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General introduction

untington’s disease (HD) is a relentlessly progressive autosomal dominant 
neurodegenerative disorder with a broad spectrum of clinical features, characterized by a 
triad of motor, cognitive and psychiatric signs and symptoms. The disease is caused by a 

mutation in the Huntingtin gene (HTT) on the short arm of chromosome 4.1 The mutation consists 
of an expanded cytosine-adenine-guanine (CAG) trinucleotide repeat, with variable penetrance 
in the range of 36-39 and full penetrance in repeats of 40 and higher.

We have gained a great deal of knowledge on the basis and natural course of HD since the 
publication of one of the earliest medical descriptions of the “hereditary chorea” by George 
Huntington in 1872.2 Unfortunately, there still is no known cure or neuroprotective therapy for 
the disease and only symptomatic medication is available at present. Huntington’s statement 
about the disorder still holds true: “Once it begins it clings to the bitter end”.

The mean age at which the adult form of the disease becomes manifest is between 30 and 50 
years.3 Its course runs for 15-20 years following clinical onset, after which death occurs.4 The term 
“manifest” in HD is currently reserved for individuals exhibiting characteristic motor symptoms 
of the disease. Before this manifest phase, there is a “premanifest” phase, where people do not 
exhibit evident motor signs of the disease and are seemingly healthy, but can have subtle 
psychiatric and or cognitive signs and symptoms. The disease is unique among neurodegenerative 
disorders, as individuals destined to develop the disease can be identifi ed through genetic testing 
before symptom onset. This provides a window of opportunity for an intervention that could 
potentially delay or even prevent disease manifestation.

There is an inverse correlation between CAG repeat length and the age of onset of manifest 
disease, explaining up to 60% of age of motor onset variability.5 As such, age of onset is not solely 
explained by the mutation, but also by other yet unknown factors. The disorder exhibits genetic 
anticipation in the paternal line of inheritance. Anticipation means that the onset of symptoms 
can occur earlier and often more severely in consecutive generations.6 After the discovery of the 
causative mutation for HD in 1993, presymptomatic testing became available for the fi rst time 
in an autosomal dominant disorder.7 This major milestone in the history of HD understandably 
led to hopeful expectation for rapidly fi nding therapy for the disease and considerable eff ort 
has indeed been devoted to understanding the pathophysiology of HD and to fi nd disease-
modifying therapies.

More than 25 years after the mutant gene discovery, the fi rst safety studies with potentially 
promising disease-modifying eff ects at the gene transcription level have been performed. In 
September 2015, the fi rst-in-human study looking into the safety of IONIS-HTTRx (RG6042), an 
intrathecally administered antisense oligonucleotide (ASO) therapy to reduce mutant HTT 
(mHTT) protein, was launched in 46 early manifest HD patients (ClinicalTrials.gov Identifi er: 
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Chapter 1

NCT02519036). In 34 patients assigned to receive the ASO, the drug proved to be safe and the 
intended mHTT lowering was demonstrated in a dose-dependent manner, passing the phase II 
trials.8 After this initial step, larger studies are now commencing in different stages of the disease 
to examine whether there indeed is a desirable disease-modifying effect.

In order to measure the effects of these potential therapies, we need to have sensitive markers 
that correlate with disease state and progression. If the therapeutics have a positive effect 
on the course of the disease, one would expect these markers to be influenced in a way that 
reflects slower disease-associated change. Currently used clinical measures, such as the Unified 
Huntington’s Disease Rating Scale total motor score (UHDRS-TMS) and total functional capacity 
(UHDRS-TFC), are useful in measuring disease-related clinical and functional decline. These are, 
however, fairly crude semi-quantitative measures with substantial intra- and inter-rater variability, 
and are not sensitive in detecting subtle changes over short periods of time and certainly not 
before disease onset.9-11 Although previous neuroimaging studies have shown potential markers, 
findings remain inconsistent or lacking association with disease state. For instance, findings from 
previous longitudinal diffusion magnetic resonance imaging reports are contradictory.12-14 As 
such, further exploration of neuroimaging techniques is of great relevance.

In the present work, we aim to find robust parameters/markers corresponding with disease 
state and measuring progression in different stages of HD in a well-defined population, which 
can be used as suitable objective surrogate clinical trial endpoints. We put special emphasis on 
longitudinal study designs, as these provide the most useful clinical progression and parameter 
change associations. Rapid advances in diagnostic methods in the medical field coupled with 
advances in analysis methods and ever-increasing computational power provides us with 
the opportunity to explore different and more complex biological markers (biomarkers). A 
computational approach to tackle the increasing amount of data generated from functional 
and structural brain scans increases the likelihood of finding biomarkers specific for the disease. 
For that reason, we will employ different state-of-the-art approaches to evaluate the potential 
usefulness of specific markers. Such biomarkers are crucial in order to objectively assess expected 
disease-modifying properties of a potential therapeutic intervention.

With well-designed large longitudinal international studies aimed at finding biomarkers in HD, 
such as TRACK-HD and PREDICT-HD, our understanding of the premanifest stage has grown 
considerably, to the point that we now understand that subtle signs and symptoms in all three 
above-mentioned clinical domains of the disease are measurably present, sometimes decades 
before the classic disease signs become manifest.11,15 Although chorea is the characteristic clinical 
motor presentation of HD and the striatum is considered to be primarily affected within the 
histopathological profile, the disease affects a myriad of other neurological functions and should 
be viewed as a multisystem neurodegenerative disorder of the brain.16 Even though changes 
in behaviour, cognition, as well as motor skills often precede the onset of the manifest motor 
symptoms by decades, sensitive and robust longitudinal markers are still largely lacking in this 



13  

phase. The methods we employ in this study are expected to yield useful information about 
the premanifest stage and the progression towards manifest disease. Finding such markers in 
these subjects is of particular interest, as they have yet to present clinically with the hallmark 
motor symptoms of HD. Evidence from HD mice models point to the existence of neuronal 
dysfunction that is reversible through reduction of mHTT load, which leads to phenotypic and 
histopathological improvements.17-20 As such, a strategy focusing on both brain function as well 
as structure to identify biomarkers in HD seems promising.

Aims and outline of the thesis

The general aim of this thesis is to quantify functional and structural disease-related brain 
aberrations in Huntington’s disease, with the goal of exploring biomarker potential of these 
diff erent parameters for use in clinical trials. It is important to do so for both the premanifest as 
well as the manifest stage in order to better understand the “functional and structural natural 
history” of the disorder and to potentially help guide a therapy aimed at slowing or halting 
disease progression.

As HD symptoms are most likely a consequence of dysfunctioning brain networks, rather 
than simply being “striato-centric”, we aim to explore which regions or circuits in the network are 
aff ected in diff erent stages of the disease and how these may change over time. In Chapter 2, we 
use this network approach on “resting state” functional magnetic resonance imaging (RS-
fMRI) activity patterns of the brain, a method generating spatial covariance patterns of blood 
oxygenation level dependent (BOLD) signal fl uctuations by using independent component 
analysis. The patterns acquired with this technique are usually referred to as “functional 
connectivity”. We hypothesize that greater changes in functional connectivity occur longitudinally 
in premanifest gene carriers compared to healthy controls over a follow-up period of three years. 
As this method is data-driven and lacks a priori assumptions regarding potential disturbances to 
brain connectivity, it is well suited to explore the earliest signs of functional disturbances before 
manifest disease occurring in the brain as a whole. This approach may potentially reveal changes 
in brain function ahead of the occurrence of structural changes. Given the importance of the 
striatum in the histopathological profi le of HD, we additionally include a hypothesis-driven part 
to the analysis by using a region of interest approach examining a potential striatal functional 
connectivity change relative to the network.

In Chapter 3, we examine microstructural brain abnormalities occurring in diff erent stages 
of HD in a two-year follow-up period using diff usion tensor imaging (DTI). As microstructural 
abnormalities naturally occur before macrostructural abnormalities become evident, we expect 
this technique to provide more sensitive biomarkers compared to volumetric MRI methods. This 
diff usion MRI technique quantifi es water diff usion in tissue and provides indirect information 
about the microstructural organization of brain tissue. We use an automated histogram analysis 
method to assess cross-sectional as well as longitudinal changes occurring within two years of 
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diffusivity measures in whole-brain white matter, grey matter and the striatum. The choice for an 
automated method is made consciously, as a straightforward, standardized, fully automated and 
objective approach for interrogating imaging data will be needed in large clinical trials.
As the network of structural brain connectivity is expected to degrade with disease progression, 
we use a graph theoretical approach to analyse longitudinal diffusion MRI data (Chapter 4). A 
graph theoretical analysis (GTA) is a powerful mathematical framework for quantifying topological 
properties of networks, which is able to characterize regional and global structure of networks. 
We expect this integrated approach to provide new insights into the organization of whole-brain 
structural connectivity in relation to clinical and cognitive functions in HD over a two-year period, 
potentially providing usable markers of disease progression. This will be the first-of-its-kind study 
in HD.

In Chapter 5 we focus on the evolution of in vivo microstructural properties of the occipital 
cortex in different stages of HD, something which has not been a primary focus in HD research to 
date. We expect to find measurable abnormalities occurring in a two-year time frame in HD and 
provide a new region of interest for biomarker research and a measure of disease progression in 
HD clinical trials. Although the striatum is known to be progressively affected during the disease, 
it is less well established if other specific regions of the brain are also preferentially impacted 
in a longitudinal manner. Mounting evidence from whole-brain MRI analysis suggest that the 
occipital regions are altered early on in the disease.21-27 Furthermore, post-mortem studies have 
shown atrophy of the occipital lobe to be most pronounced compared to other cortical areas and 
histologically the absolute nerve cell numbers of the occipital lobe were found to be reduced.28,29 
Given this evidence of early and preferential involvement of the occipital regions in HD, we set 
out to study this region using diffusion MRI with a fully automated procedure.

Shifting our focus from MRI investigations to electrophysiological markers, in Chapter 6 we assess 
the potential of electroencephalography (EEG) as a biomarker in HD using machine learning 
automatic classification. EEG abnormalities are known to occur in HD.30 Through registration of 
physiologic activity of neurons, quantitative electroencephalography (qEEG) provides objective 
parameters assessing possible (sub)cortical dysfunction occurring prior to or concomitant with 
motor or cognitive disturbances observed in the disease. Given the progressive functional deficits 
seen with disease advancement, it is expected that EEGs of HD patients are different from healthy 
subjects. To test this hypothesis, automatic analysis methods for such complex data are desirable 
in order to provide objective and reproducible results. In this cross-sectional study, we use a 
machine learning method with the aim of automatically classifying EEGs as belonging to HD gene 
carriers versus healthy controls. Furthermore, we aim to derive qEEG features that correlate with 
commonly used clinical and cognitive markers in HD research to evaluate biomarker potential. 

It is likely that a multimodal approach is needed to have a comprehensive understanding of 
neuropathology in HD, as any one modality is always limited by its intrinsic properties. In Chapter 
7 we use a multimodal approach to characterize the visual network in HD using different MRI 
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modalities and visual evoked potentials as an electrophysiological modality. This is done in the 
light of considerable evidence showing that the visual cortex is one of the fi rst cortical regions in 
HD to be aff ected by neuronal loss, as was described above.

In Chapter 8 we provide summarizing remarks together with potential directions for future 
research.
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Chapter 2

Abstract

Background
We previously demonstrated that in the premanifest stage of Huntington’s disease (preHD), a 
reduced functional connectivity exists compared to healthy controls. In the current study we look 
at possible changes in functional connectivity occurring longitudinally over a period of 3 years, 
with the aim of assessing the potential usefulness of this technique as a biomarker for disease 
progression in preHD.

Methods
Twenty-two preHD and 18 healthy control subjects completed resting state fMRI scans in two 
visits with 3 years in between. Differences in resting state connectivity were examined for eight 
networks of interest using FSL with 3 different analysis types: a dual regression method, region 
of interest approach and an independent component analysis. To evaluate a possible combined 
effect of grey matter volume change and the change in BOLD signal, the analysis was performed 
with and without voxel-wise correction for grey matter volume. To evaluate possible correlations 
between functional connectivity change and the predicted time to disease onset, the preHD 
group was classed as preHD-A if ≥10.9 years and preHD-B if <10.9 years from predicted disease 
onset. Possible correlations between burden of pathology score and functional connectivity 
change in preHD were also assessed. Finally, longitudinal change in whole brain and striatal 
volumetric measures was assessed in the studied cohort.

Results
Longitudinal analysis of the RS-fMRI data revealed no differences in the degree of connectivity 
change between the groups over a period of 3 years, though a significantly higher rate of striatal 
atrophy was found in the preHD group compared to controls in the same period.

Conclusions
Based on the results found in this study, the provisional conclusion is that RS- fMRI lacks sensitivity 
in detecting changes in functional connectivity in HD gene carriers prior to disease manifestation 
over a 3-year follow-up period.
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Longitudinal Resting State fMRI in preHD

Introduction

untington’s disease (HD) is an autosomal dominantly inherited neurodegenerative 
disorder characterized by motor, cognitive and psychiatric symptoms with a mean age at 
onset between 30-50 years.1 It is caused by an expanded CAG trinucleotide repeat in the 

huntingtin (HTT) gene on the short arm of chromosome 4.2 Magnetic Resonance Imaging (MRI) 
studies in HD have revealed extensive brain atrophy, most notably in the striatum.3-9

A current challenge in HD research is establishing reliable biomarkers for measuring disease 
progression in HD, both before and after disease manifestation. This is crucial for assessing the 
effi  cacy of future proposed therapies. Several large longitudinal studies are currently being 
conducted for the purpose of establishing such biomarkers.10-13 Using MRI, these studies have 
shown that atrophy of diff erent structures in the brains of premanifest gene carriers (preHD), and 
of the caudate nucleus in particular, is correlated with the estimated years to disease onset (YTO) 
as calculated by the formula of Langbehn et al.10-14 This is of particular interest, as these subjects 
have yet to present clinically with the hallmark motor symptoms of HD.

