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Chapter 4

Abstract

Background
Huntington’s disease (HD) is associated with abnormal structure and function of different brain 
regions. Looking for reliable early markers for development of disease which may be too subtle 
to detect with conventional analysis methods, we applied graph theoretical analysis to diffusion 
magnetic resonance imaging data to assess both cross-sectional and time-related changes of the 
connectome in different stages of the disease.

Methods
We constructed weighted structural networks and calculated their topological properties. Twenty-
two premanifest HD (preHD), 10 early manifest HD and 24 healthy controls completed baseline 
and two-year follow-up scans. We stratified the preHD group based on their predicted years 
to disease onset into a far (preHD-A) and near (preHD-B) to disease onset group. We collected 
clinical and behavioural measures per assessment time point.

Results
We found a significant reduction over time in nodal betweenness centrality both in the early 
manifest HD and preHD-B groups as compared to the preHD-A and control groups, suggesting 
a decrease of importance of specific nodes to overall network organization in these groups (FDR 
adjusted ps < 0.05). Additionally, we found a significant longitudinal decrease of the clustering 
coefficient in preHD when compared to healthy controls (FDR adjusted p < 0.05), which can 
be interpreted as a reduced capacity for internodal information processing at the local level. 
Furthermore, we demonstrated dynamic changes to hub-status loss and gain in both preHD and 
early manifest HD. Finally, we found significant cross-sectional as well as longitudinal relationships 
between graph metrics and clinical and neurocognitive measures.

Conclusions
This study demonstrates divergent longitudinal changes to the connectome in (pre) HD compared 
to healthy controls. This provides novel insights into structural correlates associated with clinical 
and cognitive functions in HD and possible compensatory mechanisms at play in preHD.
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Introduction

ecent years have seen an increase in work pertained to fi nding and developing 
biomarkers for Huntington’s disease (HD) and its premanifest stage (preHD). HD is an 
autosomal dominant neurodegenerative disorder caused by an elongated cytosine-

adenine-guanine (CAG) repeat on the short arm of chromosome 4, which leads to the production 
of mutated huntingtin protein.1 Prominent white and grey matter atrophy appear in the course 
of the disease.2-5 This results in cognitive deterioration, including slower processing speed, 
attentional problems, executive control defi cits and ultimately dementia, but also motor signs 
such as chorea, bradykinesia, rigidity and dystonia and psychiatric symptoms such as depression, 
anxiety and apathy.

Finding biomarkers that assess progression towards disease manifestation and follow disease 
advancement at the clinical stage, is of importance in the light of understanding the impact 
of intervention trials. One of the most promising methods currently being deployed to probe 
for biomarker potential is diff usion MRI, which can characterize tissue microstructure via the 
diff usion of water molecules.6-9 Based on this technique, several cross-sectional studies in HD 
have provided evidence for abnormal structural organization of the brain, typically using region 
of interest and tract-based spatial statistics analyses.10-14 However, fi ndings from longitudinal 
reports using diff usion MRI in HD remain inconsistent.15-17

In the study by Weaver et al.,17 the tract-based spatial statistics approach was used to compare 
scans from seven controls, four preHD and three manifest HD subjects obtained one year apart. 
Signifi cant longitudinal decreases in white matter fractional anisotropy and axial diff usivity in the 
seven (pre)manifest subjects were found compared to the healthy controls. In another study by 
Sritharan et al. with 17 controls and 18 manifest HD subjects,15 a region of interest approach 
did not reveal longitudinal changes in the mean diff usivity of the caudate, putamen, thalamus 
and corpus callosum over a one year period, while baseline mean diff usivity was found to be 
signifi cantly higher in the caudate and putamen of subjects with manifest HD compared to 
controls. A similar fi nding for mean diff usivity was reported by Vandenberghe et al. in eight 
manifest HD subjects over a two year period,16 also using a region of interest approach. These 
inconsistencies in the literature might very well be attributed to inconsistencies in defi ning the 
regions of interest or to other methodological limitations, such as those recently described for 
tract-based spatial statistics.18 As longitudinal sensitivity to detecting disease progression is an 
essential quality of a biomarker, and given the abovementioned apparent lack of uniformity in 
previous longitudinal reports, we used a graph theoretical approach to analyse our data from a 
new perspective.

A graph theoretical analysis (GTA) is a powerful mathematical framework for quantifying 
topological properties of networks. This type of analysis moves away from the traditional 
neuroimaging approach of examining individual components of the brain, such as regions 
of interest, towards characterizing regional or global structure of networks. In recent years, 

R



 72  

this paradigm shift from segregation to integration has emerged as a useful strategy for 
characterizing functional and structural brain networks in healthy and clinical groups, including 
other neurodegenerative diseases such as Alzheimer’s disease,19-23 neuroimmunological disorders 
such as multiple sclerosis,24,25 but also in traumatic brain injury26,27 and schizophrenia28,29. Using 
network based statistics, one recent cross-sectional study by Poudel et al. provided evidence for 
aberrant white matter cortico-striatal connectivity in HD compared to controls based on diffusion 
MRI data.30 However, little research has been done on the dynamics of structural brain networks 
using a longitudinal design.

GTA may provide more insights into structural changes that can develop over the course of the 
condition, which may be too subtle to be detected at the local level. We therefore investigated 
network dynamics of the connectome in individuals from a well-defined cohort (TRACK-HD 
study, Tabrizi et al.)31 assessed systematically and prospectively across multiple time points. This 
could provide new insights into the development of topological organization of whole-brain 
structural connectivity in HD, possibly providing usable markers quantifying disease progression. 
Such biomarkers can potentially be used, in turn, as targets for modification in therapeutic trial 
settings, especially in the premanifest phase where the priority lies in preventing or delaying 
manifestation of this devastating disorder. It is also important to examine potential associations 
between currently used cognitive and clinical measures in HD and (disrupted) network properties, 
thereby providing a more tangible ‘real-world’ sense to the complexity of brain structure and 
function.

