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General introduction

General introduction

untington’s disease (HD) is a relentlessly progressive autosomal dominant

neurodegenerative disorder with a broad spectrum of clinical features, characterized by a

triad of motor, cognitive and psychiatric signs and symptoms. The disease is caused by a
mutation in the Huntingtin gene (HTT) on the short arm of chromosome 4. The mutation consists
of an expanded cytosine-adenine-guanine (CAG) trinucleotide repeat, with variable penetrance
in the range of 36-39 and full penetrance in repeats of 40 and higher.

We have gained a great deal of knowledge on the basis and natural course of HD since the
publication of one of the earliest medical descriptions of the “hereditary chorea” by George
Huntington in 1872.2 Unfortunately, there still is no known cure or neuroprotective therapy for
the disease and only symptomatic medication is available at present. Huntington's statement
about the disorder still holds true:“Once it begins it clings to the bitter end”.

The mean age at which the adult form of the disease becomes manifest is between 30 and 50
years.? Its course runs for 15-20 years following clinical onset, after which death occurs* The term
“manifest” in HD is currently reserved for individuals exhibiting characteristic motor symptoms
of the disease. Before this manifest phase, there is a “premanifest” phase, where people do not
exhibit evident motor signs of the disease and are seemingly healthy, but can have subtle
psychiatricand or cognitive signs and symptoms. The disease is unique among neurodegenerative
disorders, as individuals destined to develop the disease can be identified through genetic testing
before symptom onset. This provides a window of opportunity for an intervention that could
potentially delay or even prevent disease manifestation.

There is an inverse correlation between CAG repeat length and the age of onset of manifest
disease, explaining up to 60% of age of motor onset variability.” As such, age of onset is not solely
explained by the mutation, but also by other yet unknown factors. The disorder exhibits genetic
anticipation in the paternal line of inheritance. Anticipation means that the onset of symptoms
can occur earlier and often more severely in consecutive generations.® After the discovery of the
causative mutation for HD in 1993, presymptomatic testing became available for the first time
in an autosomal dominant disorder.” This major milestone in the history of HD understandably
led to hopeful expectation for rapidly finding therapy for the disease and considerable effort
has indeed been devoted to understanding the pathophysiology of HD and to find disease-
modifying therapies.

More than 25 years after the mutant gene discovery, the first safety studies with potentially
promising disease-modifying effects at the gene transcription level have been performed. In
September 2015, the first-in-human study looking into the safety of IONIS-HTT, (RG6042), an
intrathecally administered antisense oligonucleotide (ASO) therapy to reduce mutant HTT
(mHTT) protein, was launched in 46 early manifest HD patients (ClinicalTrials.gov Identifier:
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NCT02519036). In 34 patients assigned to receive the ASO, the drug proved to be safe and the
intended mHTT lowering was demonstrated in a dose-dependent manner, passing the phase |l
trials.® After this initial step, larger studies are now commencing in different stages of the disease
to examine whether there indeed is a desirable disease-modifying effect.

In order to measure the effects of these potential therapies, we need to have sensitive markers
that correlate with disease state and progression. If the therapeutics have a positive effect
on the course of the disease, one would expect these markers to be influenced in a way that
reflects slower disease-associated change. Currently used clinical measures, such as the Unified
Huntington’s Disease Rating Scale total motor score (UHDRS-TMS) and total functional capacity
(UHDRS-TFQ), are useful in measuring disease-related clinical and functional decline. These are,
however, fairly crude semi-quantitative measures with substantial intra- and inter-rater variability,
and are not sensitive in detecting subtle changes over short periods of time and certainly not
before disease onset.”!" Although previous neuroimaging studies have shown potential markers,
findings remain inconsistent or lacking association with disease state. For instance, findings from
previous longitudinal diffusion magnetic resonance imaging reports are contradictory.”™* As
such, further exploration of neuroimaging techniques is of great relevance.

In the present work, we aim to find robust parameters/markers corresponding with disease
state and measuring progression in different stages of HD in a well-defined population, which
can be used as suitable objective surrogate clinical trial endpoints. We put special emphasis on
longitudinal study designs, as these provide the most useful clinical progression and parameter
change associations. Rapid advances in diagnostic methods in the medical field coupled with
advances in analysis methods and ever-increasing computational power provides us with
the opportunity to explore different and more complex biological markers (biomarkers). A
computational approach to tackle the increasing amount of data generated from functional
and structural brain scans increases the likelihood of finding biomarkers specific for the disease.
For that reason, we will employ different state-of-the-art approaches to evaluate the potential
usefulness of specific markers. Such biomarkers are crucial in order to objectively assess expected
disease-modifying properties of a potential therapeutic intervention.

With well-designed large longitudinal international studies aimed at finding biomarkers in HD,
such as TRACK-HD and PREDICT-HD, our understanding of the premanifest stage has grown
considerably, to the point that we now understand that subtle signs and symptoms in all three
above-mentioned clinical domains of the disease are measurably present, sometimes decades
before the classic disease signs become manifest.""'> Although chorea is the characteristic clinical
motor presentation of HD and the striatum is considered to be primarily affected within the
histopathological profile, the disease affects a myriad of other neurological functions and should
be viewed as a multisystem neurodegenerative disorder of the brain.'"® Even though changes
in behaviour, cognition, as well as motor skills often precede the onset of the manifest motor
symptoms by decades, sensitive and robust longitudinal markers are still largely lacking in this
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phase. The methods we employ in this study are expected to vyield useful information about
the premanifest stage and the progression towards manifest disease. Finding such markers in
these subjects is of particular interest, as they have yet to present clinically with the hallmark
motor symptoms of HD. Evidence from HD mice models point to the existence of neuronal
dysfunction that is reversible through reduction of mHTT load, which leads to phenotypic and
histopathological improvements.”2% As such, a strategy focusing on both brain function as well
as structure to identify biomarkers in HD seems promising.

Aims and outline of the thesis

The general aim of this thesis is to quantify functional and structural disease-related brain
aberrations in Huntington’s disease, with the goal of exploring biomarker potential of these
different parameters for use in clinical trials. It is important to do so for both the premanifest as
well as the manifest stage in order to better understand the “functional and structural natural
history” of the disorder and to potentially help guide a therapy aimed at slowing or halting
disease progression.

As HD symptoms are most likely a consequence of dysfunctioning brain networks, rather
than simply being “striato-centric’, we aim to explore which regions or circuits in the network are
affected in different stages of the disease and how these may change over time. In Chapter 2, we
use this network approach on “resting state” functional magnetic resonance imaging (RS-
fMRI) activity patterns of the brain, a method generating spatial covariance patterns of blood
oxygenation level dependent (BOLD) signal fluctuations by using independent component
analysis. The patterns acquired with this technique are usually referred to as “functional
connectivity” We hypothesize that greater changes in functional connectivity occur longitudinally
in premanifest gene carriers compared to healthy controls over a follow-up period of three years.
As this method is data-driven and lacks a priori assumptions regarding potential disturbances to
brain connectivity, it is well suited to explore the earliest signs of functional disturbances before
manifest disease occurring in the brain as a whole. This approach may potentially reveal changes
in brain function ahead of the occurrence of structural changes. Given the importance of the
striatum in the histopathological profile of HD, we additionally include a hypothesis-driven part
to the analysis by using a region of interest approach examining a potential striatal functional
connectivity change relative to the network.

In Chapter 3, we examine microstructural brain abnormalities occurring in different stages
of HD in a two-year follow-up period using diffusion tensor imaging (DTI). As microstructural
abnormalities naturally occur before macrostructural abnormalities become evident, we expect
this technique to provide more sensitive biomarkers compared to volumetric MRI methods. This
diffusion MRI technique quantifies water diffusion in tissue and provides indirect information
about the microstructural organization of brain tissue. We use an automated histogram analysis
method to assess cross-sectional as well as longitudinal changes occurring within two years of
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diffusivity measures in whole-brain white matter, grey matter and the striatum. The choice for an
automated method is made consciously, as a straightforward, standardized, fully automated and
objective approach for interrogating imaging data will be needed in large clinical trials.

As the network of structural brain connectivity is expected to degrade with disease progression,
we use a graph theoretical approach to analyse longitudinal diffusion MRI data (Chapter 4). A
graph theoretical analysis (GTA) is a powerful mathematical framework for quantifying topological
properties of networks, which is able to characterize regional and global structure of networks.
We expect this integrated approach to provide new insights into the organization of whole-brain
structural connectivity in relation to clinical and cognitive functions in HD over a two-year period,
potentially providing usable markers of disease progression. This will be the first-of-its-kind study
in HD.

In Chapter 5 we focus on the evolution of in vivo microstructural properties of the occipital
cortex in different stages of HD, something which has not been a primary focus in HD research to
date. We expect to find measurable abnormalities occurring in a two-year time frame in HD and
provide a new region of interest for biomarker research and a measure of disease progression in
HD clinical trials. Although the striatum is known to be progressively affected during the disease,
it is less well established if other specific regions of the brain are also preferentially impacted
in a longitudinal manner. Mounting evidence from whole-brain MRI analysis suggest that the
occipital regions are altered early on in the disease.””?” Furthermore, post-mortem studies have
shown atrophy of the occipital lobe to be most pronounced compared to other cortical areas and
histologically the absolute nerve cell numbers of the occipital lobe were found to be reduced.?®*
Given this evidence of early and preferential involvement of the occipital regions in HD, we set
out to study this region using diffusion MRI with a fully automated procedure.

Shifting our focus from MRl investigations to electrophysiological markers, in Chapter 6 we assess
the potential of electroencephalography (EEG) as a biomarker in HD using machine learning
automatic classification. EEG abnormalities are known to occur in HD.*® Through registration of
physiologic activity of neurons, quantitative electroencephalography (gEEG) provides objective
parameters assessing possible (sub)cortical dysfunction occurring prior to or concomitant with
motor or cognitive disturbances observed in the disease. Given the progressive functional deficits
seen with disease advancement, it is expected that EEGs of HD patients are different from healthy
subjects. To test this hypothesis, automatic analysis methods for such complex data are desirable
in order to provide objective and reproducible results. In this cross-sectional study, we use a
machine learning method with the aim of automatically classifying EEGs as belonging to HD gene
carriers versus healthy controls. Furthermore, we aim to derive gEEG features that correlate with
commonly used clinical and cognitive markers in HD research to evaluate biomarker potential.

It is likely that a multimodal approach is needed to have a comprehensive understanding of
neuropathology in HD, as any one modality is always limited by its intrinsic properties. In Chapter
7 we use a multimodal approach to characterize the visual network in HD using different MRI
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modalities and visual evoked potentials as an electrophysiological modality. This is done in the
light of considerable evidence showing that the visual cortex is one of the first cortical regions in
HD to be affected by neuronal loss, as was described above.

In Chapter 8 we provide summarizing remarks together with potential directions for future
research.
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Abstract

Background

We previously demonstrated that in the premanifest stage of Huntington’s disease (preHD), a
reduced functional connectivity exists compared to healthy controls. In the current study we look
at possible changes in functional connectivity occurring longitudinally over a period of 3 years,
with the aim of assessing the potential usefulness of this technique as a biomarker for disease
progression in preHD.

Methods

Twenty-two preHD and 18 healthy control subjects completed resting state fMRI scans in two
visits with 3 years in between. Differences in resting state connectivity were examined for eight
networks of interest using FSL with 3 different analysis types: a dual regression method, region
of interest approach and an independent component analysis. To evaluate a possible combined
effect of grey matter volume change and the change in BOLD signal, the analysis was performed
with and without voxel-wise correction for grey matter volume. To evaluate possible correlations
between functional connectivity change and the predicted time to disease onset, the preHD
group was classed as preHD-A if >10.9 years and preHD-B if <10.9 years from predicted disease
onset. Possible correlations between burden of pathology score and functional connectivity
change in preHD were also assessed. Finally, longitudinal change in whole brain and striatal
volumetric measures was assessed in the studied cohort.

Results

Longitudinal analysis of the RS-fMRI data revealed no differences in the degree of connectivity
change between the groups over a period of 3 years, though a significantly higher rate of striatal
atrophy was found in the preHD group compared to controls in the same period.

Conclusions

Based on the results found in this study, the provisional conclusion is that RS- fMRI lacks sensitivity
in detecting changes in functional connectivity in HD gene carriers prior to disease manifestation
over a 3-year follow-up period.
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Introduction

untington’s disease (HD) is an autosomal dominantly inherited neurodegenerative

disorder characterized by motor, cognitive and psychiatric symptoms with a mean age at

onset between 30-50 years." It is caused by an expanded CAG trinucleotide repeat in the
huntingtin (HTT) gene on the short arm of chromosome 4.2 Magnetic Resonance Imaging (MRI)
studies in HD have revealed extensive brain atrophy, most notably in the striatum.>*

A current challenge in HD research is establishing reliable biomarkers for measuring disease
progression in HD, both before and after disease manifestation. This is crucial for assessing the
efficacy of future proposed therapies. Several large longitudinal studies are currently being
conducted for the purpose of establishing such biomarkers."*"* Using MRI, these studies have
shown that atrophy of different structures in the brains of premanifest gene carriers (preHD), and
of the caudate nucleus in particular, is correlated with the estimated years to disease onset (YTO)
as calculated by the formula of Langbehn et al."®™ This is of particular interest, as these subjects
have yet to present clinically with the hallmark motor symptoms of HD.

As the correlations found up to this point only partially predict the rate of clinical deterioration,
combining imaging modalities might increase the predictive validity of a potential biomarker.
With Resting State functional MRI (RS-fMRI) interregional correlations of blood oxygenation
level dependent (BOLD) signal fluctuations between brain regions that are spatially distinct, are
measured in the wakeful brain, without challenging it with a particular task. The patterns acquired
with this technique are usually referred to as “functional connectivity” RS-fMRI has the theoretical
potential of revealing changes occurring in the brain before changes on the structural imaging
level are evident, which could be important in targeting the disease in its earliest stages. It may
in addition help to unravel compensatory mechanisms responsible for apparently normal brain
function despite ongoing neurodegeneration. The technique has already been shown to be a
valuable marker for tracking disease progression in Alzheimer's disease, and in mild cognitive
impairment.'>16

In a previous report, our group has reported functional connectivity differences between
controls, preHD and manifest HD subjects, cross-sectionally. The results showed preHD subjects
already exhibiting altered functional connectivity with different structures in the brain compared
to the matched control group. Importantly, this was still valid after correction for atrophy.” The
first report detailing reduced cortico-striatal functional connectivity findings in preHD when
compared to controls was by Unschuld et al.'"® A recent report by Poudel et al. further confirms
findings of functional connectivity reductions in both preHD and manifest HD subjects."”

In the current longitudinal study we aim to assess the potential usefulness of this technique as a
biomarker for disease progression in the premanifest stage of the disease. We investigate possible
changes in functional connectivity occurring longitudinally over a follow-up period of 3 years.
With the aim of having a comprehensive interpretation of the acquired data, three separate data
analysis methods were applied.

21




Chapter 2

Methods

Subjects

Of the 28 premanifest HD carriers (preHD) and 28 healthy age-matched control subjects who
completed RS-fMRI scans during their first visit at the Leiden University Medical Center (LUMC)
study site of the TRACK-HD study,” 23 preHD and 20 control subjects completed the resting state
scans at the second visit, with a 3 year interval between visits. Excluded from analysis were 1
preHD subject due to missing scan volumes and 2 control subjects due to excessive motion
artifacts (maximum motion during scan < 4 mm).?° This resulted in 22 preHD and 18 healthy
control subjects that were included in this study (Table I).

Inclusion criteria for study participation for preHD subjects comprised of a positive genetic test
with > 40 CAG repeats, the absence of motor disturbances on the total motor score (TMS) of
the Unified Huntington’s Disease Rating Scale (UHDRS) of more than 5 points and a burden of
pathology score greater than 250 ((CAG repeat length - 35.5) x age).”?' Age- and gender-matched
gene-negative relatives of HD gene carriers and spouses were included as healthy controls.
Exclusion criteria for all participants included significant previous head trauma, any neurological or
major psychiatric disorder or unwillingness to undergo MRI scanning.” Medical history taking, an
interview-based assessment and questionnaires were used to ascertain that no major psychiatric
disorder could be classified at the time of inclusion and scanning. Consequently, the use of
neuroleptic medications or antidepressants was sparse and considered to be of no influence.

For preHD subjects the estimated number of years until disease onset was calculated based on
their current age and the CAG repeat length, by means of the formula developed by Langbehn
etal'

As previously applied by Tabrizi et al.” for a second analysis, the preHD group was divided at
baseline according to the median (10.9 years) for the predicted years to onset into preHD-A
(>10.9 years from predicted onset) and preHD-B (<10.9 years). This resulted in two groups each
consisting of 11 subjects (Table Il). In a further analysis performed within the preHD group,
possible associations between functional connectivity change and burden of pathology score
were assessed.

The study was approved by the ethics committee of the LUMC and written informed consent was

obtained from all participants following a complete description of the study and procedures. For
full details of study parameters, see Tabrizi et al
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Table I. Group characteristics and clinical scores

N
Gender M/F
Age in years (V1), mean (SD)
Handedness R/L
Level of education (ISCED), median (range)
DART-IQ, mean(SD)
BMI in kg/m?(V1), mean (SD)
CAG repeat length, mean (SD)
Estimated years to onset (YTO), mean (SD)
Total functional capacity, mean (SD)
V1
V2
UHDRS-TMS, mean (SD)
V1
V2
SDMT, mean (SD)
V1
V2
BDI-II, mean (SD)
V1
V2

Between-scan interval in months, mean (SD)

Healthy
controls

18

7/11

46.7 (6.9)
18/0

4(3)
105.3(9.3)
269 (6.6)
n/a

n/a

13.0(0.0)
13.0 (0.0)

24 (2.5)
3.0
53.7(89)
584 (8.0)
44(6.3)

4.8 (5.1)
356 (1.20)

preHD
(A and B)

22%

10/12

433 (8.5)
18/4

4)

1003 (11.6)
249 (4.1)
426 (2.6)
11.6 (4.4)

48.7 (9.7)
494 (10.5)%

5.1(5.7)
53(6.0)
353 (0.94)

N = number of participants, SD = Standard deviation, n/a = not applicable, ISCED = International Standard
Classification of Education, DART-IQ = Dutch Adult Reading Test Intelligence Quotient, CAG = Cytosine-Adenine-
Guanine, UHDRS-TMS = Unified Huntington’s Disease Rating Scale Total motor score, SOMT = Symbol Digit
Modalities Test, BDI-Il = Beck Depression Inventory-ll, BMI = Body Mass Index, V1 = visit 1, V2 = visit 2.

* Indicates a significant difference at p < 0.05.

# Including four subjects progressing to the manifest stage during the three year follow-up period.
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Clinical measures

To monitor disease state, the following clinical measures were collected longitudinally for
all groups: Unified Huntington’s Disease Rating Scale Total Motor Score (UHDRS-TMS), Total
Functional Capacity (TFC), Symbol Digit Modalities Test (SDMT) and Beck Depression Inventory-
Il (BDI-Il) scores. The UHDRS-TMS is the traditional measure which defines disease state in HD.
The SDMT in particular has been shown to be a sensitive longitudinal cognitive measure in HD,
independent of disease related motor effects.??

MRI acquisition

MRI acquisition was performed on a 3-Tesla whole body scanner (Philips Achieva, Healthcare,
Best, The Netherlands) with an eight channel receive array head coil. An anatomical T1-weighted
scan was acquired using an ultrafast gradient echo 3D acquisition sequence with the following
imaging parameters: repetition time (TR) = 7.7 ms, echo time (TE) = 3.5 ms, field-of-view = 24 x
24 x 16.4 cm?, matrix size 224 x 224, with a duration of 9 minutes. For post-processing registration
purposes, a high resolution T2*-weighted scan, with the following parameters was collected:
repetition time (TR) = 2200 ms, echo time (TE) = 30 ms, field-of-view = 220 x 220 x 168 mm?3, flip
angle =80°, matrix size = 112 x 109 mm?, with a duration of 46 s. A RS-fMRI scan with the following
parameters was obtained: 200 EPI volumes, repetition time (TR) = 2200 ms, echo time (TE) = 30
ms, field-of-view = 220 x 220 x 10.4, resolution = 2.75 x 2.75 x 2.75, no slice gap, flip angle = 80°,
matrix size 80 x 79, with a duration of 7.5 minutes. No background music was played during the
RS-fMRI scan and to ensure a wakeful disposition participants were asked to keep their eyes open
with normal background light.

Pre-processing of resting state data

RS-fMRI images were analysed using FSL 50 (fMRIB Software Library; available at
www.fmrib.ox.ac.uk/fsl). Pre-processing consisted of motion correction,”® removal of non-
brain tissue,* spatial smoothing using a Gaussian kernel of 6 mm full width at half maximum
(FWHM) and high-pass temporal filtering equivalent to 100 s (0.01 Hz). After pre-processing,
the functional images were registered to the high-resolution T2*-weighted images. These high-
resolution images were subsequently registered to the anatomical T1-weighted images. Finally,
the anatomical scan was registered to the 2 mm isotropic MNI152 standard space image.> These
three registration matrices were combined to obtain a matrix for transforming fMRI data from
native space to standard space and its inverse (from MNI space to native space). Visual quality
control was performed by two qualified raters to ensure correct registration.
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Table Il. preHD-A vs. preHD-B, visit 1

preHD-A preHD-B
N 11 11
Gender M/F 3/8 7/4
Age in years, mean (SD) 43.8 (5.8) 43.0(10.9)
Handedness R/L 9/2 9/2
Level of education (ISCED), median (range) 4(3) 4 (3)
DART-IQ, mean (SD) 1023 (9.9) 98.3(13.2)
BMI in kg/m” mean (SD) 256 (3.0) 23.1(23)
CAG repeat length, mean (SD) 41501.4) 438 (3.1)*
Estimated years to onset (YTO), mean (SD) 14.4 (4.5) 88(1.6)*
Total functional capacity, mean (SD) 12.7(0.7) 12.6(0.9)
UHDRS-TMS, mean (SD) 1.9(1.5) 29(1.3)
SDMT, mean (SD) 51.6(9.9) 459 (9.1)
BDI-Il, mean (SD) 45 (6.0) 56(5.7)
Between-scan interval in months, mean (SD) 35.6(1.0) 349(0.7)

N = number of participants, SD = Standard deviation, ISCED = International Standard Classification of Education,
DART-IQ = Dutch Adult Reading Test Intelligence Quotient, CAG = Cytosine-Adenine-Guanine, UHDRS-TMS =
Unified Huntington’s Disease Rating Scale Total motor score, SDMT = Symbol Digit Modalities Test, BDI-Il = Beck
Depression Inventory-Il, BMI = Body Mass Index.

* Indicates a significant difference at p < 0.05.

Statistical analysis

Statistical analysis of group demographics and clinical measures was performed using IBM SPSS
Statistics (version 20.0, IBM Corp., USA). Where appropriate either an independent samples t-test
or chi-squared tests were applied. Potential longitudinal change in clinical measures between the
groups was also investigated. Difference values were computed and independent samples t-tests
on these delta-scores evaluated whether preHD subjects experienced a greater change from visit
1 to visit 2 than control subjects.

Striatal and whole brain volumes were obtained from the TRACK-HD study database.”’* These
measures were calculated using the lowa BRAINS method as previously described.”13252
Assessment of possible longitudinal volumetric change was performed using a general linear
model with age, gender and total brain volume (the latter only for assessing striatal volumes) as
covariates in the model.
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The functional connectivity analysis was performed in three ways using the dual regression
method of FSL, a technique that allows a voxel-wise comparison of resting state functional
connectivity.”” To assess possible associations between the burden of pathology score and
functional connectivity change, a regression analysis was preformed within the preHD group
only.

Network of interest analysis

First, resting state functional connectivity was determined in terms of similarity of the BOLD
fluctuations in the brain in relation to characteristic fluctuations in predefined resting state
networks or networks of interest (NOIs). Our choice of resting state networks was based on high
reproducibility of these networks from independent component analysis of different data sets.?8%°
These standardized resting state networks parcellate the brain into eight templates that represent
over 80% of the total brain volume:*° 1) medial visual network, 2) lateral visual network, 3) auditory
network, 4) sensorimotor system, 5) default mode network, 6) executive control network, 7 and
8) dorsal visual stream networks (Figure 1). To account for noise, a white matter (WM) and a
cerebrospinal fluid (CSF) template were included in the analysis.'3

Dual regression analysis (part of FSL 5.0) was performed to identify subject-specific time course
and spatial maps. To create the average time course within each network for every subject, the
eight resting state networks® and the two additional WM and CSF maps®'2? were used in a linear
model fit against each individual subject’s fMRI dataset (spatial regression). Hence, WM and CSF
activities were included in the regression model as proxy measures for non-neuronal noise. The
personalized time courses were subsequently regressed back onto that subject’s fMRI dataset to
create personal spatial maps (temporal regression). This gives ten 3D images per individual per
visit, with voxel-wise the z-scores of functional connectivity to each of the templates. The higher
the absolute value of the z-score, the stronger the connectivity to a network.

Independent component analysis

In a second approach, large-scale patterns of functional connectivity were identified by
independent component analysis (ICA) using probabilistic ICA as implemented in the MELODIC
tool of FSL.%* The original concatenated 4D RS-fMRI dataset was decomposed into sets of time
courses and associated spatial maps, to identify different activation components without any
model being specified*** The number of components was fixed to 25 to limit independent
component splitting into subcomponents.'*?’

Subsequently the dual regression analysis as described above was repeated for the group ICA
results. This time the 25 independent components were used as spatial regressors, ultimately
resulting in 25 z-score maps per individual per visit, reflecting the connectivity strength of each
voxel in the brain to each of the 25 independent components.
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Figure 1. Saggital, coronal and axial views of the dominant BOLD fluctuations within the eight predefined

networks of interest [Beckmann et al, 2005]. All images have been coregistered into the MNI152 standard space
template. Numbers at the top of the images denote the MINI coordinates (xyz) and images are shown in radiological
orientation.

Region of interest analysis

Given the overwhelming volume of evidence indicating the striatum as the prime and earliest
region affected within the brain in HD, we chose the striatum as a region of interest (ROI) in
our analysis. A mask was created to analyse the change in connectivity with the eight NOIs
and the 25 independent components of the voxels within this ROI. The mask was based on the
probabilistic atlas incorporated in FSL provided by the Harvard Center for Morphometric Analysis
and contained the striatum from both hemispheres (Figure 2).33°

Longitudinal change in connectivity per subject and per predefined network/independent
component was the main parameter of interest. To assess this change, the individual functional
connectivity maps (z-score) from the second visit were subtracted from the corresponding
functional connectivity maps from the first visit.
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Figure 2. Axial view of the region of interest (ROI) mask of the striatum shown superimposed on a MNI152 standard
image.

For the between-group analysis, the z-score maps created by dual regression and the maps
containing the differences in z-score were collected across subjects into single 4D maps (one per
NOI or original independent component, with the fourth dimension being subject identification)
and submitted to voxel-based statistical testing. To obtain group averages of maps containing the
differences in z-score, a one-sample non-parametric t-test was used and a two-sample t-test was
applied to obtain group differences for each of the 8 NOIs and each independent component,
using a general linear modelling (GLM) approach as implemented in FSL. Age and gender were
included as covariates in the model. To statistically account for potential effects of local structural
differences within and between the two groups, grey matter volume of each voxel was included
as subject wise and voxel-wise covariates in the GLM design.* To evaluate a possible combined
effect of grey matter volume change and the change in BOLD signal, the analysis was also
performed without voxel-wise correction for grey matter volume.

Voxel-wise non-parametric permutation testing was performed using FSL-randomise (5000
permutations).*’ All statistical maps were family-wise error (FWE) corrected using p < 0.05, based
on the TFCE statistic image.*

Because multiple comparison correction method only corrects the results at the predefined
network/independent component level, but does not adjust for the risk of Type 1 error (false
positives) induced by increasing the number of components tested simultaneously at high model
orders, additional correction for multiple comparisons was done using Bonferroni correction. The
multiple comparisons consisted of two comparisons (either connectivity increase or decrease as
compared to healthy controls) for 8 NOls and 25 independent components.
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Results

Group characteristics are shown in Table I. Age, gender, handedness and level of education did not
differ significantly between controls and preHD subjects. At baseline, no differences were found
in UHDRS-TMS, TFC, SDMT, BDI-II, and Dutch Adult Reading Test Intelligence Quotient (DART-IQ)
scores. There also was no difference in Body Mass Index (BMI) at baseline. Repeated assessment at
3-year follow-up revealed significantly higher UHDRS-TMS and lower TFC and SDMT scores in the
preHD group (Table I). Four of the twenty-two preHD subjects began to exhibit typical HD motor
symptoms during the 3-year follow-up period, therefore reaching the definition of early manifest
disease stage. The cross-sectional difference in UHDRS-TMS and TFC score between the groups at
the second visit was negated after exclusion of these four converter subjects, yet the difference
in SDMT score remained significant (p = 0.07, p = 0.36 and p = 0.01, respectively). The difference
in SDMT comprised of higher mean scores within the control group when compared to their first
visit, while the scores of the preHD group remained stagnant.

The longitudinal change in the UHDRS-TMS was significant when all participants were included
(p = 0.03), yet this result was only reached as a result of outlier scores: when the four converters
were excluded from analysis, this difference vanished (p = 0.25).