As the correlations found up to this point only partially predict the rate of clinical deterioration, 
combining imaging modalities might increase the predictive validity of a potential biomarker. 
With Resting State functional MRI (RS-fMRI) interregional correlations of blood oxygenation 
level dependent (BOLD) signal fl uctuations between brain regions that are spatially distinct, are 
measured in the wakeful brain, without challenging it with a particular task. The patterns acquired 
with this technique are usually referred to as “functional connectivity”. RS-fMRI has the theoretical 
potential of revealing changes occurring in the brain before changes on the structural imaging 
level are evident, which could be important in targeting the disease in its earliest stages. It may 
in addition help to unravel compensatory mechanisms responsible for apparently normal brain 
function despite ongoing neurodegeneration. The technique has already been shown to be a 
valuable marker for tracking disease progression in Alzheimer’s disease, and in mild cognitive 
impairment.15,16

In a previous report, our group has reported functional connectivity diff erences between 
controls, preHD and manifest HD subjects, cross-sectionally. The results showed preHD subjects 
already exhibiting altered functional connectivity with diff erent structures in the brain compared 
to the matched control group. Importantly, this was still valid after correction for atrophy.17 The 
fi rst report detailing reduced cortico-striatal functional connectivity fi ndings in preHD when 
compared to controls was by Unschuld et al.18 A recent report by Poudel et al. further confi rms 
fi ndings of functional connectivity reductions in both preHD and manifest HD subjects.19

In the current longitudinal study we aim to assess the potential usefulness of this technique as a 
biomarker for disease progression in the premanifest stage of the disease. We investigate possible 
changes in functional connectivity occurring longitudinally over a follow-up period of 3 years. 
With the aim of having a comprehensive interpretation of the acquired data, three separate data 
analysis methods were applied.

H 2
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Chapter 2

Methods

Subjects
Of the 28 premanifest HD carriers (preHD) and 28 healthy age-matched control subjects who 
completed RS-fMRI scans during their first visit at the Leiden University Medical Center (LUMC) 
study site of the TRACK-HD study,7 23 preHD and 20 control subjects completed the resting state 
scans at the second visit, with a 3 year interval between visits. Excluded from analysis were 1 
preHD subject due to missing scan volumes and 2 control subjects due to excessive motion 
artifacts (maximum motion during scan < 4 mm).20 This resulted in 22 preHD and 18 healthy 
control subjects that were included in this study (Table I).

Inclusion criteria for study participation for preHD subjects comprised of a positive genetic test 
with ≥ 40 CAG repeats, the absence of motor disturbances on the total motor score (TMS) of 
the Unified Huntington’s Disease Rating Scale (UHDRS) of more than 5 points and a burden of 
pathology score greater than 250 ((CAG repeat length - 35.5) x age).7,21 Age- and gender-matched 
gene-negative relatives of HD gene carriers and spouses were included as healthy controls. 
Exclusion criteria for all participants included significant previous head trauma, any neurological or 
major psychiatric disorder or unwillingness to undergo MRI scanning.7 Medical history taking, an 
interview-based assessment and questionnaires were used to ascertain that no major psychiatric 
disorder could be classified at the time of inclusion and scanning. Consequently, the use of 
neuroleptic medications or antidepressants was sparse and considered to be of no influence.

For preHD subjects the estimated number of years until disease onset was calculated based on 
their current age and the CAG repeat length, by means of the formula developed by Langbehn 
et al.14

As previously applied by Tabrizi et al.,7 for a second analysis, the preHD group was divided at 
baseline according to the median (10.9 years) for the predicted years to onset into preHD-A 
(≥10.9 years from predicted onset) and preHD-B (<10.9 years). This resulted in two groups each 
consisting of 11 subjects (Table II). In a further analysis performed within the preHD group, 
possible associations between functional connectivity change and burden of pathology score 
were assessed.

The study was approved by the ethics committee of the LUMC and written informed consent was 
obtained from all participants following a complete description of the study and procedures. For 
full details of study parameters, see Tabrizi et al.7
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N
Gender M/F
Age in years (V1), mean (SD)
Handedness R/L
Level of education (ISCED), median (range)
DART-IQ, mean(SD)
BMI in kg/m  (V1) , mean (SD)
CAG repeat length, mean (SD)
Estimated years to onset (YTO), mean (SD)
Total functional capacity, mean (SD)
 V1
 V2
UHDRS-TMS, mean (SD)
 V1
 V2
SDMT, mean (SD)
 V1
 V2
BDI-II, mean (SD)
 V1
 V2
Between-scan interval in months, mean (SD)

18
7/11
46.7 (6.9)
18/0
4 (3)
105.3 (9.3)
26.9 (6.6)
n/a
n/a

13.0 (0.0)
13.0 (0.0)

2.4 (2.5)
2.2 (3.0)

53.7 (8.9)
58.4 (8.0)
  
4.4 (6.3)
 4.8 (5.1)
35.6 (1.20)

22‡
10/12
43.3 (8.5)
18/4
4 (3)
100.3 (11.6)
24.9 (4.1)
42.6 (2.6)
11.6 (4.4)

12.7 (0.8)
12.6 (0.9)*

2.4 (1.5)
5.4 (5.7)* 
   
48.7 (9.7)
49.4 (10.5)* 
  
5.1 (5.7)
5.3 (6.0)   
35.3 (0.94)

     
Healthy 
controls                                                                                                       

preHD 
(A and B)

2
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Table I. Group characteristics and clinical scores 

N = number of participants, SD = Standard deviation, n/a = not applicable, ISCED = International Standard 
Classifi cation of Education, DART-IQ = Dutch Adult Reading Test Intelligence Quotient, CAG = Cytosine-Adenine-
Guanine, UHDRS-TMS = Unifi ed Huntington’s Disease Rating Scale Total motor score, SDMT = Symbol Digit 
Modalities Test, BDI-II = Beck Depression Inventory-II, BMI = Body Mass Index, V1 = visit 1, V2 = visit 2.
* Indicates a signifi cant diff erence at p < 0.05. 
‡ Including four subjects progressing to the manifest stage during the three year follow-up period.
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Clinical measures
To monitor disease state, the following clinical measures were collected longitudinally for 
all groups: Unified Huntington’s Disease Rating Scale Total Motor Score (UHDRS-TMS), Total 
Functional Capacity (TFC), Symbol Digit Modalities Test (SDMT) and Beck Depression Inventory-
II (BDI-II) scores. The UHDRS-TMS is the traditional measure which defines disease state in HD. 
The SDMT in particular has been shown to be a sensitive longitudinal cognitive measure in HD, 
independent of disease related motor effects.22

MRI acquisition
MRI acquisition was performed on a 3-Tesla whole body scanner (Philips Achieva, Healthcare, 
Best, The Netherlands) with an eight channel receive array head coil. An anatomical T1-weighted 
scan was acquired using an ultrafast gradient echo 3D acquisition sequence with the following 
imaging parameters: repetition time (TR) = 7.7 ms, echo time (TE) = 3.5 ms, field-of-view = 24 x 
24 x 16.4 cm3, matrix size 224 x 224, with a duration of 9 minutes. For post-processing registration 
purposes, a high resolution T2*-weighted scan, with the following parameters was collected: 
repetition time (TR) = 2200 ms, echo time (TE) = 30 ms, field-of-view = 220 x 220 x 168 mm3, flip 
angle = 80°, matrix size = 112 x 109 mm2, with a duration of 46 s. A RS-fMRI scan with the following 
parameters was obtained: 200 EPI volumes, repetition time (TR) = 2200 ms, echo time (TE) = 30 
ms, field-of-view = 220 x 220 x 10.4, resolution = 2.75 x 2.75 x 2.75, no slice gap, flip angle = 80°, 
matrix size 80 x 79, with a duration of 7.5 minutes. No background music was played during the 
RS-fMRI scan and to ensure a wakeful disposition participants were asked to keep their eyes open 
with normal background light.

Pre-processing of resting state data
RS-fMRI images were analysed using FSL 5.0 (fMRIB Software Library; available at  
www.fmrib.ox.ac.uk/fsl). Pre-processing consisted of motion correction,23 removal of non- 
brain tissue,24 spatial smoothing using a Gaussian kernel of 6 mm full width at half maximum 
(FWHM) and high-pass temporal filtering equivalent to 100 s (0.01 Hz). After pre-processing, 
the functional images were registered to the high-resolution T2*-weighted images. These high-
resolution images were subsequently registered to the anatomical T1-weighted images. Finally, 
the anatomical scan was registered to the 2 mm isotropic MNI152 standard space image.23 These 
three registration matrices were combined to obtain a matrix for transforming fMRI data from 
native space to standard space and its inverse (from MNI space to native space). Visual quality 
control was performed by two qualified raters to ensure correct registration.
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Table II. preHD-A vs. preHD-B, visit 1

N = number of participants, SD = Standard deviation, ISCED = International Standard Classifi cation of Education, 
DART-IQ = Dutch Adult Reading Test Intelligence Quotient, CAG = Cytosine-Adenine-Guanine, UHDRS-TMS = 
Unifi ed Huntington’s Disease Rating Scale Total motor score, SDMT = Symbol Digit Modalities Test, BDI-II = Beck 
Depression Inventory-II, BMI = Body Mass Index.
* Indicates a signifi cant diff erence at p < 0.05.

Statistical analysis
Statistical analysis of group demographics and clinical measures was performed using IBM SPSS 
Statistics (version 20.0, IBM Corp., USA). Where appropriate either an independent samples t-test 
or chi-squared tests were applied. Potential longitudinal change in clinical measures between the 
groups was also investigated. Diff erence values were computed and independent samples t-tests 
on these delta-scores evaluated whether preHD subjects experienced a greater change from visit 
1 to visit 2 than control subjects.

Striatal and whole brain volumes were obtained from the TRACK-HD study database.7,13 These 
measures were calculated using the Iowa BRAINS method as previously described.7,13,25,26 

Assessment of possible longitudinal volumetric change was performed using a general linear 
model with age, gender and total brain volume (the latter only for assessing striatal volumes) as 
covariates in the model.

Longitudinal Resting State fMRI in preHD

2N

Gender M/F

Age in years, mean (SD)

Handedness R/L

Level of education (ISCED), median (range)

DART-IQ, mean (SD)

BMI in kg/m , mean (SD)

CAG repeat length, mean (SD)

Estimated years to onset (YTO), mean (SD)

Total functional capacity, mean (SD)

UHDRS-TMS, mean (SD)

SDMT, mean (SD)

BDI-II, mean (SD)

Between-scan interval in months, mean (SD)

11

3/8

43.8 (5.8)

9/2

4 (3)

102.3 (9.9)

25.6 (3.0)

41.5 (1.4)

14.4 (4.5)

12.7 (0.7)

1.9 (1.5)

51.6 (9.9)

4.5 (6.0)

35.6 (1.0)

     
preHD-A
                                                                                                       

preHD-B

11

7/4

43.0 (10.9)

9/2

4 (3)

98.3 (13.2)

 23.1 (2.3)

43.8 (3.1)*

8.8 (1.6)*

12.6 (0.9)

2.9 (1.3)

45.9 (9.1)

5.6 (5.7)

34.9 (0.7)
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The functional connectivity analysis was performed in three ways using the dual regression 
method of FSL, a technique that allows a voxel-wise comparison of resting state functional 
connectivity.27 To assess possible associations between the burden of pathology score and 
functional connectivity change, a regression analysis was preformed within the preHD group 
only.

Network of interest analysis
First, resting state functional connectivity was determined in terms of similarity of the BOLD 
fluctuations in the brain in relation to characteristic fluctuations in predefined resting state 
networks or networks of interest (NOIs). Our choice of resting state networks was based on high 
reproducibility of these networks from independent component analysis of different data sets.28,29 
These standardized resting state networks parcellate the brain into eight templates that represent 
over 80% of the total brain volume:30 1) medial visual network, 2) lateral visual network, 3) auditory 
network, 4) sensorimotor system, 5) default mode network, 6) executive control network, 7 and 
8) dorsal visual stream networks (Figure 1).28 To account for noise, a white matter (WM) and a 
cerebrospinal fluid (CSF) template were included in the analysis.31-33

Dual regression analysis (part of FSL 5.0) was performed to identify subject-specific time course 
and spatial maps. To create the average time course within each network for every subject, the 
eight resting state networks28 and the two additional WM and CSF maps31-33 were used in a linear 
model fit against each individual subject’s fMRI dataset (spatial regression). Hence, WM and CSF 
activities were included in the regression model as proxy measures for non-neuronal noise. The 
personalized time courses were subsequently regressed back onto that subject’s fMRI dataset to 
create personal spatial maps (temporal regression). This gives ten 3D images per individual per 
visit, with voxel-wise the z-scores of functional connectivity to each of the templates. The higher 
the absolute value of the z-score, the stronger the connectivity to a network.

Independent component analysis
In a second approach, large-scale patterns of functional connectivity were identified by 
independent component analysis (ICA) using probabilistic ICA as implemented in the MELODIC 
tool of FSL.28,34 The original concatenated 4D RS-fMRI dataset was decomposed into sets of time 
courses and associated spatial maps, to identify different activation components without any 
model being specified.34,35 The number of components was fixed to 25 to limit independent 
component splitting into subcomponents.15,27

Subsequently the dual regression analysis as described above was repeated for the group ICA 
results. This time the 25 independent components were used as spatial regressors, ultimately 
resulting in 25 z-score maps per individual per visit, reflecting the connectivity strength of each 
voxel in the brain to each of the 25 independent components.
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Figure 1. Saggital, coronal and axial views of the dominant BOLD fl uctuations within the eight predefi ned 
networks of interest [Beckmann et al., 2005]. All images have been coregistered into the MNI152 standard space 
template. Numbers at the top of the images denote the MNI coordinates (xyz) and images are shown in radiological 
orientation.

Region of interest analysis
Given the overwhelming volume of evidence indicating the striatum as the prime and earliest 
region aff ected within the brain in HD, we chose the striatum as a region of interest (ROI) in 
our analysis. A mask was created to analyse the change in connectivity with the eight NOIs 
and the 25 independent components of the voxels within this ROI. The mask was based on the 
probabilistic atlas incorporated in FSL provided by the Harvard Center for Morphometric Analysis 
and contained the striatum from both hemispheres (Figure 2).36-39

Longitudinal change in connectivity per subject and per predefi ned network/independent 
component was the main parameter of interest. To assess this change, the individual functional 
connectivity maps (z-score) from the second visit were subtracted from the corresponding 
functional connectivity maps from the fi rst visit.

Longitudinal Resting State fMRI in preHD
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Figure 2. Axial view of the region of interest (ROI) mask of the striatum shown superimposed on a MNI152 standard 
image. 

