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Chapter 6

Abstract 

Background
Reliable markers measuring disease progression in Huntington’s disease (HD), before and after 
disease manifestation, may guide a therapy aimed at slowing or halting disease progression. 
Quantitative electroencephalography (qEEG) may provide a quantification method for possible 
(sub)cortical dysfunction occurring prior to or concomitant with motor or cognitive disturbances 
observed in HD. In this pilot study we construct an automatic classifier distinguishing healthy 
controls from HD gene carriers using quantitative qEEG and derive qEEG features that correlate 
with clinical markers known to change with disease progression in HD, with the aim of exploring 
biomarker potential.  

Methods
We included twenty-six HD gene carriers (49.7 ± 8.5 years) and 25 healthy controls (52.7 ± 8.7 
years). EEG was recorded for three minutes with subjects at rest. An EEG index was created by 
applying statistical pattern recognition to a large set of EEG features, which was subsequently 
tested using 10-fold cross-validation. The index resulted in a continuous variable ranging from 0 
to 1: a low value indicating a state close to normal and a high value pointing to HD. qEEG features 
that correlate specifically with commonly used clinical markers in HD research were derived. 

Results
The classification index had a specificity of 83%, a sensitivity of 83% and an accuracy of 83%. 
The area under the curve of the receiver operator characteristic curve was 0.9. qEEG analysis on 
subsets of electrophysiological features resulted in two highly significant correlations with clinical 
scores. 

Conclusions
The results of this pilot study suggest that qEEG may serve as a biomarker in HD. The indices 
correlating with modalities changing with the progression of the disease may lead to tools based 
on qEEG that help monitor efficacy in intervention studies. 
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Introduction

untington’s disease (HD) is an autosomal dominant neurodegenerative disorder 
characterized by motor, cognitive and psychiatric symptoms with a mean age at onset 
between 30-50 years.1 It is caused by an expanded cytosine-adenine-guanine (CAG) 

trinucleotide repeat in the huntingtin gene on the short arm of chromosome 4. The disease 
causes widespread brain pathology. Magnetic resonance imaging (MRI) studies in HD have 
revealed extensive brain atrophy, most notably in the striatum.2,3,4 With disease progression, 
neurodegenerative changes further extend to the cortical grey-matter areas.5,6 Cortical atrophy 
is found in both premanifest (preHD) as well as manifest stages of HD, with an increasing cortical 
thinning detectable with progressing disease severity.2,7 

A challenge in HD research is to establish reliable markers to measure disease progression, both 
before and after disease manifestation, in preparation for the advent of new therapy aiming to 
slow or halt disease progression. This will be of tantamount importance for carriers of CAG repeat 
lengths of 40 or higher as they will develop manifest HD with certainty.

Electroencephalography (EEG) is an easy, cheap and rapid technique to assess (sub)cortical 
pathology. Quantitative electroencephalography (qEEG) provides objective parameters to assess 
(sub)cortical dysfunction occurring prior to or concomitant with motor or cognitive disturbances 
in HD. Combining such measures with clinical tests in HD gene carriers may provide added insights 
into progression of pathology and increased sensitivity for detecting subtle changes. Previous 
studies have found EEG abnormalities in HD.8 A study using a diff erent automated method 
compared to the one used in this paper, called automated artifi cial neural networks (ANN), 
showed promising results in discriminating between EEGs of HD gene carriers and controls.9 

In this pilot study, we hypothesized that machine learning automatic classifi cation of EEG patterns 
may discern healthy controls from HD gene carriers. If so, this would be the fi rst step to assess 
this technique as a longitudinal biomarker in HD. Secondly, we aimed to derive qEEG features 
that correlate with commonly used clinical and cognitive markers in HD research, known to 
change with disease progression. This is done to evaluate the usefulness of these qEEG features 
as biomarkers for tracking disease state and progression in HD. 