The longitudinal change in the SDMT score was significant when all participants were included (p
=0.04). While the mean SDMT difference in the preHD group remained essentially the same when
the four converters were excluded (+0.64 vs. +0.67 difference points, respectively), statistical
significance could nolonger be reached (p = 0.06). See Table Il for a view of the mean longitudinal
change of the different measures.

No differences in any of the scores outlined above were found while comparing the preHD-A
and preHD-B groups, neither at the first or second visit nor longitudinally. The CAG trinucleotide
repeat count was significantly higher in the preHD-B relative to the preHD-A group (p = 0.03)
(Table II; longitudinal change data not shown).

All scans were analysed with and without inclusion of the four converters. All scan analyses were
also repeated with exclusion of the four left-handed subjects to avoid any possible lateralization
effects. The reported results are with and without voxel-wise correction for grey matter volume,
as described in the Methods section. No difference was found in the amount of motion between
the groups.

RS-fMRI network analyses

In the eight designated NOIs, longitudinal analysis of the RS-fMRI data revealed no statistically
significant differences in the degree of connectivity change between controls and the preHD
group. There also were no statistically significant differences between controls and preHD-A and
controls and preHD-B subjects. No association could be demonstrated between the degree of
connectivity change in the different networks and the groups designated as far and near from
expected onset of motor symptoms, nor with the burden of pathology score.
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Table lll. Longitudinal change in clinical scores T, mean difference

Healthy controls preHD (A and B)
N 18 22%
Total functional capacity, MD (SD) 0.0 (0.0) -0.1(0.6)
UHDRS-TMS, MD (SD) -02(2.9) 3.0 (54)*
SDMT, MD (SD) 4.7 (5.7) 0.6 (6.1)*
BDI-Il, MD (SD) 04 (3.6) 02 (5.1)
BM!I in kg/m? MD (SD) 0.5(2.3) -04(1.6)

N = number of participants, MD = mean difference, SD = Standard deviation, UHDRS-TMS = Unified Huntington’s
Disease Rating Scale Total motor score, SDMT = Symbol Digit Modalities Test, BDI-Il = Beck Depression Inventory-li,
BMI = Body Mass Index.

* Indicates a significant difference at p < 0.05.

t Longitudinal change denotes scores from visit 1 subtracted from scores from visit 2.

# Including four subjects progressing to the manifest stage during the three year follow-up period.

RS-fMRI ICA

Using the ICA method, 25 components were extracted from the data per person per visit and
the differences between the two visits compared across the above outlined groups. There were
no statistically significant differences in the degree of connectivity change between any of the
groups. Dividing the preHD group according to the expected time of motor symptom onset
again revealed no significant differences in the degree of connectivity change. Regression analysis
using the burden of pathology score revealed no associations with the degree of functional
connectivity change within the preHD group.

RS-fMRI ROI analysis

Using the described mask to assess the change of connectivity strength in the voxels within
the striatum, no statistically significant differences could be demonstrated between any of the
groups described above.

When comparing results from the outlined analysis methods, the ROl analysis provided the closest
proximity to achieving a significant longitudinal reduction in functional connectivity in preHD
when compared to controls. This was the case with the lateral visual network (NOI 2; p = 0.08)
and default mode network (NOI 5; p = 0.11) (Figure 3). Power analysis using these results show
that a minimum of 23 subjects per group would be needed to detect a significant longitudinal
reduction in functional connectivity in 3 years within the striatum with the lateral visual network
for preHD compared to controls (at 5% FWE rate with a power of 80%).
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Table IV provides an overview of significance levels for longitudinal reduction of functional
connectivity within the striatum over 3 years in preHD subjects compared to controls with the 8
NOls.

Longitudinal volumetric analysis
In the 3-year follow-up period, no statistically significant difference in whole brain volume decline
was found between controls (0.33%) and preHD (0.58%) (p = 0.35).

The striatal volume showed a significantly higher rate of decline over the 3-year period in preHD
as compared to controls: 1.45% in the control group versus 7.29% in the preHD groep (p < 0.001).
Striatal volume decline over the 3 years was significantly higher in both preHD-A (6.62%) and
preHD-B (8.15%) when compared to controls (p < 0.001). The difference in striatal volume decline
rate between preHD-A and preHD-B was not statistically significant over this time period (p =
0.31).

Discussion

This study showed no longitudinal difference in functional connectivity change between preHD
and healthy control subjects over a period of 3 years. This was also the case when preHD subjects
were divided in a preHD-A and preHD-B group based on the expected time to disease onset
and when using burden of pathology score as a regressor for functional connectivity change.
These conclusions are based on results obtained from three different analysis methods. Results
remained the same with and without voxel-wise correction for grey matter volume and while
running the analysis with the inclusion and/or exclusion of converters and left-handed subjects.

Lateral visual Default mode
network network

B F-0.078

Figure 3. P-value maps of the nonsignificant longitudinal reductions in functional connectivity in preHD compared
to controls in the striatum with the lateral visual and default mode networks in the 3-year study period.
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Table V. Statistical parameters for longitudinal reduction of functional connectivity within the striatum over 3
years in preHD subjects compared to controls with the 8 networks of interest

Network of interest (NOI) Minimal P-value X y z t-stat
1 Medial visual 0.356 39 68 42 3.527
2 Lateral visual 0.078 53 69 35 4175
3 Auditory 0.686 36 56 49 3.280
4 Sensorimotor 0.804 54 62 45 2491
5 Default mode 0.112 53 70 36 3.845
6 Executive control 0.734 31 69 32 2.327
7 Dorsal visual stream 0.502 59 66 39 3.355
8 Dorsal visual stream 0.262 36 68 29 3.754

X, y, and z denote MNI152 standard space coordinates.

This result, taken together with clinical parameters like the UHDRS-TMS and SDMT showing
longitudinal change between the included subjects, and significantly higher longitudinal
striatal atrophy rate in preHD compared to controls, alludes to a lack of sensitivity of RS-fMRI
in detecting concomitant changes in functional connectivity occurring longitudinally in preHD.
This statement should be considered as tentative, as future studies with greater numbers of
participants, improved signal-to-noise ratio, different analysis methods and/or a longer follow-up
period might be able to demonstrate longitudinal differences in functional connectivity change.
That being said, results from this study suggest that even if there is functional connectivity change
occurring in the 3-year follow-up period, this is too small to detect with this technique using the
highlighted methods with this cohort size, which is a relevant finding in light of longitudinal
biomarker research in preHD.

Our study confirms the results found by Seibert et al.*® Their study reported no change in
functional connectivity over a 1 year period. The differences between the study of Seibert et
al. and our own were the methodology used, where seeds instead of a priori spatial NOIs were
used and subject-native space registration instead of the MNI152 standard space template was
applied. The number of subjects examined in that report was higher than in our study: 22 controls
and 34 preHD subjects.

Our earlier cross-sectional results suggested that functional connectivity, at the group level, was
a fairly sensitive measure to differentiate preHD subjects from controls."” As such, we were quite
hopeful to demonstrate a divergent longitudinal functional connectivity evolution between
the groups, which in turn could serve as a measure for disease progression. We were however
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unable to reproduce these results within our baseline cohort, most likely due to the smaller
number of subjects that were included, as only those with scans at both time points could be
assessed longitudinally. This study can therefore not account for the functional connectivity
of the dropouts, as no data are available. Furthermore, the discrepancy in baseline findings
might involve deteriorating health prompting more severely affected subjects to drop out
prematurely of the study, thus leaving a relatively fitter group for this study. A such, selection bias
disproportionately affecting subjects with the fastest rate of clinical deterioration is a possible
reason for not finding different functional connectivities between the groups. This spurred using
a more comprehensive approach and to base the hypothesis-driven part of the analysis solely by
singling out the striatum as the primary region where possible changes in resting state activity
are expected, given the fact that it is the region first affected in HD, as was again demonstrated
by the volumetric study of the striatum within this cohort. Despite using three different analysis
methods, no longitudinal change could be demonstrated in our cohort in a time frame of 3
years with two measurement points. The combination of a highly significant difference in striatal
atrophy rate between preHD and controls with a total lack of significant difference in the rate of
functional connectivity change between these groups strongly points to a lower sensitivity of
RS-fMRI'in demonstrating longitudinal change in the preHD population.

A similar sequence of results was found by the study of Wolf et al., where task-based fMRI showed
significantly lower activity cross-sectionally in the left prefrontal cortex in preHD, yet failed to
demonstrate a significant decline of that activity over a 2-year follow-up period.* In that study,
the baseline and longitudinally examined cohort consisted of the same subjects. Despite the
obvious differences in methodology and spatial parameters used in measuring the BOLD signals,
the longitudinal study by Wolf et al. may further consolidate the notion of a lack of sensitivity in
detecting BOLD signal changes occurring during a time frame that can be considered feasible for
assessing the efficacy of an intervention in preHD.

The strength of our study lies in the application of three different analysis methods which allows
for a more comprehensive interpretation of the data. This strength is complemented by the
acquisition methodology used: the duration of the RS-scans (>6 min) and acquisition while the
patients have their eyes open provide the most robust estimates of functional connectivity as
demonstrated by different studies.*#

A limitation of this study is the loss of power due to the expansive testing of various networks
and independent components. This expansive testing is however justified given the goal of
finding robust and specific functional connectivity changes in preHD for usage as biomarker
candidate in a clinical trial setting. Other possible limitations include transforming the data to an
atlas volume instead of subject-native space, the relatively small number of tested subjects and
possible confounding effects of dropouts, the conceivably short follow-up period in the preHD
stage setting and not accounting for possibly confounding covariables such as depression scores
in the analysis model.
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Based on the results found in this study, the provisional conclusion is that RS-fMRI seems to
lack sensitivity in detecting changes in functional connectivity in HD gene carriers prior to
disease manifestation over a 3-year follow-up period. This conclusion applies to this selective
group of participants and the particular analysis methods used in this study. Results from future
longitudinal studies, such as the ongoing Track-On HD study which has larger groups and more
time points measured, should be awaited before articulating a definite recommendation on the
possible utility of RS-fMRI as a biomarker tracking disease progression in preHD.
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Chapter 3

Abstract

Background

DiffusionTensorlmaging (DTI) providesindirectinformation about the quality of the microstructural
organization of tissues. In this 2-year follow-up study, we assess both cross-sectional and time-
related changes of striatal and whole-brain microstructural properties in different stages of
Huntington’s disease (HD) using DTI.

Methods

From the TRACK-HD study, 22 premanifest gene carriers (preHD), 10 early manifest HD and 24
controls were scanned at baseline and 2-year follow-up. Stratification of the preHD group into
a far (preHD-A) and near (preHD-B) to predicted disease onset was performed. Age-corrected
histograms of whole-brain white matter (WM), grey matter (GM) and striatal diffusion measures
were computed and normalised by the number of voxels in each subject’s data set.

Results

Higher cross-sectional mean, axial and radial diffusivities were found in both WM (p < 0.001) and
GM (p < 0.001) of the manifest HD compared to the preHD and control groups. In preHD, only
WM axial diffusivity (AD) was higher than in controls (p < 0.01). This finding remained valid only
in preHD-B (p < 0.001). AD was also higher in the striatum of preHD-B compared to controls and
preHD-A (p < 0.01). Fractional anisotropy (FA) lacked sensitivity in differentiating between the
groups. Histogram peak heights were generally lower in manifest HD compared to the preHD
and control groups. No longitudinal differences were found in the degree of diffusivity change
between the groups in the two year follow-up. There was a significant relationship between
diffusivity and neurocognitive measures.

Conclusions

Alterations in cross-sectional diffusion profiles between manifest HD subjects and controls
were evident, both in whole-brain and striatum. In the preHD stage, only AD alterations were
found, a finding suggesting that this metric is a sensitive marker for early change in HD prior
to disease manifestation. The individual diffusivities were superior to FA in revealing pathologic
microstructural brain alterations. Diffusion measures were well related to clinical functioning and
disease stage.
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Introduction

untington’s disease (HD) is a neurodegenerative autosomal dominant disorder. It is caused

by an increased CAG (Cytosine-Adenine-Guanine) repeat within the huntingtin gene on

the short arm of chromosome 4.! The mutant huntingtin protein triggers a pathogenic
cascade responsible for neuropathology in the brain.?® This results in cognitive, motor, and
psychiatric symptoms. The brain as a whole is impacted, though preferential striatal volume loss
has been extensively documented by post-mortem histopathological as well as in vivo magnetic
resonance imaging (MRI) studies.*?

Even though no medication is currently available to cure or slow-down the disease, it remains
crucial to have a clear understanding of the typical evolution of brain changes in the disease
to determine when microstructural changes start and how fast degeneration occurs. This is
necessary to define optimal intervention starting points as well as possibly providing an objective
tool to determine the impact of candidate therapies, especially in the premanifest (preHD) phase
where clinical measures are lacking.

Diffusion tensor imaging (DTI) is an MRI technique that can quantify water diffusion within
tissue.'®"® The diffusion tensor in every voxel can be described by its three eigenvectors and
eigenvalues (\1,A2, A\3). These eigenvalues quantify the diffusion in three orthogonal orientations
and are typically synthesized to axial (= A1) and radial (= (\2 + A3)/2) diffusivities.

Another popular diffusion measure is fractional anisotropy (FA), which is a function of the
eigenvalues, and ranges from 0 (completely isotropic diffusion) to 1 (completely anisotropic
diffusion), with higher values generally corresponding to a higher directional coherence of
tissue organization. High FA occurs for example in healthy white matter (WM) which typically
has a parallel-oriented micro-architecture. Another commonly reported diffusivity measure is the
mean diffusivity (MD), which is the average of the three eigenvalues. In this study we evaluate
and report these measures as well as the separate underlying eigenvalues, as these may provide
complementary information about the nature of microstructural change.'*"® It is possible
that certain metrics are more selectively affected and, therefore, might be more sensitive to
longitudinal change. For example, when changes in axial diffusivity (AD) are proportional to radial
diffusivity (RD), the FA value may not be very informative.'®

In a previous study, we evaluated cross-sectional group differences in FA and MD between
controls, preHD and manifest HD subjects using a region-of-interest and fiber tractography
analysis approach.” In that study, MD proved to be more sensitive in differentiating between
the groups compared to FA. Findings from previous longitudinal reports remain inconsistent.'®%
With inherent limitations such as inter-user variability to nonautomated methods such as hand
drawn regions-of-interest, we chose an automated histogram analysis method in this work to
assess cross-sectional as well as time-related changes of diffusivity measures occurring within
2 years. We hypothesized that lower FA and higher MD, AD and RD values would be found in
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subjects with manifest HD when compared to preHD subjects and controls, reflective of higher
microstructural disorganization in the manifest group. In addition, we hypothesized that MD
would be elevated in preHD subjects when compared to controls based on results from our
previous work."” Grey matter (GM) diffusivity was assessed separately to assess potential higher
sensitivity towards alteration compared to WM, fully bearing in mind the limitations of the
tensor model in GM. Associations between neurocognitive measures and diffusivity findings
were assessed for potential usage as surrogate markers or predictors for these findings. Also,
associations between diffusivity and the expected time to disease onset were assessed to test
the hypothesis that sensitivity of diffusivity measures in detecting disturbances in preHD subjects
increases with shorter proximity to expected disease onset.

As a subanalysis, diffusion in the left and right hemispheres was assessed individually. This was
done to explore the hypothesis of preferential degeneration of the dominant versus the non-
dominant hemisphere. Plausibly increased lifetime excitotoxic exposure due to higher activation
couldlead to such a finding in HD. We hypothesized that diffusion parameters indicative of greater
neuronal damage were represented more readily in the dominant hemisphere, as findings from
previous studies have suggested.?* To the best of our knowledge, this is the first study exploring
this hypothesis and the first to apply histogram analysis to (longitudinal) DTl data in HD as well as
to separately assess microstructural properties of both whole-brain GM and WM.

Materials and methods

Participants

As part of the TRACK-HD study, 90 participants were included at baseline at the Leiden University
Medical Center (LUMC) study site (for details see Tabrizi et al.).” DTl was added to the standard MRI
protocol. At baseline, DTl was not performed in ten participants because of claustrophobia, and
another nine were excluded from analysis due to excessive movement artefacts. Of the remaining
71 subjects, 62 subjects completed DTl scans at both visits. Of these 62, a further six subjects were
excluded from analysis due to excessive movement artefacts at the second visit. The longitudinal
cohort included in this work was thus comprised of 56 subjects: 24 healthy controls, 22 preHD
and ten early manifest HD (Table I).

Inclusion criteria for the preHD group were a CAG repeat > 40 with a total motor score on the
Unified Huntington’s Disease Rating Scale (UHDRS-TMS) < five. Inclusion criteria for the early
manifest HD group were a CAG repeat > 40, with a UHDRS-TMS > five and a Total Functional
Capacity score (TFC) > seven. A further inclusion criterion for both the preHD and early manifest
HD group consisted of a burden of pathology score greater than 250 ((CAG repeat length - 35.5)
x age).” Healthy gene negative family members or partners were recruited as control subjects.
None of the participants suffered from a concomitant neurological disorder, a major psychiatric
diagnosis or had a history of severe head injury.
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Table I. Group characteristics and clinical scores

Healthy preHD preHD-A preHD-B Manifest HD
controls (AandB)
N 24 22% " Inl 10
Gender M/F 1113 9/13 4/7 5/6 4/6
Age in years (at V1), mean (SD) 49.0(8.2) 436 (8.7) 442 (5.7) 43.0(11.2) 50.2 (9.3)
Handedness R/L 20/4 18/4 9/2 9/2 9N
Level of education (ISCED), median (range) 4(3) 4(3) 4(3) 4(3) 4(3)
DART-IQ, mean (SD) 105.0 (94) 100.5(11.2) 101.3(9.7) 99.6 (13.0) 101.8 (13.5)
CAG repeat length, mean (SD) n/a 426 (2.7) 413 (14) 439 (3.)N 425(1.2)
Estimated years to onset, mean (SD) n/a 11.8 (4.7) 14.9 (4.7) 8.6 (1.8)A n/a
Total functional capacity, mean (SD)
V1 13.0(0.2) 12.8(0.5) 12.7(0.7) 12.8(04) 11.0 (1.50
V2 12.9(0.5) 126(0.9) 12.7 (0.6) 12.5(1.0) 103 (2.2)0
UHDRS-TMS, mean (SD)
V1 26(25) 26(1.5) 2.0(1.5) 31(01.2) 14.6 (7.7)0
V2 2.1(1.6) 57(5.1)¥ 352 83 (6.1)*A 23001210
SDMT, mean (SD)
V1 494 (8.9) 50.1(11.0) 535(9.3) 46.7 (11.9) 412920
V2 509(93) 506 (10.0) 54.7 (10.0) 46.6 (8.5)N 392 (106)®
SWR, mean (SD)
V1 100.1 (13.2) 91.9 (14.2)* 95.6 (9.6) 883 (17.3)* 87.7 (14.7)*
V2 1020(15.6) 879 (15.7)* 914 (94) 84.4(20.0)* 86.4(18.6)*
BDI-Il, mean (SD)
V1 4.1(44) 6.4 (6.4) 49 (6.0 79(6.8) 10.2 (8.2)*
V2 39@4.0) 51(5.6) 3249 6.9 (5.9 8.2 (84)
Between-scan interval in months, mean (SD) 23.0(0.8) 23.0(0.7) 23.2(0.6) 22.7(0.7) 235(0.7)

N = number of participants, SD = Standard deviation, n/a = not applicable, ISCED = International Standard
Classification of Education, DART-IQ = Dutch Adult Reading Test Intelligence Quotient, CAG = Cytosine-Adenine-
Guanine, UHDRS-TMS = Unified Huntington’s Disease Rating Scale-Total Motor Score, SOMT = Symbol Digit
Modalities Test, SWR = Stroop Word Reading task, BDI-Il = Beck Depression Inventory-Il, V1 = visit 1, V2 = visit 2.
Significance at p < 0.05 level: * significantly different from controls, @ significantly different from controls and
preHD, ¥ significantly different from controls and HD, \ significantly different from preHD-A.

# Including five subjects progressing to the early manifest stage during the two year follow-up period.

Hemispheric dominance was defined using a standardised neuropsychological questionnaire.”
For preHD subjects, the predicted years to disease onset was calculated using the CAG repeat
length and age-based survival analysis of Langbehn et al.”

As previously applied by Tabrizi et al.,” to assess the effect of expected proximity to disease onset
on diffusion parameters, the preHD group was divided at baseline according to the median (10.9
years) for the predicted years to disease onset into preHD-A (> 10.9 years) and preHD-B (< 10.9).
This resulted in two groups each consisting of eleven subjects (Table I).
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The study was approved by the Medical Ethics Committee of the LUMC and written informed
consent was obtained from all participants. For full details of study parameters, see Tabrizi et al.”

Clinical measures

To monitor disease state, the following clinical measures were evaluated longitudinally for all
groups: UHDRS-TMS, TFC, Symbol Digit Modalities Test (SDMT), Stroop Word Reading (SWR) and
Beck Depression Inventory-Il (BDI-II) scores.

The UHDRS-TMS is the traditional measure which defines manifest disease state in HD. The SDMT
and SWR in particular have been shown to be sensitive longitudinal neurocognitive measures in
HD, independent of disease related motor effects.?®

Magnetic resonance imaging acquisition

MRI acquisition was performed with a 3-Tesla whole-body scanner (Philips Achieva, Healthcare,
Best, The Netherlands) with an eight channel SENSE head coil. T1-weighted image volumes were
acquired using a 3D MPRAGE acquisition sequence with the following imaging parameters: TR =
7.7 ms, TE=3.5ms, FOV =24 x 24 cm?, matrix size 224 x 224, number of slices = 164, slice thickness
= 1.00 mm, and no slice gap. A single-shot echo-planar diffusion tensor imaging sequence was
applied with 32 measurement directions and the following scan parameters:'' TR = 10,004 ms, TE
=56 ms, FOV = 220 x 220 mm? with an acquisition matrix of 112 x 110, 2.00 mm slice thickness,
transversal slice orientation, no slice gap, flip angle = 90°, reconstruction voxel dimensions of 1.96
X 1.96 x 2.00 mm?, number of slices = 64, b-value = 1,000 s/mm?, halfscan factor = 0.61. Parallel
imaging (SENSE) was used with a reduction factor of two, NSA = one, and fat suppression was
applied. DTl acquisition time was 6.55 min.

Image processing

The DTI data was processed as described in Deprez et al.?® In summary, this consisted of the
following steps: (1) Correction for subject motion and eddy current induced distortions;* (2)
Correction for echo planar images based deformations due to magnetic field inhomogeneities
by registration to the T1-weighted images;*' (3) Tensor estimation using the iteratively reweighted
linear least squares approach after outlier detection and removal by REKINDLE (k = 6).3233

The brain regions were segmented into WM and GM regions (Figure 1) using SPM 8 with default

settings (revision 4667, 27-Feb-2012).3* Brain regions were left/right divided with the method
described by Kuijf et al.*®
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Histogram analysis

A spherical erosion filter (radius 2 mm) was applied to the brain masks (WM/GM,; left/right) to
minimize the inclusion of partial-volume affected voxels3%*” The histograms of the diffusion
measures were computed from these segmented brain regions. Subsequently, histograms
were normalised by the number of voxels in each subject’s data set to create the group mean
histograms.®®

With histogram analysis, frequency distributions of selected DTl measures of designated voxels
can be obtained. While not providing any region-specific information, this type of analysis is
highly sensitive in detecting differences as the entire brain is included. Moreover, it provides a
straightforward, fully automated and objective approach for interrogating imaging data. The
resulting summarizing whole-brain measures are suitable for comparing diffusion between
groups® and its value has been previously demonstrated in multiple sclerosis and CADASIL 2!
This type of analysis can also be applied to any given selection of voxels of interest. Given the
importance of the striatum in the histopathological profile of HD, diffusion values for this structure
were additionally evaluated in this study. The following diffusion features for whole-brain WM
were investigated: FA, MD, AD and RD. In addition, for the whole-brain GM (including striatum)
the MD, AD and RD were studied. The outcome measures were the mean and distribution peak
heights of the histograms. Because two outcome measures were tested against two tissue types,
p-values for omnibus F-tests were Bonferroni corrected to adjust for the increased risk of type one
error and considered to be statistically significant at p < 0.05/4 = 0.0125.

Obtaining striatal masks

Striatal masks were obtained as described previously.”? In summary, T1-weighted images were
segmented with the FAST and FIRST tools from the fMRI of the Brain Software Library (http://
www.fmrib.ox.ac.uk/fsl/).**> This provided individual brain masks for the following structures:
the caudate nucleus and the putamen, both of these forming the striatum. Figure 1 shows such
a segmentation result superimposed on a T1-weighted image. To correct for potential partial
volume effects, an eroded mask of these segmentations was created by removing one voxel in-
plane for all the aforementioned voxels of interest.
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Figure 1. From left to right: sagittal, coronal and axial images: a. brain segmentation into WM (blue), GM (red) and
CSF (green); b. directionally colour encoded fractional anisotropy map; c. striatal mask: red = left caudate nucleus
and blue = left putamen; green = right caudate nucleus and pink = right putamen.

Statistical analysis

We used linear mixed models (in R version 3.0.0, R Foundation for Statistical Computing, Vienna,
Austria) to model the various outcome variables with patient as a random factor to accommodate
the within-person repeated nature of the data and to assess the effect of group, corrected for
age at time of scanning as a co-variable. Correlations between neurocognitive measures and DTl
findings were tested in the model.

Statistical analyses of group demographics were performed with SPSS (version 20, IBM, USA).
Distributions and assumptions were checked. Either Analysis of Variance (ANOVA) or chi-squared
tests were applied where this was appropriate. Potential longitudinal change in clinical measures
between the groups was also investigated. Difference values were computed and an ANOVA was
performed on these delta-scores to evaluate potential group differences. In case of a significant
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omnibus F-test, exploratory post hoc analysis using Fisher’s least significant difference was
performed to assess which means were significantly different from each other. Differences in
group demographics between preHD-A and preHD-B were compared using either independent
samples t-tests or chi-squared tests, where appropriate.

Paired samples t-tests were performed to assess cross-sectional interhemispheric differences in
DTl measures within the groups after excluding lefthanders. Lefthanders consisted of four control,
four preHD and one manifest HD subjects. The longitudinal evolution of the interhemispheric
diffusion measures was assessed with the aforementioned linear mixed model.

Table Il. Mean whole-brain DTl parameters. MD, AD and RD are shown x10° for readability

Healthy preHD preHD-A preHD-B Manifest HD
controls (AandB)
N 24 22 1 1 10
FA-WM 0434 (0.008) 0435(0.012) 0435 (0.014) 0435 (0.014) 0421 (0.014)0*
MD-WM 0.754(0.010) 0.764 (0.016) 0.758(0.017) 0.767 (0.017) 0.783 (0.018)®***
MD-GM 0.767 (0.004) 0.777 (0.010) 0.768 (0.024) 0.778 (0.024) 0.805 (0.012)®***
AD-WM 1.123 (0.005) 1.140 (0.011)¥** 1.131(0.012) 1.149 (0.012)3***  1.172(0.013)D***
AD-GM 0.924(0.013) 0.934(0.019) 0.923 (0.025) 0.938 (0.025)= 0.965 (0.021)D***
RD-WM 0.560 (0.011) 0.566(0.017) 0562 (0.019) 0.568 (0.019) 0.589 (0.019)®***
RD-GM 0.702 (0.004) 1(0.010) 0.706 (0.012) 0.716 (0.012)" 0.736 (0.012)0***

Data is shown as mixed model-based estimates of the group means corrected for age (S.E.)

@ significantly different from controls and preHD, ¥ significantly different from controls and HD, 3 significantly
different from controls, preHD-A and HD, *p < 0.05 **p < 0.01 ***p < 0.001, bold values indicate sustained
significant difference following Bonferroni correction (p < 0.0125), 5 p = 0.08, " p = 0.07.

FA = fractional anisotropy; MD = mean diffusivity; AD = axial diffusivity; RD = radial diffusivity; WM = white matter;
GM = grey matter.

Results

Group characteristics and clinical scores

The groups did not differ significantly in terms of gender, handedness, level of education,
intelligence quotient or body mass index. A trend toward a difference in age between the
groups was found (p = 0.06), with premanifest subjects being generally younger compared to
both controls and subjects with manifest HD. No statistical difference was found in CAG repeat
count between preHD and manifest HD subjects. The between-scan interval was not significantly
different between the groups.

At baseline, significantly lower scores for subjects with manifest HD were found in TFC, SDMT

and SWR when compared to both controls and preHD subjects. Higher scores for subjects with
manifest HD were found for UHDRS-TMS and BDI-Il when compared to both controls and preHD
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subjects. For the preHD group, a significantly lower baseline score compared to controls was
found for SWR (Table I).

Repeated assessment after 2-year follow-up revealed similar score differences between the
groups. Progression of five of the 22 preHD subjects to the early manifest stage during the follow-
up period gave rise to a significantly higher UHDRS-TMS when compared to controls. The only
significant difference in longitudinal change of clinical scores was found in higher UHDRS-TMS,
both when considering the preHD group (including those progressing to the early manifest
stage) and the manifest HD group. Other scores showed no significant longitudinal differences in
this cohort (Supplementary Table I).