For the between-group analysis, the z-score maps created by dual regression and the maps 
containing the differences in z-score were collected across subjects into single 4D maps (one per 
NOI or original independent component, with the fourth dimension being subject identification) 
and submitted to voxel-based statistical testing. To obtain group averages of maps containing the 
differences in z-score, a one-sample non-parametric t-test was used and a two-sample t-test was 
applied to obtain group differences for each of the 8 NOIs and each independent component, 
using a general linear modelling (GLM) approach as implemented in FSL. Age and gender were 
included as covariates in the model. To statistically account for potential effects of local structural 
differences within and between the two groups, grey matter volume of each voxel was included 
as subject wise and voxel-wise covariates in the GLM design.40 To evaluate a possible combined 
effect of grey matter volume change and the change in BOLD signal, the analysis was also 
performed without voxel-wise correction for grey matter volume.

Voxel-wise non-parametric permutation testing was performed using FSL-randomise (5000 
permutations).41 All statistical maps were family-wise error (FWE) corrected using p < 0.05, based 
on the TFCE statistic image.42

Because multiple comparison correction method only corrects the results at the predefined 
network/independent component level, but does not adjust for the risk of Type 1 error (false 
positives) induced by increasing the number of components tested simultaneously at high model 
orders, additional correction for multiple comparisons was done using Bonferroni correction. The 
multiple comparisons consisted of two comparisons (either connectivity increase or decrease as 
compared to healthy controls) for 8 NOIs and 25 independent components.
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Results

Group characteristics are shown in Table I. Age, gender, handedness and level of education did not 
diff er signifi cantly between controls and preHD subjects. At baseline, no diff erences were found 
in UHDRS-TMS, TFC, SDMT, BDI-II, and Dutch Adult Reading Test Intelligence Quotient (DART-IQ) 
scores. There also was no diff erence in Body Mass Index (BMI) at baseline. Repeated assessment at 
3-year follow-up revealed signifi cantly higher UHDRS-TMS and lower TFC and SDMT scores in the 
preHD group (Table I). Four of the twenty-two preHD subjects began to exhibit typical HD motor 
symptoms during the 3-year follow-up period, therefore reaching the defi nition of early manifest 
disease stage. The cross-sectional diff erence in UHDRS-TMS and TFC score between the groups at 
the second visit was negated after exclusion of these four converter subjects, yet the diff erence 
in SDMT score remained signifi cant (p = 0.07, p = 0.36 and p = 0.01, respectively). The diff erence 
in SDMT comprised of higher mean scores within the control group when compared to their fi rst 
visit, while the scores of the preHD group remained stagnant.

The longitudinal change in the UHDRS-TMS was signifi cant when all participants were included 
(p = 0.03), yet this result was only reached as a result of outlier scores: when the four converters 
were excluded from analysis, this diff erence vanished (p = 0.25).

The longitudinal change in the SDMT score was signifi cant when all participants were included (p 
= 0.04). While the mean SDMT diff erence in the preHD group remained essentially the same when 
the four converters were excluded (+0.64 vs. +0.67 diff erence points, respectively), statistical 
signifi cance could no longer be reached (p = 0.06). See Table III for a view of the mean longitudinal 
change of the diff erent measures.

No diff erences in any of the scores outlined above were found while comparing the preHD-A 
and preHD-B groups, neither at the fi rst or second visit nor longitudinally. The CAG trinucleotide 
repeat count was signifi cantly higher in the preHD-B relative to the preHD-A group (p = 0.03) 
(Table II; longitudinal change data not shown).

All scans were analysed with and without inclusion of the four converters. All scan analyses were 
also repeated with exclusion of the four left-handed subjects to avoid any possible lateralization 
eff ects. The reported results are with and without voxel-wise correction for grey matter volume, 
as described in the Methods section. No diff erence was found in the amount of motion between 
the groups.

RS-fMRI network analyses
In the eight designated NOIs, longitudinal analysis of the RS-fMRI data revealed no statistically 
signifi cant diff erences in the degree of connectivity change between controls and the preHD 
group. There also were no statistically signifi cant diff erences between controls and preHD-A and 
controls and preHD-B subjects. No association could be demonstrated between the degree of 
connectivity change in the diff erent networks and the groups designated as far and near from 
expected onset of motor symptoms, nor with the burden of pathology score. 

Longitudinal Resting State fMRI in preHD
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Table III. Longitudinal change in clinical scores †, mean difference

N = number of participants, MD = mean difference, SD = Standard deviation, UHDRS-TMS = Unified Huntington’s 
Disease Rating Scale Total motor score, SDMT = Symbol Digit Modalities Test, BDI-II = Beck Depression Inventory-II, 
BMI = Body Mass Index.
* Indicates a significant difference at p < 0.05. 
† Longitudinal change denotes scores from visit 1 subtracted from scores from visit 2. 
‡ Including four subjects progressing to the manifest stage during the three year follow-up period.

RS-fMRI ICA
Using the ICA method, 25 components were extracted from the data per person per visit and 
the differences between the two visits compared across the above outlined groups. There were 
no statistically significant differences in the degree of connectivity change between any of the 
groups. Dividing the preHD group according to the expected time of motor symptom onset 
again revealed no significant differences in the degree of connectivity change. Regression analysis 
using the burden of pathology score revealed no associations with the degree of functional 
connectivity change within the preHD group.

RS-fMRI ROI analysis
Using the described mask to assess the change of connectivity strength in the voxels within 
the striatum, no statistically significant differences could be demonstrated between any of the 
groups described above.

When comparing results from the outlined analysis methods, the ROI analysis provided the closest 
proximity to achieving a significant longitudinal reduction in functional connectivity in preHD 
when compared to controls. This was the case with the lateral visual network (NOI 2; p = 0.08) 
and default mode network (NOI 5; p = 0.11) (Figure 3). Power analysis using these results show 
that a minimum of 23 subjects per group would be needed to detect a significant longitudinal 
reduction in functional connectivity in 3 years within the striatum with the lateral visual network 
for preHD compared to controls (at 5% FWE rate with a power of 80%).
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N

Total functional capacity, MD (SD)

UHDRS-TMS, MD (SD)

SDMT, MD (SD)

BDI-II, MD (SD)

BMI in kg/m , MD (SD)

18

0.0 (0.0)

0.2 (2.9)

4.7 (5.7)

0.4 (3.6)

0.5 (2.3)

-

22‡

0.1 (0.6)

3.0 (5.4)*

0.6 (6.1)*

0.2 (5.1)

0.4 (1.6)

-

-

     
Healthy controls                       preHD (A and B)
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Table IV provides an overview of signifi cance levels for longitudinal reduction of functional 
connectivity within the striatum over 3 years in preHD subjects compared to controls with the 8 
NOIs.

Longitudinal volumetric analysis
In the 3-year follow-up period, no statistically signifi cant diff erence in whole brain volume decline 
was found between controls (0.33%) and preHD (0.58%) (p = 0.35).

The striatal volume showed a signifi cantly higher rate of decline over the 3-year period in preHD 
as compared to controls: 1.45% in the control group versus 7.29% in the preHD groep (p < 0.001). 
Striatal volume decline over the 3 years was signifi cantly higher in both preHD-A (6.62%) and 
preHD-B (8.15%) when compared to controls (p < 0.001). The diff erence in striatal volume decline 
rate between preHD-A and preHD-B was not statistically signifi cant over this time period (p = 
0.31).

Discussion

This study showed no longitudinal diff erence in functional connectivity change between preHD 
and healthy control subjects over a period of 3 years. This was also the case when preHD subjects 
were divided in a preHD-A and preHD-B group based on the expected time to disease onset 
and when using burden of pathology score as a regressor for functional connectivity change. 
These conclusions are based on results obtained from three diff erent analysis methods. Results 
remained the same with and without voxel-wise correction for grey matter volume and while 
running the analysis with the inclusion and/or exclusion of converters and left-handed subjects.

Figure 3. P-value maps of the nonsignifi cant longitudinal reductions in functional connectivity in preHD compared 
to controls in the striatum with the lateral visual and default mode networks in the 3-year study period.
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Table IV. Statistical parameters for longitudinal reduction of functional connectivity within the striatum over 3 
years in preHD subjects compared to controls with the 8 networks of interest

x, y, and z denote MNI152 standard space coordinates.

This result, taken together with clinical parameters like the UHDRS-TMS and SDMT showing 
longitudinal change between the included subjects, and significantly higher longitudinal 
striatal atrophy rate in preHD compared to controls, alludes to a lack of sensitivity of RS-fMRI 
in detecting concomitant changes in functional connectivity occurring longitudinally in preHD. 
This statement should be considered as tentative, as future studies with greater numbers of 
participants, improved signal-to-noise ratio, different analysis methods and/or a longer follow-up 
period might be able to demonstrate longitudinal differences in functional connectivity change. 
That being said, results from this study suggest that even if there is functional connectivity change 
occurring in the 3-year follow-up period, this is too small to detect with this technique using the 
highlighted methods with this cohort size, which is a relevant finding in light of longitudinal 
biomarker research in preHD.

Our study confirms the results found by Seibert et al.43 Their study reported no change in 
functional connectivity over a 1 year period. The differences between the study of Seibert et 
al. and our own were the methodology used, where seeds instead of a priori spatial NOIs were 
used and subject-native space registration instead of the MNI152 standard space template was 
applied. The number of subjects examined in that report was higher than in our study: 22 controls 
and 34 preHD subjects.

Our earlier cross-sectional results suggested that functional connectivity, at the group level, was 
a fairly sensitive measure to differentiate preHD subjects from controls.17 As such, we were quite 
hopeful to demonstrate a divergent longitudinal functional connectivity evolution between 
the groups, which in turn could serve as a measure for disease progression. We were however 

Network of interest (NOI)

Medial visual

Lateral visual

Auditory

Sensorimotor

Default mode

Executive control

Dorsal visual stream

Dorsal visual stream

 z 

42

35

49

45

36

32

39

29

t-stat

3.527

4.175

3.280

2.491

3.845

2.327

3.355

3.754

1

2

3

4

5

6

7

8

 y 

68

69

56

62

70

69

66

68

Minimal P-value

0.356

0.078

0.686

0.804

0.112

0.734

0.502

0.262

 x 

39

53

36

54

53

31

59

36
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unable to reproduce these results within our baseline cohort, most likely due to the smaller 
number of subjects that were included, as only those with scans at both time points could be 
assessed longitudinally. This study can therefore not account for the functional connectivity 
of the dropouts, as no data are available. Furthermore, the discrepancy in baseline fi ndings 
might involve deteriorating health prompting more severely aff ected subjects to drop out 
prematurely of the study, thus leaving a relatively fi tter group for this study. A such, selection bias 
disproportionately aff ecting subjects with the fastest rate of clinical deterioration is a possible 
reason for not fi nding diff erent functional connectivities between the groups. This spurred using 
a more comprehensive approach and to base the hypothesis-driven part of the analysis solely by 
singling out the striatum as the primary region where possible changes in resting state activity 
are expected, given the fact that it is the region fi rst aff ected in HD, as was again demonstrated 
by the volumetric study of the striatum within this cohort. Despite using three diff erent analysis 
methods, no longitudinal change could be demonstrated in our cohort in a time frame of 3 
years with two measurement points. The combination of a highly signifi cant diff erence in striatal 
atrophy rate between preHD and controls with a total lack of signifi cant diff erence in the rate of 
functional connectivity change between these groups strongly points to a lower sensitivity of 
RS-fMRI in demonstrating longitudinal change in the preHD population.

A similar sequence of results was found by the study of Wolf et al., where task-based fMRI showed 
signifi cantly lower activity cross-sectionally in the left prefrontal cortex in preHD, yet failed to 
demonstrate a signifi cant decline of that activity over a 2-year follow-up period.44 In that study, 
the baseline and longitudinally examined cohort consisted of the same subjects. Despite the 
obvious diff erences in methodology and spatial parameters used in measuring the BOLD signals, 
the longitudinal study by Wolf et al. may further consolidate the notion of a lack of sensitivity in 
detecting BOLD signal changes occurring during a time frame that can be considered feasible for 
assessing the effi  cacy of an intervention in preHD.

The strength of our study lies in the application of three diff erent analysis methods which allows 
for a more comprehensive interpretation of the data. This strength is complemented by the 
acquisition methodology used: the duration of the RS-scans (>6 min) and acquisition while the 
patients have their eyes open provide the most robust estimates of functional connectivity as 
demonstrated by diff erent studies.45,46

A limitation of this study is the loss of power due to the expansive testing of various networks 
and independent components. This expansive testing is however justifi ed given the goal of 
fi nding robust and specifi c functional connectivity changes in preHD for usage as biomarker 
candidate in a clinical trial setting. Other possible limitations include transforming the data to an 
atlas volume instead of subject-native space, the relatively small number of tested subjects and 
possible confounding eff ects of dropouts, the conceivably short follow-up period in the preHD 
stage setting and not accounting for possibly confounding covariables such as depression scores 
in the analysis model.
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Based on the results found in this study, the provisional conclusion is that RS-fMRI seems to 
lack sensitivity in detecting changes in functional connectivity in HD gene carriers prior to 
disease manifestation over a 3-year follow-up period. This conclusion applies to this selective 
group of participants and the particular analysis methods used in this study. Results from future 
longitudinal studies, such as the ongoing Track-On HD study which has larger groups and more 
time points measured, should be awaited before articulating a definite recommendation on the 
possible utility of RS-fMRI as a biomarker tracking disease progression in preHD.
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Abstract

Background
Diffusion Tensor Imaging (DTI) provides indirect information about the quality of the microstructural 
organization of tissues. In this 2-year follow-up study, we assess both cross-sectional and time-
related changes of striatal and whole-brain microstructural properties in different stages of 
Huntington’s disease (HD) using DTI.

Methods
From the TRACK-HD study, 22 premanifest gene carriers (preHD), 10 early manifest HD and 24 
controls were scanned at baseline and 2-year follow-up. Stratification of the preHD group into 
a far (preHD-A) and near (preHD-B) to predicted disease onset was performed. Age-corrected 
histograms of whole-brain white matter (WM), grey matter (GM) and striatal diffusion measures 
were computed and normalised by the number of voxels in each subject’s data set.