H
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Table I. Group characteristics and clinical scores

N = number of participants, SD = Standard deviation, n/a = not applicable, ISCED = International Standard 
Classification of Education, CAG = Cytosine-Adenine-Guanine, UHDRS-TMS = Unified Huntington’s Disease Rating 
Scale-Total Motor Score, SDMT = Symbol Digit Modalities Test, SWR = Stroop Word Reading task, BDI-II = Beck 
Depression Inventory-II.
Significance at p ≤ 0.05 level: * significantly different from controls, Φ significantly different from controls and 
preHD, ¥ significantly different from preHD. ^ p = 0.07. 

Materials and methods

Participants
Twenty-six HD gene carriers and 25 healthy controls were recruited from the Neurology outpatient 
clinic of the Leiden University Medical Center (LUMC), the Netherlands (Table I). The preHD group 
(6 subjects) had a CAG repeat ≥ 40 with a total motor score on the Unified Huntington’s Disease 
Rating Scale (UHDRS-TMS) ≤ five. The early manifest HD group (20 subjects) had a CAG repeat ≥ 40 
with a UHDRS-TMS ≥ five and a Total Functional Capacity score (TFC) ≥ 7. A burden of pathology 
score greater than 250 ((CAG repeat length - 35.5) x age) was required as a further inclusion 
criterion for the HD gene carrier group.2,10 Healthy gene-negative partners (or family members in 
three instances) were recruited as controls (25 subjects). None of the participants suffered from 
a concomitant neurological or psychiatric disorder or had a history of severe head injury. The 
study was approved by the Medical Ethics Committee of the Leiden University Medical Center 
and written informed consent was obtained from all participants. All methods were performed in 
accordance with the relevant guidelines and regulations.

Clinical measures
The following clinical measures were evaluated in all participants: UHDRS-TMS, TFC, Symbol Digit 
Modalities Test (SDMT), Stroop Word Reading (SWR) and Beck Depression Inventory-II (BDI-II) 
scores.

Chapter 6

N
Gender M/F
Age in years (at V1), mean (SD) 
Handedness R/L
Level of education (ISCED), median (range) 
CAG repeat length, mean (SD)
Estimated years to onset, mean (SD)
Total functional capacity, mean (SD)
UHDRS-TMS, mean (SD) 
SDMT, mean (SD)
SWR, mean (SD)
BDI-II, mean (SD)

25
7/18
52.7 (8.7)
24/1
4 (6)
n/a
n/a
13.0 (0.2)
1.3 (1.7)
54.7 (11.5)
108.0 (16.1)
3.6 (3.9)

26
10/16
49.7 (8.5)
22/4
5 (5)
43.2 (2.3)
n/a
12.3 (1.2)*
10.5 (6.9)*
49.3 (10.0)^
95.0 (14.5)*
6.6 (7.3)^

     
Healthy controls                                                                                     Combined(pre)HD

6
1/5
49.1 (4.9)
5/1
4.5 (4)
41.3 (1.2)
10.8 (2.6)
12.8 (0.4)
2.8 (2.1)
56.7 (10.4)
99.0 (7.2)
3.3 (2.9)

preHD

20
9/11
49.9 (9.4)
17/3
5 (5)
43.8 (2.2)¥
n/a
12.1 (1.3)Φ
12.8 (6.1)Φ
47.1 (9.0)*
93.9 (16.0)*
7.6 (8.0)Φ

Early HD
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The UHDRS-TMS is the current gold-standard which defi nes manifest disease state in HD. The 
SDMT and SWR have been shown to be sensitive neurocognitive measures in HD, independent 
of disease related motor eff ects.11

EEG recording
The International 10–20 system was used for electrode placement using 19 Ag/AgCl electrodes. 
The average potential was used as a reference in subsequent analyses. Two horizontal bipolar eye 
movement leads and one for the electrocardiogram were applied to monitor artefacts. The EEG 
was recorded for three minutes with subjects at rest with eyes closed. Subjects were instructed to 
sit comfortably in a chair and close their eyes, but to remain awake. Subjects were alerted if they 
became visibly drowsy or if there were indications of that on the EEG. EEGs were recorded using a 
Nihon Kohden Neurofax 1200 system. Matlab (MathWorks® Version 7.1) and the LIBSVM toolbox33 
were used for analyzing the data. 