Materials and methods

Participants
As part of the TRACK-HD study, 90 participants were included at baseline at the Leiden University 
Medical Center (LUMC) study site. Recruitment procedures and inclusion criteria have been 
published previously (for details see Tabrizi et al.)5. Diffusion MRI was added to the standard 
MRI protocol. At baseline, diffusion MRI was not performed in ten participants because of 
claustrophobia, and another nine were excluded from analysis due to excessive motion artefacts, 
which caused significant data corruptions, such as large signal dropouts and intra-volume inter-
slice distortions. Such corrupted data sets were deemed unusable for inclusion in the study and 
were therefore not considered for further processing and analysis. Of the remaining 71 subjects, 
62 subjects completed diffusion MRI scans at both visits with an average between-scan interval of 
23 months. Of these 62, a further six subjects were excluded from analysis due to excessive motion 
artefacts at the second visit. The longitudinal cohort included in this work was thus comprised of 
56 subjects: 24 healthy controls, 22 preHD and 10 early manifest HD subjects (Table I).

Inclusion criteria for the preHD group were a CAG repeat ≥ 40 with a total motor score on the 
Unified Huntington’s Disease Rating Scale (UHDRS-TMS) ≤ five.5 Moreover, to assess the effect 
of expected proximity to disease onset on diffusion parameters, the preHD group was divided 
at baseline according to the median (10.9 years) for the predicted years to disease onset into 
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preHD-A (≥ 10.9 years) and preHD-B (< 10.9). The predicted years to disease onset was based 
on a formula by Langbehn et al.32 using CAG repeat length and age-based survival analysis. This 
resulted in two groups (preHD-A and preHD-B) each consisting of 11 subjects (Table I). Inclusion 
criteria for the early manifest HD group were a CAG repeat ≥ 40, with a UHDRS-TMS ≥ fi ve and a 
Total Functional Capacity score (TFC) ≥ seven. For both the preHD and early manifest HD groups, 
a burden of pathology score greater than 250 ((CAG repeat length - 35.5) x age) was applied as a 
further inclusion criterion.5,33 Healthy gene negative family members or partners were recruited 
as control subjects. None of the participants suff ered from a concomitant neurological disorder, a 
major psychiatric diagnosis, or had a history of severe head injury.

Demographics, clinical information, and neurocognitive measures of interest are provided in 
Table I. From the neurocognitive battery administered, the Stroop Word Reading (SWR) task 
and the Trail Making Task (TMT) were chosen as measures of interest, as these tasks have shown 
promising results as cognitive disease-state markers in HD research.31,34,35 In short, the SWR task 
consisted of the instruction of reading a set of words of colours (red, green and blue) as fast as 
possible within 45 seconds. The number of correct responses was computed using the number of 
items completed, with higher scores refl ecting faster processing speed. The SWR has been used 
as a sensitive outcome measure in studies identifying predictors of longitudinal decline in HD, 
independent of disease related motor eff ects.31 Furthermore, the TMT was administered which 
requires inhibition, updating, and switching, and consists of two parts, Trails A and Trails B. In Trails 
A, letters from A to Y are distributed across the page and participants are asked to draw lines 
connecting the letters from the alphabet in the right order, without lifting the pencil from the page. 
In Trails B, the page contains the numbers from 1 to 12 and letters from A to L and participants 
must connect the symbols by alternating the sequence between numbers and letters, that is, 
A-1-B-2-C-3...L-12. The dependent variable was the switch cost calculated by subtracting time 
to complete part A from part B. The validated Dutch version of the National Adult Reading Test 
(DART) was used to assess the intelligence quotient.36 Finally, the Beck Depression Inventory-II 
(BDI-II) was administered, which is a 21-question multiple-choice self-report inventory, one of the 
most widely used instruments for measuring severity of depression. All participants completed 
both baseline as well as follow-up MRI, cognitive and clinical evaluation. The study was approved 
by the Medical Ethics Committee of the LUMC and written informed consent was obtained from 
all participants.

MRI acquisition
MRI acquisition was performed with a 3-Tesla whole-body scanner (Philips Achieva, Healthcare, 
Best, The Netherlands) using an eight channel SENSE head coil. T1-weighted image volumes 
were acquired using a 3D MPRAGE acquisition sequence with the following imaging parameters: 
TR = 7.7 ms, TE = 3.5 ms, FOV = 24 x 24 cm2, matrix size 224 x 224, number of slices = 164, 
slice thickness = 1.00 mm, and no slice gap. A single-shot echo-planar diff usion tensor imaging 
sequence was applied with 32 measurement directions and the following scan parameters:7 
TR = 10,004 ms, TE = 56 ms, FOV = 220 x 220 mm2 with an acquisition matrix of 112 x 110, 2.00 
mm slice thickness, transversal slice orientation, no slice gap, fl ip angle = 90°, reconstruction voxel 
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N
Gender M/F
Age in years (at V1), mean (SD) 
Handedness R/L
Level of education (ISCED), median (range) 
DART-IQ, mean (SD)
CAG repeat length, mean (SD)
Estimated years to onset, mean (SD)
Total functional capacity, mean (SD)

UHDRS-TMS, mean (SD) 

