processed. Scaling our tools to SKA-size processing requires a federation of clusters
able to handle a high throughput workload. Nevertheless, as the SKA data processing
will use di�erent software tools than LOFAR, further study is needed on the optimal
processing strategy for each of the many SKA science projects.



153

In recent years, academia has begun focusing on ease of access and repro-
ducibility of science. Science done with cutting edge instruments, such as LOFAR,
tends to be time-consuming to reproduce. Barriers such as setting up a working
software environment and downloading massive data-sets prevent scientists from
quickly and easily reproducing the results of their peers. These barriers make it
di�cult to verify the accuracy of discoveries and need to be overcomed in order
to make astronomy more honest and transparent. Automatically building, testing,
versioning and releasing docker and singularity images is critical to making science
in radio astronomy easily reproducible. Creating a LOFAR science portal and in-
tegrating our tools and software images with this portal is crucial to making radio
astronomy both more accessible and more authoritative.
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Samenvatting

Wanneer we naar de nachtelijke hemel kijken, observeren we het universum door
zichtbaar licht. We kunnen sterren, planeten, nevels en misschien zelfs andere ster-
renstelsels zien. De vroegste astronomen bestudeerden het Universum met hun
ogen, uiteindelijk geholpen door spiegels en lenzen in de vorm van telescopen en
verrekijkers. In de 18e en 19e eeuw hebben natuurkundigen het volledige elektro-
magnetische spectrum ontrafeld. Naast zichtbaar licht, konden astronomen nu het
universum bestuderenmet behulp van de infrarood-, ultraviolette, microgolf- en ra-
diodelen van het spectrum. Licht uit elk deel van het spectrum draagt verschillende
informatie met zich mee en kan worden gebruikt om speci�eke fysische fenome-
nen te bestuderen. Het nadeel van deze breedte van informatie is dat elk deel van
het spectrum zijn eigen speci�eke detectoren nodig heeft, en vaak hele telescopen.
Toch onthult elk deel van het spectrum een deel van het universum dat voor ons
verborgen is in alle andere gol�engten.

Radioastronomie werd geboren in de jaren 1930 met de experimenten van
Karl Jansky met een gerichte 30-meter radio-antenne. Hiermee kon hij onweers-
buien detecteren, de magnetosfeer van de Zon, maar ook een vreemde onbekende
bron in het centrum van onze sterrenstelsels. Deze experimenten bewezen dat
laagfrequente radiogolven konden worden gebruikt om het verre heelal te bestud-
eren. In de jaren 1940 werden radarontvangers ontwikkeld als een kwestie van
nationale veiligheid tijdens de Tweede Wereldoorlog. Ze worden beschouwd als
de belangrijkste reden voor de overwinning op de Luftwa�e in de Slag om Enge-
land. Na het einde van de oorlog werd een deel van de radarhardware op de ruimte
gericht.

Terwijl de nieuwe antennes veel gevoeliger waren voor radiofrequen-
ties, hebben radiotelescopen een fundamentele beperking in termen van resolu-
tie. Omdat licht zich als een golf gedraagt, vooral bij lange gol�engten, wordt het
beperkt door de di�ractielimiet. De di�ractielimiet verbindt het kleinste object dat
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ruimtelijk kan worden onderscheiden door een telescoop met de gol�engte van het
licht en de diameter van de telescoop. Als we een radiotelescoop van 100 m nemen,
heeft deze de onderscheidingsvermogen die gelijkwaardig is aan die van een zicht-
bare telescoop met een spiegel met een diameter van 0,5 mm. Dit zou niet al te te
schokkend moeten moeten zijn: radiogolven zijn meer dan 10 miljoen keer langer
dan het licht dat we waarnemen, dus onze telescopen moeten natuurlijk 10 miljoen
keer groter zijn.