Comparing the preHD-A and preHD-B groups, no significant cross-sectional score differences
were found during the first visit. At the second visit, the preHD-B group showed a significantly
higher UHDRS-TMS and lower SDMT score compared to preHD-A.

Significant longitudinal change was found only in the UHDRS-TMS, where the difference was
higher in preHD-B relative to preHD-A (Table [; longitudinal change data not shown).

Diffusion tensor imaging histogram measures

Diffusivity values of whole-brain white matter

Atbaseline, all whole-brain WM diffusivity measures in the manifest HD group differed significantly
from both controls and preHD subjects (Table Il): FA values were reduced and MD, AD and RD
were increased. Upon applying Bonferroni correction for multiple testing, all these differences
remained statistically significant except for the difference in FA (see Supplementary Figures 1
and 2 for group and visit histogram plots of WM FA, including separate plots for the left and right
hemisphere). Elevations in MD, AD and RD were all highly significant (p < 0.001) (see Figure 2 for
histogram plots of WM MD).

Only AD in the preHD group differed significantly from both controls and subjects with manifest
HD and was lower for the controls and higher for subjects with manifest HD, even after applying
Bonferroni correction (p < 0.01). No statistically significant differences in FA (p = 0.83), MD (p =
0.10) or RD (p = 0.33) were found between controls and preHD subjects.

Dividing the preHD group in preHD-A and preHD-B revealed higher AD values only in the preHD-B
group compared to both preHD-A and controls, even after Bonferroni correction (p < 0.001). No
significant differences were observed in any of the diffusivity measures between controls and
preHD-A (Table ). No significant longitudinal differences were found in the degree of whole-
brain WM diffusivity change in any of the measures between the groups (without correction for
multiple testing).
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Results of histogram peak height comparison of whole-brain WM are provided in Supplementary
material.
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Figure 2. Histogram plots of MD (= mean diffusivity) and AD (= axial diffusivity) in whole brain white, grey matter
and the striatum. Group diffusivities are plotted against the visits. v1 = visit 1, v2 = visit 2.

Diffusivity values of whole-brain grey matter and striatum

At baseline, MD, AD and RD values of whole-brain GM were significantly higher for the manifest
HD group compared to both controls and preHD subjects (p < 0.001; Table II). This remained the
case after Bonferroni correction for multiple testing. Figure 2 shows histogram plots for whole-
brain GM AD.

No significant differences in whole-brain GM diffusivity measures were found between preHD
subjects and controls. Upon dividing the preHD group in preHD-A and preHD-B, a trend was
found in the preHD-B group toward higher values of AD and RD compared to controls (p = 0.08
and p = 0.07, respectively; Table II).
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Baseline MD, AD and RD values in the striatum of subjects with manifest HD were significantly
higher compared to both controls and preHD subjects (Table lll). Upon applying Bonferroni
correction for multiple testing, these differences remained statistically significant except for RD.
See Figure 2 for group histogram plots of striatal MD. Separate plots for MD of the left and right
striatum are shown in Supplementary Figure 3.

Table lll. Mean striatal DTl parameters. Values are of left and right striatum together. MD, AD and RD are shown
x10° for readability

Healthy preHD preHD-A preHD-B Manifest HD
controls (AandB)
N 24 22 1 1 10
MD 0.686 (0.075) 0.695 (0.037) 0.648 (0.044) 0.758 (0.043) 0.816 (0.045)D**
AD 1.130 (0.093) 1.177 (0.027)a 1.127(0.032) 1.227 (0.031)3** 1.235 (0.034)0**
RD 0.658 (0.108) 0.641 (0.039) 0.595 (0.048) 0.684 (0.047) 0.764 (0.049)0*

Data is shown as mixed model-based estimates of the group means corrected for age (S.E.)

@ significantly different from controls and preHD, 3 significantly different from controls and preHD-A, & p = 0.08
(compared to controls), *p < 0.05 **p < 0.01, bold values indicate sustained significant difference following
Bonferroni correction (p < 0.0125). MD = mean diffusivity; AD = axial diffusivity; RD = radial diffusivity.

No significant baseline differences in striatal diffusivity measures were found between preHD
subjects and controls, only a trend toward a higher AD in the preHD group (p=0.08). Upon dividing
the preHD group in preHD-A and preHD-B, a significantly higher Bonferroni corrected striatal AD
value was found in preHD-B only, compared to both controls and preHD-A (p < 0.01; Table IIl).
Exploratory analysis to assess whether this effect was more prominent when assessing striatal
substructures separately, revealed a trend towards AD elevation in the caudate and a significantly
higher AD in the putamen in preHD-B (caudate: p = 0.06; putamen: p = 0.02) compared to both
controls and preHD-A. This result was therefore less sensitive than the combined assessment of
both substructures (p < 0.01), and would not have survived Bonferroni correction. No significant
longitudinal differences were found in the degree of whole-brain GM or in striatal diffusivity
change in any of the measures between the groups (without correction for multiple testing).
Results of histogram peak height comparison of whole-brain GM and striatum are provided in
Supplementary material.

Neurocognitive and diffusivity measures

In Table IV, significant correlations between neurocognitive measures and baseline whole- brain
diffusivity measures are shown (correlations with peak heights are not shown). As no specific
group effects were found on correlations between diffusion parameters and neurocognitive
measures, the following applied to all participants included in the study with a CAG repeat
expansion irrespective of their group. The SDMT score was found to predict WM FA (p < 0.01):
the higher the SDMT score, the higher the FA (Supplementary Figure 4). The SDMT score was also
found to predict WM MD (p < 0.01): the higher the SDMT score, the lower the MD (Figure 3).
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The SWR score was found to predict GM MD (p < 0.05): the higher the SWR score, the lower the
MD (Supplementary Figure 5). The SDMT score was found to predict peak height in GM MD (p <
0.05): the higher the SDMT score, the higher the peak height. The SDMT score was also found to
predict peak height of WM AD (p < 0.01): the higher the SDMT score, the lower the peak height.
Both SDMT and SWR scores were found to predict GM AD (p < 0.05): the higher the score, the
lower the AD. The SDMT score was found to predict peak height of GM AD (p < 0.05): the higher
the SDMT score, the higher the peak height.

The SDMT score was found to predict WM RD (p < 0.01): the higher the SDMT score, the lower the
RD. In the striatum, the SDMT score alone was found to predict AD (p < 0.05): the higher the SDMT
score, the lower the AD (data not shown).

Interhemispheric differences in diffusivity measures

In Supplementary Table Ill, baseline differences in diffusivity measures of the left minus right
hemisphere are shown, both for WM and GM. Only right handed subjects were included for this
analysis. Many small, though significant interhemispheric differences were found. The magnitude
and direction of these differences were similar in all groups (controls, preHD and manifest HD)
with no statistical significance in these differences between the groups.

SDMT score and MD in WB WM

0.76-

60 70

30 40

50
SDMT score

Figure 3. Relationship plot of Symbol Digit Modalities Test (SDMT) score and whole brain (WB) white matter (WM)
mean diffusivity (MD). Data points shown are mixed model-based estimates.

No significant interhemispheric longitudinal differences between the groups were found in the
degree of change of any of the diffusion measures of the WM, GM and the striatum, neither in the
means nor histogram peak heights (without correction for multiple testing).
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Table IV. Mean whole-brain DTl parameters and neurocognitive measures correlations (corrected for age)

Diffusion SDMT score P Diffusion SWR score P

parameter parameter
FA-WM T1.2% 110 points <001 / / /
MD-WM 1 0.7% 110 points <001 / / /
MD-GM / / / 1 04% 110 points <0.05
AD-WM / / / / / /
AD-GM 40.5% 110 points <005 104% 110 points <0.05
RD-WM 11.0% 110 points <001 / / /
RD-GM / / / / / /

This table is valid for all participants with a CAG repeat expansion included in the study, as no specific
group effects were found on correlations between diffusion parameters and neurocognitive measures.
N =increase, \, = decrease, / = no significant correlation.

FA = fractional anisotropy; MD = mean diffusivity;, AD = axial diffusivity; RD = radial diffusivity; WM =
white matter; GM = grey matter.

Discussion

The major findings from this study were significantly higher MD, AD and RD values in both WM
and GM in subjects with manifest HD compared to preHD and control subjects. In preHD subjects,
only WM AD proved to be a sensitive measure to differentiate between the study groups. This
finding remained valid only in preHD-B upon dividing the preHD group according to the median
predicted years to onset. Another significantly different finding in preHD subjects was observed
again only in preHD-B in a higher AD of the striatum compared to both controls and preHD-A.
No significant longitudinal differences were found in any of the diffusivity measures between any
of the groups, neither in the means nor peak heights. Finally, significant relationships between
neurocognitive and diffusivity measures were demonstrated.

Findings of increased MD, AD and RD values in subjects with manifest HD are in line with results
from previous reports.®s* Although a reduction in WM FA in manifest HD was found, this finding
did not maintain significance after correction for multiple testing, rendering it a far less sensitive
marker for disease state in HD. This finding of individual diffusivities providing more sensitive
measures for revealing pathologic microstructural brain alterations compared to FA, was in line
with findings from a previous study in HD and Alzheimer’s disease.'®* The results presented here
are also in agreement with previous findings by our group, where MD was reported to be a more
sensitive measure than FA in distinguishing HD subjects from controls.'” Just as in the Alzheimer's
disease study of Acosta-Cabronero et al,'® changes found in this study were more prominent in
AD than in RD, yet not enough to substantially influence FA. This provides a possible explanation
for the seemingly discrepant findings of FA alterations in HD research, as the proportions of
eigenvalues could be more specifically altered in studies of distinct WM regions giving rise to a
modified FA.
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The presence of an increased AD in whole-brain WM and in the striatum of preHD-B, provides
evidence for ongoing neurodegeneration prior to disease manifestation, a finding that is echoed
by results from previous MRI volumetric investigations in preHD.*%4° Higher AD in preHD has
been previously reported by Stoffers et al.® although in that study this finding was highly localized
and accompanied by more pronounced and widespread increases in RD, a finding which was
not replicated here. Furthermore, in the study of Stoffers et al, RD seemed to correlate with
the predicted years to disease onset, while AD lacked such correlation.® This stands in contrast
to our findings of lack of significant increases in RD irrespective of preHD group stratification
and higher AD being found primarily in preHD individuals who are closest to predicted years to
disease onset. The discrepancy in these findings could very well be attributed to the differing
methodologies applied in analysing the data and possibly due to the difference in scanner field
strength used. In GM, no significantly different diffusivities were present between preHD subjects
and controls, except for the above-mentioned higher AD in the striatum of preHD-B, which is
a deep GM structure. The differences found in peak heights were only present in subjects with
manifest HD, not in the preHD group, alluding to a less sensitive measure in detecting differences
between manifest HD, preHD, and controls.

Exploration of the longitudinal evolution of diffusivity measures, without correction for multiple
comparisons, provided no significant group differences. Results from previous longitudinal DT
studies in HD are heterogeneous. In the study of Weaver et al.,'? significant longitudinal decreases
in WM FA and AD were reported over a one year period. That study consisted of seven controls,
four preHD and three manifest HD subjects, where the seven (pre)manifest subjects were
compared to the controls. In another study by Sritharan et al.?® with 17 controls and 18 manifest
HD subjects, no longitudinal change in the MD of the caudate, putamen, thalamus and corpus
callosum could be demonstrated over a one year period, while baseline MD was significantly
higher in the caudate and putamen of subjects with manifest HD compared to controls. A similar
finding in MD was reported by Vandenberghe et al.'® in eight manifest HD subjects over a two
year period. Results from the present study are in agreement with findings from the latter two
studies, with significant cross-sectional differences found in combination with a lack of significant
longitudinal differences in the evolution of these measures within the 2-year study-period. The
lack of longitudinal differences in the diffusion profile between the groups in this study could be
due to a low sensitivity of this approach in detecting small changes over time or due to a true
absence of observable significant alterations of this profile using DTl in the 2-year time frame.

Relationships between neurocognitive and diffusivity measures were demonstrated in our
study. The SDMT and SWR scores were associated with some diffusivity measures, where the
SDMT seemed to be more readily associated with WM diffusivity measures, while SWR showed
associations only with GM AD and MD. The only exception to this pattern in the whole-brain
analysis, was the inverse relationship found between SDMT scores and GM AD values. These
findings are important in light of selecting the most suitable cognitive measures to assess,
depending on the prime target of a treatment intervention. The SDMT, considered to be a
measure for information-processing speed and working memory, has also been found to be
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more associated with white than grey matter lesions in multiple sclerosis.*® In the current study,
the SDMT provided for the best predictive value for baseline diffusivity measures, as reflected by
both the magnitude as well as the statistical significance of these associations. As was the case
in the recent study by Poudel et al.’" we found a significant inverse relationship between SDMT
and WM RD in HD. Our results did not, however, reproduce their finding for the same inverse
relationship with SWR. In the striatum, an inverse relationship was found only between the SDMT
score and AD. This finding is reinforced by the recent morphometric analysis report in preHD by
Harrington et al.>> where the SDMT score was found to be positively associated with putaminal
volume.

Additional findings from our interhemispheric subanalysis of diffusion parameters revealed
very small, though highly significant interhemispheric differences in diffusivity measures
within the groups. There were, however, no indications for a preferential degeneration to the
dominant hemisphere in (pre)HD subjects, as no significant group differences were found in
interhemispherical diffusion parameters. To the best of our knowledge this is the first study
exploring this hypothesis using DTl in (pre)HD subjects. Interhemispheric variations in diffusivity
measures in the healthy human brain have been previously reported.®**

It should be stressed that inferral of underlying alterations to biological substance through
changes in eigenvalues is not trivial, especially in GM.>>*® As such, it is quite challenging to
draw solid conclusions about underlying neuropathology based on diffusion parameters. The
progressive histopathological features of HD are numerous. Disturbed membrane systems of
neurons, with derangement of all membranes that form the cell were found in a histological study
by Tellez-Nagel et al.*” Loss of small spiny neurons in the caudate and putamen with subsequent
astrocytosis,”® and decreased neuronal densities with increased oligodendroglial densities,” the
latter found already in preHD,®® have been described. The primary role of the oligodendrocyte
is providing myelin to neuronal axons. In HD mouse models, inhibition of the peroxisome-
proliferator-activated receptor gamma coactivator 1 a in oligododrocytes by mutant huntingtin
was found to be responsible for abnormal myelination.®" WM atrophy due to myelin breakdown is
supported by histological and imaging examinations in HD subjects.%? Significantly reduced total
brain, GM and WM volumes through atrophy have been demonstrated through a post mortem
study in seven HD brains.® These various, diverse changes could result in a competing influence
on the diffusion tensor model based on the individual contributions and timing of each change.
In a DTl-histological study of the quinolinic acid rat model of HD, Van Camp et al.** demonstrated
that DTl was more sensitive in detecting subtle changes in the affected structures compared to
histology. In that study, increases in MD, AD, and RD were detected six weeks after neurotoxin
infusion as compared to the sham injected control group, with histological findings of necrotic
cells involvement with shrunken cytoplasm and spongiosis.

In this study, the pattern found in the manifest HD group of higher MD, AD, and RD values without

substantial changes to FA, likely reflects an increase in tissue permeability, extra- cellular space
fluid and interaxonal spacing due to neural tissue loss,%>% allowing the three eigenvalues to grow
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proportionally due to faster diffusion of water, hereby effecting only the size of the tensor without
influencing its shape.’® This pattern of diffusivity changes, which has been associated with
chronic WM degeneration,*”%® has previously been reported in HD* and other neurodegenerative
disorders, such as amyotrophic lateral sclerosis® and hereditary spastic paraplegia.”® Findings
from the histologically verified DTI study of the quinolinic acid rat model of HD, suggest that this
pattern could point to cytoplasmic alterations and spongiosis.** In our complete preHD cohort,
only WM AD showed a significantly raised value compared to controls. Increased AD may indicate
WM axonal atrophy and was suggested to be useful in identifying early changes in persons with
a high risk at developing Alzheimer’s disease, prior to cognitive decline.” Taken together, these
findings suggest that both axonal degeneration as well as demyelination play an important role
in WM pathophysiology of HD and are present throughout the entire brain. Given that the earliest
detected abnormality is represented in the WM AD in preHD subjects, this could indicate that
axonal degeneration precedes myelin abnormalities in WM at this stage of the neurodegenerative
process, reinforcing findings by Hobbs et al.** and further supporting this hypothesis. The GM
diffusivity findings presented here suggest that tissue boundaries become less well defined in
the cortical ribbon and the striatum in HD.>®

Strengths of this study include the longitudinal design which has the advantage of evaluating
the evolution of diffusivity measures in a well-defined study group with a similar between-scan
interval. All scans were acquired on the same scanner using the same protocol, which keeps
test-retest variation in DTl to a minimum.”? Exploration of the full tensor behaviour is a further
strength, as demonstrated by the better sensitivity in revealing differences between the groups
in this study relative to FA characteristics. For the whole-brain analyses we applied an automated
histogram analysis, which reduces user error and provides a more suitable standardized analysis
method in multicentre study settings. The limitation presented with whole-brain analysis is the
loss of topographic information. Also, proper interpretation of the underlying biological causes to
alterations found in the diffusion profile remains restricted, as many different fiber orientations are
found in diffusion images of the brain.”* That does not, however, preclude the ability of assessing
the value of this type of analysis for identifying biomarker potential and tracking disease-
related modifications to the diffusion profile in time. This limitation was nonetheless addressed
by applying this analysis specifically to the striatum. A further limitation was the relatively low
number of manifest participants. This was mainly driven by disease progression in the cohort,
where longitudinal scans or the ability to comply with study protocol deemed impossible, leaving
the outcome measures presented here to more likely be an underestimation of the true extent of
diffusion disturbances in the HD brain.

To conclude, alterations in cross-sectional diffusion profiles between manifest HD subjects and
controls were evident both in whole-brain and striatum. In preHD, only AD alterations were found,
a finding that applied only to preHD-B upon group stratification. This suggests that AD may be a
sensitive marker for early change in HD gene carriers prior to disease manifestation. The individual
diffusivities proved to be more sensitive in distinguishing pathologic microstructural alterations
to the HD brain than FA characteristics. This study showed no longitudinal differences in any
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of the diffusivity measures between the groups. Larger study samples could provide additional
information on the longitudinal biomarker potential of DTI measures. However, based on the
results presented here, this potential is expected to be limited.

Acknowledgments

TRACK-HD is supported by CHDI/High Q Foundation Inc., a not for profit organization dedicated
to finding treatments for Huntington'’s disease. The research of A.L. is supported by VIDI Grant
639.072.411 from the Netherlands Organisation for Scientific Research (NWO). The authors wish
to thank Sarah Tabrizi, University College London, who is the global Pl for TRACK-HD and clinical
site Pl for London. The authors also wish to extend their gratitude to the TRACK-HD investigators
responsible for collecting the data and to the study participants and their families.

56



Microstructural brain abnormalities in Huntington’s disease: a two-year follow-up

References

10
11
12

20

21

22

23

The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat
that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993;72:971-983.

Tobin AJ, Signer ER. Huntington'’s disease: the challenge for cell biologists. Trends Cell Biol. 2000;10:531-
536.

Ross CA, Tabrizi SJ. Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet
Neurol. 2011;10:83-98.

Aylward EH, Liu D, Nopoulos PC, Ross CA, et al. Striatal volume contributes to the prediction of onset of
Huntington disease in incident cases. Biol Psychiatry 2012;71:822-828.

Hadzi TC, Hendricks AE, Latourelle JC, et al. Assessment of cortical and striatal involvement in 523
Huntington disease brains. Neurology 2012;79:1708-1715.

Stoffers D, Sheldon S, Kuperman JM, et al. Contrasting gray and white matter changes in preclinical
Huntington disease: an MRI study. Neurology 2010;74:1208-1216.

Tabrizi SJ, Langbehn DR, Leavitt BR, et al. Biological and clinical manifestations of Huntington's disease in
the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 2009;8:791-801.
Van den Bogaard SJ, Dumas EM, Ferrarini L, et al. Shape analysis of subcortical nuclei in Huntington's
disease, global versus local atrophy--results from the TRACK-HD study. J Neurol Sci. 2011;307:60-68.
Vonsattel JP, Keller C, Cortes Ramirez EP. Huntington’s disease - neuropathology. Handb Clin Neurol.
2011;100:83-100.

Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994,66:259-267.
Jones DK, Leemans A. Diffusion tensor imaging. Methods Mol Biol. 2011;711:127-144.

Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR imaging of the human brain. Radiology
1996;201:637-648.

Tournier JD, Mori S, Leemans A. Diffusion tensor imaging and beyond. Magn Reson Med. 2011,65:1532-
1556.

Alexander AL, Lee JE, Lazar M, et al. Diffusion tensor imaging of the brain. Neurotherapeutics 2007;4:316-
329.

Concha L. A macroscopic view of microstructure: Using diffusion-weighted images to infer damage,
repair, and plasticity of white matter. Neuroscience 2014,276:14-28.

Acosta-Cabronero J, Williams GB, Pengas G, et al. Absolute diffusivities define the landscape of white
matter degeneration in Alzheimer’s disease. Brain 2010;133:529-539.

Dumas EM, van den Bogaard SJ, Ruber ME, et al. Early changes in white matter pathways of the
sensorimotor cortex in premanifest Huntington's disease. Hum Brain Mapp. 2012;33:203-212.
Vandenberghe W, Demaerel P, Dom R, et al. Diffusion-weighted versus volumetric imaging of the
striatum in early symptomatic Huntington disease. J Neurol. 2009,256:109-114.

Weaver KE, Richards TL, Liang O, et al. Longitudinal diffusion tensor imaging in Huntington’s Disease. Exp
Neurol. 2009;216:525-529.

Sritharan A, Egan GF, Johnston L, et al. A longitudinal diffusion tensor imaging study in symptomatic
Huntington'’s disease. J Neurol Neurosurg Psychiatry 2010;81:257-262.

Lambrecq V, Langbour N, Guehl D, et al. Evolution of brain gray matter loss in Huntington's disease: a
meta-analysis. Eur J Neurol. 2013,20:315-321.

Muhlau M, Gaser C, Wohlschlager AM, et al. Striatal gray matter loss in Huntington's disease is leftward
biased. Mov Disord. 2007:22:1169-1173.

Rosas HD, Liu AK, Hersch S, et al. Regional and progressive thinning of the cortical ribbon in Huntington'’s
disease. Neurology 2002;58:695-701.

57




Chapter 3

24

25

26

27

28

29

30

31

32

33

34
35

36

37

38

39

40

41

42

43

44

45

58

Thieben MJ, Duggins AJ, Good CD, et al. The distribution of structural neuropathology in pre-clinical
Huntington's disease. Brain 2002;125:1815-1828.

Penney JB, Jr, Vonsattel JP, MacDonald ME, et al. CAG repeat number governs the development rate of
pathology in Huntington’s disease. Ann Neurol. 1997;41:689-692.

Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia
1971,9:97-113.

Langbehn DR, Brinkman RR, Falush D, et al. A new model for prediction of the age of onset and
penetrance for Huntington's disease based on CAG length. Clin Genet. 2004,65:267-277.

Tabrizi SJ, ScahillRI, Durr A, etal. Biological and clinical changes in premanifest and early stage Huntington'’s
disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol. 2011;10:31-42.
Deprez S, Billiet T, Sunaert S, et al. Diffusion tensor MRI of chemotherapy-induced cognitive impairment
in non-CNS cancer patients: a review. Brain Imaging Behav. 2013;7:409-435.

Leemans A, Jones DK. The B-matrix must be rotated when correcting for subject motion in DTl data.
Magn Reson Med. 2009;61:1336-1349.

Irfanoglu MO, Walker L, Sarlls J, et al. Effects of image distortions originating from susceptibility variations
and concomitant fields on diffusion MRI tractography results. Neuroimage 2012,61:275-288.

Tax CMW, Otte WM, Viergever MA, et al. REKINDLE: Robust Extraction of Kurtosis INDices with Linear
Estimation. Magn Reson Med. 2014;73:794-808.

Veraart J, Sijbers J, Sunaert S, et al. Weighted linear least squares estimation of diffusion MRI parameters:
strengths, limitations, and pitfalls. Neuroimage 2013;81:335-346.

Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839-851.

Kuijf HJ, van Veluw SJ, Geerlings M|, et al. Automatic Extraction of the Midsagittal Surface from Brain MR
Images using the Kullback-Leibler Measure. Neuroinformatics 2013;12:395-403.

Cercignani. Strategies for Patient-Control Comparison of Diffusion MR Data. In: Jones DK, editor. Diffusion
MRI. Oxford University 2010;p 485-499.

Van den Boomgaard R, van Balen R. Methods for fast morphological image transforms using bitmapped
binary images. Graphical Models and Image Processing 1992;54:252-258.

Roine U, Roine T, Salmi J, et al. Increased coherence of white matter fiber tract organization in adults with
Asperger syndrome: a diffusion tensor imaging study. Autism Res. 2013;6:642-650.

Cercignani M, Inglese M, Pagani E, et al. Mean diffusivity and fractional anisotropy histograms of patients
with multiple sclerosis. AJNR Am J Neuroradiol. 2001;22:952-958.

Vrenken H, Pouwels PJ, Geurts JJ, et al. Altered diffusion tensor in multiple sclerosis normal-appearing
brain tissue: cortical diffusion changes seem related to clinical deterioration. J Magn Reson Imaging
2006;23:628-636.

Holtmannspotter M, Peters N, Opherk C, et al. Diffusion magnetic resonance histograms as a surrogate
marker and predictor of disease progression in CADASIL: a two-year follow-up study. Stroke 2005;36:2559-
2565.

Van den Bogaard SJ, Dumas EM, Milles J, et al. Magnetization transfer imaging in premanifest and
manifest Huntington disease. AJNR Am J Neuroradiol. 2012,33:884-889.

Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field
model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001;20:45-57.

Patenaude B, Smith SM, Kennedy DN, et al. A Bayesian model of shape and appearance for subcortical
brain segmentation. Neuroimage 2011;56:907-922.

Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and
implementation as FSL. Neuroimage 2004;23 Suppl 1:5208-5219.



Microstructural brain abnormalities in Huntington’s disease: a two-year follow-up

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
66

Bohanna |, Georgiou-Karistianis N, Sritharan A, et al. Diffusion tensor imaging in Huntington's disease
reveals distinct patterns of white matter degeneration associated with motor and cognitive deficits.
Brain Imaging Behav. 2011;5:171-180.

Della NR, Ginestroni A, Tessa C, et al. Regional distribution and clinical correlates of white matter
structural damage in Huntington disease: a tract-based spatial statistics study. AJINR Am J Neuroradiol.
2010;31:1675-1681.

Hobbs NZ, Cole JH, Farmer RE, et al. Evaluation of multi-modal, multi-site neuroimaging measures in
Huntington'’s disease: Baseline results from the PADDINGTON study. Neuroimage Clin. 2012,2:204-211.
Paulsen JS, Nopoulos PC, Aylward E, et al. Striatal and white matter predictors of estimated diagnosis for
Huntington disease. Brain Res Bull. 2010;82:201-207.

Papadopoulou A, Muller-Lenke N, Naegelin Y, et al. Contribution of cortical and white matter lesions to
cognitive impairment in multiple sclerosis. Mult Scler. 2013;19:1290-1296.

Poudel G, Stout JC, Dominguez DJ, et al. White matter connectivity reflects clinical and cognitive status
in Huntington'’s disease. Neurobiol Dis. 2014;65:180-187.

Harrington DL, Liu D, Smith MM, et al. Neuroanatomical correlates of cognitive functioning in prodromal
Huntington disease. Brain Behav. 2014;4:29-40.

Park HJ, Westin CF, Kubicki M, et al. White matter hemisphere asymmetries in healthy subjects and in
schizophrenia: a diffusion tensor MRI study. Neuroimage 2004;23:213-223.

Yoshiura T, Noguchi T, Hiwatashi A, et al. Intra- and interhemispheric variations of diffusivity in subcortical
white matter in normal human brain. Eur Radiol. 2010;20:227-233.

Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR
Biomed 2002;15:435-455.

Jones DK, Knosche TR, Turner R. White matter integrity, fiber count, and other fallacies: the do’s and
don'ts of diffusion MRI. Neuroimage 2013;73:239-254.

Tellez-Nagel |, Johnson AB, Terry RD. Studies on brain biopsies of patients with Huntington's chorea. J
Neuropathol Exp Neurol. 1974;33:308-332.

Vonsattel JP, Myers RH, Stevens TJ, et al. Neuropathological classification of Huntington’s disease. J
Neuropathol Exp Neurol. 1985;44:559-577.

Myers RH, Vonsattel JP, Paskevich PA, et al. Decreased neuronal and increased oligodendroglial densities
in Huntington'’s disease caudate nucleus. J Neuropathol Exp Neurol. 1991;50:729-742.

Gomez-Tortosa E, MacDonald ME, Friend JC, et al. Quantitative neuropathological changes in
presymptomatic Huntington’s disease. Ann Neurol. 2001;49:29-34.

Xiang Z, Valenza M, Cui L, et al. Peroxisome-proliferator-activated receptor gamma coactivator 1 alpha
contributes to dysmyelination in experimental models of Huntington's disease. J Neurosci. 2011;31:9544-
9553.