SWR, mean (SD)

Switch cost of TMT in seconds, mean (SD)

BDI-II, mean (SD)

Between-scan interval in months, mean (SD)

24
11/13
49.0 (8.2) 
20/4
4 (3)
105.0 (9.4) 
n/a
n/a
13.0 (0.2) 
12.9 (0.5) 
2.6 (2.5)
2.1 (1.6) 
100.1 (13.2) 
102.0 (15.6) 
37.0 (17.4) 
38.9 (27.0) 
4.1 (4.4)
3.9 (4.1) 
23.0 (0.8)

22‡
9/13
43.6 (8.7) 
18/4
4 (3)
100.5 (11.2) 
42.6 (2.7) 
11.8 (4.7) 
12.8 (0.5) 
12.6 (0.9) 
2.6 (1.5)
5.7 (5.1)¥ 
91.9 (14.2)* 
87.9 (15.7)* 
41.8 (24.6) 
38.0 (28.6) 
6.4 (6.4)
5.1 (5.6) 
23.0 (0.7)

     
Healthy 
controls                                                                                     

Premanifest 
HD (A and B)

11
4/7 
44.2 (5.7) 
9/2
4 (3) 
101.3 (9.7) 
41.3 (1.4) 
14.9 (4.7)
12.7 (0.7) 
12.7 (0.6)
2.0 (1.5) 
3.5 (2.2)
95.6 (9.6) 
91.4 (9.4) 
36.4 (15.9) 
30.8 (19.2) 
4.9 (6.0) 
3.2 (4.9) 
23.2 (0.6)

preHD-A

11
5/6 
43.0 (11.2) 
9/2
4 (3) 
99.6 (13.0) 
43.9 (3.1)^ 
8.6 (1.8)^
12.8 (0.4) 
12.5 (1.0)
3.1 (1.2) 
8.3 (6.1)*^
88.3 (17.3)* 
84.4 (20.0)* 
47.2 (30.9) 
45.8 (35.7) 
7.9 (6.8) 
6.9 (5.9) 
22.7 (0.7)

preHD-B 

10
4/6 
50.2 (9.3) 
9/1
4 (3) 
101.8 (13.5) 
42.5 (1.2) 
n/a
11.0 (1.5)Φ 
10.3 (2.2)Φ
14.6 (7.7)Φ 
23.0 (12.1)Φ
87.7 (14.7)* 
86.4 (18.6)* 
63.5 (41.6)Φ 
75.0 (63.4)Φ 
10.2 (8.2)* 
8.2 (8.4) 
23.5 (0.7)

Early 
manifest HD

V1 
V2
V1 
V2
V1 
V2
V1 
V2
V1 
V2

dimensions of 1.96 x 1.96 x 2.00 mm3, number of slices = 64, b-value = 1,000 s/mm2, halfscan 
factor = 0.61. Parallel imaging (SENSE) was used with a reduction factor of two, NSA = one, and fat 
suppression was applied. Diffusion MRI acquisition time was 6.55 min.

Table I. Group demographics with clinical and behavioural scores

HD = Huntington’s disease, N = number of participants, SD = Standard deviation, n/a = not applicable, ISCED = 
International Standard Classification of Education, DART-IQ = Dutch Adult Reading Test Intelligence Quotient, CAG 
= Cytosine-Adenine-Guanine, UHDRS-TMS = Unified Huntington’s Disease Rating Scale-Total Motor Score, SWR = 
Stroop Word Reading task, TMT = Trail Making Task, BDI-II = Beck Depression Inventory-II, V1 = visit 1, V2 = visit 2.
Significance at p ≤ 0.05 level: * significantly different from controls, Φ significantly different from controls and pre-
manifest HD, ¥ significantly different from controls and early manifest HD, ^ significantly different from preHD-A. 
‡ Including five subjects progressing to the early manifest stage during the two year follow-up period.

Diffusion MRI processing
Diffusion MRI data were analysed using the diffusion MR toolbox ‘ExploreDTI’.37 Data were  
corrected for subject motion, eddy current distortions, and susceptibility artefacts due to the 
magnetic field inhomogeneity prior to diffusion tensor estimation with the REKINDLE method.37-40 
Whole-brain fibre tractography was performed using constrained spherical deconvolution41-43 
with a uniform seed point resolution of 2 mm3, an angle threshold of 30 degrees, a fibre orientation 
distribution threshold of 0.1, and maximum harmonic order of 4.
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Connectivity matrices
One structural network was generated for each subject using the subject’s diff usion MRI data. A 
network was defi ned as a set of nodes (denoting anatomical regions of the parcellation scheme) 
and interconnecting edges (denoting fi bre trajectories between cortical and subcortical regional 
nodes that have been reconstructed). Moreover, we assigned a continuous weight (i.e., number of 
streamlines) to each edge of the graph, which resulted in weighted graphs. Because tractography 
does not diff erentiate between eff erent and aff erent fi bres, the reconstructed graphs were all 
undirected. We describe here some of the major steps that we went through from diff usion MRI 
processing to computing the topological metrics of the graph. Figure 1 shows a fl owchart for the 
process of obtaining connectivity matrices. The Automated Anatomical Labeling (AAL) atlas (and 
labels/masks)44 was registered to the diff usion MRI data using a non-linear transformation45 with 
fractional anisotropy as target image contrast46. The AAL atlas regions, which are commonly used 
to derive the nodes in GTA of neuroimaging data, are presented in Figure 2. The AAL template 
is not a pure cortical grey matter mask but includes tissues from both cortical grey matter and 
subcortical white matter.44,47 Defi ning seed voxels throughout the brain parenchyma ensures that 
the computed trajectories originated from the white matter tissue underlying the cortical region 
or adjacent to subcortical structures. The average percentage of network tracts connecting a pair 
of regions was 2.39 x 10-4. The numbers of streamlines connecting each pair of AAL regions were 
aggregated into a 90 x 90 connectivity matrix (the cerebellar regions were not included). We refer 
the interested reader to the online Supplementary video for a three-dimensional example of a 
resulting connectome (http://dx.doi.org/10.1016/j.nicl.2015.07.003).