Om de resolutie van de Hubble-ruimtetelescoop te evenaren, zou de
spiegel van een radiotelescoop op 150 MHz een diameter van ∼ 1000km nodig
hebben. Terwijl ingenieurs nog steeds bezig zijn met het maken van radarchotels
van dit formaat, hebben astronomen zich tot computers gewend om de hoekreso-
lutie van radiotelescopen te vergroten. Met behulp van de golfeigenschappen van
licht kunnen radioastronomen de timing synchroniseren van de gegevens die zijn
waargenomen op meerdere antennes, gescheiden door tientallen, honderden of
duizenden kilometers. Met aanzienlijk rekenwerk kunnen gegevens van deze ver
uiteen liggende antennes worden gecombineerd om een beeld te maken met een
resolutie de gelijkwaardig is aan die van een radiotelescoop met een schoteldiameter
van honderden kilometers. Het nadeel van deze combinatie van antennes is de ben-
odigde rekenkracht voor het maken van dergelijke wetenschappelijke a�eeldingen.

De LOFAR (LOw-Frequency-ARray) radiotelescoop is een Nederlandse
laagfrequente telescoop die bestaat uit meer dan 5000 antennes in Nederland, met
duizenden meer gegroepeerd in stations in heel Europa. LOFAR observeert de
radiohemel met de laagste frequenties zichtbaar vanaf de aarde: van 10 MHz tot
240 MHz. Het is ontworpen om gegevens te verzamelen voor meerdere weten-
schappelijke toepassingen. Wetenschappers kunnen LOFAR-gegevens gebruiken
om fenomenen te bestuderen zoals supernovaresten en pulsars in ons sterrenstelsel,
magnetische velden van het zonnestelsel, samenvoegende melkwegclusters, zwarte
gaten in het centrum van het verre sterrenstelsels en zelfs het tijdperk waarin de
eerste sterren in ons universum werden gevormd. Om zulke uiteenlopende weten-
schappelijke gevallen te dienen, worden LOFAR-gegevens opgeslagen met hoge
tijd- en frequentie-resoluties. Dit leidt tot aanzienlijke gegevensgroottes. Elke ob-
servatie van 8 uur kan gemakkelijk acht harde schijven van 2 TB vullen. Het maken
van een a�eelding op basis van deze gegevens is net aan mogelijk op iemands PC
en een survey van de gehele hemel bestaan uit duizenden observaties die niet op één
computer of zelfs een klein cluster van computers kunnen worden verwerkt. Des-
ondanks kan elke verwerkingscyclus meerdere dagen duren, een vertraging die niet
acceptabel is voor projecten die binnen vijf jaar duizenden datasets produceren.
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Om duizenden waarnemingen van meerdere petabytes te kunnen ver-
werken, maken we gebruik van supercomputers voor parallelle verwerking van ra-
dioastronomiegegevens. Parallelliseren houdt in dat al onze gegevens kunnen wor-
den opgesplitst in veel verschillende stukken, die elk onafhankelijk kunnen worden
verwerkt. Bij een voldoende aantal computers daalt de verwerkingstijd met een fac-
tor 10 of meer. Het versnellen van de eerste paar verwerkingsstappen levert een
tweede voordeel op: de eerste stappen reduceren de grootte van gegevens met een
hoge resolutie tot 64 keer. Opeens past elke observatie gemakkelijk op uw desktop,
laptop, en zelfs op een micro-SD kaart! Ze kunnen ook in seconden in plaats van
uren tussen universiteiten worden uitgewisseld.

Dit werk is erop gericht om wetenschappers in staat te stellen van weten-
schappers om eenvoudig en snel LOFAR-gegevens te verwerken, waardoor het
gemakkelijker wordt om grote gegevenssets te gebruiken omwetenschappelijke stud-
ies uit te voeren. We maken gebruik van open source software, een verwerk-
ingsinfrastructuur met een hoge verwerkingscapaciteit en de eigenschappen van
gegevensverwerking via radioastronomie om grote wetenschappelijke onderzoeken
met LOFAR mogelijk te maken. Ons werk is echter niet alleen nuttig voor weten-
schappers. We bouwen en presenteren tools waarmee we de softwareprestaties van
complexe wetenschappelijke pijpleidingen kunnen bestuderen en gebruiken deze
tools om e�ciëntere verwerkingsstrategieën aan te bevelen. Onze resultaten zijn ook
van toepassing op toekomstige verwerkingsprojecten, zowel voor LOFAR-gegevens
als voor de volgende generatie radiotelescopen. Uiteindelijk kunnen de lessen die
zijn geleerd van de uitgebreide LOFAR-observaties worden gebruikt voor toekom-
stige astronomische projecten met grote hoeveelheden gegevens.