Bartzokis G, Lu PH, Tishler TA, et al. Myelin breakdown and iron changes in Huntington's disease:
pathogenesis and treatment implications. Neurochem Res. 2007,32:1655-1664.

Halliday GM, McRitchie DA, Macdonald V, et al. Regional specificity of brain atrophy in Huntington’s
disease. Exp Neurol. 1998;154:663-672.

Van Camp N, Blockx I, Camon L, et al. A complementary diffusion tensor imaging (DTl)-histological study
in a model of Huntington'’s disease. Neurobiol Aging 2012;33:945-959.

Sen PN, Basser PJ. A model for diffusion in white matter in the brain. Biophys J. 2005,89:2927-2938.
Sotak CH. Nuclear magnetic resonance (NMR) measurement of the apparent diffusion coefficient
(ADC) of tissue water and its relationship to cell volume changes in pathological states. Neurochem Int.
2004,45:569-582.

59




Chapter 3

67

68

69

70

71

72

73

60

Burzynska AZ, Preuschhof C, Backman L, et al. Age-related differences in white matter microstructure:
region-specific patterns of diffusivity. Neuroimage 2010;49:2104-2112.

Concha L, Gross DW, Wheatley BM, et al. Diffusion tensor imaging of time-dependent axonal and myelin
degradation after corpus callosotomy in epilepsy patients. Neuroimage 2006;32:1090-1099.

Metwalli NS, Benatar M, Nair G, et al. Utility of axial and radial diffusivity from diffusion tensor MRI as
markers of neurodegeneration in amyotrophic lateral sclerosis. Brain Res. 2010;1348:156-164.

Oguz KK, Sanverdi E, Has A, et al. Tract-based spatial statistics of diffusion tensor imaging in hereditary
spastic paraplegia with thin corpus callosum reveals widespread white matter changes. Diagn Interv
Radiol. 2013;19:181-186.

Gold BT, Johnson NF, Powell DK, et al. White matter integrity and vulnerability to Alzheimer’s disease:
preliminary findings and future directions. Biochim Biophys Acta 2012;1822:416-422.

Takao H, Hayashi N, Kabasawa H, et al. Effect of scanner in longitudinal diffusion tensor imaging studies.
Hum Brain Mapp. 2012,33:466-477.

Jeurissen B, Leemans A, Tournier JD, et al. Investigating the prevalence of complex fiber configurations
in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34:2747-2766.



Microstructural brain abnormalities in Huntington’s disease: a two-year follow-up

Supplementary material

Peak heights of whole-brain white matter

At baseline, peak heights of whole-brain WM histograms were generally lower in the manifest
HD group compared to controls and preHD subjects (Supplementary Table Il). In the manifest HD
group, significantly lower peak heights were found for MD and RD. These differences remained
significant upon Bonferroni correction (both at p < 0.01).

In the preHD group, histogram peak heights were similar to controls. Dividing the preHD group in
preHD-A and preHD-B revealed a significantly lower value in peak height of the RD of the preHD-B
group compared to controls (p < 0.05). This difference did not survive Bonferroni correction.

No significant longitudinal differences were found in the degree of whole-brain WM peak height
change in any of the measures between the groups (without correction for multiple testing).

Peak heights of whole-brain grey matter and striatum

At baseline, histogram peak heights of whole-brain GM MD and AD in the manifest HD group
were significantly lower compared to controls and preHD subjects (Supplementary Table II;
striatal data not shown). The difference in MD peak height did not survive correction for multiple
testing, while AD peak height remained significant (p < 0.001). There was a trend towards a lower
peak height of RD in manifest HD compared to controls and preHD (p = 0.08).

No significant baseline peak height differences were observed between preHD subjects and
controls in whole-brain GM. Dividing the preHD group in preHD-A and preHD-B revealed a
significantly lower value in AD peak height only in preHD-B compared to controls (p = 0.05), not
surviving correction for multiple testing.

Baseline histogram peak heights of striatal MD and RD in subjects with manifest HD were
significantly lower compared to controls and preHD subjects (p < 0.01 and p = 0.03, respectively).
No significant peak height differences were observed between preHD subjects and controls in
striatal diffusivity measures. Dividing the preHD group in preHD-A and preHD-B did not alter this
result. No significant longitudinal differences were found in the degree of whole-brain GM nor
in striatal histogram peak height change in any of the measures between the groups (without
correction for multiple testing).
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Supplementary Figure 1. White matter fractional anisotropy (FA) histogram plots of the groups, per hemisphere
and of whole brain, plotted against the visits. v = visit 1, v2 = visit 2.
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Supplementary Figure 2. White matter fractional anisotropy (FA) histogram plots of the visits, per hemisphere and
of whole brain, plotted per group. v1 = visit1, v2 = visit2.
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Supplementary Figure 3. Separate plots for left and right striatal mean diffusivity (MD) histograms of the groups,
plotted against the visits. v1 = visit 1, v2 = visit 2.
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Supplementary Figure 4. Relationship plot of Symbol Digit Modalities Test (SDMT) score and whole brain (WB)
white matter (WM) fractional anisotropy (FA). Data points shown are mixed model-based estimates.
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Supplementary Figure 5. Relationship plot of Stroop Word Reading (SWR) task score and whole brain (WB) grey
matter (GM) mean diffusivity (MD). Data points shown are mixed model-based estimates.
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Supplementary Table I. Longitudinal change in clinical scorest, mean difference

Healthy preHD Manifest HD
controls (Aand B)
N 24 22% 10
Total functional capacity, mean (SD) -0.1(0.5) -0.2 (0.8) -0.7(1.7)
UHDRS-TMS, mean (SD) -05(23) 33(4.5)* 84 (590
SDMT, mean (SD) 1.5(5.8) 0.6 (6.3) -20(5.5)
SWR, mean (SD) 1.9(8.7) -4.1(8.2) -1.3(10.9)
BDI-Il, mean (SD) -03(3.7) -14(2.6) -204.0)

N = number of participants, SD = Standard deviation, UHDRS-TMS = Unified Huntington'’s Disease Rating Scale-
Total Motor Score, SDMT = Symbol Digit Modalities Test, SWR = Stroop Word Reading task, BDI-Il = Beck Depression

Inventory-Il.
Significance at p < 0.05 level: * significantly different from controls, @ significantly different from controls and

preHD.
t Longitudinal change denotes scores from visit 1 subtracted from scores from visit 2.
# Including five subjects progressing to the early manifest stage during the two year follow-up period.

Supplementary Table II. Mean DT whole-brain peak height (shown x10° for readability). Data is shown as mixed
model-based estimates of the group means corrected for age (S.E.)

Healthy preHD Manifest HD
controls (A and B)
N 24 22 10
FA-WM 306(1.2) 30.1 (1.6) 314(1.7)
MD-WM 1064 (7.3) 103.6 (10.0) 96.8 (10.7)**
MD-GM 65.1 (5.1) 64.9 (6.7) 60.7 (7.1)*
AD-WM 31122 34.6 (4.5) 343 4.7)
AD-GM 64.4 (4.6) 62.5 (6.0) 57.5 (6.4)***
RD-WM 62.3 (3.0) 60.2 (4.1) 58.6 (4.4)**
RD-GM 58.0 (4.7) 58.0(6.1) 54.8 (6.5) (p=0.08)

*p < 0.05 ¥p < 0.01 **p < 0.001, bold values indicate sustained significant difference following Bonferroni
correction (p < 0.0125).
FA = fractional anisotropy; MD = mean diffusivity; AD = axial diffusivity; RD = radial diffusivity; WM = white matter;
GM = grey matter.
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Supplementary Table lll. Interhemispheric differences in DTl measures from visit 1; values shown as left minus right
hemisphere. Differences in MD, AD and RD are shown x10° for readability. Only right handed subjects are included

Healthy controls preHD (A and B) Manifest HD
N 20 18 9

Mean (SD) i P Mean (SD) i P Mean (SD) + P
FA-WM 0017 (0.006) | <0001 0017 (0006) | <0001 0016 (0006) | <0001
MD-WM -0006 (0.006) | <0001 -0005(0007) | 0018  -0010(0007) | 0003
MD-GM -0.006 (0.008) | 0008 0003 (0009) | 0205  -0004(0011) | 0272
AD-WM 0.007 (0.010) 0003 0.009 (0.012) 0.005 0.002 (0.009) 0605
AD-GM 0001 (0010) | 0681 0001(0010) | 0631 0004 (0014) | 0377
RD-WM -0.013 (0.006) <0.001 -0.012 (0.006) <0001  -0016(0.008) <0.001
RD-GM -0009 (0.007) ! <0.001 -0008(0010) | 0003  -0008(0016) | 0174

FA = fractional anisotropy; MD = mean diffusivity; AD = axial diffusivity;, RD = radial diffusivity; WM = white matter;
GM = grey matter.
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Chapter 4

Abstract

Background

Huntington’s disease (HD) is associated with abnormal structure and function of different brain
regions. Looking for reliable early markers for development of disease which may be too subtle
to detect with conventional analysis methods, we applied graph theoretical analysis to diffusion
magnetic resonance imaging data to assess both cross-sectional and time-related changes of the
connectome in different stages of the disease.

Methods

We constructed weighted structural networks and calculated their topological properties. Twenty-
two premanifest HD (preHD), 10 early manifest HD and 24 healthy controls completed baseline
and two-year follow-up scans. We stratified the preHD group based on their predicted years
to disease onset into a far (preHD-A) and near (preHD-B) to disease onset group. We collected
clinical and behavioural measures per assessment time point.

Results

We found a significant reduction over time in nodal betweenness centrality both in the early
manifest HD and preHD-B groups as compared to the preHD-A and control groups, suggesting
a decrease of importance of specific nodes to overall network organization in these groups (FDR
adjusted ps < 0.05). Additionally, we found a significant longitudinal decrease of the clustering
coefficient in preHD when compared to healthy controls (FDR adjusted p < 0.05), which can
be interpreted as a reduced capacity for internodal information processing at the local level.
Furthermore, we demonstrated dynamic changes to hub-status loss and gain in both preHD and
early manifest HD. Finally, we found significant cross-sectional as well as longitudinal relationships
between graph metrics and clinical and neurocognitive measures.

Conclusions

This study demonstrates divergent longitudinal changes to the connectome in (pre) HD compared
to healthy controls. This provides novel insights into structural correlates associated with clinical
and cognitive functions in HD and possible compensatory mechanisms at play in preHD.
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Introduction

ecent years have seen an increase in work pertained to finding and developing

biomarkers for Huntington's disease (HD) and its premanifest stage (preHD). HD is an

autosomal dominant neurodegenerative disorder caused by an elongated cytosine-
adenine-guanine (CAG) repeat on the short arm of chromosome 4, which leads to the production
of mutated huntingtin protein." Prominent white and grey matter atrophy appear in the course
of the disease.”® This results in cognitive deterioration, including slower processing speed,
attentional problems, executive control deficits and ultimately dementia, but also motor signs
such as chorea, bradykinesia, rigidity and dystonia and psychiatric symptoms such as depression,
anxiety and apathy.

Finding biomarkers that assess progression towards disease manifestation and follow disease
advancement at the clinical stage, is of importance in the light of understanding the impact
of intervention trials. One of the most promising methods currently being deployed to probe
for biomarker potential is diffusion MRI, which can characterize tissue microstructure via the
diffusion of water molecules.®® Based on this technique, several cross-sectional studies in HD
have provided evidence for abnormal structural organization of the brain, typically using region
of interest and tract-based spatial statistics analyses.'”'* However, findings from longitudinal
reports using diffusion MRl in HD remain inconsistent.”"”

In the study by Weaver et al.,'” the tract-based spatial statistics approach was used to compare
scans from seven controls, four preHD and three manifest HD subjects obtained one year apart.
Significant longitudinal decreases in white matter fractional anisotropy and axial diffusivity in the
seven (pre)manifest subjects were found compared to the healthy controls. In another study by
Sritharan et al. with 17 controls and 18 manifest HD subjects,’ a region of interest approach
did not reveal longitudinal changes in the mean diffusivity of the caudate, putamen, thalamus
and corpus callosum over a one year period, while baseline mean diffusivity was found to be
significantly higher in the caudate and putamen of subjects with manifest HD compared to
controls. A similar finding for mean diffusivity was reported by Vandenberghe et al. in eight
manifest HD subjects over a two year period,'® also using a region of interest approach. These
inconsistencies in the literature might very well be attributed to inconsistencies in defining the
regions of interest or to other methodological limitations, such as those recently described for
tract-based spatial statistics.'® As longitudinal sensitivity to detecting disease progression is an
essential quality of a biomarker, and given the abovementioned apparent lack of uniformity in
previous longitudinal reports, we used a graph theoretical approach to analyse our data from a
new perspective.

A graph theoretical analysis (GTA) is a powerful mathematical framework for quantifying
topological properties of networks. This type of analysis moves away from the traditional
neuroimaging approach of examining individual components of the brain, such as regions
of interest, towards characterizing regional or global structure of networks. In recent years,
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this paradigm shift from segregation to integration has emerged as a useful strategy for
characterizing functional and structural brain networks in healthy and clinical groups, including
other neurodegenerative diseases such as Alzheimer's disease,'*?* neuroimmunological disorders
such as multiple sclerosis,*#?* but also in traumatic brain injury’®?” and schizophrenia®*#. Using
network based statistics, one recent cross-sectional study by Poudel et al. provided evidence for
aberrant white matter cortico-striatal connectivity in HD compared to controls based on diffusion
MRI data.*® However, little research has been done on the dynamics of structural brain networks
using a longitudinal design.

GTA may provide more insights into structural changes that can develop over the course of the
condition, which may be too subtle to be detected at the local level. We therefore investigated
network dynamics of the connectome in individuals from a well-defined cohort (TRACK-HD
study, Tabrizi et al.)* assessed systematically and prospectively across multiple time points. This
could provide new insights into the development of topological organization of whole-brain
structural connectivity in HD, possibly providing usable markers quantifying disease progression.
Such biomarkers can potentially be used, in turn, as targets for modification in therapeutic trial
settings, especially in the premanifest phase where the priority lies in preventing or delaying
manifestation of this devastating disorder. It is also important to examine potential associations
between currently used cognitive and clinical measures in HD and (disrupted) network properties,
thereby providing a more tangible ‘real-world’ sense to the complexity of brain structure and
function.

Materials and methods

Participants

As part of the TRACK-HD study, 90 participants were included at baseline at the Leiden University
Medical Center (LUMC) study site. Recruitment procedures and inclusion criteria have been
published previously (for details see Tabrizi et al.)°. Diffusion MRI was added to the standard
MRI protocol. At baseline, diffusion MRI was not performed in ten participants because of
claustrophobia, and another nine were excluded from analysis due to excessive motion artefacts,
which caused significant data corruptions, such as large signal dropouts and intra-volume inter-
slice distortions. Such corrupted data sets were deemed unusable for inclusion in the study and
were therefore not considered for further processing and analysis. Of the remaining 71 subjects,
62 subjects completed diffusion MRI scans at both visits with an average between-scan interval of
23 months. Of these 62, a further six subjects were excluded from analysis due to excessive motion
artefacts at the second visit. The longitudinal cohort included in this work was thus comprised of
56 subjects: 24 healthy controls, 22 preHD and 10 early manifest HD subjects (Table I).

Inclusion criteria for the preHD group were a CAG repeat > 40 with a total motor score on the
Unified Huntington's Disease Rating Scale (UHDRS-TMS) < five> Moreover, to assess the effect
of expected proximity to disease onset on diffusion parameters, the preHD group was divided
at baseline according to the median (10.9 years) for the predicted years to disease onset into
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preHD-A (> 10.9 years) and preHD-B (< 10.9). The predicted years to disease onset was based
on a formula by Langbehn et al.*> using CAG repeat length and age-based survival analysis. This
resulted in two groups (preHD-A and preHD-B) each consisting of 11 subjects (Table I). Inclusion
criteria for the early manifest HD group were a CAG repeat > 40, with a UHDRS-TMS > five and a
Total Functional Capacity score (TFC) > seven. For both the preHD and early manifest HD groups,
a burden of pathology score greater than 250 ((CAG repeat length - 35.5) x age) was applied as a
further inclusion criterion.** Healthy gene negative family members or partners were recruited
as control subjects. None of the participants suffered from a concomitant neurological disorder, a
major psychiatric diagnosis, or had a history of severe head injury.

Demographics, clinical information, and neurocognitive measures of interest are provided in
Table I. From the neurocognitive battery administered, the Stroop Word Reading (SWR) task
and the Trail Making Task (TMT) were chosen as measures of interest, as these tasks have shown
promising results as cognitive disease-state markers in HD research.?'**% In short, the SWR task
consisted of the instruction of reading a set of words of colours (red, green and blue) as fast as
possible within 45 seconds. The number of correct responses was computed using the number of
items completed, with higher scores reflecting faster processing speed. The SWR has been used
as a sensitive outcome measure in studies identifying predictors of longitudinal decline in HD,
independent of disease related motor effects.®' Furthermore, the TMT was administered which
requires inhibition, updating, and switching, and consists of two parts, Trails A and Trails B. In Trails
A, letters from A to Y are distributed across the page and participants are asked to draw lines
connecting the letters from the alphabet in the right order, without lifting the pencil from the page.
In Trails B, the page contains the numbers from 1 to 12 and letters from A to L and participants
must connect the symbols by alternating the sequence between numbers and letters, that is,
A-1-B-2-C-3..1-12. The dependent variable was the switch cost calculated by subtracting time
to complete part A from part B. The validated Dutch version of the National Adult Reading Test
(DART) was used to assess the intelligence quotient.® Finally, the Beck Depression Inventory-|
(BDI-II) was administered, which is a 21-question multiple-choice self-report inventory, one of the
most widely used instruments for measuring severity of depression. All participants completed
both baseline as well as follow-up MRI, cognitive and clinical evaluation. The study was approved
by the Medical Ethics Committee of the LUMC and written informed consent was obtained from
all participants.

MRI acquisition

MRI acquisition was performed with a 3-Tesla whole-body scanner (Philips Achieva, Healthcare,
Best, The Netherlands) using an eight channel SENSE head coil. T1-weighted image volumes
were acquired using a 3D MPRAGE acquisition sequence with the following imaging parameters:
TR =77 ms, TE = 3.5 ms, FOV = 24 x 24 cm?, matrix size 224 x 224, number of slices = 164,
slice thickness = 1.00 mm, and no slice gap. A single-shot echo-planar diffusion tensor imaging
sequence was applied with 32 measurement directions and the following scan parameters:’
TR =10,004 ms, TE = 56 ms, FOV = 220 x 220 mm? with an acquisition matrix of 112 x 110, 2.00
mm slice thickness, transversal slice orientation, no slice gap, flip angle = 90°, reconstruction voxel
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dimensions of 1.96 x 1.96 x 2.00 mm?, number of slices = 64, b-value = 1,000 s/mm?, halfscan
factor=0.61. Parallel imaging (SENSE) was used with a reduction factor of two, NSA = one, and fat
suppression was applied. Diffusion MRI acquisition time was 6.55 min.

Table I. Group demographics with clinical and behavioural scores

Healthy Premanifest preHD-A preHD-B Early
controls HD (A and B) manifest HD
N 24 22% 1 1" 10
Gender M/F 11/13 913 4/7 5/6 4/6
Age in years (at V1), mean (SD) 49.0(82) 43,6 (8.7) 44.2 (5.7) 43.0(11.2) 502 (9.3)
Handedness R/L 20/4 18/4 9/2 9/2 9N
Level of education (ISCED), median (range) 4(3) 4(3) 4(3) 4(3) 4(3)
DART-IQ, mean (SD) 105.0 (94) 100.5(11.2) 101.3(9.7) 99,6 (13.0) 101.8(13.5)
CAG repeat length, mean (SD) n/a 426 (2.7) 413 (1.4) 439 (3.D)N 425(1.2)
Estimated years to onset, mean (SD) n/a 11.8(4.7) 14.9 (4.7) 8.6 (1.8)A n/a
Total functional capacity, mean (SD) Vi 13.0(0.2) 12.8(0.5) 12.7(0.7) 12.8 (0.4) 0 (1.50
V2 12.9(0.5) 126 (0.9) 12.7 (0.6) 12.5(1.0) 103 (220
UHDRS-TMS, mean (SD) Vi 2625 26(1.5) 20(1.5) 31012 6 (770
V2 21(1.6) 57 (5.1)¥ 352 8.3 (6.1)*A 23001210
SWR, mean (SD) Vi 1001 (132 919 (14.2)* 95.6 (9.6) 883 (17.3)* 87.7 (14.7)*
V2 102.0 (15.6) 879 (15.7)* 914 (94) 844 (20.0)* 86.4 (18.6)*
Switch cost of TMT in seconds, mean (SD) Vi 370(174) 41.8 (24.6) 364 (15.9) 47.2(30.9) 63.5 (41.6)0
V2 389(27.0) 38.0(28.6) 30.8(19.2) 45.8(35.7) 75.0 (634)0
BDI-Il, mean (SD) VI 4144) 64 (6.4) 49(6.0) 7.9 (6.8) 102 (8.2)*
V2 39(4.1) 5.1(5.6) 3249 6.9 (5.9) 8.2(84)
Between-scan interval in months, mean (SD) 23.0(0.8) 23.0(0.7) 23.2(06) 22.7(0.7) 235(0.7)

HD = Huntington’s disease, N = number of participants, SD = Standard deviation, n/a = not applicable, ISCED =
International Standard Classification of Education, DART-IQ = Dutch Adult Reading Test Intelligence Quotient, CAG
= Cytosine-Adenine-Guanine, UHDRS-TMS = Unified Huntington’s Disease Rating Scale-Total Motor Score, SWR =
Stroop Word Reading task, TMT = Trail Making Task, BDI-Il = Beck Depression Inventory-Il, V1 = visit 1, V2 = visit 2.
Significance at p < 0.05 level: * significantly different from controls, @ significantly different from controls and pre-
manifest HD, ¥ significantly different from controls and early manifest HD, A significantly different from preHD-A.
# Including five subjects progressing to the early manifest stage during the two year follow-up period.

Diffusion MRI processing

Diffusion MRI data were analysed using the diffusion MR toolbox ‘ExploreDTI”?” Data were
corrected for subject motion, eddy current distortions, and susceptibility artefacts due to the
magnetic field inhomogeneity prior to diffusion tensor estimation with the REKINDLE method.?°
Whole-brain fibre tractography was performed using constrained spherical deconvolution*
with a uniform seed point resolution of 2 mm? an angle threshold of 30 degrees, a fibre orientation
distribution threshold of 0.1, and maximum harmonic order of 4.
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Connectivity matrices

One structural network was generated for each subject using the subject’s diffusion MRI data. A
network was defined as a set of nodes (denoting anatomical regions of the parcellation scheme)
and interconnecting edges (denoting fibre trajectories between cortical and subcortical regional
nodes that have been reconstructed). Moreover, we assigned a continuous weight (i.e, number of
streamlines) to each edge of the graph, which resulted in weighted graphs. Because tractography
does not differentiate between efferent and afferent fibres, the reconstructed graphs were all
undirected. We describe here some of the major steps that we went through from diffusion MRI
processing to computing the topological metrics of the graph. Figure 1 shows a flowchart for the
process of obtaining connectivity matrices. The Automated Anatomical Labeling (AAL) atlas (and
labels/masks)** was registered to the diffusion MRI data using a non-linear transformation” with
fractional anisotropy as target image contrast®. The AAL atlas regions, which are commonly used
to derive the nodes in GTA of neuroimaging data, are presented in Figure 2. The AAL template
is not a pure cortical grey matter mask but includes tissues from both cortical grey matter and
subcortical white matter.*# Defining seed voxels throughout the brain parenchyma ensures that
the computed trajectories originated from the white matter tissue underlying the cortical region
or adjacent to subcortical structures. The average percentage of network tracts connecting a pair
of regions was 2.39 x 10*. The numbers of streamlines connecting each pair of AAL regions were
aggregated into a 90 x 90 connectivity matrix (the cerebellar regions were not included). We refer
the interested reader to the online Supplementary video for a three-dimensional example of a
resulting connectome (http://dx.doi.org/10.1016/j.nicl.2015.07.003).

Graph theory metrics

We used the Brain Connectivity Toolbox (BCT) (Rubinov and Sporns, https://sites.google.com/site/
bctnet/)* and the longitudinal plugin of the Graph Analysis Toolbox,***' to investigate network
metrics of segregation, integration, and centrality. Network measures were computed over a
range of density thresholds. Thresholding at an absolute value would have resulted in networks
with different degrees across groups, introducing a confound when comparing measures
between groups.”? Network measures were examined over a range of network densities for which
the networks were not fragmented (each node had at least one connection with another node in
the graph) and displayed small- world properties (non-random graphs).”’ The network densities
ranging from 0.10 to 0.40 fulfilled these criteria. We compared the networks in this density range
in steps of 0.05. The graph metrics were quantified at both the network and regional levels from
the weighted networks. The equations to calculate each of these measures can be found in
Rubinov and Sporns (https://sites.google.com/site/bctnet/measures/list).”® We only provide brief
explanations for each of the network properties used in this study:
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Figure 1. Flow chart for constructing a diffusion MRl based network. (A) An Automated Anatomical Labeling (AAL)
atlas template consisting of 90 cortical and subcortical brain regions, excluding the cerebellum, was used for brain

segmentation. (B) Whole brain tractography was performed using ExploreDTI (see Materials and methods). (C) The
numbers of streamlines connecting each pair of AAL regions were aggregated into a 90x90 weighted connectivity
matrix. (D) The connectivity matrix was then visualized as a graph, composed of nodes representing brain regions
and edges representing white matter connections. From the individual weighted brain networks, several network
metrics were computed at both the global and regional levels.

We quantified measures of network integration (characteristic path length) and segregation
(clustering) for each network.”® The characteristic path length L of a network is the average
shortest path (distance) between all pairs of nodes in the network. It is defined as:

. 10 2jen j=idij

n n—1
iEN
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where d,./. is the shortest path length (distance) between nodes i and j. The global efficiency is the
average inverse shortest path length in the network, and is inversely related to the characteristic
path length.>® In other words, networks with a small average characteristic path length are
generally more efficient than those with large average characteristic path length. We also
calculated local efficiency as a nodal graph metric. The regional efficiency is the global efficiency
computed on node neighborhoods, and is related to the clustering coefficient.™

The clustering coefficient of a node is a measure of the number of edges that exist between
its nearest neighbors and is quantified by counting the numbers of triangles formed around a
node > The clustering coefficient C of het network is the average clustering across all nodes and
is quantified as:

1 2t;
¢= _Z k. (k; — 1
niEN L( L )

where k is the number of connections (degree) for node i and tiis the number of triangles around
anode i. The modularity is a graph metric that quantifies the degree to which the network may be
subdivided into clearly delineated nonoverlapping groups of nodes in a way that maximizes the
number of within-group edges, and minimizes the number of between- group edges. To evaluate
the topology of the constructed networks, the obtained characteristic path length and clustering
coefficient of each network were normalized to the corresponding mean values of null networks
with the same degree-, weight- and strength-distributions as the network of interest,>”*® using
the null model algorithm implemented in BCT.*

We also computed the small-world index as the ratio of normalized clustering and normalized
path length.*® Thus, the small-worldness index of each network was obtained as [C/C_ J/[L/
L. whereC_ andL__ arethe mean clustering coefficient and the characteristic path length
of random networks.?" In a small-world network, the clustering coefficient is significantly higher
than that of random networks (C/Crand ratio greater than 1), while the characteristic path length

is comparable to random networks (L/Lrand ratio close to 1).

Finally, we have calculated node betweenness centrality, which is the fraction of all shortest paths
in the network that contain a given node.”” The betweenness centrality b, of a node i is defined as:

P Z Prj (i)
Y IN-DWN-2) G P
h#j,h+i,j#i

in which Phj is the number of shortest paths between nodes h and j and Phji) is the number
of shortest paths between nodes h and j that pass through node i. The nodes with the largest
betweenness centrality can be considered to be pivotal nodes (i.e., hubs) in the network.
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Figure 2. Cortical and subcortical regions (45 in each hemisphere; 90 in total) as anatomically defined by the Au-
tomated Anatomical Labeling atlas template image in standard stereotaxic space.

Statistical analysis

Interaction effects between group and time for the graph metrics were analysed using the
Longitudinal plugin of the Graph Analysis Toolbox.>'®* Specifically, networks were first normalized
by the mean network strength and graph measures were quantified for the normalized networks.
A non-parametric permutation test with 1000 repetitions was then used to test the statistical
significance of the effects of time course for graph measures®# In each permutation, the
calculated regional streamlines of each participant were randomly assigned to one of the two
groups so that each randomized group had the same number of subjects as in the original
groups. Finally, the actual difference in the slope between the original groups was compared
to the obtained permutation distribution of difference in slope between randomized groups to
obtain the p-value.

The same permutation procedure was used to test the significance of the differences in regional

network measures. In this step, we compared regional network measures for the networks
thresholded at minimum density. We obtained false discovery rate (FDR) corrected p-values as
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measures of significance for the regional measures comparisons. In the present study, the p-values
reported for regional differences between groups are FDR corrected for multiple comparisons (90
comparisons).