Graph theory metrics
We used the Brain Connectivity Toolbox (BCT) (Rubinov and Sporns, https://sites.google.com/site/
bctnet/)48 and the longitudinal plugin of the Graph Analysis Toolbox,49-51 to investigate network 
metrics of segregation, integration, and centrality. Network measures were computed over a 
range of density thresholds. Thresholding at an absolute value would have resulted in networks 
with diff erent degrees across groups, introducing a confound when comparing measures 
between groups.52 Network measures were examined over a range of network densities for which 
the networks were not fragmented (each node had at least one connection with another node in 
the graph) and displayed small- world properties (non-random graphs).51 The network densities 
ranging from 0.10 to 0.40 fulfi lled these criteria. We compared the networks in this density range 
in steps of 0.05. The graph metrics were quantifi ed at both the network and regional levels from 
the weighted networks. The equations to calculate each of these measures can be found in 
Rubinov and Sporns (https://sites.google.com/site/bctnet/measures/list).48 We only provide brief 
explanations for each of the network properties used in this study:
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Figure 1. Flow chart for constructing a diffusion MRI based network. (A) An Automated Anatomical Labeling (AAL) 
atlas template consisting of 90 cortical and subcortical brain regions, excluding the cerebellum, was used for brain 
segmentation. (B) Whole brain tractography was performed using ExploreDTI (see Materials and methods). (C) The 
numbers of streamlines connecting each pair of AAL regions were aggregated into a 90x90 weighted connectivity 
matrix. (D) The connectivity matrix was then visualized as a graph, composed of nodes representing brain regions 
and edges representing white matter connections. From the individual weighted brain networks, several network 
metrics were computed at both the global and regional levels.

We quantified measures of network integration (characteristic path length) and segregation 
(clustering) for each network.48 The characteristic path length L of a network is the average 
shortest path (distance) between all pairs of nodes in the network. It is defined as:
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where dij is the shortest path length (distance) between nodes i and j. The global effi  ciency is the 
average inverse shortest path length in the network, and is inversely related to the characteristic 
path length.53 In other words, networks with a small average characteristic path length are 
generally more effi  cient than those with large average characteristic path length. We also 
calculated local effi  ciency as a nodal graph metric. The regional effi  ciency is the global effi  ciency 
computed on node neighborhoods, and is related to the clustering coeffi  cient.54

The clustering coeffi  cient of a node is a measure of the number of edges that exist between 
its nearest neighbors and is quantifi ed by counting the numbers of triangles formed around a 
node.55,56 The clustering coeffi  cient C of het network is the average clustering across all nodes and 
is quantifi ed as:

where ki is the number of connections (degree) for node i and ti is the number of triangles around 
a node i. The modularity is a graph metric that quantifi es the degree to which the network may be 
subdivided into clearly delineated nonoverlapping groups of nodes in a way that maximizes the 
number of within-group edges, and minimizes the number of between- group edges. To evaluate 
the topology of the constructed networks, the obtained characteristic path length and clustering 
coeffi  cient of each network were normalized to the corresponding mean values of null networks 
with the same degree-, weight- and strength-distributions as the network of interest,57,58 using 
the null model algorithm implemented in BCT.48

We also computed the small-world index as the ratio of normalized clustering and normalized 
path length.59,60 Thus, the small-worldness index of each network was obtained as [C/Crand]/[L/
Lrand], where Crand and Lrand are the mean clustering coeffi  cient and the characteristic path length 
of random networks.61 In a small-world network, the clustering coeffi  cient is signifi cantly higher 
than that of random networks (C/Crand ratio greater than 1), while the characteristic path length 
is comparable to random networks (L/Lrand ratio close to 1).

Finally, we have calculated node betweenness centrality, which is the fraction of all shortest paths 
in the network that contain a given node.62 The betweenness centrality bi of a node i is defi ned as:

in which Phj is the number of shortest paths between nodes h and j and Phj(i) is the number 
of shortest paths between nodes h and j that pass through node i. The nodes with the largest 
betweenness centrality can be considered to be pivotal nodes (i.e., hubs) in the network.
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Figure 2. Cortical and subcortical regions (45 in each hemisphere; 90 in total) as anatomically defined by the Au-
tomated Anatomical Labeling atlas template image in standard stereotaxic space.

Statistical analysis
Interaction effects between group and time for the graph metrics were analysed using the 
Longitudinal plugin of the Graph Analysis Toolbox.51,63 Specifically, networks were first normalized 
by the mean network strength and graph measures were quantified for the normalized networks. 
A non-parametric permutation test with 1000 repetitions was then used to test the statistical 
significance of the effects of time course for graph measures.28,49 In each permutation, the 
calculated regional streamlines of each participant were randomly assigned to one of the two 
groups so that each randomized group had the same number of subjects as in  the original 
groups. Finally, the actual difference in the slope between the original groups was compared 
to the obtained permutation distribution of difference in slope between randomized groups to 
obtain the p-value.