In Hoofdstuk Één geven we een overzicht van de geschiedenis van weten-
schappelijk computergebruik, radio-interferometrie en de uitdagingen bij de ver-
werking van LOFAR-gegevens. In Hoofdstuk Twee presenteren we een platform
voor grootschalige gedistribueerde LOFAR-verwerking. Dit platform is gebouwd
voor geavanceerde LOFAR-gebruikers die hun verwerking willen parallelliseren op
een gedeeld systeem, verdeeld over meerdere computationele toestelen en clusters.
We introduceren de gebruikte softwarepakketten en hun interacties en bespreken
de noodzaak van een dergelijk platform voor huidige en toekomstige grootschalige
astronomische studies.

In Hoofdstuk Drie introduceren we een raamwerk voor het starten, volgen
en parallelliseren van verwerkingsopdrachten voor de LOFAR-telescoop. Het is de
eerste keer dat LOFAR-gegevens in bulk werden verwerkt op een High Throughput
Infrastructuur. We laten zien dat dit computerparadigma kan worden toegepast op
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de eerste stappen van een enkele verwerkingspijplijn. We geven een suggestie hoe
andere pijpleidingen en telescopen dit kader kunnen gebruiken om hun gegevens te
verwerken. Ten slotte laten we een aanzienlijke versnelling van de gegevensverwerk-
ing zien in vergelijking met de gegevensverwerking in Leiden: tot 35 keer sneller.

In Hoofdstuk Vier gaan we de uitdaging aan om prestatiegegevens te verza-
melen van gedistribueerde runs van een complexe pijplijn. Voortbouwend op ons
werk met betrekking tot parallelle verwerkingspijplijnen, bouwen we software om de
prestaties van elke verwerkingsstap te volgen. De gegevens die we bijhouden, wor-
den verzameld op een centrale server en kunnen in realtime worden geanalyseerd of
worden bestudeerd na de verwerkingsrun. We voeren tests uit op vier verschillende
systemen en constateren dat de compilatiemethode de prestaties van de verwerking
niet verslechtert. We krijgen ook inzicht in de prestaties de lage prestaties van onze
langzaamste stappen. Onze bewakingssoftware biedt een rijke dataset voor weten-
schappelijke softwareontwikkelaars om inzicht te krijgen in de realtime prestaties
van de gegevensreductiepijplijnen.

In Hoofdstuk Vijf introduceren we de eerste work�ow-orkestratiesoftware
voor complexe LOFAR-pijpleidingen. Deze software is het best geschikt voor
de automatische verwerking van LOFAR-gegevens geproduceerd door grote, lan-
glopende projecten. Deze software combineert al ons eerdere werk en maakt het
eenvoudiger om grote verwerkingspijplijnen in te zetten op een grootschalige gedis-
tribueerde infrastructuur. Het doel is om complexe LOFAR-pijpleidingen een-
voudig te visualiseren en te automatiseren. De verwerking van de 3000+ LOFAR
twee-meter Sky Survey is geautomatiseerd met onze software, waaruit blijkt dat het
complexe verwerking, parallellisatie, gegevensarchivering en externe databasetoe-
gang aankan. Onze tool is gebouwd om substantiële, petabyte-grootte, LOFAR-
projecten mogelijk te maken.

In Hoofdstuk Zes demonstreren we een methode voor het maken van een
compleet schaalbaarheidsmodel voor complexe pijpleidingen. Met de LOFAR-
prefactor-pijplijn omvatten we meer dan een orde van grootte in verwerkings-
parameters om te begrijpen hoe onze software presteert met toenemende gegevens-
groottes. De geleerde lessen helpen onze huidige gegevensverwerking te optimalis-
eren, de tijd te voorspellen die toekomstige taken in zullen beslag neme nen inzicht
te krijgen in de prestaties van grote gegevenssets.

Hoofdstuk Zeven beschrijft een methode om ervoor te zorgen dat toekom-
stige softwarebeelden vóór de implementatie worden getest tegen productiepij-
plijnen. We automatiseren dit met behulp van het work�ow-orkestratiesysteem
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beschreven in Hoofdstuk vijf. In het laatste hoofdstuk beantwoorden we de on-
derzoeksvragen in onze inleiding en bespreken we de beperkingen van ons werk.
Eindelijk, sluiten we af met een bespreking van toekomstige toepassingen van onze
software.