Baseline (i.e, visit 1) data of behavioural metrics (i.e, neurocognitive functioning scores) as well
as graph metrics were used for cross-sectional analyses. A multivariate analysis of covariance
(MANCOVA) was used, whereby statistical differences were assessed on multiple continuous
dependent variables (graph metrics, cognitive and clinical variables) by an independent grouping
variable (controls, preHD, early manifest HD), while controlling for a third variable (covariate). In
the present study, age was added as covariate so that it could reduce error terms and so that the
analysis eliminated the covariates'effect on the relationship between the independent grouping
variable and the continuous dependent variables. We further subdivided the preHD group into
two subgroups: preHD far from expected disease onset (preHD-A) and preHD close to expected
disease onset (preHD-B).

To investigate the neuronal correlates of the behavioural tests, baseline data were analysed. Each
participant’s score on tests of clinical scales and neurocognitive functioning was correlated with
that participant’s graph metric (clustering coefficient, global efficiency, betweenness centrality)
using partial correlations (age as confounding variable).

Our final aim was to investigate the relationship between changes in graph metrics with changes
in behavioural performance. Difference scores for both behavioural performance and graph
metrics were calculated as a measure of change by subtracting the visit 1 from the visit 2 scores.

Results

Baseline group comparison of demographic variables and performance in behavioural tests
Participants of the three groups (controls, preHD, early manifest HD) did not differ in terms of
gender distribution (p = 0.93), handedness (p = 0.95), body mass index (p = 0.64) or intelligence
quotient scores (p = 0.38). One-way ANOVAs revealed only a trend towards a difference in age
between the groups (p = 0.06). Therefore, we included age as covariate in subsequent analyses.
See Table | for group demographics and clinical and behavioural scores. The groups differed
at baseline in their executive function performance (SWR and the switch cost of the TMT, all
ps < 0.05). Post hoc Tukey testing showed significant differences between controls and (pre) HD
groups.

Regional graph analyses

Graph metrics were evaluated at the nodal level to identify the nodes in the network that show
a significant group by time interaction effect. Multiple testing correction was performed via
False Discovery Rate (FDR),** where an FDR adjusted p-value < 0.05 was considered significant.
The permutation test of the nodal betweenness centrality showed a significant group by time
interaction for the left orbitofrontal cortex and left paracentral lobule (adjusted ps < 0.05). The
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post-hoc two-sided Tukey t-test demonstrated a decrease of the betweenness centrality of
the left orbitofrontal cortex in the early manifest HD group as compared to the control group
(p < 0.001), from the first to the second visit. Moreover, preHD-B patients versus controls
demonstrated a reduction of betweenness centrality of the left paracentral lobule from visit 1 to
visit 2 (p < 0.001). Finally, the permutation test of the clustering coefficient revealed a significant
group by time interaction for the left medial prefrontal cortex (adjusted p < 0.05). The post-hoc
two-sided Tukey t-test showed that preHD showed a decrease of the clustering coefficient of the
left medial prefrontal cortex compared to the healthy controls from visit 1 to visit 2 (p = 0.02) .

Important network regions as defined by hub-status in visits 1 and 2

Betweenness centrality was also used to identify the hub regions. In visit 1, the left precuneus was
shared by all groups. Generally, a lower number of areas functioned as network hubs in visit 2 and
a remarkable change in hub-status was apparent for regions in visit 2 in each group (as shown in
Figure 3). Specifically in the early manifest HD group, the left thalamus and right medial part of
the superior frontal gyrus achieved hub-status in visit 2. Also, many regions lost their hub-status
in visit 2 within the early manifest HD group. Such areas included the left superior temporal pole,
right lingual gyrus, right calcarine gyrus, and left middle occipital gyrus. The preHD group also
showed hub-changes from visit 1 to visit 2, whereby the right medial part of the superior frontal
gyrus lost hub-status. One brain region, the right superior parietal gyrus, achieved hub-status in
visit 2. Network nodes in the precuneus, superior temporal pole, and putamen were consistently
important as hubs throughout visits 1 and 2 in the preHD group.

Table Il. Graph metrics. Data is shown as mean and standard error of the groups for each visit

Healthy controls Premanifest preHD-A preHD-B Early manifest
HD (A and B) HD

Mean SE Mean SE Mean SE Mean SE Mean SE
Global network metrics  Global efficiency VI 0034 |00004 0034 00004 0034 | 00007 0034 §o.ooos 0033 | 00009
V2 0035 00004 0034 00005 0034 00008 0034 100005 0033 00009
Characteristic path length V1~ 0110 1 00025 0111 | 00029 0112 | 00047 0109 00035 0107 | 00056
V2 0115 00027 0112 00033 0111 00056 0.112 10.0036 0108 00057
Small world metrics Gamma VI 1620 100309 1616 00307 1652 | 00413 1581 100448 1535 | 00578
V2 1648 00300 1594 00361 1605 00591 1583 00442 1524 00530
Lambda VI 1058 100022 1059 | 00025 1063 | 00034 1056 00036 1055 | 00056
V2 1057 00021 1056 00024 1055 00034 1057 00036 1053 00055
Sigrna V1 1530 100280 1525 00261 1553 | 00349 149 00383 1453 00491
V2 1558 00266 1508 00316 1520 00517 149% §0.0387 1446 00433
Local network metrics ~ Local efficiency V1 0051 100008 0051 00007 0051 : 00011 0050 |00008 0049 00014
V2 0052 100007 O00ST |00008 0051 | 00014 0051 {00010 0049 | 00015
Clustering coefficient Vi 0027 00004 0027 | 00004 0028 ! 00006 0027 100003 0026 i 00005
V2 0027 100003 0027 |00003 0027 | 00005 0027 {00005 0026 | 00006
Modularity Vi 0319 00072 0315 100077 0326 | 00122 0304 100086 0291 00147

V2 0327 100063 0310 |00091 0315 | 00141 0304 00120 0294 | 00129
Betweenness centrality V1 90836 10122 91.799 11947 92321 18961 91277 15313 89.942 32.5538
V2 01835 110970 91100 | 12774 90806 | 22531 91394 | 13265 89436 | 25774

HD = Huntington’s disease, V1 = visit 1, V2 = visit 2.
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Controls Early HD

Visit 1

Visit 2

Figure 3. Group differences in betweenness centrality. Upper panel: visit 1, lower panel: visit 2. Size of the nodes (sp-
heres) represents the betweenness centrality. Size of the edges (connections) represents streamline count. Magenta
as colour of the nodes refers to hub regions.

Overall dynamics of the structural brain network

Both (pre-) HD and healthy controls showed a small-world organization of the structural brain
networks (as shown in Table Il) expressed by a normalized clustering coefficient gamma >1
(mean|SD; preHD: 1.62|0.14, early manifest HD: 1.54|0.18, healthy participants: 1.62|0.15) and lambda
~1 (mean|SD; preHD: 1.06|0.01, early manifest HD: 1.06|0.02, healthy participants: 1.06/0.01). The
small-worldness (sigma) calculated from these indices was also larger than 1 (mean|SD; preHD:
1.52]0.12, early manifest HD: 1.45|0.16, healthy participants: 1.53|0.14). Furthermore, looking at the
overall organization characteristics of the brain networks of patients, the normalized clustering
coefficient gamma did not differ between preHD, early manifest HD, and healthy controls
(p =0.31), nor did the overall normalized path length lambda (p = 0.69). In summary, preHD and
early manifest HD patients displayed gamma and lambda values close to the values of the brain
networks of the healthy controls, suggesting an intact overall organization of the structural brain
network in these disease stages.
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Between-group differences in baseline graph metrics

Premanifest and early manifest HD patients did not show strong alterations (all ps > 0.05) in
whole-brain graph metrics (Table I). The absence of these group effects suggests that global
connectivity is relatively intact in early HD.

Baseline relationships between graph metrics and performance in behavioural benchmark
tests

There was a significant negative correlation within the preHD group between baseline individual
differences in the switch cost of the TMT on the one hand, and clustering coefficient (r = -0.44,
p = 0.05) and local efficiency (r = -045, p = 0.04), on the other hand (see Figures 4A and B).
Hence, better performance on the TMT (i.e,, lower switch cost) was associated with an increase
in efficiency and clustering coefficient within the preHD group. Using the subdivision, we found
that the switch cost of the TMT was significantly negatively correlated with clustering coefficient
(r=-0.78, p = 0.008, survived Bonferroni correction) and the local efficiency (r = -0.69, p = 0.03)
within the preHD-B group. Moreover, within the preHD-B group, we also observed a positive
correlation between the performance on the SWR and global efficiency (r= 0.62, p = 0.05, Figure
4Q), with higher global efficiency being related to better performance on SWR.

Baseline relationships between graph metrics and burden

No significant correlations were found between burden and the graph organizational
characteristics in the preHD or early manifest HD groups using a Bonferonni correction or even
an exploratory uncorrected threshold of p < 0.05. From this, we cautiously conclude that burden
did not explain our findings.

Longitudinal changes in benchmark behavioural tasks and graph metrics

For the investigation of longitudinal changes on the dependent variables of the behavioural tasks
and graph metrics, we subjected each behavioural parameter and graph measure separately to
a 2 x 3 permutation test with the between-subject factor group (controls, preHD, early manifest
HD) and the within-subject factor time (visit 1, visit 2), while statistically controlling for the effects
of age.

We observed a significant group by time interaction effect for the motor score (F, ., = 17.62,
p < 0.001). Post-hoc Tukey t-tests revealed that the early manifest HD group had an increased
motor score (i.e,, more motor abnormalities) compared to the preHD and healthy control groups.
These group differences were even larger on the second visit (ps < 0.05). Also, main effects of
the factor group were observed for TFC, SWR, and TMT. The subsequent post-hoc Tukey t-tests
indicated generally higher performance for the controls compared to the early manifest HD
group across both assessment times (ps < 0.001). Furthermore, post-hoc Tukey t-tests showed
significantly superior performance on these behavioural tasks for the preHD group compared to
the early manifest group (ps < 0.05).
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Figure 4. Baseline correlations between network measures and cognitive performance.

The permutation test on modularity showed a significant effect of group, (F, ., = 3.58, p = 0.04,
see Figure 5A). Across both assessment times, the control group had a larger modularity than
the preHD-B and the early manifest HD group (ps < 0.05). Furthermore, a trend was observed
for the effects of group by time on the normalized clustering coefficient (p = 0.08) and small-
worldness (p = 0.06, Figure 5B), indicating a trend of increased ‘wiring-efficiency’ for the control
group compared to the (pre) HD groups. Similar results were obtained with the statistical analyses

with four groups.
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Correlations between changes in graph metrics and changes in performance on tasks of
executive functioning and clinical scales

Partial correlations (with age as confounding variable) between changes in graph metrics
from visit 1 to visit 2 in the different groups and the concomitant alterations in the behavioural
parameters showed moderate associations between changes in structural network connectivity
and the changes in performance on tasks of executive functioning and clinical scales. For the
early manifest HD group, there were correlations between the changes in motor score and
changes in small-worldness (r = -0.67, p = 0.05, exploratory threshold, see Figure 6A). In other
words, a decrease in ‘wiring-efficiency’was associated with a higher motor score (i.e,, more motor
symptoms) in the early manifest HD group.
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Figure 5. Longitudinal changes of graph metrics. Visit 1, black bars; visit 2, white bars.
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For the combined preHD group, there was a significant negative correlation between normalized
path length and scores on BDI-Il, pairing more depression symptoms reported with decreased
global integration (r=-0.58, p = 0.006, survived Bonferroni correction, Figure 6B). For the preHD-B
group, correlations were present between changes in scores on the BDI-ll and changes in
betweenness centrality (r = -0.80, p = 0.006, survived Bonferroni correction), normalized path
length (r=-0.84, p = 0.002, survived Bonferroni correction), global (r =-0.64, p = 0.05, exploratory
threshold) and local efficiency (r =-0.66, p = 0.04, exploratory threshold), pairing more symptoms
reported on BDI-Il with reduced structural connectivity. Furthermore, the difference score of the
switch cost of the TMT was significantly negatively correlated with changes in the clustering
coefficient (r=-0.69, p=0.03, exploratory threshold) within the preHD-B group (Figure 6C). In other
words, an increase in clustering coefficient was associated with better switching performance
(i.e., lower switch costs) in the preHD-B group. No correlations were present within the preHD-A

group.
Discussion

We investigated cross-sectional and longitudinal differences in regional and global topological
properties between subjects with premanifest and early manifest HD and healthy controls. In
this first-of-its-kind analysis in HD, we revealed both baseline and longitudinal changes in the
connectome of premanifest gene carriers and subjects with early manifest disease. We also
demonstrated correlations between graph metrics on one hand, and clinical and behavioural
measures, on the other hand. These results provide novel insights into the dynamics of brain
neuropathology occurring in HD and the relationships with commonly used neurocognitive
measures.

Longitudinal decreases in network measures

The principal finding from this study was a significant reduction over time of nodal betweenness
centrality both in the early manifest HD and preHD-B groups within the two year study period
as compared to the preHD-A and control groups. The locations of these nodes included the left
orbitofrontal cortex and left paracentral lobule. The reduction of betweenness centrality in these
regions indicates that the shortest paths passing through these areas were reduced. This in turn
implies a decrease of importance of these nodes to overall network integrity.

The orbitofrontal cortex is involved in decision making and cognitive and emotional processing.®®
Atrophy in this structure has been associated with impaired recognition of negative emotions in
HD.%6%” The paracentral lobule, a component of the sensorimotor system,® has previously been
implicated in HD where atrophy was also demonstrated.® The current results corroborate previous
findings by demonstrating a longitudinal reduction in nodal betweenness centrality, suggesting
a decreased capability of these nodes in facilitating communication between different brain
regions in HD.
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Figure 6. Correlations between changes in network parameters, and changes in clinical and neurocognitive

functioning.

In the combined preHD group, a significant reduction over time of the clustering coefficient
was also shown in the left medial prefrontal cortex when compared to healthy controls. This
finding implies a decrease of functional segregation in this node. In other words, the left medial
prefrontal cortex seems to become less densely interconnected with surrounding nodes over
time, suggesting a local reduction of internodal processing of information. The medial prefrontal
in planning and problem solving,”® where in a previous study in
preHD a lower functional connectivity has been demonstrated.”" Moreover, a functional MRI

cortex is a region involved
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study in preHD and manifest HD revealed reduced connectivity of the medial prefrontal cortex,
representing a functional correlate of impaired executive function.”” Therefore, in our opinion,
this is an important finding potentially providing a structural explanation for the dynamics of
observed reductions in higher cognitive abilities occurring in gene carriers prior to manifestation
of motor signs.

Preserved small-world organization in early HD

Another important finding is the preserved small-world organization within preHD and early
manifest HD compared to healthy controls. With this finding in mind, we suggest that also in
the early manifest stage of the disease, intervention could be aimed at preserving this brain
organization associated with health, especially because of the presumed degradation of this
network quality in advanced stages of the disease. Such a disruption in later stages of HD is
yet to be established, though studies into different disorders affecting the brain have revealed
disruptions in the small-world topological organization."”? The results presented here imply that,
at least at the preHD and early manifest stages of HD, there is no evidence for a ‘disconnection
syndrome’from a network perspective. Studies in other neurological disorders, such as multiple
sclerosis,**?* Alzheimer's disease (reviewed by Xie and He),” schizophrenia® and traumatic brain
injury?” have found support for such a pathological model. The lack of this finding in this study is
encouraging, as preservation of normal brain network architecture through intervention might
be used as a secondary outcome for maintaining efficient brain function. It should be clear,
though, that such a secondary outcome should be coupled with cognitive assessments given
the intricate relationship between brain structure and function.

Making ‘real-world’ sense of network measures

Providing a translation from network measures to cognitive function and clinical state not only
validates these measures, but also indicates possible usability in biomarker research. Interesting
baseline correlations between graph metrics and neurocognitive measures were present in the
preHD group. Specifically an inverse relationship between the switch cost of the TMT, regarded as
a measure of cognitive flexibility, and clustering coefficient and local efficiency was found. These
findings suggest that higher switching costs are associated with a loss in capability of processing
information from a local network perspective. In the preHD-B group only, a positive correlation
was observed between performance on SWR and global efficiency. This suggests that, in line with
expectations, increases in the efficiency with which information can be transmitted globally are
linked to higher processing speed.

Longitudinally, an increase in the UHDRS-TMS was negatively associated with small- worldness
in the early manifest HD group, indicating that a decrease in ‘wiring-efficiency’ was related to an
increase in motor score. The association found between increases on the reported symptoms on
BDI-Il and decreases in normalized path length in the preHD group provides evidence for coupled
decreases in global integration with increases in depression scores. In the preHD-B group, we
found that longitudinal increases in the switch cost of the TMT were correlated with longitudinal
decreases in the clustering coefficient, again pointing to an association between this cognitive
measure and local network properties.
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Changing landscapes of hubs

Hubs are considered essential regions for coordinating brain functions, playing a central role
in network resilience to brain injury.**”* The dynamic nature of hub-status found in this study
could prove informative in understanding the nature of disease progression and compensatory
mechanisms at play in (pre) HD as reflected by the temporal relation between hub-status loss
and gain. A highlight from our findings in this context was the hub-status gain found in preHD
in the right superior parietal gyrus in the second visit. Using functional MR, this region has been
shown to play a compensatory role in maintaining normal motor function in preHD.”>”® Although
admittedly speculative at this stage, this finding could be attributed to an increased need for
compensation with progression of neurodegeneration in time, making a reorganisation of
coordinating brain regions necessary for maintaining normal motor function. Another interesting
finding was the contrast of hub-status gain for the right medial part of the superior frontal gyrus
in early manifest HD compared to the loss of this status in the preHD group in the second visit.
This type of information could further our understanding of compensatory mechanisms at play
maintaining seemingly normal brain function in the premanifest stage of the disease, despite
clear evidence of neurodegeneration provided by independent imaging studies even more than
a decade prior to expected disease onset.>”’

Strengths and limitations

Strengths of this study include a standardized scan protocol with high-quality diffusion MRI data
on two time points with assessments of multiple neurocognitive domains in a well described
population from the TRACK-HD study. Moreover, in this study we have reconstructed the
anatomical networks with constrained spherical deconvolution tractography, which in contrast
to diffusion tensor imaging based tractography has the advantage of taking fibre crossings into
account.##78

There are several limitations in the methods being applied in the present study, such as the used
parcellation scheme for defining the network nodes for the graph theoretical analysis. Multimodal
integration of in- and ex-vivo data into a probabilistic atlas’® may offer a better biologically
principled approach as a parcellation scheme than the AAL atlas used in this study. Furthermore,
while reproducibility studies have often demonstrated good or excellent intraclass correlation
coefficient (ICC) measurements variance (for a recent review, see Welton et al.),® more studies
measuring the test-retest reliability of graph metrics of structural networks are needed.

Moreover, the number of reconstructed fibres was used to weight the edges in the calculation of
the connection matrix and consequently the network measures. Although other indices of white
matter organization, such as fractional anisotropy, mean diffusivity, and level of myelination, have
previously been applied to define the connectivity matrices,®'#? there is currently no consensus
on the optimal weighting method in terms of sensitivity and specificity to pathological effects.
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Conclusions

This is the first study providing insights into longitudinal structural correlates with clinical state
and cognitive function from a network perspective in HD. Strengthened by significant correlations
with clinical and cognitive deficits, dynamics of the connectome, in the form of decreases of
global and/or local efficiencies, were present in both the premanifest and early manifest stages
of the disease. Furthermore, a changing hub landscape was demonstrated, contributing to our
increased understanding of potential compensatory mechanisms at play, especially in preHD. The
study further demonstrates preserved efficient dynamics of brain networks in the premanifest
and early manifest stages of the disease. We conclude that assessing the connectome provides
not only a novel approach with a biomarker potential in HD, but also potential new insights into
compensatory strategies of the brain in neurodegenerative disorders.
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Chapter 5

Abstract

Background

Objective and sensitive biomarkers quantifying disease progression in Huntington’s disease (HD)
are needed. In this study we longitudinally investigated the rate of microstructural alterations in
the occipital cortex in different stages of HD by applying an automated atlas-based approach
to diffusion MRI data. The choice for this region was driven by the mounting evidence that the
occipital cortex is involved early on in HD neuropathology.

Methods

Twenty-two premanifest (preHD), 10 early manifest HD (early HD) and 24 healthy control subjects
completed baseline and two-year follow-up scans. We stratified the preHD group based on
their predicted years to disease onset into a far (preHD-A) and near (preHD-B) to disease onset
group. We collected clinical and behavioural measures per assessment time point. We used an
automated atlas-based DTl analysis approach to obtain the mean, axial and radial diffusivities of
the occipital cortex.

Results

We found that the longitudinal rate of diffusivity change in the superior occipital gyrus (SOG),
middle occipital gyrus (MOG), and inferior occipital gyrus (I0G) was significantly higher in early HD
compared to both preHD and controls (all ps < 0.005), which can be interpreted as an increased
rate of microstructural degeneration. Furthermore, the change rate in the diffusivity of the MOG
could significantly discriminate between preHD-B compared to preHD-A and the other groups
(all ps < 0.04). Finally, we found an inverse correlation between the Stroop Word Reading task and
diffusivities in the SOG and MOG (all ps < 0.01).

Conclusions

These findings suggest that diffusion measures obtained from the occipital cortex can serve as
sensitive longitudinal biomarkers for disease progression in preHD-B and early HD. These could in
turn be used to assess potential effects of proposed disease modifying therapies.
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Introduction

untington’s disease (HD) is a rare autosomal dominant neurodegenerative disorder

caused by an expanded cytosine-adenine-guanine (CAG) repeat on chromosome 4.

The hallmark feature in HD neuropathology is degeneration of the striatum. However,
a growing amount of evidence from neuroimaging studies suggests that occipital regions are
affected early on in the disease course."™ Furthermore, metabolic abnormalities have also been
reported in the occipital regions in HD."> Histologically, a study in HD found that atrophy of
the occipital lobe was most pronounced compared to other cortical areas'® and a more recent
post-mortem study confirmed reductions in the absolute nerve cell number of the occipital lobe
in HD.™ The in vivo microstructural properties of the occipital cortex have, however, not been a
primary focus in HD research to date."?

As carriers of a CAG repeat > 40 within the mutant gene are certain to develop Huntington's disease
if they live long enough, carriers in the phase before disease presentation could be examined to
explore inevitable changes occurring while progressing towards disease manifestation. Viable
markers representing disease progression in HD and its premanifest stage (preHD) are still needed
in order to investigate potential intervention effects. To this end, various imaging techniques are
being used in biomarker research settings. One such technique is diffusion MRI, where measures
can be obtained based on the diffusion characteristics of water molecules in tissues. This, in
turn, provides indirect information regarding the microstructure of these tissues.??* Potential
associations between disease state on the one hand and divergent longitudinal differences in
diffusivities on the other hand, could give a tool for quantifying disease progression.

We previously explored whole-brain and striatal diffusivities in (pre) HD and healthy controls,
where we found no evidence for significant longitudinal differences between the groups.”
Other research groups have more recently demonstrated significant longitudinal differences in
various white matter tracts between the groups,'?> where interestingly Harrington et al."" found
differences only in the superior fronto-occipital fasciculus. Furthermore, recent cross-sectional
studies have shown abnormalities related to the occipital regions, such as in white matter
projections to the occipital lobe,'? in superficial white matter' and in deep white matter tracts of
the occipital lobe.™

Given the mounting evidence pointing to an early and preferential involvement of the occipital
regions in HD,"" this study aimed to investigate diffusion measures of the occipital cortex in
premanifest and early manifest HD and matched healthy controls and explore potential
differences in longitudinal changes between the groups and associations of changes herein with
clinical and behavioural measures.

Materials and methods

Proceduresregarding participant recruitment, inclusion criteriaand clinical measures administered
have been previously described in detail."* In summary, 56 subjects at the Leiden site of the
prospective international TRACK-HD study completed a brain MRI scan at baseline and a second
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scan two years later. The between-scan interval in months is shown in Table I, without significant
between-group differences. The group consisted of 24 healthy controls (49.0 + 8.2 years), 22 preHD
(43.6 £ 8.7 years) and ten early manifest HD (50.2 + 9.3 years) (Table ). As previously applied by
Tabrizi et al," to assess the effect of expected proximity to disease onset on diffusion parameters,
the preHD group was divided at baseline according to the median (10.9 years) for the predicted
years to disease onset into preHD-A (> 10.9 years. Mean £ SD: 14.9 + 4.7) and preHD-B (< 10.9 years.
Mean + SD: 8.6 + 1.8). The predicted years to disease onset were calculated using the Langbehn
method.?® This resulted in two groups each consisting of eleven subjects (Table I). The Symbol
Digit Modalities Test (SDMT) and the Stroop Word Reading (SWR) task, where visual processing is
required, were administered to evaluate potential associations between these commonly used
and sensitive longitudinal neurocognitive measures in HD? and occipital diffusivities. To monitor
disease state, the following clinical measures were further evaluated longitudinally for all groups:
Unified Huntington's Disease Rating Scale (UHDRS-TMS), Total Functional Capacity (TFC) and
Beck Depression Inventory-Il (BDI-Il) scores. The study was approved by the Medical Ethics
Committee of the Leiden University Medical Center and written informed consent was obtained
from all participants.

Magnetic resonance imaging acquisition

MRI acquisition was performed with a 3-Tesla whole-body scanner (Philips Achieva, Healthcare,
Best, The Netherlands) with an eight channel SENSE head coil. T1-weighted image volumes were
acquired using a 3D MPRAGE acquisition sequence with the following imaging parameters: TR =
7.7 ms, TE=3.5ms, FOV = 24 x 24 cm?, matrix size 224 x 224, number of slices = 164, slice thickness
= 1.00 mm, and no slice gap. A single-shot echo-planar diffusion tensor imaging sequence was
applied with 32 measurement directions and the following scan parameters:* TR = 10,004 ms, TE
=56 ms, FOV = 220 x 220 mm? with an acquisition matrix of 112 x 110, 2.00 mm slice thickness,
transversal slice orientation, no slice gap, flip angle = 90°, reconstruction voxel dimensions of
1.96 x 1.96 x 2.00 mm?, number of slices = 64, b-value = 1,000 s/mm?, halfscan factor = 0.61.
Parallel imaging (SENSE) was used with a reduction factor of two, NSA = 1, and fat suppression
was applied. DTl acquisition time was 6.55 min.

Image processing

DTl data were analysed using the diffusion MR toolbox ‘ExploreDTI)¥” as previously described.®
Automated atlas based analysis®® using the LPBA40 parcellation map from the SRI24 atlas®
(available at http://www.nitrc.org/projects/sri24/) was performed using affine and elastic
registration based on ‘Elastix’3® All DTI data were visually checked in terms of quality of tensor
estimation and quality of registration. As no significant differences were found between
hemispheres, left and right hemisphere values of mean diffusivity (MD), axial diffusivity (AD) and
radial diffusivity (RD) were calculated and averaged per occipital region as provided by SRI24/
LPBA40.% To correct for multiple comparisons (three occipital regions), a Bonferroni corrected
p-value < 0.017 (0.05/3) was considered significant for omnibus F-tests. As fractional anisotropy
is not an informative measure in cortical grey matter regions,*'** MD, AD and RD are reported.
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Table I. Group demographics with clinical and behavioural scores

Healthy Premanifest preHD-A preHD-B Early
controls HD (A and B) manifest HD

N 24 22% M 11 10
Gender M/F 11/13 9/13 4/7 5/6 4/6
Age in years (at V1), mean (SD) 49.0(8.2) 436 (8.7) 442 (5.7) 430(11.2) 50.2 (9.3)
Handedness R/L 20/4 18/4 9/2 9/2 Al
Level of education (ISCED), median (range) 4(3) 4(3) 4(3) 4(3) 4(3)
DART-IQ, mean (SD) 105.0 (9.4) 100.5(11.2) 101.3(9.7) 99.6 (13.0) 101.8 (13.5)
CAG repeat length, mean (SD) n/a 426 (2.7) 413(14) 439 (3.1 425(1.2)
Estimated years to onset, mean (SD) n/a 11.8 (4.7) 14.9 (4.7) 8.6 (1.8)A n/a
Total functional capacity, mean (SD)

Vi1 13.0(0.2) 12.8(0.5) 12.7(0.7) 12.8(04) 11.0 (1.5)0

V2 12.9(0.5) 12.6 (0.9) 12.7(0.6) 12.5(1.0) 103 (2.2)0
UHDRS-TMS, mean (SD)

V1 26(2.5) 26(1.5) 20(1.5) 3102 14.6 (7.7)0

V2 21(16) 57 (5.1)¥ 35(2.2) 83 (6.1)*A 23.0(12.1)®
SDMT, mean (SD)

Vi1 494 (8.9) 50.1(11.0) 535(9.3) 46.7 (11.9) 412 (9.2)0

V2 509(93) 50.6 (10.0) 54.7 (10.0) 46.6 (8.5N 39.2 (10.6)0
SWR, mean (SD)

V1 100.1 (13.2) 91.9 (14.2)* 95.6 (9.6) 88.3(17.3)* 87.7 (14.7)*

V2 102.0 (15.6) 879 (15.7)* 914 (94) 84.4(20.0)* 86.4 (18.6)*
BDH-Il, mean (SD)

Vi 4144 6.4 (6.4) 49 (6.0) 79 (6.8) 102 (8.2)*

V2 394.7) 5.1(5.6) 324.9) 6.9 (5.9) 8.2(84)
Between-scan interval in months, mean (SD) 23.0(08) 23.0(0.7) 232(06) 227(07) 235(0.7)

N = number of participants, SD = Standard deviation, n/a = not applicable, ISCED = International Standard
Classification of Education, DART-IQ = Dutch Adult Reading Test Intelligence Quotient, CAG = Cytosine-Adenine-
Guanine, UHDRS-TMS = Unified Huntington’s Disease Rating Scale-Total Motor Score, SOMT = Symbol Digit
Modalities Test, SWR = Stroop Word Reading task, BDI-Il = Beck Depression Inventory-Il, V1 = visit 1, V2 = visit 2.
Significance at p < 0.05 level: * significantly different from controls, @ significantly different from controls and
preHD, ¥ significantly different from controls and HD, /\ significantly different from preHD-A.