EEG and statistical analysis
The analysis started by calculating the power spectrum followed by the connectivity and 
synchronization between electrodes. This was done to extract features from the recordings that 
refl ect the variations of the spatial and temporal information in the multivariate data. First the 
power spectrum was calculated in the average montage for the signal at each individual electrode 
using a Fast Fourier Transformation (FFT) algorithm12 for consecutive 2 second segments with 
an overlap of 1 second. The EEG of each segment was subjected to a Bartlett window and a 
power spectrum using the FFT method was calculated, so for each electrode/lead N spectra were 
obtained, in which N was the number of segments. A fi nal estimate for the power spectrum was 
then obtained by applying robust fi ts13 for each point in the spectrum, over the ensemble of N 
spectra. The second step of the analysis involved the connectivity and synchronization between 
electrodes, through the power spectrum of the auto correlation function between all possible 
pairs of electrodes. This was done in the average montage. The same segments were used as 
described above. The choice of 2 second segments resulted in a spectral resolution of 0.5 Hz. We 
chose to work with a spectral cut-off  of 45 Hz. This resulted in 91 spectral power values for each 
spectrum. The total number of spectral estimates entering the evaluation was 19 for the spectra 
for each electrode as well as 171 for all the possible autocorrelation spectra. Together, there 
were 17290 spectral features for each qEEG. The full spectrum was considered for investigation 
of the group level diff erences between the single electrode spectra. For the statistical pattern 
recognition (SPR) analysis the feature set was reduced. To do so, each spectrum was fi rst reduced 
by dividing it into overlapping bands of 8 Hz width with an overlap of 4 Hz. Each band was 
modulated by a Bartlett window reducing the number of features from 91 spectral features to 11. 
This procedure reduced the total number of features to 2090. 

As the cohort in this study was small, it was important to avoid instability and overfi tting in the 
SPR analysis if all features were taken into account simultaneously. This can occur even though 
support vector machine are applied in the SPR, which depend on the number of support vectors 
but not the number of features.14 A subset of only 20 features were used in the analysis. The 
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subset of features was chosen by applying a genetic algorithm that optimized the area under 
the curve (AUC) of the resulting receiver operator characteristic (ROC) curve.15 The ROC statistics 
were estimated for each candidate feature subset using 10-fold cross-validation.16 For comparison 
of bias, 3- and 5-fold cross-validations were also performed, where the resulting estimates of 
the ROC statistics did not differ significantly. The combined HD gene carrier group (26 subjects) 
was pooled in the EEG analysis due to low numbers of preHD participants when considered 
separately, where it was not feasible to create a separate classifier, and in order to increase overall 
power. Furthermore, combining data from the preHD group with the early HD group did not 
affect outcomes. A classifier was constructed that contrasted the control group and the HD gene 
carrier group. The classifier yielded an HD vs. control (HDvsCT) Index, ranging from 0 to 1, with 
low values for controls and high values indicating HD. The performance of the classifier was 
determined using repeated 10-fold cross-validation.

Correlations between the electrophysiology and clinical modalities were sought using a similar 
approach. In this case, however, principal component analysis (PCA) was applied on each feature 
subset. The linear Pearson correlation between the principal components and the clinical 
modalities was optimized. Statistical analysis of group demographics and clinical measures was 
performed using IBM SPSS Statistics (version 20, IBM, USA). Distributions and assumptions were 
checked and appropriate statistical tests were applied.