English Summary

When we look up at the night sky, we observe the Universe through visible light.
We can see stars, planets, nebulae, and maybe even other galaxies. The earliest
astronomers studied the Universe through their eyes, eventually aided by mirrors
and lenses in the form of telescopes and binoculars. In the 18th and 19th centuries,
physicists have unraveled the breadth of the electromagnetic spectrum. Aside from
visible light, astronomers were now able to study the Universe using the infrared,
ultra-violet, microwave, and radio parts of the spectrum. Light from each part of
the spectrum carries di�erent information with it and can be used to study speci�c
physical phenomena. The drawback to this breadth of information is that every
part of the spectrum needs its own dedicated detectors, and often, entire telescopes.
Nevertheless, each part of the spectrum reveals a part of the Universe hidden to us
in all other wavelengths.

Radio Astronomy was born in the 1930s with Karl Jansky’s experiments
with a directed 30-meter radio antenna. With it, he was able to detect thunder-
storms, the Sun’s magnetosphere, but also a strange unknown source at the center
of our galaxies. These experiments proved that low-frequency radio waves could be
used to study the distant Universe. In the 1940s, radar receivers were developed as
a matter of national security during the Second World War. They are considered
the main reason for the victory in the Battle of Britain over the Luftwa�e. After the
conclusion of the war, some of the radar hardware was turned to the skies.

While the new antennas were much more sensitive to radio frequencies,
radio telescopes have a fundamental limitation in terms of resolution. Because light
behaves as a wave, especially at long wavelengths, it is bound by the di�raction limit.
The di�raction limit links the smallest object that could be spatially resolved by a
telescope with the wavelength of light and the telescope’s diameter. If we take a 100-
m radio telescope, it will have the resolving accuracy equivalent to a visible telescope
with a mirror with a 0.5 mm diameter. This shouldn’t be too shocking: radio waves
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are more than 10 million times longer than the light we perceive, so naturally, our
telescopes need to be 10 million times larger.

To match the resolution of the Hubble space telescope, the mirror of a ra-
dio telescope at 150MHzwould need a diameter of∼1000km. While engineers are
still working on making radio dishes of this size, astronomers have turned to com-
puters to increase the angular resolution of radio telescopes. Using the wave prop-
erties of light, radio astronomers can synchronize the timing of the data observed at
multiple antennas, separated by tens, hundreds, or thousands of kilometers. With
signi�cant processing, data from these distant antennas can be combined together
to make an image with a resolution equivalent to a radio telescope with a dish dia-
meter of hundreds of kilometers. The downside of this combination of antennas is
the computational requirements of making such scienti�c images.

The LOFAR (LOw-Frequency-ARray) radio telescope is a Dutch low-
frequency telescope that consists of more than 5000 antennas in the Netherlands,
with thousands more grouped in stations across Europe. LOFAR observes the radio
sky at the lowest frequencies visible from Earth: from 10 MHz to 240 MHz. It is
designed to collect data for multiple science cases. Scientists can use LOFAR data
to study phenomena such as supernova remnants and pulsars in our galaxy, solar
system magnetic �elds, merging galaxy clusters, black holes in the centre of distant
galaxies, and even the epoch when the �rst stars in our Universe formed. To serve
such diverse science cases, LOFAR data is stored at high time and frequency reso-
lutions. This leads to considerable data sizes. Each 8-hour observation can easily �ll
eight 2-TB hard drives. Creating an image from this data is just possible on one’s
personal computer and large all-sky surveys consist of thousands of observations
which cannot be processed on a single computer or even a small cluster of com-
puters. Even so, each run can take several days, a latency not feasible for projects
producing several thousand data sets within a �ve-year project.

Tomake it possible to process thousands ofmulti-petabyte observations, we
take advantage of supercomputers for parallel processing of radio astronomy data.
Data parallelism means that all of our data can be split into many di�erent pieces,
each of which can be processed independently. With a su�cient number of comput-
ers, the processing time drops by a factor of 10 or more. Accelerating the �rst few
processing steps delivers a second advantage: The initial stages take high-resolution
data and average it down by a factor of up to 64. Suddenly each observation can
comfortably sit on your desktop, laptop, and even on a micro-SD card! They can
also be transported between universities in seconds rather than hours.