# Including five subjects progressing to the early manifest stage during the two year follow-up period.

Statistical analysis

We used linear mixed models (in R version 3.0.0, R Foundation for Statistical Computing, Vienna,
Austria) to model the outcome variables with patient as a random factor to accommodate the
within-person repeated nature of the data and to assess the effect of group, corrected for age
at time of scanning. Correlations between neurocognitive measures and diffusion metrics were
tested in the model. Statistical analyses of group demographics were performed with SPSS
(version 20, IBM, USA). Distributions and assumptions were checked. Either Analysis of Variance
(ANOVA) or Chi-squared tests were applied where this was appropriate. Potential longitudinal
change in clinical measures between the groups was also investigated. Difference values were
computed and an ANOVA was performed on these delta-scores to evaluate potential group
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differences. In case of a significant omnibus F-test, exploratory post-hoc analysis using Fisher’s
least significant difference was performed to assess which means were significantly different
from each other. As absolute values of diffusivities do not convey meaningful information per se,
we report percentage change as an informative longitudinal parameter. Supplementary Figure
1 shows the evolution of the absolute diffusivity levels between the groups and on individual
study participant level from the first to the second visit. A statistical power analysis was performed
for sample size estimation based on data from our study, with a Bonferroni corrected a = 0.01
and power = 90%. Differences in group demographics between preHD-A and preHD-B were
compared using either independent-samples t-tests or Chi-squared tests, where appropriate.

Results

There were no statistically significant differences in demographic characteristics between
the groups. Only a trend towards a difference in age (p = 0.06) was observed. Hence, age was
included as a covariate in subsequent analyses. See Table | for group demographics and clinical
and behavioural scores. The early HD group differed significantly at baseline in their performance
in SDMT and SWR when compared to both controls and preHD subjects. For the preHD group, a
significantly lower baseline score compared to controls was found for SWR. Furthermore, at the
second visit, the preHD-B group showed a significantly lower SDMT score compared to preHD-A.
All results presented hereafter are based on the dynamics during the two-year duration of the
study.

Superior Occipital Gyrus diffusivities

Longitudinal changes in MD were significantly larger in early HD compared to both preHD and
controls (+12.3%, +7.9% and +6.1%, respectively; p = 0.001). Similar patterns were found for AD
(+12.7%, +8.0% and +5.6%, respectively; p < 0.001) and RD (+12.0%, +7.8% and 6.4%, respectively;
p = 0.005) for the three groups. No further longitudinal diffusivity differences in this structure were
found upon stratifying the preHD group based on expected time to disease onset into preHD-A
and preHD-B. See Table Il and Figure 1 for a summary of the results.

Middle Occipital Gyrus diffusivities

Longitudinal changes in MD were significantly larger in early HD compared to both preHD and
controls (+9.0%, +5.4% and +3.8%, respectively; p < 0.0001). Similar patterns were found for AD
(+8.3%, +4.5% and +2.7%, respectively; p < 0.0001) and RD (+9.4%, +5.9% and +4.5%, respectively;
p < 0.001) for the three groups. Upon stratification of the preHD group based on expected time
to disease onset, significantly larger longitudinal changes in preHD-B compared to preHD-A were
found in MD (+6.2 % vs. +4.4%, respectively; p = 0.03), AD (+5.1% vs. +3.7%, respectively; p = 0.04)
and RD (+6.8% vs. +4.8%, respectively; p = 0.02). See Table Il and Figure 1 for a summary of the
results (data for preHD-B vs. preHD-A are not shown in figure).
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Inferior Occipital Gyrus diffusivities

Longitudinal changes in MD were significantly larger in early HD compared to both preHD and
controls (+4.6%, +1.0% and -1.1%, respectively; p = 0.001). Similar patterns were found for AD
(+3.4%, +0.3% and -1.8%, respectively; p = 0.002) and RD (+5.3%, +1.4% and -0.6%, respectively;
p = 0.001). No further longitudinal diffusivity differences were found upon stratifying the preHD
group based on expected time to disease onset into preHD-A and preHD-B. See Table Il and Figure
1 for a summary of the results.

Table ll. Longitudinal percentage change in diffusion parameters from v1 to v2t

Controls preHD (A and B)¥ preHD-A preHD-B Early HD
N 24 22 1 il 10

SOG MOG 10G SOG MOG 10G SOG MOG 10G SOG MOG 10G SOG MOG 10G
MD +61 | +38 | -11 479 1454 1410 484 | +44 | +05 474 | 46201 +14  +1230] +900 | +460
AD +56 1 +27 1 -18 +80 | +45 1 +03 +88 1 +37 1 +0. +72 1 #5171 +05 +12701 +830 | +340
RD +64 1 +45 1 -06 +78 1 459 | +14 +82 1 +48 | 108 +74 1 +68A1 +19 +12001 +940 | +530

SOG = Superior Occipital Gyrus, MOG = Middle Occipital Gyrus, I0G = Inferior Occipital Gyrus, MD = mean
diffusivity, AD = axial diffusivity, RD = radial diffusivity.

Significance at p < 0.017 for the omnibus F-test following Bonferroni correction: @ significantly different from
controls and preHD, N significantly different from preHD-A, early HD and controls. The MOG is underlined as a
prime region of interest based on these results.

t Calculated from mixed model-based estimates of the group means for diffusion measures, corrected for age.

# Including five subjects progressing to the early manifest stage during the two year follow-up period.
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Controls Early HD

superior occipital gyrus +12.7% -0.6%

middle occipital gyrus \ “‘

U

ge change between visits

+0.1% -1.8%

Figure 1. Two-year percentage change in mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) of
the three occipital regions of the groups. Significance levels are indicated in Table Il

Associations between occipital diffusivities and neurocognitive measures

The associations between occipital diffusivities and neurocognitive measures were not statistically
different between the preHD and early HD groups. No significant associations were found between
the diffusivities of any of the three occipital structures and SDMT (all ps > 0.05). The SWR showed
strong associations with the AD of the Superior Occipital Gyrus (SOG) (p = 0.005), and the MD
(p=0.01), AD (p = 0.009) and RD (p = 0.01) of the Inferior Occipital Gyrus (I0G). No significant
associations with any of the diffusivities of the MOG and neurocognitive measures were present.
See Table Il for a summary of the significant associations.
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Table lll. Associations between occipital diffusivities and neurocognitive measures

Diffusion parameter SWR score P

1 1.8% T 10 points 0.005
L 1.2% 110 points 0.011
L 1.1% T 10 points 0.009
1 13% T 10 points 0.013

SOG = Superior Occipital Gyrus, I0G = Inferior Occipital Gyrus, MD = mean diffusivity, AD = axial diffusivity, RD =
radial diffusivity.

This table is valid for all participants with a CAG repeat expansion included in the study, as no specific group
effects were found on correlations between diffusion parameters and neurocognitive measures. Only significant
correlations are shown. \ = decrease, M= increase.

Power analysis

Power analysis using these results show that a minimum of 9 subjects per group would be
needed to detect a significant longitudinal difference in diffusivity values in 2 years within
the occipital cortex (90% power and a = 0.01). There were no significant differences in power
between the different diffusivity measures. However, the MOG was the region most prone to
longitudinal alteration, thereby most sensitive to demonstrating change. The minimum number
of subjects needed to find statistically significant longitudinal difference in the diffusivity of the
three occipital regions was as follows: SOG 14, MOG 9 and 10G 12.

Discussion

We investigated longitudinal microstructural property changes of the occipital cortex in HD. Using
a fully automated procedure, we revealed highly divergent longitudinal quantitative imaging
measures between preHD, early HD and controls. Associations were found between diffusivity
change rates and disease stage in the preHD and early HD groups, providing evidence for an
accelerated rate of change correlated with disease progression. Significant correlations between
behavioural measures and diffusivity changes in HD were found.

Differences observed in the rate and significance of longitudinal change of SOG, MOG and
|OG diffusivities were similar for all measures tested (MD, AD and RD). As such, it does not
seem of added value to assess these different diffusivity values individually. However, some of
the associations found with cognitive functions were present only with specific measures, for
example the inverse relationship found between the Stroop Word Reading task and the AD of
SOG. Therefore, it would seem useful to further examine the behaviour of the separate diffusion
measures in future investigations, as this may provide specific associations with cognitive tests. In
preHD, only changes in diffusivities of the MOG could significantly differentiate between preHD-B
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compared to preHD-A and the other groups. This structure might thus be preferentially affected
in the premanifest phase of HD and, in light of these results, could be viewed as a prime region
of interest for neuroimaging change within the occipital cortex in preHD. Our power analysis also
demonstrated that the MOG is the most sensitive structure of the three examined in detecting
longitudinal change between the groups.

The occipital cortex is deservingly gaining interest in HD research. Previous, often serendipitously
found alterations in this region increasingly pointed to this structure as relevant in the
neuropathology of HD.* This study provides strong evidence for a highly differential longitudinal
change of diffusion measures in this structure between the studied groups. The relatively short
time-frame of the study concomitant with a relatively high rate of change, makes it likely that
these disease-related changes could also be reproduced in shorter study intervals, making these
measures potentially suitable to use as outcome parameters in shorter clinical trials. These results
also pave the way for further investigations into the underlying mechanisms with which the
occipital cortex is affected in HD and what the clinical relevance is. Although no specific visual
symptoms are known to exist in HD, performance on cognitive tasks examining visuospatial
and visuomotor function is known to be reduced in the disorder3** A study investigating the
cross-sectional relationship between visual area resting state functional MRI (RS-fMRI), volumetric
changes, and cognitive function revealed differences between HD and controls with significant
cognitive correlations tovisual area RS-fMRI*Itis further known thatimpaired emotion recognition
is a feature of preHD and early HD (see Henley et al.*” for a systematic review), and results from a
previous task-based functional MRI study in preHD revealed reduced neuronal activity in various
regions during emotion processing, including the MOG studied in the present report.*

Previous longitudinal reports using diffusion MRI'in HD provide heterogeneous findings.''?2253%42
Using a tract-based spatial statistics (TBSS) approach, Weaver et al* compared scans from
seven controls, four preHD and three manifest HD subjects obtained one year apart. Significant
longitudinal decreases in white matter fractional anisotropy (FA) and AD in the seven mixed preHD
and manifest HD group were found compared to the healthy controls. In the study by Sritharan
et al,* a region of interest approach was used to investigate several regions of the brain in 17
controls and 18 manifest HD subjects over a one-year period, where no significant longitudinal
differences in MD were found. Vandenberghe et al.* also applied a region of interest approach in
eight manifest HD subjects over a two-year period, where no longitudinal differences between
the groups were found in MD. In our previous histogram-based study, both global and striatal
differences in cross-sectional diffusivities between preHD, early HD and controls were observed,
without evidence for any longitudinal differences.”

Using TBSS, a study by Poudel et al.*? provided evidence for a significantly increased rate of
longitudinal change in FA of the corpus callosum and cingulum of HD patients compared to
preHD and controls. Also applying TBSS, Harrington et al."" demonstrated significant longitudinal
differences in MD of the superior fronto-occipital fasciculus between preHD and controls using
a cohort from the prospective international Predict-HD study.® It should be noted, however, that
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the definition of the premanifest phase in the aforementioned study is different than in our study,
making a direct comparison difficult. In the study of Harrington et al.”" mutant gene-carriers
scoring more than 5 points on the UHDRS-TMS were also included to the preHD group, as long
as a diagnostic confidence level of 4 was not reached, a level in which an examiner had to have
> 99% confidence of seeing unequivocal signs of HD. In our clinical phenotypic characterization
of preHD, mutant gene carriers had an UHDRS-TMS of < 5, making the selection much more
stringent and the results of the “preHD" group not comparable. Another study by Shaffer et al.??
demonstrated longitudinal differences in cortico-striate tracts using a whole brain tractography
approachinalarger cohort of preHD subjects from the same Predict-HD study. The inconsistencies
in the literature might very well be attributed to inconsistencies in defining the regions/tracts
of interest, not selecting the regions/tracts of interest most prone to change, variations in the
definition of the premanifest phase, and/or other methodological limitations, such as for TBSS.

This present study investigates cortical grey matter, where FA is generally not informative®'?
and where MD, AD and RD were derived instead. Although the underlying structures studied by
Poudel et al.*? are different than in this study, one of the goals in HD biomarker research remains to
identify the most sensitive longitudinal tools differentiating between preHD, early HD and healthy
controls. The annualized rates of diffusivity measure changes in white matter microstructure
found by Poudel et al.*> were between 1.5%-3.5%, which given the period in the present study
would roughly translate into a 3%-7% change rate. Also, no evidence was found for a longitudinal
difference in diffusivity change for the preHD group in that report. The rates of change found
in the present study are generally more prominent compared to those reported by Poudel et
al.*? Moreover, a distinct longitudinal diffusivity change was demonstrated in preHD-B, implying
that investigating the occipital cortex as a region of interest may provide a more sensitive way
to track disease advancement in preHD compared to the corpus callosum and/or cingulum. An
important quality for a robust biomarker is reproducibility of results. This makes unbiased, fully
automated approaches desirable in order to investigate the effect of an intervention within and
between centres as easily and reliably as possible.

Inference of biological meaning based on the observed changes in diffusivity is challenging,
especially in grey matter>'*? Therefore, caution should be taken when attempting to interpret
these results in the light of a disease-specific microstructural effect on the occipital cortex. The
findings of small changes in diffusivity values within the healthy control group in the two-year
between-scan interval is most likely explained by natural, ongoing, age-related processes of the
brain.#% It is likely that the findings of increased changes in the diffusivities of both preHD and
early HD subjects reflect progressive disruption of cell boundaries in this cortical region with
disease advancement, causing an increase in tissue permeability and interaxonal spacing due to
neural tissue loss.?%” Evidence for ongoing macrostructural neurodegeneration in HD is already
known from previous MRI volumetric investigations.'”#'%%° The value of the current results lie in
the high rate of observed microstructural changes that is disease stage-specific. Potential effects
of a therapeutic agent could theoretically be examined by concomitant monitoring of the rate of
change in microstructural integrity of the occipital cortex, thereby inferring potential protective
effects.
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Strengths of this study include a longitudinal design specifically focused on DTl measures
obtained from the occipital cortex in HD. Also, an automated atlas based procedure was applied,
which has already shown to provide objective and reproducible results in the clinical setting.”®
Furthermore, between-scan intervals were alike between all the groups and the same scanner
and scan protocol were used at both time points, reducing test-retest variation in DTl data.®
Potential limitations of this study include the relatively small sample size of early HD patients and
potential imperfect atlas-based segmentations of the occipital cortex.”® Notwithstanding these
concerns, these results provide evidence for a robust effect on longitudinal diffusivity measures
in HD.

Conclusions

Findings in this study reinforce previous research of disease-stage related occipital involvement
in HD, adding evidence for a divergent longitudinal evolution of diffusion measures reflecting
microstructural change compared to healthy controls. The results were complemented by
significant associations between diffusion measures and SWR, a cognitive task frequently
administered in HD research. Investigating the occipital cortex with DTI measures seems to be
a promising and sensitive tool to assess the efficacy of future planned disease modifying clinical
trials in premanifest and early manifest HD.
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Chapter 6

Abstract

Background

Reliable markers measuring disease progression in Huntington'’s disease (HD), before and after
disease manifestation, may guide a therapy aimed at slowing or halting disease progression.
Quantitative electroencephalography (QEEG) may provide a quantification method for possible
(sub)cortical dysfunction occurring prior to or concomitant with motor or cognitive disturbances
observed in HD. In this pilot study we construct an automatic classifier distinguishing healthy
controls from HD gene carriers using quantitative gEEG and derive qEEG features that correlate
with clinical markers known to change with disease progression in HD, with the aim of exploring
biomarker potential.

Methods

We included twenty-six HD gene carriers (49.7 + 8.5 years) and 25 healthy controls (52.7 + 8.7
years). EEG was recorded for three minutes with subjects at rest. An EEG index was created by
applying statistical pattern recognition to a large set of EEG features, which was subsequently
tested using 10-fold cross-validation. The index resulted in a continuous variable ranging from 0
to 1:a low value indicating a state close to normal and a high value pointing to HD. gEEG features
that correlate specifically with commonly used clinical markers in HD research were derived.

Results
The classification index had a specificity of 83%, a sensitivity of 83% and an accuracy of 83%.
The area under the curve of the receiver operator characteristic curve was 0.9. gEEG analysis on
subsets of electrophysiological features resulted in two highly significant correlations with clinical
scores.

Conclusions

The results of this pilot study suggest that gEEG may serve as a biomarker in HD. The indices
correlating with modalities changing with the progression of the disease may lead to tools based
on gEEG that help monitor efficacy in intervention studies.
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Introduction

untington’s disease (HD) is an autosomal dominant neurodegenerative disorder

characterized by motor, cognitive and psychiatric symptoms with a mean age at onset

between 30-50 years.! It is caused by an expanded cytosine-adenine-guanine (CAG)
trinucleotide repeat in the huntingtin gene on the short arm of chromosome 4. The disease
causes widespread brain pathology. Magnetic resonance imaging (MRI) studies in HD have
revealed extensive brain atrophy, most notably in the striatum.?** With disease progression,
neurodegenerative changes further extend to the cortical grey-matter areas.>® Cortical atrophy
is found in both premanifest (preHD) as well as manifest stages of HD, with an increasing cortical
thinning detectable with progressing disease severity.?’

A challenge in HD research is to establish reliable markers to measure disease progression, both
before and after disease manifestation, in preparation for the advent of new therapy aiming to
slow or halt disease progression. This will be of tantamount importance for carriers of CAG repeat
lengths of 40 or higher as they will develop manifest HD with certainty.

Electroencephalography (EEG) is an easy, cheap and rapid technique to assess (sub)cortical
pathology. Quantitative electroencephalography (qEEG) provides objective parameters to assess
(sub)cortical dysfunction occurring prior to or concomitant with motor or cognitive disturbances
in HD. Combining such measures with clinical tests in HD gene carriers may provide added insights
into progression of pathology and increased sensitivity for detecting subtle changes. Previous
studies have found EEG abnormalities in HD# A study using a different automated method
compared to the one used in this paper, called automated artificial neural networks (ANN),
showed promising results in discriminating between EEGs of HD gene carriers and controls.’

In this pilot study, we hypothesized that machine learning automatic classification of EEG patterns
may discern healthy controls from HD gene carriers. If so, this would be the first step to assess
this technique as a longitudinal biomarker in HD. Secondly, we aimed to derive qEEG features
that correlate with commonly used clinical and cognitive markers in HD research, known to
change with disease progression. This is done to evaluate the usefulness of these gEEG features
as biomarkers for tracking disease state and progression in HD.
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Table I. Group characteristics and clinical scores

Healthy controls Combined(pre)HD  preHD Early HD
N 25 26 6 20
Gender M/F 7/18 10/16 1/5 9
Age in years (at V1), mean (SD) 52.7 (8.7) 497 (8.5) 49.1 (4.9) 499 (9.4)
Handedness R/L 24/1 22/4 5/1 17/3
Level of education (ISCED), median (range) 4(6) 5(5) 4.5 (4) 5(5)
CAG repeat length, mean (SD) n/a 43.2(23) 413(1.2) 438 (2.2)¥
Estimated years to onset, mean (SD) n/a n/a 10.8 (2.6) n/a
Total functional capacity, mean (SD) 13.0(0.2) 3(1.2* 12.8(04) )[0]
UHDRS-TMS, mean (SD) 13(1.7) (6 9)* 28(2.1) 12.8 (6 1O
SDMT, mean (SD) 54.7 (11.5) 493 (10.07 56.7 (10.4) 109.0*
SWR, mean (SD) 108.0 (16.1) 95.0 (14.5)* 99.0 (7.2) 939 (16.0)*
BDI-Il, mean (SD) 3639 6 (73N 33(29) 7.6 (80)0

N = number of participants, SD = Standard deviation, n/a = not applicable, ISCED = International Standard
Classification of Education, CAG = Cytosine-Adenine-Guanine, UHDRS-TMS = Unified Huntington’s Disease Rating
Scale-Total Motor Score, SDMT = Symbol Digit Modalities Test, SWR = Stroop Word Reading task, BDI-Il = Beck
Depression Inventory-Il.

Significance at p < 0.05 level: * significantly different from controls, @ significantly different from controls and
preHD, ¥ significantly different from preHD. N p = 0.07.

Materials and methods

Participants

Twenty-six HD gene carriers and 25 healthy controls were recruited from the Neurology outpatient
clinic of the Leiden University Medical Center (LUMC), the Netherlands (Table I). The preHD group
(6 subjects) had a CAG repeat > 40 with a total motor score on the Unified Huntington's Disease
Rating Scale (UHDRS-TMS) < five. The early manifest HD group (20 subjects) had a CAG repeat > 40
with a UHDRS-TMS > five and a Total Functional Capacity score (TFC) > 7. A burden of pathology
score greater than 250 ((CAG repeat length - 35.5) x age) was required as a further inclusion
criterion for the HD gene carrier group.?'® Healthy gene-negative partners (or family members in
three instances) were recruited as controls (25 subjects). None of the participants suffered from
a concomitant neurological or psychiatric disorder or had a history of severe head injury. The
study was approved by the Medical Ethics Committee of the Leiden University Medical Center
and written informed consent was obtained from all participants. All methods were performed in
accordance with the relevant guidelines and regulations.

Clinical measures

The following clinical measures were evaluated in all participants: UHDRS-TMS, TFC, Symbol Digit
Modalities Test (SDMT), Stroop Word Reading (SWR) and Beck Depression Inventory-II (BDI-II)
scores.
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The UHDRS-TMS is the current gold-standard which defines manifest disease state in HD. The
SDMT and SWR have been shown to be sensitive neurocognitive measures in HD, independent
of disease related motor effects.

EEG recording

The International 10-20 system was used for electrode placement using 19 Ag/AgCl electrodes.
The average potential was used as a reference in subsequent analyses. Two horizontal bipolar eye
movement leads and one for the electrocardiogram were applied to monitor artefacts. The EEG
was recorded for three minutes with subjects at rest with eyes closed. Subjects were instructed to
sit comfortably in a chair and close their eyes, but to remain awake. Subjects were alerted if they
became visibly drowsy or if there were indications of that on the EEG. EEGs were recorded using a
Nihon Kohden Neurofax 1200 system. Matlab (MathWorks® Version 7.1) and the LIBSVM toolbox*
were used for analyzing the data.

EEG and statistical analysis

The analysis started by calculating the power spectrum followed by the connectivity and
synchronization between electrodes. This was done to extract features from the recordings that
reflect the variations of the spatial and temporal information in the multivariate data. First the
power spectrum was calculated in the average montage for the signal at each individual electrode
using a Fast Fourier Transformation (FFT) algorithm'? for consecutive 2 second segments with
an overlap of 1 second. The EEG of each segment was subjected to a Bartlett window and a
power spectrum using the FFT method was calculated, so for each electrode/lead N spectra were
obtained, in which N was the number of segments. A final estimate for the power spectrum was
then obtained by applying robust fits'® for each point in the spectrum, over the ensemble of N
spectra. The second step of the analysis involved the connectivity and synchronization between
electrodes, through the power spectrum of the auto correlation function between all possible
pairs of electrodes. This was done in the average montage. The same segments were used as
described above. The choice of 2 second segments resulted in a spectral resolution of 0.5 Hz. We
chose to work with a spectral cut-off of 45 Hz. This resulted in 91 spectral power values for each
spectrum. The total number of spectral estimates entering the evaluation was 19 for the spectra
for each electrode as well as 171 for all the possible autocorrelation spectra. Together, there
were 17290 spectral features for each gEEG. The full spectrum was considered for investigation
of the group level differences between the single electrode spectra. For the statistical pattern
recognition (SPR) analysis the feature set was reduced. To do so, each spectrum was first reduced
by dividing it into overlapping bands of 8 Hz width with an overlap of 4 Hz. Each band was
modulated by a Bartlett window reducing the number of features from 91 spectral features to 11.
This procedure reduced the total number of features to 2090.

As the cohort in this study was small, it was important to avoid instability and overfitting in the
SPR analysis if all features were taken into account simultaneously. This can occur even though
support vector machine are applied in the SPR, which depend on the number of support vectors
but not the number of features." A subset of only 20 features were used in the analysis. The
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subset of features was chosen by applying a genetic algorithm that optimized the area under
the curve (AUQ) of the resulting receiver operator characteristic (ROC) curve.” The ROC statistics
were estimated for each candidate feature subset using 10-fold cross-validation.'® For comparison
of bias, 3- and 5-fold cross-validations were also performed, where the resulting estimates of
the ROC statistics did not differ significantly. The combined HD gene carrier group (26 subjects)
was pooled in the EEG analysis due to low numbers of preHD participants when considered
separately, where it was not feasible to create a separate classifier, and in order to increase overall
power. Furthermore, combining data from the preHD group with the early HD group did not
affect outcomes. A classifier was constructed that contrasted the control group and the HD gene
carrier group. The classifier yielded an HD vs. control (HDvsCT) Index, ranging from 0 to 1, with
low values for controls and high values indicating HD. The performance of the classifier was
determined using repeated 10-fold cross-validation.

Correlations between the electrophysiology and clinical modalities were sought using a similar
approach. In this case, however, principal component analysis (PCA) was applied on each feature
subset. The linear Pearson correlation between the principal components and the clinical
modalities was optimized. Statistical analysis of group demographics and clinical measures was
performed using IBM SPSS Statistics (version 20, IBM, USA). Distributions and assumptions were
checked and appropriate statistical tests were applied.

Results

Group characteristics and clinical scores

The groups did not differ significantly in terms of age, gender, handedness or level of education.
TFC and SWR were significantly lower for the HD gene carrier group compared to the control
group (p = 0.007 and p = 0.004, respectively; Mann-Whitney U test and independent-samples
t-test, respectively). The HD gene carrier group had higher UHDRS-TMS than controls (p =
0.00001, independent-samples t-test). There was a trend for lower SDMT scores and higher BDI-l
scores for the HD gene carrier group compared to controls (both p = 0.07; independent-samples
t-tests). The early HD group had lower SDMT scores compared to controls only (p = 0.02; analysis
of variance) and higher BDI-Il scores compared to both preHD and controls (p = 0.04 and p=0.01,
respectively; analysis of variance). See Table | for a summary of these results.

The HD classifier

A classifier was constructed that optimized the contrast between the HD gene carrier and control
groups with a specificity of 83%, a sensitivity of 83% and an accuracy of 83%. The AUC was 0.9
(Figure 1). The estimated group distributions are illustrated in Figure 2. There were no significant
relationships between the HDvsCT Index and any of the clinical measures.

Correlating qEEG subsets with clinical modalities

The analysis of the correlations between electrophysiological features and clinical modalities
resulted in two highly significant correlations in the HD gene carrier cohort. The first factor,
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referred to as Index-A, correlated strongly with the SDMT score, see Figure 3. Pearson’s correlation
coefficient was 0.86 (p = 0.0001). The second factor, referred to as Index-B, correlated strongly
with the UHDRS-TMS, see Figure 4 (r = 0.84, p = 0.0001). See Supplementary Figures 1 and 2 for
an overview of the spatial and spectral dependence of the coherences entering indices A and B.

Full power spectrum analysis

The full power spectra for the 19 electrodes were evaluated and group averages were compared
(Supplementary Figure 3). The average spectra were significantly different (p = 0.001). Most
prominently, the overall power was less in the HD gene carrier group. An extra resonance
appeared in the average spectra of the HD gene carrier group at about 22 Hz, not present in the
control group in the right temporal region. The alpha peak was distinctly divided into two peaks
in the occipital, temporal and parietal areas.

gEEG spectral differences

In the area of the anterior prefrontal cortex (Brodmann area 10; BA10), channels Fp1 and Fp2, the
HD gene carrier group had a higher power than controls in the delta band. At all other locations
significant difference in power was such that the power was higher in the control group except
for the delta bands (higher in the HD gene carrier group): at the frontal eye fields (BA8), F3, F4 and
Fz (theta); at the primary somatosensory cortex (BA2) and motor cortex (BA4), C3 (delta, theta
and alpha), C4 (theta and alpha), Cz (theta); at the temporal regions influenced by the auditory
somatosensory cortex (BA42), primary somatosensory cortex (BA2) and motor cortex (BA4), T3
(theta and alpha), T4 (delta, theta and alpha); and also influenced by the fusiform gyrus (BA37), T5
(theta and alpha), T6 (delta and theta); finally in the parietal area (BA7), Pz (theta and alpha). See
Table Il for a summary of these results, including p-values, t-statistics and Cohen’s d for effect sizes.
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Figure 1. The ROC curve for the HD vs. control Index estimated with repeated 10-fold cross-validation along with
the result. SPE = specificity; SEN = sensitivity; ACC = accuracy; AUC = area under the curve.
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Discussion

In this exploratory study, the qEEG automatic classification index proved to separate HD gene
carriers from healthy controls with good specificity and sensitivity. This method has therefore a
potential to be further developed as a biomarkerin HD. The study also revealed strong correlations
between qEEG features and the UHDRS-TMS and SDMT, both relevant clinical markers in HD
research. Finally, global EEG average power spectra were shown to be significantly lower in the
HD gene carrier group compared to controls and gEEG spectral differences between the groups
were demonstrated.