The same permutation procedure was used to test the significance of the differences in regional 
network measures. In this step, we compared regional network measures for the networks 
thresholded at minimum density. We obtained false discovery rate (FDR) corrected p-values as 
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measures of signifi cance for the regional measures comparisons. In the present study, the p-values 
reported for regional diff erences between groups are FDR corrected for multiple comparisons (90 
comparisons).

Baseline (i.e., visit 1) data of behavioural metrics (i.e., neurocognitive functioning scores) as well 
as graph metrics were used for cross-sectional analyses. A multivariate analysis of covariance 
(MANCOVA) was used, whereby statistical diff erences were assessed on multiple continuous 
dependent variables (graph metrics, cognitive and clinical variables) by an independent grouping 
variable (controls, preHD, early manifest HD), while controlling for a third variable (covariate). In 
the present study, age was added as covariate so that it could reduce error terms and so that the 
analysis eliminated the covariates’ eff ect on the relationship between the independent grouping 
variable and the continuous dependent variables. We further subdivided the preHD group into 
two subgroups: preHD far from expected disease onset (preHD-A) and preHD close to expected 
disease onset (preHD-B).

To investigate the neuronal correlates of the behavioural tests, baseline data were analysed. Each 
participant’s score on tests of clinical scales and neurocognitive functioning was correlated with 
that participant’s graph metric (clustering coeffi  cient, global effi  ciency, betweenness centrality) 
using partial correlations (age as confounding variable).

Our fi nal aim was to investigate the relationship between changes in graph metrics with changes 
in behavioural performance. Diff erence scores for both behavioural performance and graph 
metrics were calculated as a measure of change by subtracting the visit 1 from the visit 2 scores.

Results

Baseline group comparison of demographic variables and performance in behavioural tests
Participants of the three groups (controls, preHD, early manifest HD) did not diff er in terms of 
gender distribution (p = 0.93), handedness (p = 0.95), body mass index (p = 0.64) or intelligence 
quotient scores (p = 0.38). One-way ANOVAs revealed only a trend towards a diff erence in age 
between the groups (p = 0.06). Therefore, we included age as covariate in subsequent analyses. 
See Table I for group demographics and clinical and behavioural scores. The groups diff ered 
at baseline in their executive function performance (SWR and the switch cost of the TMT, all 
ps < 0.05). Post hoc Tukey testing showed signifi cant diff erences between controls and (pre) HD 
groups.

Regional graph analyses
Graph metrics were evaluated at the nodal level to identify the nodes in the network that show 
a signifi cant group by time interaction eff ect. Multiple testing correction was performed via 
False Discovery Rate (FDR),64 where an FDR adjusted p-value < 0.05 was considered signifi cant. 
The permutation test of the nodal betweenness centrality showed a signifi cant group by time 
interaction for the left orbitofrontal cortex and left paracentral lobule (adjusted ps < 0.05). The 
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post-hoc two-sided Tukey t-test demonstrated a decrease of the betweenness centrality of 
the left orbitofrontal cortex in the early manifest HD group as compared to the control group  
(p < 0.001), from the first to the second visit. Moreover, preHD-B patients versus controls 
demonstrated a reduction of betweenness centrality of the left paracentral lobule from visit 1 to 
visit 2 (p < 0.001). Finally, the permutation test of the clustering coefficient revealed a significant 
group by time interaction for the left medial prefrontal cortex (adjusted p < 0.05). The post-hoc 
two-sided Tukey t-test showed that preHD showed a decrease of the clustering coefficient of the 
left medial prefrontal cortex compared to the healthy controls from visit 1 to visit 2 (p = 0.02) .

Important network regions as defined by hub-status in visits 1 and 2
Betweenness centrality was also used to identify the hub regions. In visit 1, the left precuneus was 
shared by all groups. Generally, a lower number of areas functioned as network hubs in visit 2 and 
a remarkable change in hub-status was apparent for regions in visit 2 in each group (as shown in 
Figure 3). Specifically in the early manifest HD group, the left thalamus and right medial part of 
the superior frontal gyrus achieved hub-status in visit 2. Also, many regions lost their hub-status 
in visit 2 within the early manifest HD group. Such areas included the left superior temporal pole, 
right lingual gyrus, right calcarine gyrus, and left middle occipital gyrus. The preHD group also 
showed hub-changes from visit 1 to visit 2, whereby the right medial part of the superior frontal 
gyrus lost hub-status. One brain region, the right superior parietal gyrus, achieved hub-status in 
visit 2. Network nodes in the precuneus, superior temporal pole, and putamen were consistently 
important as hubs throughout visits 1 and 2 in the preHD group.

Table II. Graph metrics. Data is shown as mean and standard error of the groups for each visit

HD = Huntington’s disease, V1 = visit 1, V2 = visit 2.
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Global network metrics

Small world metrics

Local network metrics

0.034

0.035

0.110

0.115

1.620

1.648

1.058

1.057

1.530

1.558

0.051

0.052

0.027

0.027

0.319

0.327

90.836

91.835

0.034

0.034

0.111

0.112

1.616

1.594

1.059

1.056

1.525

1.508

0.051

0.051

0.027

0.027

0.315

0.310

91.799

91.100

     
Healthy controls                                                                                     Premanifest 

HD (A and B)