Results

Group characteristics and clinical scores
The groups did not differ significantly in terms of age, gender, handedness or level of education. 
TFC and SWR were significantly lower for the HD gene carrier group compared to the control 
group (p = 0.007 and p = 0.004, respectively; Mann–Whitney U test and independent-samples 
t-test, respectively). The HD gene carrier group had higher UHDRS-TMS than controls (p = 
0.00001, independent-samples t-test). There was a trend for lower SDMT scores and higher BDI-II 
scores for the HD gene carrier group compared to controls (both p = 0.07; independent-samples 
t-tests). The early HD group had lower SDMT scores compared to controls only (p = 0.02; analysis 
of variance) and higher BDI-II scores compared to both preHD and controls (p = 0.04 and p = 0.01, 
respectively; analysis of variance). See Table I for a summary of these results.  

The HD classifier
A classifier was constructed that optimized the contrast between the HD gene carrier and control 
groups with a specificity of 83%, a sensitivity of 83% and an accuracy of 83%. The AUC was 0.9 
(Figure 1). The estimated group distributions are illustrated in Figure 2. There were no significant 
relationships between the HDvsCT Index and any of the clinical measures.

Correlating qEEG subsets with clinical modalities
The analysis of the correlations between electrophysiological features and clinical modalities 
resulted in two highly significant correlations in the HD gene carrier cohort. The first factor, 
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referred to as Index-A, correlated strongly with the SDMT score, see Figure 3. Pearson’s correlation 
coeffi  cient was 0.86 (p = 0.0001). The second factor, referred to as Index-B, correlated strongly 
with the UHDRS-TMS, see Figure 4 (r = 0.84, p = 0.0001). See Supplementary Figures 1 and 2 for 
an overview of the spatial and spectral dependence of the coherences entering indices A and B.

Full power spectrum analysis
The full power spectra for the 19 electrodes were evaluated and group averages were compared 
(Supplementary Figure 3). The average spectra were signifi cantly diff erent (p = 0.001). Most 
prominently, the overall power was less in the HD gene carrier group. An extra resonance 
appeared in the average spectra of the HD gene carrier group at about 22 Hz, not present in the 
control group in the right temporal region. The alpha peak was distinctly divided into two peaks 
in the occipital, temporal and parietal areas. 

qEEG spectral diff erences
In the area of the anterior prefrontal cortex (Brodmann area 10; BA10), channels Fp1 and Fp2, the 
HD gene carrier group had a higher power than controls in the delta band. At all other locations 
signifi cant diff erence in power was such that the power was higher in the control group except 
for the delta bands (higher in the HD gene carrier group): at the frontal eye fi elds (BA8), F3, F4 and 
Fz (theta); at the primary somatosensory cortex (BA2) and motor cortex (BA4), C3 (delta, theta 
and alpha), C4 (theta and alpha), Cz (theta); at the temporal regions infl uenced by the auditory 
somatosensory cortex (BA42), primary somatosensory cortex (BA2) and motor cortex (BA4), T3 
(theta and alpha), T4 (delta, theta and alpha); and also infl uenced by the fusiform gyrus (BA37), T5 
(theta and alpha), T6 (delta and theta); fi nally in the parietal area (BA7), Pz (theta and alpha). See 
Table II for a summary of these results, including p-values, t-statistics and Cohen’s d for eff ect sizes.

Figure 1. The ROC curve for the HD vs. control Index estimated with repeated 10-fold cross-validation along with 
the result. SPE = specifi city; SEN = sensitivity; ACC = accuracy; AUC = area under the curve.

EEG may serve as a biomarker in Huntington’s disease using machine learning automatic classification
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Figure 2. Controls and Huntington’s disease subjects in the HD vs. control (HDvsCT) Index as estimated with 
repeated 10-fold cross validation. The frequency is an estimate of the continuous likelihood distribution.

Chapter 6



121  

Figure 3. Relationship between Index-A and the SDMT score. The contribution of Index-A was evaluated in 5 
consecutive segments of the EEG recording for each subject. All results are shown, illustrating the inter-subject 
variability of Index-A.