167

This work is focused on how to enable scientists to easily and quickly pro-
cess LOFAR data, making it easier to use large data sets to conduct scienti�c studies.
We use open source libraries, a high throughput processing infrastructure, and the
properties of radio astronomy data processing to make large scienti�c surveys with
LOFAR possible. Our work is not only useful for scientists, though. We build and
present tools that enables us to study the software performance of complex scien-
ti�c pipelines, and use these tools to recommendmore e�cient processing strategies.
Our results are also applicable to future processing e�orts, both for LOFAR data and
for upcoming radio telescopes. Ultimately, the lessons learned from the extensive
LOFAR surveys can be used for future astronomical projects tasked with large data
sizes.

In Chapter One, we give an overview of the history of scienti�c comput-
ing, radio interferometry, and the processing challenges for LOFAR data. In Chap-
ter Two, we present a platform for large scale distributed LOFAR processing. This
platform is built for advanced LOFAR users who wish to parallelize their process-
ing on a shared system distributed across multiple computational nodes and clusters.
We present the software packages used and their interactions and discuss the neces-
sity of such a platform for current and future large scale astronomical studies.

In Chapter Three, we introduce a framework for launching, tracking, and
parallelizing processing jobs for the LOFAR telescope. Our results represent the
�rst time that LOFAR data were processed in bulk, on a High Throughput Infras-
tructure. We show the applicability of this computing paradigm on the initial steps
of a single processing pipeline. We suggest how other pipelines and telescopes can
use this framework to process their data. Finally, we show a signi�cant speed-up in
data processing compared to data processing in Leiden: up to 35 times faster.

In Chapter Four, we tackle the challenge of collecting performance data
from distributed runs of a complex pipeline. Building on our work parallelizing
processing pipelines, we build software to track the performance of each processing
step. The data that we track is collected at a central server and can be analysed in
real-time or studied after the processing run. We run tests on four di�erent systems
and �nd that the software compilation method doesn’t degrade the run time perfor-
mance of the processing. We also gain insights into low-level performance for our
slowest steps. Our monitoring software provides a rich data set for scienti�c soft-
ware developers to gain insights into the real time performance of the data reduction
pipelines.

In Chapter Five, we introduce the �rst work�ow orchestration software for
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complex LOFAR pipelines. This software is suited best for the automatic processing
of LOFAR data produced by large, long-running projects. This software combines
all of our previous work and makes it easier to deploy large processing pipelines on
a large scale distributed infrastructure. We have built it to visualise and automate
complex LOFAR pipelines easily. The processing of the 3000+ LOFARTwo-Metre
Sky Survey is automated with our software, showing its ability to handle complex
processing, parallelization, data archival, and remote database access. Our tool is
built to make substantial, petabyte-scale, LOFAR projects feasible.

In Chapter Six, we demonstrate a method for creating a complete scala-
bility model for complex pipelines. Using the LOFAR prefactor pipeline, we span
more than an order of magnitude in processing parameters to understand how our
software performs with increasing data sizes. The lessons learned will help optimize
our current data processing, predict the time taken by future jobs, and understand
the performance of our processing for large data sets.

Chapter Seven describes a method to ensure future software images are
tested against production pipelines before deployment. We automate this using the
work�ow orchestration system described in Chapter �ve. In the �nal chapter, we
answer the research questions posed in our introduction and discuss the limitations
of our work and conclude with a discussion of future applications of our software.
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AGLOW AGLOW is a combination of Apache Air�ow with GRID_LRT. This
integration allows LOFAR users to build and launch massively parallel work-
�ows. 84

CouchDB CouchDB is a document-based eventually consistent database, that we
use to store processing information for distributed jobs. Each CouchDB doc-
ument corresponds to a single distributed job, and contains a full description
of the job required to run on a worker node. As jobs run, they update their sta-
tus in the CouchDB document, which can be accessed by users through their
browsers or a Python client. 24, 45, 91