Results
Higher cross-sectional mean, axial and radial diffusivities were found in both WM (p ≤ 0.001) and 
GM (p ≤ 0.001) of the manifest HD compared to the preHD and control groups. In preHD, only 
WM axial diffusivity (AD) was higher than in controls (p ≤ 0.01). This finding remained valid only 
in preHD-B (p ≤ 0.001). AD was also higher in the striatum of preHD-B compared to controls and 
preHD-A (p ≤ 0.01). Fractional anisotropy (FA) lacked sensitivity in differentiating between the 
groups. Histogram peak heights were generally lower in manifest HD compared to the preHD 
and control groups. No longitudinal differences were found in the degree of diffusivity change 
between the groups in the two year follow-up. There was a significant relationship between 
diffusivity and neurocognitive measures.

Conclusions
Alterations in cross-sectional diffusion profiles between manifest HD subjects and controls 
were evident, both in whole-brain and striatum. In the preHD stage, only AD alterations were 
found, a finding suggesting that this metric is a sensitive marker for early change in HD prior 
to disease manifestation. The individual diffusivities were superior to FA in revealing pathologic 
microstructural brain alterations. Diffusion measures were well related to clinical functioning and 
disease stage.
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Introduction

untington’s disease (HD) is a neurodegenerative autosomal dominant disorder. It is caused 
by an increased CAG (Cytosine-Adenine-Guanine) repeat within the huntingtin gene on 
the short arm of chromosome 4.1 The mutant huntingtin protein triggers a pathogenic 

cascade responsible for neuropathology in the brain.2,3 This results in cognitive, motor, and 
psychiatric symptoms. The brain as a whole is impacted, though preferential striatal volume loss 
has been extensively documented by post-mortem histopathological as well as in vivo magnetic 
resonance imaging (MRI) studies.4-9

Even though no medication is currently available to cure or slow-down the disease, it remains 
crucial to have a clear understanding of the typical evolution of brain changes in the disease 
to determine when microstructural changes start and how fast degeneration occurs. This is 
necessary to defi ne optimal intervention starting points as well as possibly providing an objective 
tool to determine the impact of candidate therapies, especially in the premanifest (preHD) phase 
where clinical measures are lacking.

Diff usion tensor imaging (DTI) is an MRI technique that can quantify water diff usion within 
tissue.10-13 The diff usion tensor in every voxel can be described by its three eigenvectors and 
eigenvalues (λ1, λ2, λ3). These eigenvalues quantify the diff usion in three orthogonal orientations 
and are typically synthesized to axial (= λ1) and radial (= (λ2 + λ3)/2) diff usivities.

Another popular diff usion measure is fractional anisotropy (FA), which is a function of the 
eigenvalues, and ranges from 0 (completely isotropic diff usion) to 1 (completely anisotropic 
diff usion), with higher values generally corresponding to a higher directional coherence of 
tissue organization. High FA occurs for example in healthy white matter (WM) which typically 
has a parallel-oriented micro-architecture. Another commonly reported diff usivity measure is the 
mean diff usivity (MD), which is the average of the three eigenvalues. In this study we evaluate 
and report these measures as well as the separate underlying eigenvalues, as these may provide 
complementary information about the nature of microstructural change.14,15 It is possible 
that certain metrics are more selectively aff ected and, therefore, might be more sensitive to 
longitudinal change. For example, when changes in axial diff usivity (AD) are proportional to radial 
diff usivity (RD), the FA value may not be very informative.16

In a previous study, we evaluated cross-sectional group diff erences in FA and MD between 
controls, preHD and manifest HD subjects using a region-of-interest and fi ber tractography 
analysis approach.17 In that study, MD proved to be more sensitive in diff erentiating between 
the groups compared to FA. Findings from previous longitudinal reports remain inconsistent.18-20 

With inherent limitations such as inter-user variability to nonautomated methods such as hand 
drawn regions-of-interest, we chose an automated histogram analysis method in this work to 
assess cross-sectional as well as time-related changes of diff usivity measures occurring within 
2 years. We hypothesized that lower FA and higher MD, AD and RD values would be found in 
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subjects with manifest HD when compared to preHD subjects and controls, reflective of higher 
microstructural disorganization in the manifest group. In addition, we hypothesized that MD 
would be elevated in preHD subjects when compared to controls based on results from our 
previous work.17 Grey matter (GM) diffusivity was assessed separately to assess potential higher 
sensitivity towards alteration compared to WM, fully bearing in mind the limitations of the 
tensor model in GM. Associations between neurocognitive measures and diffusivity findings 
were assessed for potential usage as surrogate markers or predictors for these findings. Also, 
associations between diffusivity and the expected time to disease onset were assessed to test 
the hypothesis that sensitivity of diffusivity measures in detecting disturbances in preHD subjects 
increases with shorter proximity to expected disease onset.

As a subanalysis, diffusion in the left and right hemispheres was assessed individually. This was 
done to explore the hypothesis of preferential degeneration of the dominant versus the non-
dominant hemisphere. Plausibly increased lifetime excitotoxic exposure due to higher activation 
could lead to such a finding in HD. We hypothesized that diffusion parameters indicative of greater 
neuronal damage were represented more readily in the dominant hemisphere, as findings from 
previous studies have suggested.21-24 To the best of our knowledge, this is the first study exploring 
this hypothesis and the first to apply histogram analysis to (longitudinal) DTI data in HD as well as 
to separately assess microstructural properties of both whole-brain GM and WM.

Materials and methods

Participants
As part of the TRACK-HD study, 90 participants were included at baseline at the Leiden University 
Medical Center (LUMC) study site (for details see Tabrizi et al.).7 DTI was added to the standard MRI 
protocol. At baseline, DTI was not performed in ten participants because of claustrophobia, and 
another nine were excluded from analysis due to excessive movement artefacts. Of the remaining 
71 subjects, 62 subjects completed DTI scans at both visits. Of these 62, a further six subjects were 
excluded from analysis due to excessive movement artefacts at the second visit. The longitudinal 
cohort included in this work was thus comprised of 56 subjects: 24 healthy controls, 22 preHD 
and ten early manifest HD (Table I).
Inclusion criteria for the preHD group were a CAG repeat ≥ 40 with a total motor score on the 
Unified Huntington’s Disease Rating Scale (UHDRS-TMS) ≤ five. Inclusion criteria for the early 
manifest HD group were a CAG repeat ≥ 40, with a UHDRS-TMS ≥ five and a Total Functional 
Capacity score (TFC) ≥ seven. A further inclusion criterion for both the preHD and early manifest 
HD group consisted of a burden of pathology score greater than 250 ((CAG repeat length - 35.5) 
x age).7,25 Healthy gene negative family members or partners were recruited as control subjects. 
None of the participants suffered from a concomitant neurological disorder, a major psychiatric 
diagnosis or had a history of severe head injury.
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Table I. Group characteristics and clinical scores

N = number of participants, SD = Standard deviation, n/a = not applicable, ISCED = International Standard 
Classifi cation of Education, DART-IQ = Dutch Adult Reading Test Intelligence Quotient, CAG = Cytosine-Adenine-
Guanine, UHDRS-TMS = Unifi ed Huntington’s Disease Rating Scale-Total Motor Score, SDMT = Symbol Digit 
Modalities Test, SWR = Stroop Word Reading task, BDI-II = Beck Depression Inventory-II, V1 = visit 1, V2 = visit 2.
Signifi cance at p ≤ 0.05 level: * signifi cantly diff erent from controls, Φ signifi cantly diff erent from controls and 
preHD, ¥ signifi cantly diff erent from controls and HD, ^ signifi cantly diff erent from preHD-A. 
‡ Including fi ve subjects progressing to the early manifest stage during the two year follow-up period.

Hemispheric dominance was defi ned using a standardised neuropsychological questionnaire.26 

For preHD subjects, the predicted years to disease onset was calculated using the CAG repeat 
length and age-based survival analysis of Langbehn et al.27

As previously applied by Tabrizi et al.,7 to assess the eff ect of expected proximity to disease onset 
on diff usion parameters, the preHD group was divided at baseline according to the median (10.9 
years) for the predicted years to disease onset into preHD-A (≥ 10.9 years) and preHD-B (< 10.9). 
This resulted in two groups each consisting of eleven subjects (Table I).
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N
Gender M/F
Age in years (at V1), mean (SD) 
Handedness R/L
Level of education (ISCED), median (range) 
DART-IQ, mean (SD)
CAG repeat length, mean (SD)
Estimated years to onset, mean (SD)
Total functional capacity, mean (SD)

UHDRS-TMS, mean (SD) 

SDMT, mean (SD)

SWR, mean (SD)

BDI-II, mean (SD)

Between-scan interval in months, mean (SD)

24
11/13 
49.0 (8.2) 
20/4
4 (3) 
105.0 (9.4) 
n/a 
n/a

13.0 (0.2) 
12.9 (0.5)

2.6 (2.5) 
2.1 (1.6)

49.4 (8.9) 
50.9 (9.3)

100.1 (13.2) 
102.0 (15.6)

4.1 (4.4)
3.9 (4.1) 
23.0 (0.8)

22‡
9/13 
43.6 (8.7) 
18/4
4 (3) 
100.5 (11.2) 
42.6 (2.7) 
11.8 (4.7)

12.8 (0.5) 
12.6 (0.9)

2.6 (1.5) 
5.7 (5.1) ¥

50.1 (11.0) 
50.6 (10.0)

91.9 (14.2)* 
87.9 (15.7)*

6.4 (6.4)
5.1 (5.6) 
23.0 (0.7)

     
Healthy 
controls                                                                                     

preHD 
(A and B)

11
4/7 
44.2 (5.7) 
9/2
4 (3) 
101.3 (9.7) 
41.3 (1.4) 
14.9 (4.7)

12.7 (0.7) 
12.7 (0.6)

2.0 (1.5) 
3.5 (2.2)

53.5 (9.3) 
54.7 (10.0)

95.6 (9.6) 
91.4 (9.4)

4.9 (6.0)
3.2 (4.9) 
23.2 (0.6)

preHD-A

11
5/6 
43.0 (11.2) 
9/2
4 (3) 
99.6 (13.0) 
43.9 (3.1)^ 
8.6 (1.8)^

12.8 (0.4) 
12.5 (1.0)

3.1 (1.2) 
8.3 (6.1)*^

46.7 (11.9) 
46.6 (8.5)^

88.3 (17.3)* 
84.4 (20.0)*

7.9 (6.8)
6.9 (5.9) 
22.7 (0.7)

preHD-B 

10
4/6 
50.2 (9.3) 
9/1
4 (3) 
101.8 (13.5) 
42.5 (1.2) 
n/a

11.0 (1.5)Φ 
10.3 (2.2)Φ

14.6 (7.7)Φ 
23.0 (12.1)Φ

41.2 (9.2)Φ
39.2 (10.6)Φ

87.7 (14.7)* 
86.4 (18.6)*

10.2 (8.2)* 
8.2 (8.4) 
23.5 (0.7)

Manifest HD

V1 
V2

V1 
V2

V1 
V2

V1 
V2

V1 
V2
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The study was approved by the Medical Ethics Committee of the LUMC and written informed 
consent was obtained from all participants. For full details of study parameters, see Tabrizi et al.7

Clinical measures
To monitor disease state, the following clinical measures were evaluated longitudinally for all 
groups: UHDRS-TMS, TFC, Symbol Digit Modalities Test (SDMT), Stroop Word Reading (SWR) and 
Beck Depression Inventory-II (BDI-II) scores.

The UHDRS-TMS is the traditional measure which defines manifest disease state in HD. The SDMT 
and SWR in particular have been shown to be sensitive longitudinal neurocognitive measures in 
HD, independent of disease related motor effects.28

Magnetic resonance imaging acquisition
MRI acquisition was performed with a 3-Tesla whole-body scanner (Philips Achieva, Healthcare, 
Best, The Netherlands) with an eight channel SENSE head coil. T1-weighted image volumes were 
acquired using a 3D MPRAGE acquisition sequence with the following imaging parameters: TR = 
7.7 ms, TE = 3.5 ms, FOV = 24 x 24 cm2, matrix size 224 x 224, number of slices = 164, slice thickness 
= 1.00 mm, and no slice gap. A single-shot echo-planar diffusion tensor imaging sequence was 
applied with 32 measurement directions and the following scan parameters:11 TR = 10,004 ms, TE 
= 56 ms, FOV = 220 x 220 mm2 with an acquisition matrix of 112 x 110, 2.00 mm slice thickness, 
transversal slice orientation, no slice gap, flip angle = 90°, reconstruction voxel dimensions of 1.96 
x 1.96 x 2.00 mm3, number of slices = 64, b-value = 1,000 s/mm2, halfscan factor = 0.61. Parallel 
imaging (SENSE) was used with a reduction factor of two, NSA = one, and fat suppression was 
applied. DTI acquisition time was 6.55 min.

Image processing
The DTI data was processed as described in Deprez et al.29 In summary, this consisted of the 
following steps: (1) Correction for subject motion and eddy current induced distortions;30 (2) 
Correction for echo planar images based deformations due to magnetic field inhomogeneities 
by registration to the T1-weighted images;31 (3) Tensor estimation using the iteratively reweighted 
linear least squares approach after outlier detection and removal by REKINDLE (κ = 6).32,33

The brain regions were segmented into WM and GM regions (Figure 1) using SPM 8 with default 
settings (revision 4667, 27-Feb-2012).34 Brain regions were left/right divided with the method 
described by Kuijf et al.35
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Histogram analysis
A spherical erosion fi lter (radius 2 mm) was applied to the brain masks (WM/GM; left/right) to 
minimize the inclusion of partial-volume aff ected voxels.36,37 The histograms of the diff usion 
measures were computed from these segmented brain regions. Subsequently, histograms 
were normalised by the number of voxels in each subject’s data set to create the group mean 
histograms.38

With histogram analysis, frequency distributions of selected DTI measures of designated voxels 
can be obtained. While not providing any region-specifi c information, this type of analysis is 
highly sensitive in detecting diff erences as the entire brain is included. Moreover, it provides a 
straightforward, fully automated and objective approach for interrogating imaging data. The 
resulting summarizing whole-brain measures are suitable for comparing diff usion between 
groups29 and its value has been previously demonstrated in multiple sclerosis and CADASIL.39-41 

This type of analysis can also be applied to any given selection of voxels of interest. Given the 
importance of the striatum in the histopathological profi le of HD, diff usion values for this structure 
were additionally evaluated in this study. The following diff usion features for whole-brain WM 
were investigated: FA, MD, AD and RD. In addition, for the whole-brain GM (including striatum) 
the MD, AD and RD were studied. The outcome measures were the mean and distribution peak 
heights of the histograms. Because two outcome measures were tested against two tissue types, 
p-values for omnibus F-tests were Bonferroni corrected to adjust for the increased risk of type one 
error and considered to be statistically signifi cant at p ≤ 0.05/4 = 0.0125.