Figure 4. Relationship between Index-B and the UHDRS-Total Motor Score. The contribution of Index-B was 
evaluated in 5 consecutive segments of the EEG recording for each subject. All results are shown, illustrating the 
inter-subject variability of Index-B.

EEG may serve as a biomarker in Huntington’s disease using machine learning automatic classification

6



 122  

Discussion

In this exploratory study, the qEEG automatic classification index proved to separate HD gene 
carriers from healthy controls with good specificity and sensitivity. This method has therefore a 
potential to be further developed as a biomarker in HD. The study also revealed strong correlations 
between qEEG features and the UHDRS-TMS and SDMT, both relevant clinical markers in HD 
research. Finally, global EEG average power spectra were shown to be significantly lower in the 
HD gene carrier group compared to controls and qEEG spectral differences between the groups 
were demonstrated. 

Table II. Significant differences in qEEG spectral power

Power values are log10-transformed. N = number of participants. Two-tailed t-test p-values are reported. Degrees 
of freedom = 49.
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Fp1
Fp2
F3
F4
Fz
C3
C3
C3
C4
C4
Cz
T3
T3
T4
T4
T4
T5
T5
T6
T6
Pz
Pz

4.5
4.5
3.3
3.3
3.4
3.6
3.1
3.2
3.1
3.2
3.3
3.3
3.4
3.9
3.3
3.4
3.5
3.7
3.9
3.4
3.2
3.5

4.9
4.9
3.0
3.1
3.1
3.8
2.9
2.9
2.9
2.9
3.1
3.1
3.1
4.1
3.1
3.1
3.2
3.4
4.1
3.2
3.1
3.1

     
Band                                                                                     

     
Channel                                                                                     Power - Healthy 

controls (N = 25)

0.004
0.005
0.007
0.016
0.003
0.048
0.011
0.025
0.004
0.022
0.024
0.025
0.049
0.031
0.024
0.047
0.009
0.025
0.042
0.042
0.031
0.042

Power - Combined
(pre)HD (N = 26)

3.0
2.9
2.8
2.5
3.1
2.0
2.7
2.3
3.0
2.4
2.3
2.3
2.0
2.2
2.3
2.0
2.7
2.3
2.1
1.8
2.2
2.1

-
-

-

- 

- 

t-statisticp-value

0.85
0.82
0.78
0.70
0.88
0.57
0.74
0.65
0.85
0.66
0.65
0.65
0.56
0.62
0.66
0.57
0.77
0.65
0.58
0.51
0.62
0.58

- 
- 
- 

- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 

- 
- 
- 

Cohen’s d

delta
delta
theta
theta
theta
delta
theta
alpha
theta
alpha
theta
theta
alpha
delta
theta
alpha
theta
alpha
delta
theta
theta
alpha
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Using the index created in this study, it is possible to separate EEGs of HD and control subjects 
with an accuracy of over 80%. Considering direct correlations between the index and commonly 
used clinical measures is interesting, though less likely to result in signifi cant fi ndings as the 
measure is derived globally from all recorded regions of the brain, therefore lacking specifi city. 
The index did indeed not correlate with any of the commonly used clinical and neurocognitive 
measures in HD research. This fi nding is in line with a previous study using a classifi er approach.9 

When specifi c EEG features were considered, highly signifi cant correlations with the UHDRS and 
SDMT scores were found, disease measures that are known to be altered in a longitudinal fashion 
in the (pre-) manifest state compared to healthy controls. This highlights the importance of using 
diff erent approaches in biomarker research based on structural and/or functional brain data. 
Analyses focusing on global versus local measures provide diff erent insights on disease state and 
possible correlations with clinical measures. Previous machine learning studies using diff erent 
MRI modalities to discriminate HD gene carriers and controls achieved accuracies up to 83% and 
76%, respectively, when specifi c regions aff ected by the disease were preselected for analysis.34,35