CVMFS The CERN VM Filesystem is a virtually mounted �lesystem that is used
to distribute software on multiple clusters, cluster nodes and individual ma-
chines. CVMFS allows an institute to host a portable installation of their soft-
ware, which is distributed and cached by other CVMFS clients. The software
is cached locally on the worker nodes as a FileSystem in Userspace (FUSE)
module . 26, 54, 67, 109

dCache dCache is a system for storing and retrieving large amounts of data, dis-
tributed across heterogenous servers. dCache provides a common virtual
�lesystem, while also allows data to be located on varied storage devices in-
cluding SSDs, spinning disks and magnetic tape . 152

Grid Grid computing refers to massively parallel distributed computing introduced
in the ’90s to tackle the processing challenges processing data from the Large
Hadron Collider. A computational grid is a set of compute nodes connected
with a high throughput connection, common job scheduler and shared, dis-
tributed storage. The computational and storage resources in a Grid are feder-
ated, and users are provided a share of those resources by amanaging authority
. 3, 18, 45, 61, 84, 104, 149
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GRID_LRT GRID_LRT is the GRID LOFAR Reduction Tools package. This
software consists of a set of tools to easily create and launch processing jobs on
a distributed infrastructure. It includes tools to manage LOFAR data stored on
the grid �lesystem. These tools make it possible to quickly integrate processing
scripts with a high throughput environment, accelerating bottleneck steps in
LOFAR processing . 18

HBA The High Band Array is an array of LOFAR antennas sensitive to 110-
240MHz. Each lofar station in the Netherlands has 48 HBA elements, with
core stations having two separate sub-arrays of 24; while international sta-
tions have 96 HBA elements. The naming schele of these antenasis as such:
LLNNNHBAS, where LL is the location (CS for core stations, RS for re-
mote stations, and the ISO 3166-1 2-letter country code for the international
stations); NNN is the station number, starting at 000, HBA/LBA denotes
whether it’s a HBA or LBA antenna and S refers to the core station sub-array.
6, 19

HPC High Performance Computing, as opposed to High Throughput Computing
(HTC), refers to computation on one or multiple machines with many, fast
CPUS; large quantities of RAM and fast disks. Often HPC jobs are done on
clusters where multiple of these machines are connected with a fast network
used to pass messages and to synchronize workloads. 20

HTC High Throughput Computing, as opposed to High Performance Computing
(HPC), focuses on minimizing the time taken processing large amounts of data
by using techniques in streaming, parallelizing and distributing many small
jobs on a cluster . 20, 60, 84, 135

LOFAR The LOw Frequency ARray: A large, low-frequency aperture synthesis
radio telescope. 6, 17, 44, 60, 84, 102, 134

LoTSS The LOFAR Two-Meter Sky Survey is a whole-sky study of the low-
frequency radio sky at 120-168MHz. LoTSS is composed of a broad, Tier
1, survey of the entire sky, as well as deeper tiers targeted at speci�c �elds of
interest . 7, 18, 43, 44, 105, 136, 149

srm Storage Resource Manager, a system to co-ordinate data storage. This system
de�nes the protocols for referencing data on a distributed system, accessing
metadata and changing data locality (e.g., moving from tape to disk). . 20, 50,
92
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Subband Broadband LOFAR observations are stored in separate ’Subbands’, split-
ting the frequency range into several individual �les, before storing at the Long
TermArchive. Depending on the observationmode, one observation can have
230-480 Subbands. This splitting makes it easier for users to request, down-
load and process a fraction of observation’s entire bandwidth. 8, 31, 47, 85,
104

visibilities Radio Astronomers use the term ‘UV plane’ or ‘visibilities’ inter-
changably to refer to the Fourier Transform of the �nal image. Each base-
line of an aperture synthesis telescope corresponds to one measurement in
this space. The letters U and V refer to the two orthogonal components of a
baseline with respect to an observation’s phase center. The u and v vectors are
de�ned in a plane orthogonal to the direction towards the phase center, and
are typically in units of wavelength. To obtain an image, the UV data needs to
be ‘cleaned’ by iteratively removing the point spread function of the telescope.
5, 20, 107

VOMS The Virtual OrganizationMembership Service is a service that manages the
access to data and computational resources provided to each Grid user. It han-
dles authentication and authorisation of job launching and access to data on the
grid �lesystem. More information can be found at https://italiangrid.
github.io/voms/ . 24
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