0.034

0.034

0.112

0.111

1.652

1.605

1.063

1.055

1.553

1.520

0.051

0.051

0.028

0.027

0.326

0.315

92.321

90.806

preHD-A

0.034

0.034

0.109

0.112

1.581

1.583

1.056

1.057

1.496

1.496

0.050

0.051

0.027

0.027

0.304

0.304

91.277

91.394

preHD-B 

0.033

0.033

0.107

0.108

1.535

1.524

1.055

1.053

1.453

1.446

0.049

0.049

0.026

0.026

0.291

0.294

89.942

89.436

Early manifest 
HD

V1 

V2

V1 

V2

V1 

V2

V1 

V2

V1 

V2

V1 

V2

V1 

V2

V1 

V2

V1 

V2

Global e�ciency

 

Characteristic path length

 

Gamma

 

Lambda

 

Sigma

 

Local e�ciency

 

Clustering coe�cient

 

Modularity

 

Betweenness centrality

Mean          SE Mean          SE Mean           SE Mean          SE Mean          SE

0.0004

0.0004

0.0025

0.0027

0.0309

0.0300

0.0022

0.0021

0.0280

0.0266

0.0008

0.0007

0.0004

0.0003

0.0072

0.0063

1.0122

1.0970

0.0004

0.0005

0.0029

0.0033

0.0307

0.0361

0.0025

0.0024

0.0261

0.0316

0.0007

0.0008

0.0004

0.0003

0.0077

0.0091

1.1947

1.2774

0.0007

0.0008

0.0047

0.0056

0.0413

0.0591

0.0034

0.0034

0.0349

0.0517

0.0011

0.0014

0.0006

0.0005

0.0122

0.0141

1.8961

2.2531

0.0005

0.0005

0.0035

0.0036

0.0448

0.0442

0.0036

0.0036

0.0383

0.0387

0.0008

0.0010

0.0003

0.0005

0.0086

0.0120

1.5313

1.3265

0.0009

0.0009

0.0056

0.0057

0.0578

0.0530

0.0056

0.0055

0.0491

0.0433

0.0014

0.0015

0.0005

0.0006

0.0147

0.0129

2.5538

2.5774
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Figure 3. Group diff erences in betweenness centrality. Upper panel: visit 1, lower panel: visit 2. Size of the nodes (sp-
heres) represents the betweenness centrality. Size of the edges (connections) represents streamline count. Magenta 
as colour of the nodes refers to hub regions.

Overall dynamics of the structural brain network
Both (pre-) HD and healthy controls showed a small-world organization of the structural brain 
networks (as shown in Table II) expressed by a normalized clustering coeffi  cient gamma >1 
(mean|SD; preHD: 1.62|0.14, early manifest HD: 1.54|0.18, healthy participants: 1.62|0.15) and lambda 
~1 (mean|SD; preHD: 1.06|0.01, early manifest HD: 1.06|0.02, healthy participants: 1.06|0.01). The 
small-worldness (sigma) calculated from these indices was also larger than 1 (mean|SD; preHD: 
1.52|0.12, early manifest HD: 1.45|0.16, healthy participants: 1.53|0.14). Furthermore, looking at the 
overall organization characteristics of the brain networks of patients, the normalized clustering 
coeffi  cient gamma did not diff er between preHD, early manifest HD, and healthy controls 
(p = 0.31), nor did the overall normalized path length lambda (p = 0.69). In summary, preHD and 
early manifest HD patients displayed gamma and lambda values close to the values of the brain 
networks of the healthy controls, suggesting an intact overall organization of the structural brain 
network in these disease stages. 
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Between-group differences in baseline graph metrics
Premanifest and early manifest HD patients did not show strong alterations (all ps > 0.05) in 
whole-brain graph metrics (Table II). The absence of these group effects suggests that global 
connectivity is relatively intact in early HD.

Baseline relationships between graph metrics and performance in behavioural benchmark 
tests
There was a significant negative correlation within the preHD group between baseline individual 
differences in the switch cost of the TMT on the one hand, and clustering coefficient (r = -0.44, 
p = 0.05) and local efficiency (r = -0.45, p = 0.04), on the other hand (see Figures 4A and B). 
Hence, better performance on the TMT (i.e., lower switch cost) was associated with an increase 
in efficiency and clustering coefficient within the preHD group. Using the subdivision, we found 
that the switch cost of the TMT was significantly negatively correlated with clustering coefficient 
(r = -0.78, p = 0.008, survived Bonferroni correction) and the local efficiency (r = -0.69, p = 0.03) 
within the preHD-B group. Moreover, within the preHD-B group, we also observed a positive 
correlation between the performance on the SWR and global efficiency (r = 0.62, p = 0.05, Figure 
4C), with higher global efficiency being related to better performance on SWR.

Baseline relationships between graph metrics and burden
No significant correlations were found between burden and the graph organizational 
characteristics in the preHD or early manifest HD groups using a Bonferonni correction or even 
an exploratory uncorrected threshold of p ≤ 0.05. From this, we cautiously conclude that burden 
did not explain our findings.

Longitudinal changes in benchmark behavioural tasks and graph metrics
For the investigation of longitudinal changes on the dependent variables of the behavioural tasks 
and graph metrics, we subjected each behavioural parameter and graph measure separately to 
a 2 x 3 permutation test with the between-subject factor group (controls, preHD, early manifest 
HD) and the within-subject factor time (visit 1, visit 2), while statistically controlling for the effects 
of age.

We observed a significant group by time interaction effect for the motor score (F(2, 52) = 17.62,  
p < 0.001). Post-hoc Tukey t-tests revealed that the early manifest HD group had an increased 
motor score (i.e., more motor abnormalities) compared to the preHD and healthy control groups. 
These group differences were even larger on the second visit (ps < 0.05). Also, main effects of 
the factor group were observed for TFC, SWR, and TMT. The subsequent post-hoc Tukey t-tests 
indicated generally higher performance for the controls compared to the early manifest HD 
group across both assessment times (ps < 0.001). Furthermore, post-hoc Tukey t-tests showed 
significantly superior performance on these behavioural tasks for the preHD group compared to 
the early manifest group (ps < 0.05).
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Figure 4. Baseline correlations between network measures and cognitive performance.