Obtaining striatal masks
Striatal masks were obtained as described previously.42 In summary, T1-weighted images were 
segmented with the FAST and FIRST tools from the fMRI of the Brain Software Library (http://
www.fmrib.ox.ac.uk/fsl/).43-45 This provided individual brain masks for the following structures: 
the caudate nucleus and the putamen, both of these forming the striatum. Figure 1 shows such 
a segmentation result superimposed on a T1-weighted image. To correct for potential partial 
volume eff ects, an eroded mask of these segmentations was created by removing one voxel in-
plane for all the aforementioned voxels of interest.

Microstructural brain abnormalities in Huntington’s disease: a two-year follow-up
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Figure 1. From left to right: sagittal, coronal and axial images:  a. brain segmentation into WM (blue), GM (red) and 
CSF (green); b. directionally colour encoded fractional anisotropy map; c. striatal mask: red = left caudate nucleus 
and blue = left putamen; green = right caudate nucleus and pink = right putamen.

Statistical analysis
We used linear mixed models (in R version 3.0.0, R Foundation for Statistical Computing, Vienna, 
Austria) to model the various outcome variables with patient as a random factor to accommodate 
the within-person repeated nature of the data and to assess the effect of group, corrected for 
age at time of scanning as a co-variable. Correlations between neurocognitive measures and DTI 
findings were tested in the model.

Statistical analyses of group demographics were performed with SPSS (version 20, IBM, USA). 
Distributions and assumptions were checked. Either Analysis of Variance (ANOVA) or chi-squared 
tests were applied where this was appropriate. Potential longitudinal change in clinical measures 
between the groups was also investigated. Difference values were computed and an ANOVA was 
performed on these delta-scores to evaluate potential group differences. In case of a significant 
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omnibus F-test, exploratory post hoc analysis using Fisher’s least signifi cant diff erence was 
performed to assess which means were signifi cantly diff erent from each other. Diff erences in 
group demographics between preHD-A and preHD-B were compared using either independent 
samples t-tests or chi-squared tests, where appropriate.

Paired samples t-tests were performed to assess cross-sectional interhemispheric diff erences in 
DTI measures within the groups after excluding lefthanders. Lefthanders consisted of four control, 
four preHD and one manifest HD subjects. The longitudinal evolution of the interhemispheric 
diff usion measures was assessed with the aforementioned linear mixed model.

Table II. Mean whole-brain DTI parameters. MD, AD and RD are shown x103 for readability

Data is shown as mixed model-based estimates of the group means corrected for age (S.E.) 
Φ signifi cantly diff erent from controls and preHD, ¥ signifi cantly diff erent from controls and HD,      signifi cantly 
diff erent from controls, preHD-A and HD, *p ≤ 0.05 **p ≤ 0.01 ***p ≤ 0.001, bold values indicate sustained 
signifi cant diff erence following Bonferroni correction (p ≤ 0.0125), ¤ p = 0.08, ˆ p = 0.07.
FA = fractional anisotropy; MD = mean diff usivity; AD = axial diff usivity; RD = radial diff usivity; WM = white matter; 
GM = grey matter.

Results

Group characteristics and clinical scores
The groups did not diff er signifi cantly in terms of gender, handedness, level of education, 
intelligence quotient or body mass index. A trend toward a diff erence in age between the 
groups was found (p = 0.06), with premanifest subjects being generally younger compared to 
both controls and subjects with manifest HD. No statistical diff erence was found in CAG repeat 
count between preHD and manifest HD subjects. The between-scan interval was not signifi cantly 
diff erent between the groups.

At baseline, signifi cantly lower scores for subjects with manifest HD were found in TFC, SDMT 
and SWR when compared to both controls and preHD subjects. Higher scores for subjects with 
manifest HD were found for UHDRS-TMS and BDI-II when compared to both controls and preHD 

N
FA-WM 
MD-WM
MD-GM
AD-WM 
AD-GM
RD-WM 
RD-GM

24
0.434 (0.008)
0.754 (0.010) 
0.767 (0.004) 
1.123 (0.005) 
0.924 (0.013) 
0.560 (0.011) 
0.702 (0.004)

22
0.435 (0.012) 
0.764 (0.016) 
0.777 (0.010) 
1.140 (0.011)¥** 
0.934 (0.019) 
0.566 (0.017) 
0.711 (0.010)

     
Healthy 
controls                                                                                     

preHD 
(A and B)

11
0.435 (0.014) 
0.758 (0.017) 
0.768 (0.024) 
1.131 (0.012) 
0.923 (0.025) 
0.562 (0.019) 
0.706 (0.012)

preHD-A

11
0.435 (0.014) 
0.767 (0.017) 
0.778 (0.024) 
1.149 (0.012)  *** 
0.938 (0.025)¤ 
0.568 (0.019) 
0.716 (0.012)ˆ

preHD-B 

10
0.421 (0.014)Φ* 
0.783 (0.018)Φ***
0.805 (0.012)Φ*** 
1.172 (0.013)Φ*** 
0.965 (0.021)Φ*** 
0.589 (0.019)Φ*** 
0.736 (0.012)Φ***

Manifest HD
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subjects. For the preHD group, a significantly lower baseline score compared to controls was 
found for SWR (Table I).

Repeated assessment after 2-year follow-up revealed similar score differences between the 
groups. Progression of five of the 22 preHD subjects to the early manifest stage during the follow-
up period gave rise to a significantly higher UHDRS-TMS when compared to controls. The only 
significant difference in longitudinal change of clinical scores was found in higher UHDRS-TMS, 
both when considering the preHD group (including those progressing to the early manifest 
stage) and the manifest HD group. Other scores showed no significant longitudinal differences in 
this cohort (Supplementary Table I).

Comparing the preHD-A and preHD-B groups, no significant cross-sectional score differences 
were found during the first visit. At the second visit, the preHD-B group showed a significantly 
higher UHDRS-TMS and lower SDMT score compared to preHD-A.
Significant longitudinal change was found only in the UHDRS-TMS, where the difference was 
higher in preHD-B relative to preHD-A (Table I; longitudinal change data not shown).

Diffusion tensor imaging histogram measures

Diffusivity values of whole-brain white matter
At baseline, all whole-brain WM diffusivity measures in the manifest HD group differed significantly 
from both controls and preHD subjects (Table II): FA values were reduced and MD, AD and RD 
were increased. Upon applying Bonferroni correction for multiple testing, all these differences 
remained statistically significant except for the difference in FA (see Supplementary Figures 1 
and 2 for group and visit histogram plots of WM FA, including separate plots for the left and right 
hemisphere). Elevations in MD, AD and RD were all highly significant (p ≤ 0.001) (see Figure 2 for 
histogram plots of WM MD).

Only AD in the preHD group differed significantly from both controls and subjects with manifest 
HD and was lower for the controls and higher for subjects with manifest HD, even after applying 
Bonferroni correction (p ≤ 0.01). No statistically significant differences in FA (p = 0.83), MD (p = 
0.10) or RD (p = 0.33) were found between controls and preHD subjects.

Dividing the preHD group in preHD-A and preHD-B revealed higher AD values only in the preHD-B 
group compared to both preHD-A and controls, even after Bonferroni correction (p ≤ 0.001). No 
significant differences were observed in any of the diffusivity measures between controls and 
preHD-A (Table II). No significant longitudinal differences were found in the degree of whole-
brain WM diffusivity change in any of the measures between the groups (without correction for 
multiple testing).
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Results of histogram peak height comparison of whole-brain WM are provided in Supplementary 
material.

Figure 2. Histogram plots of MD (= mean diff usivity) and AD (= axial diff usivity) in whole brain white, grey matter 
and the striatum. Group diff usivities are plotted against the visits. v1 = visit 1, v2 = visit 2.

Diff usivity values of whole-brain grey matter and striatum
At baseline, MD, AD and RD values of whole-brain GM were signifi cantly higher for the manifest 
HD group compared to both controls and preHD subjects (p ≤ 0.001; Table II). This remained the 
case after Bonferroni correction for multiple testing. Figure 2 shows histogram plots for whole-
brain GM AD.

No signifi cant diff erences in whole-brain GM diff usivity measures were found between preHD 
subjects and controls. Upon dividing the preHD group in preHD-A and preHD-B, a trend was 
found in the preHD-B group toward higher values of AD and RD compared to controls (p = 0.08 
and p = 0.07, respectively; Table II).
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N
MD
AD
RD

24
0.686 (0.075) 
1.130 (0.093)
0.658 (0.108)

22
0.695 (0.037) 
1.177 (0.027)¤ 
0.641 (0.039)

     
Healthy 
controls                                                                                     

preHD 
(A and B)

11
0.648 (0.044) 
1.127 (0.032) 
0.595 (0.048)

preHD-A

11
0.758 (0.043) 
1.227 (0.031)  ** 
0.684 (0.047)

preHD-B 

10
0.816 (0.045)Φ** 
1.235 (0.034)Φ** 
0.764 (0.049)Φ*

Manifest HD

Baseline MD, AD and RD values in the striatum of subjects with manifest HD were significantly 
higher compared to both controls and preHD subjects (Table III). Upon applying Bonferroni 
correction for multiple testing, these differences remained statistically significant except for RD. 
See Figure 2 for group histogram plots of striatal MD. Separate plots for MD of the left and right 
striatum are shown in Supplementary Figure 3.

Table III.  Mean striatal DTI parameters. Values are of left and right striatum together. MD, AD and RD are shown 
x103 for readability

Data is shown as mixed model-based estimates of the group means corrected for age (S.E.) 
Φ significantly different from controls and preHD,    significantly different from controls and preHD-A, ¤ p = 0.08 
(compared to controls), *p ≤ 0.05 **p ≤ 0.01, bold values indicate sustained significant difference following 
Bonferroni correction (p ≤ 0.0125). MD = mean diffusivity; AD = axial diffusivity; RD = radial diffusivity.

No significant baseline differences in striatal diffusivity measures were found between preHD 
subjects and controls, only a trend toward a higher AD in the preHD group (p = 0.08). Upon dividing 
the preHD group in preHD-A and preHD-B, a significantly higher Bonferroni corrected striatal AD 
value was found in preHD-B only, compared to both controls and preHD-A (p ≤ 0.01; Table III). 
Exploratory analysis to assess whether this effect was more prominent when assessing striatal 
substructures separately, revealed a trend towards AD elevation in the caudate and a significantly 
higher AD in the putamen in preHD-B (caudate: p = 0.06; putamen: p = 0.02) compared to both 
controls and preHD-A. This result was therefore less sensitive than the combined assessment of 
both substructures (p ≤ 0.01), and would not have survived Bonferroni correction. No significant 
longitudinal differences were found in the degree of whole-brain GM or in striatal diffusivity 
change in any of the measures between the groups (without correction for multiple testing). 
Results of histogram peak height comparison of whole-brain GM and striatum are provided in 
Supplementary material.

Neurocognitive and diffusivity measures
In Table IV, significant correlations between neurocognitive measures and baseline whole- brain 
diffusivity measures are shown (correlations with peak heights are not shown). As no specific 
group effects were found on correlations between diffusion parameters and neurocognitive 
measures, the following applied to all participants included in the study with a CAG repeat 
expansion irrespective of their group. The SDMT score was found to predict WM FA (p ≤ 0.01): 
the higher the SDMT score, the higher the FA (Supplementary Figure 4). The SDMT score was also 
found to predict WM MD (p ≤ 0.01): the higher the SDMT score, the lower the MD (Figure 3).
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The SWR score was found to predict GM MD (p ≤ 0.05): the higher the SWR score, the lower the 
MD (Supplementary Figure 5). The SDMT score was found to predict peak height in GM MD (p ≤ 
0.05): the higher the SDMT score, the higher the peak height. The SDMT score was also found to 
predict peak height of WM AD (p ≤ 0.01): the higher the SDMT score, the lower the peak height.
Both SDMT and SWR scores were found to predict GM AD (p ≤ 0.05): the higher the score, the 
lower the AD. The SDMT score was found to predict peak height of GM AD (p ≤ 0.05): the higher 
the SDMT score, the higher the peak height.

The SDMT score was found to predict WM RD (p ≤ 0.01): the higher the SDMT score, the lower the 
RD. In the striatum, the SDMT score alone was found to predict AD (p ≤ 0.05): the higher the SDMT 
score, the lower the AD (data not shown).

Interhemispheric diff erences in diff usivity measures
In Supplementary Table III, baseline diff erences in diff usivity measures of the left minus right 
hemisphere are shown, both for WM and GM. Only right handed subjects were included for this 
analysis. Many small, though signifi cant interhemispheric diff erences were found. The magnitude 
and direction of these diff erences were similar in all groups (controls, preHD and manifest HD) 
with no statistical signifi cance in these diff erences between the groups.

Figure 3. Relationship plot of Symbol Digit Modalities Test (SDMT) score and whole brain (WB) white matter (WM) 
mean diff usivity (MD). Data points shown are mixed model-based estimates. 

No signifi cant interhemispheric longitudinal diff erences between the groups were found in the 
degree of change of any of the diff usion measures of the WM, GM and the striatum, neither in the 
means nor histogram peak heights (without correction for multiple testing).
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FA-WM 
MD-WM
MD-GM
AD-WM 
AD-GM
RD-WM 
RD-GM

   1.2%
   0.7%
/
/
   0.5%
   1.0%
/

   10 points
   10 points
/
/
   10 points
   10 points
/

     
Di�usion 
parameter                                                                                     

SDMT score

≤ 0.01
≤ 0.01
/
/
≤ 0.05
≤ 0.01
/

P

/
/
   0.4%
/
   0.4%
/
/

Di�usion 
parameter  

/
/
   10 points
/
   10 points
/
/

SWR score

/
/
≤ 0.05
/
≤ 0.05
/
/

P

Table IV. Mean whole-brain DTI parameters and neurocognitive measures correlations (corrected for age)

This table is valid for all participants with a CAG repeat expansion included in the study, as no specific 
group effects were found on correlations between diffusion parameters and neurocognitive measures.
     = increase,      = decrease, / = no significant correlation.
FA = fractional anisotropy; MD = mean diffusivity; AD = axial diffusivity; RD = radial diffusivity; WM = 
white matter; GM = grey matter.