On EEG average power spectra a global decrease in theta and alpha power in HD was found, 
while delta power was increased in a few brain areas in HD. As the earliest structural brain 
changes in HD start within the striatum, this conceivably leads to disrupted projections in the 
cortico-striato-thalamo-cortical loops, which in turn lead to disruptions in brain rhythms.17 The 
striatum represents a crucial node in these loops.18 Reductions in the theta band power in HD 
have been reported in previous studies,19,20,21,22 while other studies found an increase in this 
band9,23,24. Reductions in the theta band power were correlated with increased cognitive and 
motor defi cits.20 There seems to be consensus in the literature regarding globalized reductions 
in the alpha band in (pre)HD.9,20,21,24,25,26 Some studies reported that reductions in the alpha band 
correlated signifi cantly with increases in cognitive and motor defi cits in HD,19,20 while others could 
not replicate this fi nding9. Both theta and alpha EEG rhythms appear to refl ect important neuronal 
processes in human cognition.27,28,29 Decreases,20,24 as well as increases19 in beta power in HD have 
been reported, something we could not replicate. Most studies point to an increase in delta 
power in HD,9,19,20,22,24,26 which is corroborated by fi ndings in our study. It has been observed that 
alterations in delta power might be disease stage dependent and increase in advanced stages of 
HD.20 This might explain the localized diff erences in delta power between the groups observed in 
this particular study sample, which represents premanifest or early stage patients. 

The GABAergic network is postulated to be a driving force in producing synchronized brain 
oscillations.30 Combined with the knowledge that dysfunction and loss of GABAergic neurons 
occurs early on in the striatum of HD31,32 we hypothesize that the diff erence found in this study, 
both in the classifi cation index as well as in diff erences in power spectra, are primarily derived 
from a deregulation of brain network oscillations through GABAergic dysfunction in HD. Another 
potential explanation for these fi ndings might be a neurodevelopmental diff erence of HD brains 
refl ecting an endophenotype. To explore the latter point, it is necessary to conduct longitudinal 
trials evaluating the potential progressive nature of these diff erences with advancing disease. 

EEG may serve as a biomarker in Huntington’s disease using machine learning automatic classification
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In this study we have observed several statistically significant results in the performance 
of classifiers as well as indices designed to correlate with relevant modalities related to HD 
progression. As with EEG related physiological interpretation in general, it is very hard to assign 
physiological meaning to these indices as the knowledge of relationships between EEG activity 
and the underlying physiology are poorly known or understood. The field is still in its data driven 
empirical era, which the present work contributes to. We have also observed significant differences 
between classical qEEG features when comparing between HD gene carriers and controls. These 
are exploratory findings limited in scope when it comes to the number of subjects participating. 
It is therefore pertinent to confirm these findings in independent studies conducted with pre-
defined end points. Also, there is an increased risk of overfitting the separation model when using 
a small sample size as the one in this study. Another potential limitation is the use of the same 
system to record all EEGs, possibly reducing the validity of the model on other EEG equipment. 
Also, as this is a cross-sectional study, we can only speculate about the expected changes to 
the findings occurring during clinical deterioration in HD. Therefore, longitudinal studies are 
needed to evaluate the true usefulness of these indices. However, the fact that we have found 
indices strongly correlating with clinical markers of decline support the notion of a measurable 
progressive change in HD brain function rather than a purely neurodevelopmental difference. 
  
Conclusion

In this exploratory study we show promising results where qEEG related modalities may help 
to unravel how HD evolves and how different areas of the brain are influenced as the condition 
progresses. The indices correlating with modalities changing with the progression of the disease 
may lead to tools based on qEEG that can help monitor efficacy in intervention studies. These 
points will need further independent studies before such applications can be put into force.
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Supplementary material

Supplementary Figure 1. Spatial (A) and spectral (B) dependence of the coherences entering Index-A.

Supplementary Figure 2. Spatial (A) and spectral (B) dependence of the coherences entering Index-B.
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Supplementary Figure 3. The average full power spectra on group level. The dotted curves are the average over the 
control group. The solid curves are the average over the HD gene carrier group.
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