The permutation test on modularity showed a signifi cant eff ect of group, (F(2, 52) = 3.58, p = 0.04, 
see Figure 5A). Across both assessment times, the control group had a larger modularity than 
the preHD-B and the early manifest HD group (ps < 0.05). Furthermore, a trend was observed 
for the eff ects of group by time on the normalized clustering coeffi  cient (p = 0.08) and small-
worldness (p = 0.06, Figure 5B), indicating a trend of increased ‘wiring-effi  ciency’ for the control 
group compared to the (pre) HD groups. Similar results were obtained with the statistical analyses 
with four groups.
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Correlations between changes in graph metrics and changes in performance on tasks of 
executive functioning and clinical scales
Partial correlations (with age as confounding variable) between changes in graph metrics 
from visit 1 to visit 2 in the diff erent groups and the concomitant alterations in the behavioural 
parameters showed moderate associations between changes in structural network connectivity 
and the changes in performance on tasks of executive functioning and clinical scales. For the 
early manifest HD group, there were correlations between the changes in motor score and 
changes in small-worldness (r = -0.67, p = 0.05, exploratory threshold, see Figure 6A). In other 
words, a decrease in ‘wiring-effi  ciency’ was associated with a higher motor score (i.e., more motor 
symptoms) in the early manifest HD group.

Figure 5. Longitudinal changes of graph metrics. Visit 1, black bars; visit 2, white bars.
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For the combined preHD group, there was a signifi cant negative correlation between normalized 
path length and scores on BDI-II, pairing more depression symptoms reported with decreased 
global integration (r = -0.58, p = 0.006, survived Bonferroni correction, Figure 6B). For the preHD-B 
group, correlations were present between changes in scores on the BDI-II and changes in 
betweenness centrality (r = -0.80, p = 0.006, survived Bonferroni correction), normalized path 
length (r = -0.84, p = 0.002, survived Bonferroni correction), global (r = -0.64, p = 0.05, exploratory 
threshold) and local effi  ciency (r = -0.66, p = 0.04, exploratory threshold), pairing more symptoms 
reported on BDI-II with reduced structural connectivity. Furthermore, the diff erence score of the 
switch cost of the TMT was signifi cantly negatively correlated with changes in the clustering 
coeffi  cient (r = -0.69, p = 0.03, exploratory threshold) within the preHD-B group (Figure 6C). In other 
words, an increase in clustering coeffi  cient was associated with better switching performance 
(i.e., lower switch costs) in the preHD-B group. No correlations were present within the preHD-A 
group.

Discussion

We investigated cross-sectional and longitudinal diff erences in regional and global topological 
properties between subjects with premanifest and early manifest HD and healthy controls. In 
this fi rst-of-its-kind analysis in HD, we revealed both baseline and longitudinal changes in the 
connectome of premanifest gene carriers and subjects with early manifest disease. We also 
demonstrated correlations between graph metrics on one hand, and clinical and behavioural 
measures, on the other hand. These results provide novel insights into the dynamics of brain 
neuropathology occurring in HD and the relationships with commonly used neurocognitive 
measures.

Longitudinal decreases in network measures
The principal fi nding from this study was a signifi cant reduction over time of nodal betweenness 
centrality both in the early manifest HD and preHD-B groups within the two year study period 
as compared to the preHD-A and control groups. The locations of these nodes included the left 
orbitofrontal cortex and left paracentral lobule. The reduction of betweenness centrality in these 
regions indicates that the shortest paths passing through these areas were reduced. This in turn 
implies a decrease of importance of these nodes to overall network integrity.

The orbitofrontal cortex is involved in decision making and cognitive and emotional processing.65 

Atrophy in this structure has been associated with impaired recognition of negative emotions in 
HD.66,67 The paracentral lobule, a component of the sensorimotor system,68 has previously been 
implicated in HD where atrophy was also demonstrated.69 The current results corroborate previous 
fi ndings by demonstrating a longitudinal reduction in nodal betweenness centrality, suggesting 
a decreased capability of these nodes in facilitating communication between diff erent brain 
regions in HD.
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Figure 6. Correlations between changes in network parameters, and changes in clinical and neurocognitive 
functioning.

In the combined preHD group, a signifi cant reduction over time of the clustering coeffi  cient 
was also shown in the left medial prefrontal cortex when compared to healthy controls. This 
fi nding implies a decrease of functional segregation in this node. In other words, the left medial 
prefrontal cortex seems to become less densely interconnected with surrounding nodes over 
time, suggesting a local reduction of internodal processing of information. The medial prefrontal 
cortex is a region involved in planning and problem solving,70 where in a previous study in 
preHD a lower functional connectivity has been demonstrated.71 Moreover, a functional MRI 
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study in preHD and manifest HD revealed reduced connectivity of the medial prefrontal cortex, 
representing a functional correlate of impaired executive function.72 Therefore, in our opinion, 
this is an important fi nding potentially providing a structural explanation for the dynamics of 
observed reductions in higher cognitive abilities occurring in gene carriers prior to manifestation 
of motor signs.