Discussion

The major findings from this study were significantly higher MD, AD and RD values in both WM 
and GM in subjects with manifest HD compared to preHD and control subjects. In preHD subjects, 
only WM AD proved to be a sensitive measure to differentiate between the study groups. This 
finding remained valid only in preHD-B upon dividing the preHD group according to the median 
predicted years to onset. Another significantly different finding in preHD subjects was observed 
again only in preHD-B in a higher AD of the striatum compared to both controls and preHD-A. 
No significant longitudinal differences were found in any of the diffusivity measures between any 
of the groups, neither in the means nor peak heights. Finally, significant relationships between 
neurocognitive and diffusivity measures were demonstrated.

Findings of increased MD, AD and RD values in subjects with manifest HD are in line with results 
from previous reports.46-48 Although a reduction in WM FA in manifest HD was found, this finding 
did not maintain significance after correction for multiple testing, rendering it a far less sensitive 
marker for disease state in HD. This finding of individual diffusivities providing more sensitive 
measures for revealing pathologic microstructural brain alterations compared to FA, was in line 
with findings from a previous study in HD and Alzheimer’s disease.16,48 The results presented here 
are also in agreement with previous findings by our group, where MD was reported to be a more 
sensitive measure than FA in distinguishing HD subjects from controls.17 Just as in the Alzheimer’s 
disease study of Acosta-Cabronero et al.,16 changes found in this study were more prominent in 
AD than in RD, yet not enough to substantially influence FA. This provides a possible explanation 
for the seemingly discrepant findings of FA alterations in HD research, as the proportions of 
eigenvalues could be more specifically altered in studies of distinct WM regions giving rise to a 
modified FA.
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The presence of an increased AD in whole-brain WM and in the striatum of preHD-B, provides 
evidence for ongoing neurodegeneration prior to disease manifestation, a fi nding that is echoed 
by results from previous MRI volumetric investigations in preHD.4,6-8,49 Higher AD in preHD has 
been previously reported by Stoff ers et al.,6 although in that study this fi nding was highly localized 
and accompanied by more pronounced and widespread increases in RD, a fi nding which was 
not replicated here. Furthermore, in the study of Stoff ers et al., RD seemed to correlate with 
the predicted years to disease onset, while AD lacked such correlation.6 This stands in contrast 
to our fi ndings of lack of signifi cant increases in RD irrespective of preHD group stratifi cation 
and higher AD being found primarily in preHD individuals who are closest to predicted years to 
disease onset. The discrepancy in these fi ndings could very well be attributed to the diff ering 
methodologies applied in analysing the data and possibly due to the diff erence in scanner fi eld 
strength used. In GM, no signifi cantly diff erent diff usivities were present between preHD subjects 
and controls, except for the above-mentioned higher AD in the striatum of preHD-B, which is 
a deep GM structure. The diff erences found in peak heights were only present in subjects with 
manifest HD, not in the preHD group, alluding to a less sensitive measure in detecting diff erences 
between manifest HD, preHD, and controls.

Exploration of the longitudinal evolution of diff usivity measures, without correction for multiple 
comparisons, provided no signifi cant group diff erences. Results from previous longitudinal DTI 
studies in HD are heterogeneous. In the study of Weaver et al.,19 signifi cant longitudinal decreases 
in WM FA and AD were reported over a one year period. That study consisted of seven controls, 
four preHD and three manifest HD subjects, where the seven (pre)manifest subjects were 
compared to the controls. In another study by Sritharan et al.20 with 17 controls and 18 manifest 
HD subjects, no longitudinal change in the MD of the caudate, putamen, thalamus and corpus 
callosum could be demonstrated over a one year period, while baseline MD was signifi cantly 
higher in the caudate and putamen of subjects with manifest HD compared to controls. A similar 
fi nding in MD was reported by Vandenberghe et al.18 in eight manifest HD subjects over a two 
year period. Results from the present study are in agreement with fi ndings from the latter two 
studies, with signifi cant cross-sectional diff erences found in combination with a lack of signifi cant 
longitudinal diff erences in the evolution of these measures within the 2-year study-period. The 
lack of longitudinal diff erences in the diff usion profi le between the groups in this study could be 
due to a low sensitivity of this approach in detecting small changes over time or due to a true 
absence of observable signifi cant alterations of this profi le using DTI in the 2-year time frame.

Relationships between neurocognitive and diff usivity measures were demonstrated in our 
study. The SDMT and SWR scores were associated with some diff usivity measures, where the 
SDMT seemed to be more readily associated with WM diff usivity measures, while SWR showed 
associations only with GM AD and MD. The only exception to this pattern in the whole-brain 
analysis, was the inverse relationship found between SDMT scores and GM AD values. These 
fi ndings are important in light of selecting the most suitable cognitive measures to assess, 
depending on the prime target of a treatment intervention. The SDMT, considered to be a 
measure for information-processing speed and working memory, has also been found to be 
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more associated with white than grey matter lesions in multiple sclerosis.50 In the current study, 
the SDMT provided for the best predictive value for baseline diffusivity measures, as reflected by 
both the magnitude as well as the statistical significance of these associations. As was the case 
in the recent study by Poudel et al.,51 we found a significant inverse relationship between SDMT 
and WM RD in HD. Our results did not, however, reproduce their finding for the same inverse 
relationship with SWR. In the striatum, an inverse relationship was found only between the SDMT 
score and AD. This finding is reinforced by the recent morphometric analysis report in preHD by 
Harrington et al.,52 where the SDMT score was found to be positively associated with putaminal 
volume.

Additional findings from our interhemispheric subanalysis of diffusion parameters revealed 
very small, though highly significant interhemispheric differences in diffusivity measures 
within the groups. There were, however, no indications for a preferential degeneration to the 
dominant hemisphere in (pre)HD subjects, as no significant group differences were found in 
interhemispherical diffusion parameters. To the best of our knowledge this is the first study 
exploring this hypothesis using DTI in (pre)HD subjects. Interhemispheric variations in diffusivity 
measures in the healthy human brain have been previously reported.53,54

It should be stressed that inferral of underlying alterations to biological substance through 
changes in eigenvalues is not trivial, especially in GM.55,56 As such, it is quite challenging to 
draw solid conclusions about underlying neuropathology based on diffusion parameters. The 
progressive histopathological features of HD are numerous. Disturbed membrane systems of 
neurons, with derangement of all membranes that form the cell were found in a histological study 
by Tellez-Nagel et al.57 Loss of small spiny neurons in the caudate and putamen with subsequent 
astrocytosis,58 and decreased neuronal densities with increased oligodendroglial densities,59 the 
latter found already in preHD,60 have been described. The primary role of the oligodendrocyte 
is providing myelin to neuronal axons. In HD mouse models, inhibition of the peroxisome-
proliferator-activated receptor gamma coactivator 1 α in oligododrocytes by mutant huntingtin 
was found to be responsible for abnormal myelination.61 WM atrophy due to myelin breakdown is 
supported by histological and imaging examinations in HD subjects.62 Significantly reduced total 
brain, GM and WM volumes through atrophy have been demonstrated through a post mortem 
study in seven HD brains.63 These various, diverse changes could result in a competing influence 
on the diffusion tensor model based on the individual contributions and timing of each change. 
In a DTI-histological study of the quinolinic acid rat model of HD, Van Camp et al.64 demonstrated 
that DTI was more sensitive in detecting subtle changes in the affected structures compared to 
histology. In that study, increases in MD, AD, and RD were detected six weeks after neurotoxin 
infusion as compared to the sham injected control group, with histological findings of necrotic 
cells involvement with shrunken cytoplasm and spongiosis.

In this study, the pattern found in the manifest HD group of higher MD, AD, and RD values without 
substantial changes to FA, likely reflects an increase in tissue permeability, extra- cellular space 
fluid and interaxonal spacing due to neural tissue loss,65,66 allowing the three eigenvalues to grow 
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proportionally due to faster diff usion of water, hereby eff ecting only the size of the tensor without 
infl uencing its shape.16 This pattern of diff usivity changes, which has been associated with 
chronic WM degeneration,67,68 has previously been reported in HD48 and other neurodegenerative 
disorders, such as amyotrophic lateral sclerosis69 and hereditary spastic paraplegia.70 Findings 
from the histologically verifi ed DTI study of the quinolinic acid rat model of HD, suggest that this 
pattern could point to cytoplasmic alterations and spongiosis.64 In our complete preHD cohort, 
only WM AD showed a signifi cantly raised value compared to controls. Increased AD may indicate 
WM axonal atrophy and was suggested to be useful in identifying early changes in persons with 
a high risk at developing Alzheimer’s disease, prior to cognitive decline.71 Taken together, these 
fi ndings suggest that both axonal degeneration as well as demyelination play an important role 
in WM pathophysiology of HD and are present throughout the entire brain. Given that the earliest 
detected abnormality is represented in the WM AD in preHD subjects, this could indicate that 
axonal degeneration precedes myelin abnormalities in WM at this stage of the neurodegenerative 
process, reinforcing fi ndings by Hobbs et al.48 and further supporting this hypothesis. The GM 
diff usivity fi ndings presented here suggest that tissue boundaries become less well defi ned in 
the cortical ribbon and the striatum in HD.55 

Strengths of this study include the longitudinal design which has the advantage of evaluating 
the evolution of diff usivity measures in a well-defi ned study group with a similar between-scan 
interval. All scans were acquired on the same scanner using the same protocol, which keeps 
test-retest variation in DTI to a minimum.72 Exploration of the full tensor behaviour is a further 
strength, as demonstrated by the better sensitivity in revealing diff erences between the groups 
in this study relative to FA characteristics. For the whole-brain analyses we applied an automated 
histogram analysis, which reduces user error and provides a more suitable standardized analysis 
method in multicentre study settings. The limitation presented with whole-brain analysis is the 
loss of topographic information. Also, proper interpretation of the underlying biological causes to 
alterations found in the diff usion profi le remains restricted, as many diff erent fi ber orientations are 
found in diff usion images of the brain.73 That does not, however, preclude the ability of assessing 
the value of this type of analysis for identifying biomarker potential and tracking disease-
related modifi cations to the diff usion profi le in time. This limitation was nonetheless addressed 
by applying this analysis specifi cally to the striatum. A further limitation was the relatively low 
number of manifest participants. This was mainly driven by disease progression in the cohort, 
where longitudinal scans or the ability to comply with study protocol deemed impossible, leaving 
the outcome measures presented here to more likely be an underestimation of the true extent of 
diff usion disturbances in the HD brain.

To conclude, alterations in cross-sectional diff usion profi les between manifest HD subjects and 
controls were evident both in whole-brain and striatum. In preHD, only AD alterations were found, 
a fi nding that applied only to preHD-B upon group stratifi cation. This suggests that AD may be a 
sensitive marker for early change in HD gene carriers prior to disease manifestation. The individual 
diff usivities proved to be more sensitive in distinguishing pathologic microstructural alterations 
to the HD brain than FA characteristics. This study showed no longitudinal diff erences in any 
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of the diffusivity measures between the groups. Larger study samples could provide additional 
information on the longitudinal biomarker potential of DTI measures. However, based on the 
results presented here, this potential is expected to be limited.
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Supplementary material

Peak heights of whole-brain white matter
At baseline, peak heights of whole-brain WM histograms were generally lower in the manifest 
HD group compared to controls and preHD subjects (Supplementary Table II). In the manifest HD 
group, signifi cantly lower peak heights were found for MD and RD. These diff erences remained 
signifi cant upon Bonferroni correction (both at p ≤ 0.01).

In the preHD group, histogram peak heights were similar to controls. Dividing the preHD group in 
preHD-A and preHD-B revealed a signifi cantly lower value in peak height of the RD of the preHD-B 
group compared to controls (p ≤ 0.05). This diff erence did not survive Bonferroni correction.

No signifi cant longitudinal diff erences were found in the degree of whole-brain WM peak height 
change in any of the measures between the groups (without correction for multiple testing).

Peak heights of whole-brain grey matter and striatum
At baseline, histogram peak heights of whole-brain GM MD and AD in the manifest HD group 
were signifi cantly lower compared to controls and preHD subjects (Supplementary Table II; 
striatal data not shown). The diff erence in MD peak height did not survive correction for multiple 
testing, while AD peak height remained signifi cant (p ≤ 0.001). There was a trend towards a lower 
peak height of RD in manifest HD compared to controls and preHD (p = 0.08).

No signifi cant baseline peak height diff erences were observed between preHD subjects and 
controls in whole-brain GM. Dividing the preHD group in preHD-A and preHD-B revealed a 
signifi cantly lower value in AD peak height only in preHD-B compared to controls (p = 0.05), not 
surviving correction for multiple testing.

Baseline histogram peak heights of striatal MD and RD in subjects with manifest HD were 
signifi cantly lower compared to controls and preHD subjects (p ≤ 0.01 and p = 0.03, respectively). 
No signifi cant peak height diff erences were observed between preHD subjects and controls in 
striatal diff usivity measures. Dividing the preHD group in preHD-A and preHD-B did not alter this 
result. No signifi cant longitudinal diff erences were found in the degree of whole-brain GM nor 
in striatal histogram peak height change in any of the measures between the groups (without 
correction for multiple testing).
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Supplementary Figure 1. White matter fractional anisotropy (FA) histogram plots of the groups, per hemisphere 
and of whole brain, plotted against the visits. v1 = visit 1, v2 = visit 2.
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Supplementary Figure 2. White matter fractional anisotropy (FA) histogram plots of the visits, per hemisphere and 
of whole brain, plotted per group. v1 = visit1, v2 = visit2.
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Supplementary Figure 3. Separate plots for left and right striatal mean diffusivity (MD) histograms of the groups, 
plotted against the visits. v1 = visit 1, v2 = visit 2.
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Supplementary Figure 4. Relationship plot of Symbol Digit Modalities Test (SDMT) score and whole brain (WB) 
white matter (WM) fractional anisotropy (FA). Data points shown are mixed model-based estimates.