Table Il. Significant differences in GEEG spectral power

Channel Band Power - Healthy Power - Combined  p-value t-statistic Cohen'’s d
controls (N = 25) (pre)HD (N = 26)

Fp1 delta 4.5 49 0.004 -30 0.85
Fp2 delta 45 49 0.005 -29 0.82
F3 theta 33 30 0.007 2.8 -0.78
F4 theta 33 3.1 0.016 25 -0.70
Fz theta 34 3.1 0.003 3.1 -0.88
a delta 3.6 38 0.048 -20 057
a theta 3.1 29 0.011 2.7 -0.74
a alpha 32 29 0.025 23 -0.65
Cc4 theta 3.1 29 0.004 3.0 -0.85
c4 alpha 32 29 0.022 24 -0.66
Cz theta 33 3.1 0.024 23 -0.65
T3 theta 33 3.1 0.025 23 -0.65
T3 alpha 34 3.1 0.049 20 -0.56
T4 delta 39 4.1 0.031 =22 0.62
T4 theta 33 3.1 0.024 23 -0.66
T4 alpha 34 3.1 0.047 20 -0.57
15 theta 35 32 0.009 27 -0.77
T5 alpha 37 34 0.025 23 -0.65
T6 delta 39 4.1 0.042 -2.1 0.58
T6 theta 34 32 0.042 18 -0.51
Pz theta 32 3.1 0.031 22 -062
Pz alpha 35 3.1 0.042 2.1 -0.58

Power values are log10-transformed. N = number of participants. Two-tailed t-test p-values are reported. Degrees
of freedom = 49.
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Using the index created in this study, it is possible to separate EEGs of HD and control subjects
with an accuracy of over 80%. Considering direct correlations between the index and commonly
used clinical measures is interesting, though less likely to result in significant findings as the
measure is derived globally from all recorded regions of the brain, therefore lacking specificity.
The index did indeed not correlate with any of the commonly used clinical and neurocognitive
measures in HD research. This finding is in line with a previous study using a classifier approach.’
When specific EEG features were considered, highly significant correlations with the UHDRS and
SDMT scores were found, disease measures that are known to be altered in a longitudinal fashion
in the (pre-) manifest state compared to healthy controls. This highlights the importance of using
different approaches in biomarker research based on structural and/or functional brain data.
Analyses focusing on global versus local measures provide different insights on disease state and
possible correlations with clinical measures. Previous machine learning studies using different
MRI'modalities to discriminate HD gene carriers and controls achieved accuracies up to 83% and
76%, respectively, when specific regions affected by the disease were preselected for analysis.>*3

On EEG average power spectra a global decrease in theta and alpha power in HD was found,
while delta power was increased in a few brain areas in HD. As the earliest structural brain
changes in HD start within the striatum, this conceivably leads to disrupted projections in the
cortico-striato-thalamo-cortical loops, which in turn lead to disruptions in brain rhythms.” The
striatum represents a crucial node in these loops.'® Reductions in the theta band power in HD
have been reported in previous studies,'®*?'?? while other studies found an increase in this
band?#?* Reductions in the theta band power were correlated with increased cognitive and
motor deficits.”® There seems to be consensus in the literature regarding globalized reductions
in the alpha band in (pre)HD.>?021242526 Some studies reported that reductions in the alpha band
correlated significantly with increases in cognitive and motor deficits in HD,'*?° while others could
not replicate this finding®. Both theta and alpha EEG rhythms appear to reflect important neuronal
processes in human cognition.?”?#? Decreases,*** as well as increases'? in beta power in HD have
been reported, something we could not replicate. Most studies point to an increase in delta
power in HD, 1920222426 which is corroborated by findings in our study. It has been observed that
alterations in delta power might be disease stage dependent and increase in advanced stages of
HD.2 This might explain the localized differences in delta power between the groups observed in
this particular study sample, which represents premanifest or early stage patients.

The GABAergic network is postulated to be a driving force in producing synchronized brain
oscillations.*® Combined with the knowledge that dysfunction and loss of GABAergic neurons
occurs early on in the striatum of HD*'*? we hypothesize that the difference found in this study,
both in the classification index as well as in differences in power spectra, are primarily derived
from a deregulation of brain network oscillations through GABAergic dysfunction in HD. Another
potential explanation for these findings might be a neurodevelopmental difference of HD brains
reflecting an endophenotype. To explore the latter point, it is necessary to conduct longitudinal
trials evaluating the potential progressive nature of these differences with advancing disease.
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In this study we have observed several statistically significant results in the performance
of classifiers as well as indices designed to correlate with relevant modalities related to HD
progression. As with EEG related physiological interpretation in general, it is very hard to assign
physiological meaning to these indices as the knowledge of relationships between EEG activity
and the underlying physiology are poorly known or understood. The field is still in its data driven
empirical era, which the present work contributes to. We have also observed significant differences
between classical qEEG features when comparing between HD gene carriers and controls. These
are exploratory findings limited in scope when it comes to the number of subjects participating.
It is therefore pertinent to confirm these findings in independent studies conducted with pre-
defined end points. Also, there is an increased risk of overfitting the separation model when using
a small sample size as the one in this study. Another potential limitation is the use of the same
system to record all EEGs, possibly reducing the validity of the model on other EEG equipment.
Also, as this is a cross-sectional study, we can only speculate about the expected changes to
the findings occurring during clinical deterioration in HD. Therefore, longitudinal studies are
needed to evaluate the true usefulness of these indices. However, the fact that we have found
indices strongly correlating with clinical markers of decline support the notion of a measurable
progressive change in HD brain function rather than a purely neurodevelopmental difference.

Conclusion

In this exploratory study we show promising results where qEEG related modalities may help
to unravel how HD evolves and how different areas of the brain are influenced as the condition
progresses. The indices correlating with modalities changing with the progression of the disease
may lead to tools based on qEEG that can help monitor efficacy in intervention studies. These
points will need further independent studies before such applications can be put into force.
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Abstract

Background

A sensorimotor network structural phenotype predicted motor task performance in a previous
study in Huntington's disease (HD) gene carriers. We investigated in the visual network whether
structure-function-behaviour relationship patterns, and the effects of the HD mutation, extended
beyond the sensorimotor network.

Methods

We used multimodal visual network MRI structural measures (cortical thickness and white matter
connectivity), plus visual evoked potentials and task performance (Map Search; Symbol Digit
Modalities Test) in a cohort of healthy controls and HD gene carriers.

Results

Using principal component (PC) analysis, we identified a structure-function relationship
common to both groups. PC scores differed between groups indicating decreased white matter
organization (higher RD, lower FA) and slower, and more disperse, VEP signal transmission (higher
VEP P100 latency and lower VEP P100 amplitude) in the HD group compared to the control group
while task performance was similar.

Conclusions

These findings suggest that HD may be associated with reduced white matter organization and
efficient visual network function, but normal behavioural performance. The lack of correlation
with visual task performance indicates a possible dissociation between behaviour and the
assessed properties of the visual network or alternatively, the possible effects of compensatory
processes.
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Introduction

Brain structure, function and behaviour are clearly linked, but the relationship between them is
highly complex. In Huntington'’s disease (HD), for example, cerebral white and grey matter loss,
particularly within the basal ganglia is detectable from 15-20 years prior to clinical diagnosis,™
yet performance levels remain normal for a considerable time suggesting onset of compensatory
processes.”” On the other hand, structural imaging measures of brain volume, together with task
performance can improve predictions of motor diagnosis based solely on the HTT mutation and
age.” Together, this supports the notion that structural alterations contribute to functional brain
changes underlying the manifestation of clinical signs of HD.

Examining the relationship between structure, function and task performance within a priori
selected brain networks in HD gene carriers could help differentiate between a) network-wide
changes that are specific to the presence of the HTT mutation and b) natural variations in network
properties amongst healthy people that influence the effects of the HTT mutation. We previously
examined this concept within the sensorimotor network in HD using multimodal structural
and functional data® We found a structural pattern of reduced volume and cortical thickness
in sensorimotor regions coupled with increased diffusivity in white matter pathways that was
closely linked to the HD mutation and predicted performance. However, we also identified an
inverse relationship between axial diffusivity (AD; diffusivity in the main direction of the fibre)
and radial diffusivity (RD; diffusivity perpendicular to the main fibre) that was common to both
controls and HD gene carriers. This relationship pattern predicted HD disease status and motor
performance independent of HD-associated factors such as CAG, age and brain volume. This
relationship may, therefore, reflect a pattern of natural variability in white matter microstructure
that itself does not cause disease. However, in the presence of the HD mutation it may modify the
effects of HD pathogenesis on white matter microstructure.

Given our previous findings, here we asked to what extent these observations were specific to the
sensorimotor network or whether they reflected patterns that are also present in other networks
potentially impacted by HD pathology. This has important implications for disease modification
in terms of network-wide versus network-specific patterns of structure, function and behaviour
relationships. Although characteristically defined by motor, cognitive and neuropsychiatric
symptoms, the visual cortex is one of the first areas affected in HD with evidence of neuronal
loss,**"? white matter pathway degeneration' and deficits in visual-processing.'"”

Consistent with our earlier study, we used multimodal MRI and electrophysiological data to
examine the relationship between structural integrity, functional processing and task performance
in the visual network in a cohort of controls and HD gene carriers. We investigated both structure
(V1 cortical thickness; visual pathway connectivity) and function (Visual Evoked Potentials (VEP))
in conjunction with task performance on Map Search and Symbol Digit Modalities Test (SDMT).
We investigated correlations between individual measures and then used Principal Component
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Analysis (PCA) to identify patterns across modalities. Finally, we examined to what extent these
patterns identified group status. We predicted independent structure-function relationships a)
characteristic of HD only and b) common to both controls and HD reflecting natural variability.

Methods

Participants

Participants were recruited from the Leiden site of the international multi-site Track-On HD study?®
and comprised 20 HD gene mutation carriers (mean age 49.2 years, 12 female) and 24 healthy
controls (mean age 52.5 years, 16 female). All HD gene mutation carriers had a CAG repeat length
>40; and a burden of pathology score (disease burden) greater than 250 ((CAG repeat length
- 35.5) x age) (Table 1).7'® Healthy family members without the HD mutation or partners were
recruited as control participants. All participants were screened for major psychiatric, neurological
or medical disorders or a history of severe head injury. Education was measured using the
International Standard Classification of Education (ISCED) that distinguishes 10 different levels of
education. The total motor score was obtained from the motor part of the Unified Huntington’s
Disease Rating Scale (UHDRS). Visual acuity was documented prior to VEP acquisition, and all
participants had normal or corrected-to-normal vision. The study was approved by the Leiden
University Institutional Review Board. All participants gave their written informed consent to the
study, and all methods were used and experiments performed, in accordance with the ethical
standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Table |. Demographics and clinical measures

Full sample PCA sample

Variable i Control HD (N=20) Test statistic | Control HD (N=16) Test statistic
1 (N=24) (p-value) i (N=20) (p-value)

Gender N (%F) o 6o 12 (60.0) X', =021(065) | 15 (750) 9(563) X' =141 (024)
Age (SD; range) : 52'5( 9'1)33 " 492(96;32-68) t=-115(026) | 532(89;33-68) 494 (94;32-68) t=-126(022)
Education (SD; range) [ ( d 43(0.9;2-5) t=197(006) i 36 (13;2-6) 45(07;3-5) t=2380(0.01)
CAG repeat length (SD; range) 3701226 428(3.0;39-500 - P 42.5(2.9; 39-50)
Disease burden (SD;range) & 338(79;192-478) P 326 (79;192-469) -
Motor score  (SD; range) ;3(1 7:0:5) 128(114;1-50)  t=4.48(0.0002) 1.2(1.7;0-5) 10.1 (7.6;1-28) t=4.59 (0.0003)

Behavioural measures

The Map Search Task is a subtest from the Test of Everyday Attention and measures visuospatial
selective attention.'? Participants were presented with an A3 sized map, which displayed a portion
of the city of Philadelphia in the United States. They were then timed for two minutes while they
searched for and circled a target symbol that occurred in multiple places on the map among
other distracter symbols. After one minute, the examiner exchanged the pen for a different colour
to facilitate differentiation of those responses made in the first and second minutes of testing. Test
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performance was measured as the number of correctly circled target symbols, scored separately
at one minute and at two minutes with a maximum possible score of 80. For the current study,
we used the percentage number of correct responses in two minutes as a behavioural measure.

The Symbol Digit Modalities Test (SDMT) is a test of visuomotor integration, measuring visual
attention and motor speed. Participants were required to match symbols and digits as quickly
as possible, following a key located at the top of the page during a 90 second period; the total
number of correct responses were recorded and included as our second behavioural measure.

Electrophysiology measures

Four Ag/AgCl electrodes were attached to the scalp at position O1, O2 and Oz with Cz as a
reference according to the international 10-20 system for electrode placement. Participants
were seated at a distance of 1m in front of a 23 inch computer screen displaying a checkerboard
pattern that filled the entire screen with squares of 1° visual angle flashing at a frequency of 2Hz.
The brightness of the squares was 100lux with a black/white contrast. For each eye, 2 x 100 trials
were recorded. The duration of each trial was dependent on the registered signals, approximately
one minute in duration, or 30 seconds per trial. The stimulus was presented continuously and
flashing, with no stop between trials. VEPs were obtained using Medelec Synergy version 11.0
(Oxford Instruments, Abingdon, United Kingdom). Data were filtered and visually checked for
artefacts, noisy trials were deleted from the set. The trials were averaged and peak latencies and
peak-to-peak amplitudes of N70, P100 and N135 were identified. The N70 was defined as the
most prominent negative peak between 60 and 80ms post stimulus. For the P100 a time window
of 90-115ms and for the N135 a time window of 115-150ms was applied.

MRI measures

Cortical thickness

3D T1 images were acquired as previously described.® Cortical thickness measures were
generated for each participant using Freesurfer version 5.3.0 applying default parameters and
optimized for 3T data.”® Measures were extracted from Brodmann area in the left hemisphere:
BA17 (Primary Visual Cortex) (https://surfer.nmr.mgh.harvard.edu/fswiki/BrodmannAreaMaps). All
segmentations were visually inspected for accuracy, blind to participant status.

Diffusion tensor imaging

Diffusion-weighted images with 42 unique gradient directions (b = 1000 sec/mm?) and one image
with no diffusion weighting (b = 0 sec/mm?) were acquired using a Phillips Achieva scanner.
Acquisition parameters were as follows: TE = 56ms and TR = 11s, with voxel size 1.96 x 1.96 x 2; 75
slices were collected for each diffusion-weighted and non-diffusion weighted (B0) volume. The
diffusion data were preprocessed using standard FSL pipelines.?!

Data were initially quality checked for movement artefacts and then corrected for eddy
current distortions. Diffusion tensors were fitted to the corrected data using dtifit; FA (fractional

135




Chapter 7

anisotropy), AD and RD values were subsequently derived from the tensors. The BO image and the
T1-weighted structural image were both skull-stripped using the Brain Extraction Tool and then
manually edited. The T1 image was then registered to the BO image using FLIRT.?? Crossing fibres
were modelled using Bedpostx.”? Probtrackx was used for fibre-tracking of the visual pathway
using three regions of interest: the primary visual cortex (V1), extrastriate area V4 and the visual
thalamus.** All seed regions were created in standard space using the Anatomy toolbox and then
warped into native space (using the DARTEL inverse deformation parameters) for fibre-tracking.
Masks were used to exclude streamlines that tracked into the right hemisphere and into grey
matter, cerebrospinal fluid (CSF) or dura. The visual pathway images were then warped into
diffusion space using FLIRT and FA, AD and RD values extracted for each participant.

Statistical analyses

Control and HD groups were compared for each individual modality using two sample
t-tests with a false discovery rate (FDR) adjustment for multiple comparisons. The equality of
variances assumption was tested and the Satterthwaite approximation of the standard errors
and degrees of freedom were used when necessary. Pearson’s correlations were performed
between the structure-function and behavioural measures across a) HD gene carriers, and b)
control participants. Structural integrity and functional processing measures were investigated
through PCA, a method used to reduce the dimensionality of multivariate data by producing
linear combinations of the original variables. These principal components (PC) are mutually
independent and retain most of the variability present in the original measures.® The number of
components was determined from the results of 2-fold split-sample validation.?

After obtaining the PCs, a series of ANCOVA models, adjusting for age and gender, were utilized
to evaluate the relationships among the PCs, the behavioural measures, and group status.
The first set of models was used to examine the relationship of the PCs and the behavioural
measures with group status. The next set assessed the association of the PCs and the behavioural
measures (1) without controlling for group status, (2) controlling for group status, and (3) with a
group*component interaction. Corrections for multiple comparisons were made using an FDR
threshold of g = 0.05 within all sets of analyses.?’

Results

Individual modality analyses

Demographic and clinical data for the control and HD groups are presented in Table I. We focused
on eight variables that captured the structure-function relationship within the visual system in
the left hemisphere. These included 4 structural MRI measures (V1 cortical thickness, FA, RD, AD)
and 2 electrophysiological measures (VEP P100 latency and amplitude recorded from O1) in
addition to 2 behavioural measures (Map Search and SDMT). We first compared each individual
modality in controls and the HD group (Table Il). Group comparisions revealed evidence of
significantly higher RD (p = 0.014, g = 0.11) in the visual pathway connecting the visual thalamic
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region and V1 and non-significantly longer VEP P100 latencies (p = 0.082, g = 0.24) for those
with HD versus controls. In contrast, V1 cortical thickness, FA, AD, VEP P100 amplitudes and both
behavioural measures were similar in the HD group and the controls. Note that the Satterthwaite
approximations for standard errors and degrees of freedom were used for FA, AD, and RD because
of unequal variances between the groups for these measures.

Table Il. Individual modality results

Modality Controls HD
Mean SD Mean SD t-test df p-value g-value
S LA 3853 . 665 . s S 077 . 42 04 045
DTl FA 035 0034 032 0.056 1.78 23.1 0.089 0.24
AD 1.14 0.051 1.16 0.092 0.85 220 044 045
[ RO 065 . 0039 | 072 0065 - 286 20 0014 o1
VEP P100 Latency 100.1 6.0 1033 6.0 -178 42 0.082 0.24
Amplitude 6.72 243 587 2.36 1.16 41 0.25 033
~ Behaviour  MapSearch 6563 809 6240 012 124 2 o2 033
SDMT 5542 11.87 50.16 10.53 1.52 M 0.14 0.27

Descriptive statistics and group comparison data for behavioural measure. Abbreviations: SD - standard deviation;
df - degrees of freedom; g- value - false discovery rate adjusted p-value; CT - Cortical Thickness; DTl - Diffusion
tensor Imaging; VEP - Visual Evoked Potentials; V1 - Primary Visual Cortex; FA - Fractional Anisotropy; RD - Radial
Diffusivity; AD - Axial Diffusivity.

Multimodal structure-function-behaviour analyses

Correlations were performed between the structure-function and behavioural measures across
a) HD gene carriers (Table Ill), and b) control participants (Table IV). Across HD participants, worse
SDMT performance was associated with lower FA (r = 0.63, p = 0.0091, g = 0.055), higher RD (r =
-0.55, p =0.026, g = 0.11) and longer VEP P100 latency (r =-041, p = 0.079, g = 0.24); worse Map
Search performance also correlated with longer VEP P100 latency (r =-0.60, p = 0.0056, g = 0.055)
(Table IlI). Correlations for control participants, on the other hand, were not significantly different
from zero (Table V). We then used a regression model to further investigate the group factor.
Before FDR adjustment, we found marginal significance between the groups in the association
of SDMT with FA, RD, and VEP P100 amplitude (p = 0.063, 0.061, and 0.044 respectively) and in
the association of Map Search with VEP P100 latency (p = 0.060). The FDR adjusted values are all
non-significant (g > 0.15 for all).
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Table lll. Correlations between two behaviour measures and six structure-function measures for HD participants

FA

AD

RD

V1 cortical

thickness

VEP P100
latency

VEP P100
amplitude

Map Search

SDMT

r=-034(p=020;q=047)
16

r=-0.16 (p=0.56;q=061)
16

r=0.23 (p=040;q=0.60)
16

=025 (p=030;q = 0.59)
20

r=-0.60 (p = 0.0056; q = 0.055)
20

r=-0.15(p=052;,9=061)
20

r=0.63 (p =0.0091; q = 0.055)
16

r=010(p=072q=072)
16

r=-0.55 (p=0.026; g =0.11)
16

r=0.16 (p=050; g =061)
19

r=-041(p=0.079; q=0.24)
19

r=022(p=036;q =060)
19

Pearson’s correlations (p-value; g-value) and sample size for each MRI, electrophysiological and behavioural
measure. Correlations greater than 0.40 or smaller than -0.4 are in bold. Abbreviations: 1 - Primary Visual Cortex;

FA - Fractional Anisotropy; RD - Radial Diffusivity; AD - Axial Diffusivity.

Table V. Correlations between two behaviour measures and six structure-function measures for control

participants

Map Search SDMT

FA r=-0.092 (p = 0.69; q = 0.86) r=-0079 (p=0.73; q = 0.86)
21 21

AD r=-0.077 (p=0.74;q = 0.86) r=00080 (p=0.97;q=097)
21 21

RD r=0.15(p=0.53;q=0.86) r=0.064(p=0.78;q=0.86)
21 21

V1 cortical r=0.13(p=0.53,9=0.86) r=-027 (p=0.20; g =0.86)

thickness 24 24

VEP P100 r=-0.15 (p = 048; q = 0.86) r=-0.13 (p=0.53;9=086)

latency 24 24

VEP P100 r=-027 (p=021;q=086) r=-0.11(p=062;q=0.86)

amplitude 23 23

Pearson’s correlations (p-value; g-value) and sample size for each MRI, electrophysiological and behavioural
measure. Abbreviations: V1 - Primary Visual Cortex; FA - Fractional Anisotropy; RD - Radial Diffusivity; AD - Axial

Diffusivity.
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Next, we employed PCA to describe the patterns of relationships within the dimensions of
the structure-function measures (Figure 1; Table V). The PCA was run on a reduced number
of 36 participants who had complete data (20 controls and 16 HD). The six structure-function
measures and their relationships could be reduced to 3 principal components (Figure 1; Table
V) as determined by 2-fold cross validation. The 3 components explained 74.5% of the variance.

The first PC (PC1) explained 34.0% of data variance and included correlations between increased
FA, lower RD in the visual pathway connecting the visual thalamic region and V1, thicker V1,
reduced VEP P100 latency and increased VEP P100 amplitude (Figure 1A). PC1 scores were
associated with group status, differentiating between controls and HD participants (t = -2.34, p
=0.026, g = 0.077). The controls showed mean PC scores of 0.286 (4 of 20 had negative scores)
compared to the HD group, in which the majority of participants (11 of 16) had negative scores
with an average negative PC score of -0.474 (Figure 1B). This is indicative of higher RD, lower FA,
higher VEP P100 latency and lower VEP P100 amplitude in the HD group compared to the control

group.

Table V. Correlations between three classic principal components and six structure-function measures

Comp1 Comp2 Comp3
FA 0.63 -0.76 -0.11
AD -0.38 -0.71 -0.50
RD -0.89 0.21 -0.28
V1 cortical thickness 0.36 0.41 -0.72
VEP P100 latency -0.41 -0.089 -0.23
VEP P100 amplitude 0.64 033 -0.32

Pearson’s correlations for each MRI and electrophysiological measure with the three principal components.
Correlations greater than 0.40 or smaller than -0.4 are in bold. Abbreviations: V1 - Primary Visual Cortex; FA -
Fractional Anisotropy; RD - Radial Diffusivity; AD - Axial Diffusivity.

The second PC (PC2; 23.6% of variance explained) showed a pattern of reduced FA and AD in
the visual pathway connecting the visual thalamic region and V1, coupled with an increase in V1
cortical thickness (Figure 1A). The third PC (PC3; 16.9% of variance explained) captured a pattern
of reduced AD in the visual pathway connecting the visual thalamic region and reduced V1
cortical thickness (Figure 1A). Neither PC2 (t =-0.23, p=0.82,q=0.82) nor PC3 (t =-0.66, p = 0.51,
g = 0.77) were associated with group status (Figure 1C and D).
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Figure 1. Multimodal principal component (PC) analysis. A. Heat map of correlation coefficients for each modality
with dimensions derived from principal component analysis for the combined group of healthy controls and HD
participants. The first PC (PC1) showed the highest correlation with structural and functional measures including
lower AD and RD in the visual pathway, and thicker V1. The second PC (PC2) showed a pattern of higher FA and
lower RD in the visual pathway. The third PC (PC3) captured a pattern of higher RD in the visual pathway. B.
Individual participants’ PC1 scores differentiated significantly between the control and HD groups (*p=0.026) while
PC2 (C) and PC3 scores (D) were similar in both groups.

Abbreviations: VEP - visual evoked potentials; DT - Diffusion Tensor Imaging; FA - Fractional Anisotropy; AD - Axial
Diftusivity; RD - Radial Diffusivity; HD: Huntington’s disease.

Discussion
In this study, we have identified structure-function relationships showing an association between

structural integrity and efficient functional processing within the visual system in healthy controls
and HD. Lower levels of white matter organization and VEP responsivity correlated with lower levels
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of task performance in HD gene carriers, but not in control participants. We further examined these
associations using Principal Component Analysis, identifying a structure-function relationship of
white matter organization and VEP responsivity. Although this relationship was common to both
HD and controls, the majority of HD gene carriers displayed negative scores, such that they were
characterized by increased white matter disorganization in the visual pathway and a less effective
visual processing system. However, despite this disrupted structure-function relationship, HD
gene carriers performed visual tasks at a normal level. Given the correlations between structure-
function measures and performance, this would indicate that despite an abnormal structure-
function relationship, HD gene carriers may experience some degree of compensatory brain
activity in the visual network.

We previously explored structure-function relationships within the sensorimotor network in HD
and characterised a macro- and micro-structural phenotype associated with HD.2We showed that
structural degeneration within the sensorimotor network was related to both motor performance
and pathology, but we also identified an independent inverse relationship between axial and
radial diffusivities that was common to both HD and control groups and which predicted motor
performance and disease status. Here, we have similarly identified a white-matter structural
pattern in the visual network common to both controls and HD gene carriers, but which were
also associated with visual processing.

Using principal component analysis, we showed that controls and HD gene carriers shared a
similar structure-function relationship of higher white matter organization (i.e., higher FA and
lower RD) combined with higher VEP responsivity (i.e., higher amplitude and lower latency) and to
a lesser extent higher cortical thickness in the V1. However, despite the fact that this relationship
was common to both groups and, therefore, likely due to natural biological variation in these
network properties in the population, it actually differentiated the control and HD gene carrier
groups, i.e, the average PC scores for each group differed significantly. As such, the majority of
the HD group displayed negative scores, exhibiting a converse pattern of reduced white matter
organization (i.e., lower FA and higher RD) and VEP responsivity (i.e., lower amplitude and higher
latency). This supports our previous findings whereby we identified a pattern of volume loss and
increased diffusivity in the sensorimotor network, associated with HD pathology. In healthy people
the structure-function relationship may be variable, something we found in the somatosensory
and now in the visual network so that in some people white matter organization will be higher,
and function better, than in others. The HD mutation may exert its effect on top of that normal
variability, and it is conceivable that these effects may take longer in a person with, by nature,
higher than in someone with lower white matter organization. Given that we find evidence to
support this notion now in two networks it may be worth extending this to other networks, e.g.
those involved in cognition.” While we have not examined clinical markers of HD in the current
study, the effect of HD pathology on the efficiency of the visual network is evident and reflects a
pattern not only of structural disturbance as was the case in the sensorimotor network, but also
of functional impairment.
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Despite this structural degeneration and functional deficit, there were no significant behavioural
differences in visual task performance between controls and HD gene carriers at a group level.
However, in the HD group the results of the correlation analyses between measures of structure-
function (i.e., diffusivity and VEP responsivity) and behaviour, had shown that higher FA and
reduced RD both correlated with improved SDMT performance, while shorter VEP latency tended
to be associated with both better SDMT and Map Search performance.

PCA analyses further revealed relationships between structural and functional network properties
that vary systematically between individuals including HD gene carriers. However, although HD
pathology additionally affects network properties of efficient visual processing and associated
structure, there was no evidence of abnormal task performance at the group level. The correlations
between behaviour, which is unimpaired, and higher levels of white matter organization and VEP
responsivity may, therefore, indicate some degree of compensatory brain activity.