Preserved small-world organization in early HD
Another important fi nding is the preserved small-world organization within preHD and early 
manifest HD compared to healthy controls. With this fi nding in mind, we suggest that also in 
the early manifest stage of the disease, intervention could be aimed at preserving this brain 
organization associated with health, especially because of the presumed degradation of this 
network quality in advanced stages of the disease. Such a disruption in later stages of HD is 
yet to be established, though studies into diff erent disorders aff ecting the brain have revealed 
disruptions in the small-world topological organization.19,29 The results presented here imply that, 
at least at the preHD and early manifest stages of HD, there is no evidence for a ‘disconnection 
syndrome’ from a network perspective. Studies in other neurological disorders, such as multiple 
sclerosis,24,25 Alzheimer’s disease (reviewed by Xie and He),73 schizophrenia29 and traumatic brain 
injury27 have found support for such a pathological model. The lack of this fi nding in this study is 
encouraging, as preservation of normal brain network architecture through intervention might 
be used as a secondary outcome for maintaining effi  cient brain function. It should be clear, 
though, that such a secondary outcome should be coupled with cognitive assessments given 
the intricate relationship between brain structure and function.

Making ‘real-world’ sense of network measures
Providing a translation from network measures to cognitive function and clinical state not only 
validates these measures, but also indicates possible usability in biomarker research. Interesting 
baseline correlations between graph metrics and neurocognitive measures were present in the 
preHD group. Specifi cally an inverse relationship between the switch cost of the TMT, regarded as 
a measure of cognitive fl exibility, and clustering coeffi  cient and local effi  ciency was found. These 
fi ndings suggest that higher switching costs are associated with a loss in capability of processing 
information from a local network perspective. In the preHD-B group only, a positive correlation 
was observed between performance on SWR and global effi  ciency. This suggests that, in line with 
expectations, increases in the effi  ciency with which information can be transmitted globally are 
linked to higher processing speed.

Longitudinally, an increase in the UHDRS-TMS was negatively associated with small- worldness 
in the early manifest HD group, indicating that a decrease in ‘wiring-effi  ciency’ was related to an 
increase in motor score. The association found between increases on the reported symptoms on 
BDI-II and decreases in normalized path length in the preHD group provides evidence for coupled 
decreases in global integration with increases in depression scores. In the preHD-B group, we 
found that longitudinal increases in the switch cost of the TMT were correlated with longitudinal 
decreases in the clustering coeffi  cient, again pointing to an association between this cognitive 
measure and local network properties.
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Changing landscapes of hubs
Hubs are considered essential regions for coordinating brain functions, playing a central role 
in network resilience to brain injury.48,74 The dynamic nature of hub-status found in this study 
could prove informative in understanding the nature of disease progression and compensatory 
mechanisms at play in (pre) HD as reflected by the temporal relation between hub-status loss 
and gain. A highlight from our findings in this context was the hub-status gain found in preHD 
in the right superior parietal gyrus in the second visit. Using functional MRI, this region has been 
shown to play a compensatory role in maintaining normal motor function in preHD.75,76 Although 
admittedly speculative at this stage, this finding could be attributed to an increased need for 
compensation with progression of neurodegeneration in time, making a reorganisation of 
coordinating brain regions necessary for maintaining normal motor function. Another interesting 
finding was the contrast of hub-status gain for the right medial part of the superior frontal gyrus 
in early manifest HD compared to the loss of this status in the preHD group in the second visit. 
This type of information could further our understanding of compensatory mechanisms at play 
maintaining seemingly normal brain function in the premanifest stage of the disease, despite 
clear evidence of neurodegeneration provided by independent imaging studies even more than 
a decade prior to expected disease onset.5,77

Strengths and limitations
Strengths of this study include a standardized scan protocol with high-quality diffusion MRI data 
on two time points with assessments of multiple neurocognitive domains in a well described 
population from the TRACK-HD study. Moreover, in this study we have reconstructed the 
anatomical networks with constrained spherical deconvolution tractography, which in contrast 
to diffusion tensor imaging based tractography has the advantage of taking fibre crossings into 
account.9,43,78

There are several limitations in the methods being applied in the present study, such as the used 
parcellation scheme for defining the network nodes for the graph theoretical analysis. Multimodal 
integration of in- and ex-vivo data into a probabilistic atlas79 may offer a better biologically 
principled approach as a parcellation scheme than the AAL atlas used in this study. Furthermore, 
while reproducibility studies have often demonstrated good or excellent intraclass correlation 
coefficient (ICC) measurements variance (for a recent review, see Welton et al.),80 more studies 
measuring the test-retest reliability of graph metrics of structural networks are needed.

Moreover, the number of reconstructed fibres was used to weight the edges in the calculation of 
the connection matrix and consequently the network measures. Although other indices of white 
matter organization, such as fractional anisotropy, mean diffusivity, and level of myelination, have 
previously been applied to define the connectivity matrices,81,82 there is currently no consensus 
on the optimal weighting method in terms of sensitivity and specificity to pathological effects.
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Conclusions

This is the fi rst study providing insights into longitudinal structural correlates with clinical state 
and cognitive function from a network perspective in HD. Strengthened by signifi cant correlations 
with clinical and cognitive defi cits, dynamics of the connectome, in the form of decreases of 
global and/or local effi  ciencies, were present in both the premanifest and early manifest stages 
of the disease. Furthermore, a changing hub landscape was demonstrated, contributing to our 
increased understanding of potential compensatory mechanisms at play, especially in preHD. The 
study further demonstrates preserved effi  cient dynamics of brain networks in the premanifest 
and early manifest stages of the disease. We conclude that assessing the connectome provides 
not only a novel approach with a biomarker potential in HD, but also potential new insights into 
compensatory strategies of the brain in neurodegenerative disorders.
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