Supplementary Figure 5. Relationship plot of Stroop Word Reading (SWR) task score and whole brain (WB) grey 
matter (GM) mean diff usivity (MD). Data points shown are mixed model-based estimates.
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Supplementary Table I. Longitudinal change in clinical scores†, mean difference

N = number of participants, SD = Standard deviation, UHDRS-TMS = Unified Huntington’s Disease Rating Scale-
Total Motor Score, SDMT = Symbol Digit Modalities Test, SWR = Stroop Word Reading task, BDI-II = Beck Depression 
Inventory-II.
Significance at p ≤ 0.05 level: * significantly different from controls, Φ significantly different from controls and 
preHD.
† Longitudinal change denotes scores from visit 1 subtracted from scores from visit 2.
‡ Including five subjects progressing to the early manifest stage during the two year follow-up period.

Supplementary Table II. Mean DTI whole-brain peak height (shown x103 for readability). Data is shown as mixed 
model-based estimates of the group means corrected for age (S.E.)

*p ≤ 0.05 **p ≤ 0.01 ***p ≤ 0.001, bold values indicate sustained significant difference following Bonferroni 
correction (p ≤ 0.0125).
FA = fractional anisotropy; MD = mean diffusivity; AD = axial diffusivity; RD = radial diffusivity; WM = white matter; 
GM = grey matter.

N
Total functional capacity, mean (SD)
UHDRS-TMS, mean (SD)
SDMT, mean (SD)
SWR, mean (SD)
BDI-II, mean (SD)

24
0.1 (0.5)
0.5 (2.3)
1.5 (5.8)
1.9 (8.7)
0.3 (3.7)

-
-

-

22‡
0.2 (0.8)
3.3 (4.5)*
0.6 (6.3)
4.1 (8.2)
1.4 (2.6)

-

-
-

     
Healthy 
controls                                                                    

preHD 
(A and B)

10
0.7 (1.7)
8.4 (5.9)Φ
2.0 (5.5)
1.3 (10.9)
2.0 (4.1)

-

-
-
-

Manifest HD 

 
 

N
FA-WM
MD-WM
MD-GM
AD-WM
AD-GM
RD-WM
RD-GM

24
30.6 (1.2)
106.4 (7.3)
65.1 (5.1)
31.1 (2.2)
64.4 (4.6)
62.3 (3.0)
58.0 (4.7)

22
30.1 (1.6)
103.6 (10.0)
64.9 (6.7)
34.6 (4.5)
62.5 (6.0)
60.2 (4.1)
58.0 (6.1)

     
Healthy 
controls                                                                    

preHD 
(A and B)

10
31.4 (1.7)
96.8 (10.7)**
60.7 (7.1)*
34.3 (4.7)
57.5 (6.4)***
58.6 (4.4)**
54.8 (6.5) (p=0.08)

Manifest HD 
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N

FA-WM
MD-WM
MD-GM
AD-WM
AD-GM
RD-WM
RD-GM

20
Mean (SD)         P
  0.017 (0.006)

  0.006 (0.006)

  0.006 (0.008)

  0.007 (0.010)

  0.001 (0.010)

  0.013 (0.006)

  0.009 (0.007)

-

-

-

-

18
Mean (SD)         P
  0.017 (0.006)

  0.005 (0.007)

  0.003 (0.009)

  0.009 (0.012)

  0.001 (0.010)

  0.012 (0.006)

  0.008 (0.010)

-

-

-

-

     
Healthy controls                                                                    preHD (A and B)

9
Mean (SD)          P
  0.016 (0.006)

  0.010 (0.007)

  0.004 (0.011)

  0.002 (0.009)

  0.004 (0.014)

  0.016 (0.008)

  0.008 (0.016)

-

-

-

-

Manifest HD 

 
 

  

≤ 0.001

≤ 0.001

    0.008

    0.003

    0.681

≤ 0.001

≤ 0.001

≤ 0.001

    0.003

    0.272

    0.605

    0.377

≤ 0.001

    0.174

≤ 0.001

    0.018

    0.205

    0.005

    0.631

≤ 0.001

    0.003

Supplementary Table III. Interhemispheric diff erences in DTI measures from visit 1; values shown as left minus right 
hemisphere. Diff erences in MD, AD and RD are shown x103 for readability. Only right handed subjects are included

FA = fractional anisotropy; MD = mean diff usivity; AD = axial diff usivity; RD = radial diff usivity; WM = white matter; 
GM = grey matter.
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Abstract

Background
Huntington’s disease (HD) is associated with abnormal structure and function of different brain 
regions. Looking for reliable early markers for development of disease which may be too subtle 
to detect with conventional analysis methods, we applied graph theoretical analysis to diffusion 
magnetic resonance imaging data to assess both cross-sectional and time-related changes of the 
connectome in different stages of the disease.

Methods
We constructed weighted structural networks and calculated their topological properties. Twenty-
two premanifest HD (preHD), 10 early manifest HD and 24 healthy controls completed baseline 
and two-year follow-up scans. We stratified the preHD group based on their predicted years 
to disease onset into a far (preHD-A) and near (preHD-B) to disease onset group. We collected 
clinical and behavioural measures per assessment time point.

Results
We found a significant reduction over time in nodal betweenness centrality both in the early 
manifest HD and preHD-B groups as compared to the preHD-A and control groups, suggesting 
a decrease of importance of specific nodes to overall network organization in these groups (FDR 
adjusted ps < 0.05). Additionally, we found a significant longitudinal decrease of the clustering 
coefficient in preHD when compared to healthy controls (FDR adjusted p < 0.05), which can 
be interpreted as a reduced capacity for internodal information processing at the local level. 
Furthermore, we demonstrated dynamic changes to hub-status loss and gain in both preHD and 
early manifest HD. Finally, we found significant cross-sectional as well as longitudinal relationships 
between graph metrics and clinical and neurocognitive measures.

Conclusions
This study demonstrates divergent longitudinal changes to the connectome in (pre) HD compared 
to healthy controls. This provides novel insights into structural correlates associated with clinical 
and cognitive functions in HD and possible compensatory mechanisms at play in preHD.
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Introduction

ecent years have seen an increase in work pertained to fi nding and developing 
biomarkers for Huntington’s disease (HD) and its premanifest stage (preHD). HD is an 
autosomal dominant neurodegenerative disorder caused by an elongated cytosine-

adenine-guanine (CAG) repeat on the short arm of chromosome 4, which leads to the production 
of mutated huntingtin protein.1 Prominent white and grey matter atrophy appear in the course 
of the disease.2-5 This results in cognitive deterioration, including slower processing speed, 
attentional problems, executive control defi cits and ultimately dementia, but also motor signs 
such as chorea, bradykinesia, rigidity and dystonia and psychiatric symptoms such as depression, 
anxiety and apathy.

Finding biomarkers that assess progression towards disease manifestation and follow disease 
advancement at the clinical stage, is of importance in the light of understanding the impact 
of intervention trials. One of the most promising methods currently being deployed to probe 
for biomarker potential is diff usion MRI, which can characterize tissue microstructure via the 
diff usion of water molecules.6-9 Based on this technique, several cross-sectional studies in HD 
have provided evidence for abnormal structural organization of the brain, typically using region 
of interest and tract-based spatial statistics analyses.10-14 However, fi ndings from longitudinal 
reports using diff usion MRI in HD remain inconsistent.15-17

In the study by Weaver et al.,17 the tract-based spatial statistics approach was used to compare 
scans from seven controls, four preHD and three manifest HD subjects obtained one year apart. 
Signifi cant longitudinal decreases in white matter fractional anisotropy and axial diff usivity in the 
seven (pre)manifest subjects were found compared to the healthy controls. In another study by 
Sritharan et al. with 17 controls and 18 manifest HD subjects,15 a region of interest approach 
did not reveal longitudinal changes in the mean diff usivity of the caudate, putamen, thalamus 
and corpus callosum over a one year period, while baseline mean diff usivity was found to be 
signifi cantly higher in the caudate and putamen of subjects with manifest HD compared to 
controls. A similar fi nding for mean diff usivity was reported by Vandenberghe et al. in eight 
manifest HD subjects over a two year period,16 also using a region of interest approach. These 
inconsistencies in the literature might very well be attributed to inconsistencies in defi ning the 
regions of interest or to other methodological limitations, such as those recently described for 
tract-based spatial statistics.18 As longitudinal sensitivity to detecting disease progression is an 
essential quality of a biomarker, and given the abovementioned apparent lack of uniformity in 
previous longitudinal reports, we used a graph theoretical approach to analyse our data from a 
new perspective.

A graph theoretical analysis (GTA) is a powerful mathematical framework for quantifying 
topological properties of networks. This type of analysis moves away from the traditional 
neuroimaging approach of examining individual components of the brain, such as regions 
of interest, towards characterizing regional or global structure of networks. In recent years, 
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this paradigm shift from segregation to integration has emerged as a useful strategy for 
characterizing functional and structural brain networks in healthy and clinical groups, including 
other neurodegenerative diseases such as Alzheimer’s disease,19-23 neuroimmunological disorders 
such as multiple sclerosis,24,25 but also in traumatic brain injury26,27 and schizophrenia28,29. Using 
network based statistics, one recent cross-sectional study by Poudel et al. provided evidence for 
aberrant white matter cortico-striatal connectivity in HD compared to controls based on diffusion 
MRI data.30 However, little research has been done on the dynamics of structural brain networks 
using a longitudinal design.

GTA may provide more insights into structural changes that can develop over the course of the 
condition, which may be too subtle to be detected at the local level. We therefore investigated 
network dynamics of the connectome in individuals from a well-defined cohort (TRACK-HD 
study, Tabrizi et al.)31 assessed systematically and prospectively across multiple time points. This 
could provide new insights into the development of topological organization of whole-brain 
structural connectivity in HD, possibly providing usable markers quantifying disease progression. 
Such biomarkers can potentially be used, in turn, as targets for modification in therapeutic trial 
settings, especially in the premanifest phase where the priority lies in preventing or delaying 
manifestation of this devastating disorder. It is also important to examine potential associations 
between currently used cognitive and clinical measures in HD and (disrupted) network properties, 
thereby providing a more tangible ‘real-world’ sense to the complexity of brain structure and 
function.

Materials and methods

Participants
As part of the TRACK-HD study, 90 participants were included at baseline at the Leiden University 
Medical Center (LUMC) study site. Recruitment procedures and inclusion criteria have been 
published previously (for details see Tabrizi et al.)5. Diffusion MRI was added to the standard 
MRI protocol. At baseline, diffusion MRI was not performed in ten participants because of 
claustrophobia, and another nine were excluded from analysis due to excessive motion artefacts, 
which caused significant data corruptions, such as large signal dropouts and intra-volume inter-
slice distortions. Such corrupted data sets were deemed unusable for inclusion in the study and 
were therefore not considered for further processing and analysis. Of the remaining 71 subjects, 
62 subjects completed diffusion MRI scans at both visits with an average between-scan interval of 
23 months. Of these 62, a further six subjects were excluded from analysis due to excessive motion 
artefacts at the second visit. The longitudinal cohort included in this work was thus comprised of 
56 subjects: 24 healthy controls, 22 preHD and 10 early manifest HD subjects (Table I).

Inclusion criteria for the preHD group were a CAG repeat ≥ 40 with a total motor score on the 
Unified Huntington’s Disease Rating Scale (UHDRS-TMS) ≤ five.5 Moreover, to assess the effect 
of expected proximity to disease onset on diffusion parameters, the preHD group was divided 
at baseline according to the median (10.9 years) for the predicted years to disease onset into 
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preHD-A (≥ 10.9 years) and preHD-B (< 10.9). The predicted years to disease onset was based 
on a formula by Langbehn et al.32 using CAG repeat length and age-based survival analysis. This 
resulted in two groups (preHD-A and preHD-B) each consisting of 11 subjects (Table I). Inclusion 
criteria for the early manifest HD group were a CAG repeat ≥ 40, with a UHDRS-TMS ≥ fi ve and a 
Total Functional Capacity score (TFC) ≥ seven. For both the preHD and early manifest HD groups, 
a burden of pathology score greater than 250 ((CAG repeat length - 35.5) x age) was applied as a 
further inclusion criterion.5,33 Healthy gene negative family members or partners were recruited 
as control subjects. None of the participants suff ered from a concomitant neurological disorder, a 
major psychiatric diagnosis, or had a history of severe head injury.

Demographics, clinical information, and neurocognitive measures of interest are provided in 
Table I. From the neurocognitive battery administered, the Stroop Word Reading (SWR) task 
and the Trail Making Task (TMT) were chosen as measures of interest, as these tasks have shown 
promising results as cognitive disease-state markers in HD research.31,34,35 In short, the SWR task 
consisted of the instruction of reading a set of words of colours (red, green and blue) as fast as 
possible within 45 seconds. The number of correct responses was computed using the number of 
items completed, with higher scores refl ecting faster processing speed. The SWR has been used 
as a sensitive outcome measure in studies identifying predictors of longitudinal decline in HD, 
independent of disease related motor eff ects.31 Furthermore, the TMT was administered which 
requires inhibition, updating, and switching, and consists of two parts, Trails A and Trails B. In Trails 
A, letters from A to Y are distributed across the page and participants are asked to draw lines 
connecting the letters from the alphabet in the right order, without lifting the pencil from the page. 
In Trails B, the page contains the numbers from 1 to 12 and letters from A to L and participants 
must connect the symbols by alternating the sequence between numbers and letters, that is, 
A-1-B-2-C-3...L-12. The dependent variable was the switch cost calculated by subtracting time 
to complete part A from part B. The validated Dutch version of the National Adult Reading Test 
(DART) was used to assess the intelligence quotient.36 Finally, the Beck Depression Inventory-II 
(BDI-II) was administered, which is a 21-question multiple-choice self-report inventory, one of the 
most widely used instruments for measuring severity of depression. All participants completed 
both baseline as well as follow-up MRI, cognitive and clinical evaluation. The study was approved 
by the Medical Ethics Committee of the LUMC and written informed consent was obtained from 
all participants.