The two remaining components from our PCA analysis display patterns that are common to both
controlsand HD, but are not related to pathology, i.e., they did not distinguish between groups.The
second component shows a pattern of reduced FA, reduced AD and increased cortical thickness,
while the third shows a pattern of reduced AD and reduced cortical thickness. Interestingly in
both the second and third components, there is an inverse relationship between AD and (lower
levels of ) RD, similar to that within the sensorimotor network - this was also independent of group
status. The underlying basis of reduced FA and AD in terms of white matter organization is unclear,
but reduced FA may be associated with increased RD. This may also explain why FA reductions
are substantially pronounced as part of component three, because here RD is considerably lower.

In summary, we have identified patterns of visual network white matter organization that
were correlated with both visual processing and visual performance. Interestingly, the pattern
of higher white matter organization and visual processing efficiency, while common to both
control and HD gene carriers, distinguished the groups describing higher levels of white matter
disorganization and impaired visual processing in HD. In common with our previous analysis
of the sensorimotor network we also characterized inverse patterns of AD and RD in the visual
network; however, in the sensorimotor network we had not seen a functional contribution as we
did here in the visual network® Our findings indicate that the structure—function relationships,
and the susceptibility to the effects of the HTT mutation, may differ between brain networks in
HD. This requires further investigation across a series of other networks, which may be particularly
relevant and/or susceptible to the effects of HD pathology.
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Summarizing remarks and future perspectives

The neuroimaging and neurophysiological findings presented in this thesis add several important
insights into the potential usefulness of these parameters as biomarkers in Huntington's disease
(HD). A wider understanding of structural and functional brain pathology at different stages
of HD also enables us to formulate recommendations for future research. Using resting state
functional magnetic resonance imaging (RS-fMRI), diffusion MR, electroencephalography (EEG)
and visual evoked potentials (VEP), we have provided a broad view into the interplay of structure
and function in HD neuropathology and between disease state and progression. Using these
methods, we laid out potential suitable objective surrogate clinical trial endpoints and enhanced
our understanding of the (subclinical) change in the disease.

We could not demonstrate any longitudinal differences in functional connectivity changes
between premanifest HD (preHD) subjects and healthy controls using RS-fMRI over a period of
three years (Chapter 2). This was unexpected, as earlier cross-sectional results suggested that
functional connectivity, at the group level, was a fairly sensitive measure to differentiate preHD
subjects from controls." Despite the fact that we used three different analysis methods, we
could not demonstrate any longitudinal change in functional connectivity within our cohort in
a time frame of three years with two measurement points. At the same time, striatal atrophy
rates were significantly higher in preHD compared to healthy controls. Therefore, we concluded
that these results indicate an inferior sensitivity of RS-fMRI in demonstrating longitudinal changes
in the preHD population compared to volumetric striatal MRl measures. We speculate that the
reason for the lower sensitivity is due to the low signal-to-noise ratio of RS-fMRI compared to
volumetric measures. Alternatively, this might be due to compensatory mechanisms responsible
for apparently normal brain function in preHD despite ongoing neurodegeneration. Either way,
the conclusion is highly relevant in light of longitudinal biomarker research in preHD, suggesting
that RS-fMRI may not be a feasible marker for assessing the efficacy of an intervention in this
population during a realistic clinical trial time frame.

Using diffusion tensor imaging (DTl) we showed global as well as striatal microstructural brain
abnormalities at different stages of HD as well as significant associations between neurocognitive
and diffusivity measures (Chapter 3). Performance on the Symbol Digit Modalities Test (SDMT)
was mostly associated with white matter diffusivity measures, whereas performance on the
Stroop Word Reading task was only associated with grey matter diffusivities. These findings may
guide the selection of the most suitable cognitive measures to assess, depending on the prime
target of a treatment intervention. This study did not reveal any significant longitudinal differences
in microstructural organization between manifest HD, preHD and healthy controls within the
two-year study period. These results were also unexpected, as neurodegeneration in HD is a
slow process and microstructural alterations are expected to be present before macrostructural
abnormalities become apparent. However, this method was clearly less sensitive in detecting any
longitudinal changes when compared to studies using longitudinal volumetric MRI measures
(particularly of the striatum). This is most likely caused by the lower signal-to-noise ratio of
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this method compared to volumetric MRI methods. Alternatively, this could be due to a true
absence of observable significant alterations in the diffusion profile of the examined global and
striatal structures using DTl in the two-year time frame. Nonetheless, this study did provide some
interesting insights into the microstructural organization of the (pre)HD brain. In manifest HD
we found a diffusivity pattern which could reflect an increase in tissue permeability, extracellular
space fluid, and/or interaxonal spacing due to neural tissue loss. This pattern of diffusivity changes
has been associated with chronic white matter degeneration.?? In the preHD group we found that
only the axial diffusivity of the white matter was significantly higher than that of healthy controls,
afinding that may indicate axonal atrophy. These findings suggest that both axonal degeneration
as well as myelin abnormalities play an important role in white matter pathophysiology of HD and
are present throughout the entire brain. Given that the earliest detected abnormality is a higher
axial diffusivity of the white matter in preHD subjects, this may point to axonal degeneration as
preceding the pattern of chronic white matter degeneration found in later stages of the disease,
reinforcing previous findings and further supporting this hypothesis.

In a first-of-its-kind study in HD, we applied longitudinal graph theoretical analysis (GTA) to
diffusion MRI (Chapter 4). Using this method, we described the dynamics of the connectome
and characterized regional and global topological properties of brain networks in different stages
of HD compared to healthy controls. By applying this method, we departed from the traditional
neuroimaging approach of examining individual components of the brain, such as regions of
interest, towards characterizing regional or global structure of networks. We showed both baseline
and longitudinal differences between the different groups and correlations between graph
metrics on the one hand, and clinical and behavioural measures on the other hand, providing
us with novel insights into the dynamics of brain neuropathology occurring in HD. For instance,
both the left orbitofrontal cortex and left paracentral lobule were affected longitudinally in early
manifest HD as well in preHD-B (the group with the closest expected proximity to the occurrence
of characteristic motor symptoms, which define the manifest stage). The orbitofrontal cortex is
involved in decision making and cognitive and emotional processing, processes that are known
to be progressively impacted in HD.”> The paracentral lobule, a component of the sensorimotor
system has previously been implicated in HD where atrophy was also demonstrated.® In the
combined preHD group, the left medial prefrontal cortex was impacted when compared to
healthy controls. This region is involved in planning and problem solving and a previous study
linked reduced functional connectivity in the region to impaired executive function in HD.”®These
findings provide potential clues to the structural correlates of the reductions in higher cognitive
capabilities occurring in gene carriers prior to manifestation of motor signs. We also showed
that the small-world organization was preserved in preHD and early HD. We suggested that
intervention could be aimed at preserving this brain organization quality associated with health,
especially because of the presumed degradation of this network quality in advanced stages of
the disease. Such a disruption in later stages of HD is yet to be established, but is suggested
by the (non-significant) decreases we have observed in our cohort. Longitudinal increases in
the Unified Huntington's Disease Rating Scale total motor score (UHDRS-TMS) were negatively
associated with small-worldness in the early manifest HD group, indicating that a decrease in
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‘wiring-efficiency’ was related to an increase in motor symptoms. A noteworthy finding in preHD
was the hub-status gain of the right superior parietal gyrus in the second visit, as this structure
has been previously implicated in a compensatory role for maintaining normal motor function
in preHD.?'® We concluded that assessing the connectome not only provides a novel approach
with a biomarker potential in HD, but also potential new insights into compensatory strategies
of the brain in neurodegenerative disorders. Previous studies of the connectome in other
neurodegenerative disorders such as Alzheimer’s disease had already shown the usefulness of
this approach.''?

We investigated longitudinal microstructural changes occurring in the occipital cortex in
different stages of HD (Chapter 5). This structure has not been the primary focus of HD research,
even though mounting evidence has suggested early involvement of the occipital regions in HD
neurodegeneration.”*" We found some distinctive disease stage-specific longitudinal differences
in HD as well as correlations with behavioural measures. We concluded that these findings
provide added evidence of a strong involvement of the occipital cortex in HD neuropathology.
Moreover, as these findings were highly significant and obtained using a fully automated
method, we concluded that this approach is an objective biomarker candidate in HD. The two-
year duration of the study is also feasible for evaluating the potential effect of an intervention
trial. In preHD-B patients, only the middle occipital gyrus showed a significant longitudinal
difference in the diffusivity profile suggesting that this structure may be the earliest involved
in the neurodegeneration cascade of the occipital regions in HD. We discussed that although
no specific visual symptoms are known to exist in HD, performance in visuospatial, visuomotor,
as well as emotion recognition is known to be impaired.''® We suggested that investigating
the occipital cortex as a region of interest may provide a more sensitive way to track disease
advancement in preHD compared to the corpus callosum and/or cingulum.'® Based on our
findings, we hypothesized that disruption of cell boundaries due to neural tissue loss in the
occipital cortical region during disease progression causes an increase in tissue permeability and
interaxonal spacing. Although the reason for a preferential neurodegeneration of the occipital
region in HD remains unknown, we speculate that this might be due to the high metabolic
demand of this region making it more exposed to excitotoxicity.

Turning our attention to electrophysiology, we explored quantitative electroencephalography
(QEEG) measures as potential biomarkers in HD (Chapter 6). In this cross-sectional study we
created a high-quality classifier using a machine learning algorithm. In summary, we were able to
separate EEGs of HD and healthy control subjects with an accuracy of over 80%. We concluded
that this automatic classification method has a potential for further development as a biomarker
in HD. Interestingly, we found strong correlations between qEEG measures, the UHDRS-TMS and
SDMT, both clinical markers known to be altered in a longitudinal fashion in the (pre-) manifest
state. We hypothesized that the differences found in this study are primarily derived from a
deregulation of brain network oscillations through GABAergic dysfunction in HD. As this was a
cross-sectional study, we need longitudinal studies to evaluate the potential usefulness of this
method as a biomarker in HD. We do expect this potential to be present given the findings
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of strong correlations with clinical markers of decline supporting the notion of a measurable
progressive change in HD brain function. Correlations between gEEG and modalities changing
with the progression of the disease may lead to tools based on gEEG that can help monitor
efficacy in intervention studies.

Using a multimodal approach, we identified patterns that suggest a close relationship between
structural organization of the visual system and efficient functional processing (Chapter 7). Our
findings of higher diffusivity and less efficient processing within the visual system combined with
reduced VEP responsivity point to a less effective visual processing system in HD. We could not,
however, demonstrate correlations with the performance on two visual tasks. The latter might
suggest different processing pathways for these tasks compared to the parameters of the visual
system that we assessed in this study or compensatory brain activity at play. Although these
results are not expected to be suitable as practical biomarkers in HD, these do provide added
insights into the impact of neurodegeneration on the visual system in HD, relevant in light of
findings described in Chapter 5. As the relationship between brain structure and function is
highly complex, a multimodal approach such as the one we used here is most likely the best
approach in attempting to elucidate such a relationship.

Future perspectives

We have presented potential HD biomarker options in the previous chapters. When viewing
our findings together with these of the literature, we anticipate that a combination of different
modalities and methodologies will reveal the most sensitive and accurate biomarker. In the case
of (micro-)structural brain imaging, we predict that an imaging “polymarker”consisting of different
imaging techniques would provide the best disease tracking measure. Longitudinal volumetric
measures of the striatum combined with diffusion measures of the occipital cortex, for instance,
may provide such a measure. Using machine learning algorithms to discern the best possible
combination of discriminative imaging patterns is most likely a good approach to take.”” On the
brain function front, we do not expect (resting state) fMRI to play an important role as an effective
longitudinal biomarker in HD. We do however think that EEGs analysed with advanced methods
such as machine learning, may provide a biomarker of brain function in different stages of HD and
as such be potentially useful in evaluating the effect of disease modifying therapies.

As stated in the introduction, HD should be viewed as a multisystem neurodegenerative disorder
of the brain, which makes a multifaceted, multivariate biomarker approach a sensible one. Such
a holistic approach would provide needed insights into the cascade of the different events
leading to the final common pathway of neuronal dysfunction and death. We recommend using
automated methods where possible to ensure the highest degrees of objectivity and to facilitate
fast and standardized interpretation of data in large multi-centre studies. When using automated
techniques for MRI segmentation, visual quality control remains essential.
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Summarizing remarks and future perspectives

Beyond the biomarkers investigated in this thesis, a combination with clinical and biofluid markers
will be necessary to fully assess the effects of any interventional trial. These markers will provide
complementary information, both on disease state and on the specific effects of a potential
therapy. This is also important as the measurable effect of a therapy on the various markers may
be different. Such an approach is central in elucidating the sequence in which different markers
change, which in turn may help reduce the number of participants needed to demonstrate
effects of an intervention by selecting disease stage-specific sensitive makers.?" Also, these kinds
of investigations could lead to improved predictions for the expected time to disease onset on
the individual level. To conclude, the keyword we recommend for future biomarker research in
HD is combination.
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De in dit proefschrift gepresenteerde neuroimaging en neurofysiologische bevindingen geven
een aantal belangrijke inzichten in de potentiéle waarde van deze parameters als biomarkers bij
de ziekte van Huntington (HD). Een breder begrip van structurele en functionele hersenpathologie
in verschillende stadia van HD helpt ons ook richting te geven aan toekomstig onderzoek. Door
gebruik te maken van resting state functional magnetic resonance imaging (RS-fMRI), diffusie
MRI, elektro-encefalografie (EEG) en visual evoked potentials (VEP), hebben wij gepoogd een
brede benadering te hanteren om het samenspel tussen structuur en functie in de pathogenese
van HD en tussen ziektestadia en progressie weer te geven. Door deze methodes toe te passen
hebben wij potentiéle objectieve surrogaatmarkers gepresenteerd die gebruikt kunnen worden
als uitkomstmaten in klinisch onderzoek. Ook hebben wij ons begrip van de (subklinische)
veranderingen van de ziekte vergroot.

In een vervolgonderzoek van drie jaar hebben wij ondanks het toepassen van drie verschillende
analysemethodes geen verschillen in de mate van veranderingen in functionele connectiviteit
kunnen vinden tussen premanifeste HD (preHD) en gezonde controles met RS-fMRI (Hoofdstuk 2).
Dit was onverwacht gezien eerdere cross-sectionele resultaten die suggereerden dat functionele
connectiviteit op groepsniveau een onderscheidende marker zou kunnen zijn tussen preHD en
gezonde controles.! Tegelijkertijd was er wel significant meer striatale atrofie in preHD vergeleken
met gezonde controles. Wij concludeerden dat deze resultaten wijzen op een lagere sensitiviteit
van RS-fMRI om longitudinale verschillen in de preHD groep te laten zien vergeleken met volume
MRI-maten van het striatum. Dit zou kunnen komen door de lagere signaal-ruisverhouding van
RS-fMRI vergeleken met volumematen. Anderzijds zou dit mogelijk verklaard kunnen worden
door compensatoire processen die zorgen voor een ogenschijnlijk normale hersenfunctie in
preHD ondanks voortschrijdende neurodegeneratie dan wel volumeverlies. Wat de eigenlijke
verklaring ook is, het is wel een zeer relevante bevinding in het kader van de zoektocht naar
longitudinale biomarkers in preHD. Hierbij lijkt RS-fMRI geen reéle kandidaat te zijn om de
effectiviteit van interventies in deze populatie te beoordelen, zeker niet binnen een realistisch
tijdskader voor een klinisch onderzoek.

Door gebruik te maken van diffusion tensor imaging (DTI) hebben wij laten zien dat zowel globale
alsook striatale microstructurele hersenafwijkingen in verschillende stadia van HD voorkomen en
datersignificante associaties zijn tussen neurocognitieve en diffusiematen (Hoofdstuk 3). Prestatie
op de Symbol Digit Modalities Test (SDMT) was hoofdzakelijk geassocieerd met diffusiematen
verkregen uit witte stof, terwijl prestatie op de Stroop Word Reading task alleen geassocieerd
was met diffusiematen verkregen uit grijze stof. Dergelijke bevindingen kunnen de selectie van
de meest geschikte cognitieve maten bevorderen, afhankelijk van het verwachte hoofdeffect
van een interventiestudie. Deze studie heeft geen significante longitudinale verschillen in
microstructurele organisatie tussen manifeste HD, preHD en gezonde controles laten zien
over een tijdsperiode van twee jaar. Ook deze resultaten waren onverwacht, gezien het feit dat
neurodegeneratie in HD een langzaam proces is en microstructurele veranderingen logischerwijs
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vooraf moeten gaan aan de macrostructurele afwijkingen. Toch bleek ook deze methode minder
sensitief te zijn in het aantonen van longitudinale verschillen vergeleken met volume MRI-maten
(in het bijzonder van het striatum). Deze bevinding wordt waarschijnlijk veroorzaakt door de
lagere signaal-ruisverhouding van deze methode vergeleken met volumematen. Anderzijds zou
dit kunnen komen door een werkelijke afwezigheid van meetbare significante veranderingen
in het diffusieprofiel van de bestudeerde globale en striatale structuren zoals gemeten met
DTl binnen twee jaar. Niettemin gaf deze studie interessante inzichten in de microstructurele
organisatie van (pre)HD hersenen. In manifeste HD vonden wij een diffusiepatroon wat kan wijzen
op een toename van weefselpermeabiliteit, extracellulair vocht en/of interaxonale ruimte door
neuronaal verval. Een dergelijk patroon van diffusieveranderingen is geassocieerd met chronische
witte stof degeneratie.”* In de preHD groep vonden wij dat alleen de axiale diffusiviteit in witte
stof significant hoger was dan die van gezonde controles, een bevinding wat richting axonale
atrofie kan wijzen. Deze bevindingen suggereren dat zowel axonale degeneratie als myeline
veranderingen een belangrijke rol spelen in witte stof pathologie in HD en verspreid aanwezig
zijn door de hersenen. Gezien het feit dat de eerste verandering die in preHD gezien wordt een
hogere axiale diffusiviteit van witte stof is, kan dit betekenen dat axonale degeneratie optreedt
voorafgaand aan het later gevonden patroon passend bij chronische witte stof degeneratie. Deze
resultaten bevestigen eerdere bevindingen en geven meer steun aan deze hypothese.’

Voor het eerst in HD onderzoek hebben wij een longitudinale analyse uitgevoerd met
behulp van grafentheorie (GTA) op diffusie MRI data (Hoofdstuk 4). Met behulp van deze
methode hebben wij de dynamiek van het connectoom beschreven en regionale en globale
topografische eigenschappen van hersennetwerken in kaart gebracht in verschillende stadia
van HD vergeleken met gezonde controles. Door deze methode toe te passen hebben wij de
traditionele neuroimaging aanpak van het bestuderen van losse hersencomponenten verruild
voor een integraal netwerkaanpak. We lieten zowel cross-sectionele als longitudinale verschillen
tussen de groepen zien en correlaties tussen graafeigenschappen enerzijds en klinische- en
gedragsmaten anderzijds, wat ons nieuwe inzichten gaf in de dynamiek van hersenpathologie in
HD. Zo waren zowel de linker orbitofrontale cortex als de linker lobulus paracentralis longitudinaal
aangedaan in vroeg manifeste HD en in preHD-B (de groep die het dichtst zit bij het voorspelde
optreden van de karakteristieke motore symptomen, waarna de manifeste fase volgens definitie
begint). De orbitofrontale cortex is betrokken bij besluitvorming en cognitieve en emotionele
verwerking, processen waarvan bekend is dat die progressief aangedaan raken in HD.> In de
lobulus paracentralis, een component van het sensomotore systeem, is bij eerder onderzoek in
HD atrofie aangetoond.® In de gecombineerde preHD groep was de linker mediale prefrontale
cortex aangedaan vergeleken met gezonde controles. Deze regio is betrokken bij planning en
probleemoplossing en eerder onderzoek heeft een verbinding gelegd tussen verminderde
functionele connectiviteit aldaar met een aangetaste executive functie in HD.”® Deze bevindingen
geven potentiéle aanwijzingen voor de structurele correlaten van de achteruitgang van hogere
cognitieve functies in premanifeste gendragers. Daarnaast hebben wij laten zien dat de small-
world organisatie nog gespaard is in preHD en in vroeg manifeste HD. We suggereerden dat
interventie gericht kan zijn op het behoud van deze normale hersenorganisatie, zeker gezien de
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verwachte achteruitgang hierin in latere stadia van de ziekte. Hoewel een dergelijke achteruitgang
nog niet in studies aangetoond is, bestaat wel de suggestie hiervoor gezien de (niet significante)
afname in deze maat die we binnen onze HD cohort vonden. Longitudinale toenames in de
Unified Huntington's Disease Rating Scale total motor score (UHDRS-TMS) waren negatief
gecorreleerd aan de small-world maat in de vroeg manifeste groep, wat suggereert dat een
afname in de “bedradingsefficiéntie” gerelateerd was aan een toename in motorsymptomen. Een
noemenswaardige bevinding in preHD was het verkrijgen van de hub-status van de rechter gyrus
parietalis superior in het tweede meetmoment, aangezien deze structuur eerder aangewezen is
als een gebied wat zorgt voor een compensatoir effect voor het behoud van normale motore
functie in preHD.?'® We concludeerden dat het bestuderen van het connectoom niet alleen een
nieuwe benadering biedt met een biomarker potentie in HD, maar ook nieuwe inzichten geeft in
compensatoire strategieén van de hersenen in neurodegeneratieve aandoeningen. Voorgaande
studies van het connectoom in andere neurodegeneratieve ziekten zoals de ziekte van Alzheimer
hadden de waarde van deze benadering reeds laten zien.'"'?

Wij hebben microstructurele veranderingen in de occipitale cortex in verschillende stadia van HD
longitudinaal onderzocht (Hoofdstuk 5). Deze structuur heeft geen primaire aandacht genoten
in HD onderzoek, terwijl er toenemend bewijs is voor een vroege betrokkenheid van de occipitale
regio’s in HD neurodegeneratie.”*"> Wij vonden ziektestadium specifieke longitudinale verschillen
in HD alsook correlaties met gedragsmaten. We concludeerden dat deze bevindingen het bewijs
versterken van een belangrijke betrokkenheid van de occipitale cortex in HD neuropathologie.
Omdat deze resultaten statistisch sterk significant waren en verkregen waren via een volledig
automatische methode, hebben wij verder geconcludeerd dat deze benadering een objectieve
biomarker kandidaat is in HD. De twee jaar tijdspanne van de studie is ook haalbaar voor het
evalueren van potentiéle effecten van een interventiestudie. In de preHD-B populatie liet alleen
de gyrus occipitalis medius longitudinale veranderingen zien in diffusieprofiel, wat de suggestie
wekt dat deze structuur als eerste betrokken raakt in de neurodegeneratieve cascade van de
occipitale regio’s in HD. We bespraken dat hoewel er geen specifieke visuele symptomen
bekend zijn in HD, er wel afwijkingen zijn in visuomotore verwerking alsook problemen met
emotieherkenning.'*'® We suggereerden dat het bestuderen van de occipitale cortex mogelijk
sensitiever is om ziekteprogressie in preHD te meten vergeleken met het corpus callosum en/
of cingulum.'” De gevonden afwijkingen in diffusieprofiel van de occipitale cortex in HD komen
mogelijk door verstoring van celmembranen door neuronaal verval waarbij een toename
van permeabiliteit en interaxonale ruimte ontstaat. Hoewel de oorzaak van een preferentiéle
neurodegeneratie van de occipitale regio in HD onbekend blijft, menen wij dat dit te maken kan
hebben met de hoge metabole eisen aldaar. Hierdoor zouden de gevolgen van excitotoxiciteit in
deze regio eerder merkbaar zijn.

We hebben vervolgens onze aandacht gevestigd op neurofysiologie, waarbij we kwantitatieve
elektro-encefalografie (QEEG) maten als potentiéle biomarkers in HD hebben onderzocht
(Hoofdstuk 6). In deze cross-sectionele studie construeerden wij een calssifier van hoge kwaliteit
door gebruik te maken van een machinaal leren algoritme. In het kort waren wij in staat om EEG's
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van HD en gezonde controles van elkaar te onderscheiden met een nauwkeurigheid groter dan
80%. We concludeerde dat deze vorm van automatische classificatie potentie heeft om verder
ontwikkeld te worden als een biomarker in HD. Interessant genoeg vonden wij sterke correlaties
tussen qEEG maten en zowel de UHDRS-TMS als de SDMT, beide klinische maten waarvan bekend
is dat die longitudinaal veranderen in de (pre-)manifeste fase. We veronderstelden dat de in deze
studie gevonden afwijkingen primair worden gedreven door een deregulatie van hersennetwerk
oscillaties door GABA-erge disfunctie in HD. Omdat het om een cross-sectionele studie ging,
hebben wij longitudinale data nodig om de potentie van deze methode als biomarker in HD
te kunnen evalueren. Wel verwachten we dat deze potentie aanwezig zal zijn gezien de sterke
correlaties met klinische markers van achteruitgang, wat ondersteuning geeft aan het idee van
een meetbare en progressieve verandering in hersenactiviteit bij HD. Correlaties tussen qEEG en
modaliteiten die veranderen met ziekteprogressie kunnen tot qEEG gedreven tools leiden die
helpen om het effect van interventiestudies te monitoren.

Door een multimodale benadering te hanteren, hebben wij patronen gevonden die een
nauwe relatie suggereren tussen de structurele organisatie van het visuele systeem en de
bijbehorende functionele verwerking (Hoofdstuk 7). Onze bevindingen van hogere diffusiviteit
en minder efficiénte verwerking binnen het visuele systeem gecombineerd met een verlaagde
VEP responsiviteit, wijzen op een minder effectief visueel verwerkingssysteem in HD. We
konden echter geen correlaties vinden met twee visuele testen. Dat laatste zou kunnen komen
door andere visuele netwerken die gebruikt worden voor het verwerken van deze testen of
compensatoire hersenactiviteit. Hoewel niet verwacht wordt dat deze resultaten geschikt zullen
zijn als praktische biomarkers in HD, bieden die wel additioneel inzicht in de gevolgen van
neurodegeneratie op het visuele systeem in HD, wat relevant is in het kader van de bevindingen
zoals beschreven in Hoofdstuk 5. Gezien de complexe relatie tussen hersenstructuur en -functie
zal een multimodale benadering zoals we hier hebben gebruikt waarschijnlijk de meest geschikte
manier zijn om dergelijke relaties te kunnen verhelderen.

Toekomstperspectieven

In de vorige hoofdstukken presenteerden wij potentiéle biomarker opties voor HD. Wanneer
we onze bevindingen samen met die in de literatuur beschouwen, verwachten we dat een
combinatie van verschillende modaliteiten en methodologieén de meest sensitieve en accurate
biomarker zal onthullen. In het geval van (micro-)structurele hersenbeeldvorming verwachten wij
dat een “polymarker” van beeldvormingstechnieken de beste ziekteprogressie maat zal bieden.
Longitudinale volumematen van het striatum gecombineerd met diffusiematen van de occipitale
cortex, bijvoorbeeld, zouden een dergelijke maat kunnen bieden. Gebruikmaken van machinaal
leren algoritmes om de best mogelijke combinatie van onderscheidende beeldvormingspatronen
te vinden is waarschijnlijk een goede benadering.? Op het vlak van hersenfunctie verwachten
wij niet dat (resting state) fMRI een belangrijke rol zal spelen als longitudinale biomarker in HD.
Wel verwachten wij dat EEG's geanalyseerd met geavanceerde methodes zoals machinaal leren
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mogelijk wel als biomarkers van hersenfunctie in HD zouden kunnen dienen, waarmee die
mogelijk bruikbaar kunnen worden voor het beoordelen van het effect van ziekte-modificerende
middelen.

Zoals in de introductie reeds benoemd, zou HD als een multisysteem neurodegeneratieve
aandoening beschouwd moeten worden, wat maakt dat een veelzijdige, multivariate biomarker
benadering doelmatig zal zijn. Een dergelijke holistische aanpak zou inzichten kunnen bieden in
de achtereenvolgende veranderingen die uiteindelijk leiden tot de laatste gemeenschappelijke
route van neuronale disfunctie en dood. We bevelen, waar mogelijk, het gebruik van
geautomatiseerde methodes aan om de hoogste mate van objectiviteit te waarborgen en om
snelle en gestandaardiseerde interpretatie van data te faciliteren in grote multicenter studies.
Wel blijft visuele kwaliteitscontrole essentieel bij gebruik van automatische technieken voor MR
beeld segmentatie.

Als toevoeging aan de biomarkers onderzocht in dit proefschrift, zal een combinatie met
klinische en biochemische markers nodig zijn om het effect van een interventiestudie volledig in
kaart te brengen. Deze markers zullen complementaire informatie geven over zowel ziektestaat
als specifieke effecten van een potentiéle therapie. Het is verder van belang om verschillende
markers te gebruiken, gezien het feit dat een therapie effect verschillend kan zijn op verschillende
markers. Een dergelijke benadering is essentieel voor het verduidelijken van de sequentie waarin
de verschillende markers tijdens het ziekteproces veranderen. Dit kan op zijn beurt helpen om
het aantal deelnemers dat nodig is om een interventie effect aan te tonen te reduceren door
selectie van ziektestadium specifieke markers.?! Verder kunnen dergelijke onderzoeken leiden tot
nauwkeurigere voorspellingen voor de verwachte tijd tot ziektepresentatie op individueel niveau.
Resumerend raden wij als kernwoord voor toekomstig biomarker onderzoek in HD combinatie
aan.
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