MRI acquisition
MRI acquisition was performed with a 3-Tesla whole-body scanner (Philips Achieva, Healthcare, 
Best, The Netherlands) using an eight channel SENSE head coil. T1-weighted image volumes 
were acquired using a 3D MPRAGE acquisition sequence with the following imaging parameters: 
TR = 7.7 ms, TE = 3.5 ms, FOV = 24 x 24 cm2, matrix size 224 x 224, number of slices = 164, 
slice thickness = 1.00 mm, and no slice gap. A single-shot echo-planar diff usion tensor imaging 
sequence was applied with 32 measurement directions and the following scan parameters:7 
TR = 10,004 ms, TE = 56 ms, FOV = 220 x 220 mm2 with an acquisition matrix of 112 x 110, 2.00 
mm slice thickness, transversal slice orientation, no slice gap, fl ip angle = 90°, reconstruction voxel 
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N
Gender M/F
Age in years (at V1), mean (SD) 
Handedness R/L
Level of education (ISCED), median (range) 
DART-IQ, mean (SD)
CAG repeat length, mean (SD)
Estimated years to onset, mean (SD)
Total functional capacity, mean (SD)

UHDRS-TMS, mean (SD) 

SWR, mean (SD)

Switch cost of TMT in seconds, mean (SD)

BDI-II, mean (SD)

Between-scan interval in months, mean (SD)

24
11/13
49.0 (8.2) 
20/4
4 (3)
105.0 (9.4) 
n/a
n/a
13.0 (0.2) 
12.9 (0.5) 
2.6 (2.5)
2.1 (1.6) 
100.1 (13.2) 
102.0 (15.6) 
37.0 (17.4) 
38.9 (27.0) 
4.1 (4.4)
3.9 (4.1) 
23.0 (0.8)

22‡
9/13
43.6 (8.7) 
18/4
4 (3)
100.5 (11.2) 
42.6 (2.7) 
11.8 (4.7) 
12.8 (0.5) 
12.6 (0.9) 
2.6 (1.5)
5.7 (5.1)¥ 
91.9 (14.2)* 
87.9 (15.7)* 
41.8 (24.6) 
38.0 (28.6) 
6.4 (6.4)
5.1 (5.6) 
23.0 (0.7)

     
Healthy 
controls                                                                                     

Premanifest 
HD (A and B)

11
4/7 
44.2 (5.7) 
9/2
4 (3) 
101.3 (9.7) 
41.3 (1.4) 
14.9 (4.7)
12.7 (0.7) 
12.7 (0.6)
2.0 (1.5) 
3.5 (2.2)
95.6 (9.6) 
91.4 (9.4) 
36.4 (15.9) 
30.8 (19.2) 
4.9 (6.0) 
3.2 (4.9) 
23.2 (0.6)

preHD-A

11
5/6 
43.0 (11.2) 
9/2
4 (3) 
99.6 (13.0) 
43.9 (3.1)^ 
8.6 (1.8)^
12.8 (0.4) 
12.5 (1.0)
3.1 (1.2) 
8.3 (6.1)*^
88.3 (17.3)* 
84.4 (20.0)* 
47.2 (30.9) 
45.8 (35.7) 
7.9 (6.8) 
6.9 (5.9) 
22.7 (0.7)

preHD-B 

10
4/6 
50.2 (9.3) 
9/1
4 (3) 
101.8 (13.5) 
42.5 (1.2) 
n/a
11.0 (1.5)Φ 
10.3 (2.2)Φ
14.6 (7.7)Φ 
23.0 (12.1)Φ
87.7 (14.7)* 
86.4 (18.6)* 
63.5 (41.6)Φ 
75.0 (63.4)Φ 
10.2 (8.2)* 
8.2 (8.4) 
23.5 (0.7)

Early 
manifest HD

V1 
V2
V1 
V2
V1 
V2
V1 
V2
V1 
V2

dimensions of 1.96 x 1.96 x 2.00 mm3, number of slices = 64, b-value = 1,000 s/mm2, halfscan 
factor = 0.61. Parallel imaging (SENSE) was used with a reduction factor of two, NSA = one, and fat 
suppression was applied. Diffusion MRI acquisition time was 6.55 min.

Table I. Group demographics with clinical and behavioural scores

HD = Huntington’s disease, N = number of participants, SD = Standard deviation, n/a = not applicable, ISCED = 
International Standard Classification of Education, DART-IQ = Dutch Adult Reading Test Intelligence Quotient, CAG 
= Cytosine-Adenine-Guanine, UHDRS-TMS = Unified Huntington’s Disease Rating Scale-Total Motor Score, SWR = 
Stroop Word Reading task, TMT = Trail Making Task, BDI-II = Beck Depression Inventory-II, V1 = visit 1, V2 = visit 2.
Significance at p ≤ 0.05 level: * significantly different from controls, Φ significantly different from controls and pre-
manifest HD, ¥ significantly different from controls and early manifest HD, ^ significantly different from preHD-A. 
‡ Including five subjects progressing to the early manifest stage during the two year follow-up period.

Diffusion MRI processing
Diffusion MRI data were analysed using the diffusion MR toolbox ‘ExploreDTI’.37 Data were  
corrected for subject motion, eddy current distortions, and susceptibility artefacts due to the 
magnetic field inhomogeneity prior to diffusion tensor estimation with the REKINDLE method.37-40 
Whole-brain fibre tractography was performed using constrained spherical deconvolution41-43 
with a uniform seed point resolution of 2 mm3, an angle threshold of 30 degrees, a fibre orientation 
distribution threshold of 0.1, and maximum harmonic order of 4.
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Connectivity matrices
One structural network was generated for each subject using the subject’s diff usion MRI data. A 
network was defi ned as a set of nodes (denoting anatomical regions of the parcellation scheme) 
and interconnecting edges (denoting fi bre trajectories between cortical and subcortical regional 
nodes that have been reconstructed). Moreover, we assigned a continuous weight (i.e., number of 
streamlines) to each edge of the graph, which resulted in weighted graphs. Because tractography 
does not diff erentiate between eff erent and aff erent fi bres, the reconstructed graphs were all 
undirected. We describe here some of the major steps that we went through from diff usion MRI 
processing to computing the topological metrics of the graph. Figure 1 shows a fl owchart for the 
process of obtaining connectivity matrices. The Automated Anatomical Labeling (AAL) atlas (and 
labels/masks)44 was registered to the diff usion MRI data using a non-linear transformation45 with 
fractional anisotropy as target image contrast46. The AAL atlas regions, which are commonly used 
to derive the nodes in GTA of neuroimaging data, are presented in Figure 2. The AAL template 
is not a pure cortical grey matter mask but includes tissues from both cortical grey matter and 
subcortical white matter.44,47 Defi ning seed voxels throughout the brain parenchyma ensures that 
the computed trajectories originated from the white matter tissue underlying the cortical region 
or adjacent to subcortical structures. The average percentage of network tracts connecting a pair 
of regions was 2.39 x 10-4. The numbers of streamlines connecting each pair of AAL regions were 
aggregated into a 90 x 90 connectivity matrix (the cerebellar regions were not included). We refer 
the interested reader to the online Supplementary video for a three-dimensional example of a 
resulting connectome (http://dx.doi.org/10.1016/j.nicl.2015.07.003).

Graph theory metrics
We used the Brain Connectivity Toolbox (BCT) (Rubinov and Sporns, https://sites.google.com/site/
bctnet/)48 and the longitudinal plugin of the Graph Analysis Toolbox,49-51 to investigate network 
metrics of segregation, integration, and centrality. Network measures were computed over a 
range of density thresholds. Thresholding at an absolute value would have resulted in networks 
with diff erent degrees across groups, introducing a confound when comparing measures 
between groups.52 Network measures were examined over a range of network densities for which 
the networks were not fragmented (each node had at least one connection with another node in 
the graph) and displayed small- world properties (non-random graphs).51 The network densities 
ranging from 0.10 to 0.40 fulfi lled these criteria. We compared the networks in this density range 
in steps of 0.05. The graph metrics were quantifi ed at both the network and regional levels from 
the weighted networks. The equations to calculate each of these measures can be found in 
Rubinov and Sporns (https://sites.google.com/site/bctnet/measures/list).48 We only provide brief 
explanations for each of the network properties used in this study:
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Figure 1. Flow chart for constructing a diffusion MRI based network. (A) An Automated Anatomical Labeling (AAL) 
atlas template consisting of 90 cortical and subcortical brain regions, excluding the cerebellum, was used for brain 
segmentation. (B) Whole brain tractography was performed using ExploreDTI (see Materials and methods). (C) The 
numbers of streamlines connecting each pair of AAL regions were aggregated into a 90x90 weighted connectivity 
matrix. (D) The connectivity matrix was then visualized as a graph, composed of nodes representing brain regions 
and edges representing white matter connections. From the individual weighted brain networks, several network 
metrics were computed at both the global and regional levels.

We quantified measures of network integration (characteristic path length) and segregation 
(clustering) for each network.48 The characteristic path length L of a network is the average 
shortest path (distance) between all pairs of nodes in the network. It is defined as:
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where dij is the shortest path length (distance) between nodes i and j. The global effi  ciency is the 
average inverse shortest path length in the network, and is inversely related to the characteristic 
path length.53 In other words, networks with a small average characteristic path length are 
generally more effi  cient than those with large average characteristic path length. We also 
calculated local effi  ciency as a nodal graph metric. The regional effi  ciency is the global effi  ciency 
computed on node neighborhoods, and is related to the clustering coeffi  cient.54

The clustering coeffi  cient of a node is a measure of the number of edges that exist between 
its nearest neighbors and is quantifi ed by counting the numbers of triangles formed around a 
node.55,56 The clustering coeffi  cient C of het network is the average clustering across all nodes and 
is quantifi ed as:

where ki is the number of connections (degree) for node i and ti is the number of triangles around 
a node i. The modularity is a graph metric that quantifi es the degree to which the network may be 
subdivided into clearly delineated nonoverlapping groups of nodes in a way that maximizes the 
number of within-group edges, and minimizes the number of between- group edges. To evaluate 
the topology of the constructed networks, the obtained characteristic path length and clustering 
coeffi  cient of each network were normalized to the corresponding mean values of null networks 
with the same degree-, weight- and strength-distributions as the network of interest,57,58 using 
the null model algorithm implemented in BCT.48

We also computed the small-world index as the ratio of normalized clustering and normalized 
path length.59,60 Thus, the small-worldness index of each network was obtained as [C/Crand]/[L/
Lrand], where Crand and Lrand are the mean clustering coeffi  cient and the characteristic path length 
of random networks.61 In a small-world network, the clustering coeffi  cient is signifi cantly higher 
than that of random networks (C/Crand ratio greater than 1), while the characteristic path length 
is comparable to random networks (L/Lrand ratio close to 1).

Finally, we have calculated node betweenness centrality, which is the fraction of all shortest paths 
in the network that contain a given node.62 The betweenness centrality bi of a node i is defi ned as:

in which Phj is the number of shortest paths between nodes h and j and Phj(i) is the number 
of shortest paths between nodes h and j that pass through node i. The nodes with the largest 
betweenness centrality can be considered to be pivotal nodes (i.e., hubs) in the network.
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Figure 2. Cortical and subcortical regions (45 in each hemisphere; 90 in total) as anatomically defined by the Au-
tomated Anatomical Labeling atlas template image in standard stereotaxic space.

Statistical analysis
Interaction effects between group and time for the graph metrics were analysed using the 
Longitudinal plugin of the Graph Analysis Toolbox.51,63 Specifically, networks were first normalized 
by the mean network strength and graph measures were quantified for the normalized networks. 
A non-parametric permutation test with 1000 repetitions was then used to test the statistical 
significance of the effects of time course for graph measures.28,49 In each permutation, the 
calculated regional streamlines of each participant were randomly assigned to one of the two 
groups so that each randomized group had the same number of subjects as in  the original 
groups. Finally, the actual difference in the slope between the original groups was compared 
to the obtained permutation distribution of difference in slope between randomized groups to 
obtain the p-value.

The same permutation procedure was used to test the significance of the differences in regional 
network measures. In this step, we compared regional network measures for the networks 
thresholded at minimum density. We obtained false discovery rate (FDR) corrected p-values as 
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measures of signifi cance for the regional measures comparisons. In the present study, the p-values 
reported for regional diff erences between groups are FDR corrected for multiple comparisons (90 
comparisons).

Baseline (i.e., visit 1) data of behavioural metrics (i.e., neurocognitive functioning scores) as well 
as graph metrics were used for cross-sectional analyses. A multivariate analysis of covariance 
(MANCOVA) was used, whereby statistical diff erences were assessed on multiple continuous 
dependent variables (graph metrics, cognitive and clinical variables) by an independent grouping 
variable (controls, preHD, early manifest HD), while controlling for a third variable (covariate). In 
the present study, age was added as covariate so that it could reduce error terms and so that the 
analysis eliminated the covariates’ eff ect on the relationship between the independent grouping 
variable and the continuous dependent variables. We further subdivided the preHD group into 
two subgroups: preHD far from expected disease onset (preHD-A) and preHD close to expected 
disease onset (preHD-B).

To investigate the neuronal correlates of the behavioural tests, baseline data were analysed. Each 
participant’s score on tests of clinical scales and neurocognitive functioning was correlated with 
that participant’s graph metric (clustering coeffi  cient, global effi  ciency, betweenness centrality) 
using partial correlations (age as confounding variable).

Our fi nal aim was to investigate the relationship between changes in graph metrics with changes 
in behavioural performance. Diff erence scores for both behavioural performance and graph 
metrics were calculated as a measure of change by subtracting the visit 1 from the visit 2 scores.

Results

Baseline group comparison of demographic variables and performance in behavioural tests
Participants of the three groups (controls, preHD, early manifest HD) did not diff er in terms of 
gender distribution (p = 0.93), handedness (p = 0.95), body mass index (p = 0.64) or intelligence 
quotient scores (p = 0.38). One-way ANOVAs revealed only a trend towards a diff erence in age 
between the groups (p = 0.06). Therefore, we included age as covariate in subsequent analyses. 
See Table I for group demographics and clinical and behavioural scores. The groups diff ered 
at baseline in their executive function performance (SWR and the switch cost of the TMT, all 
ps < 0.05). Post hoc Tukey testing showed signifi cant diff erences between controls and (pre) HD 
groups.

Regional graph analyses
Graph metrics were evaluated at the nodal level to identify the nodes in the network that show 
a signifi cant group by time interaction eff ect. Multiple testing correction was performed via 
False Discovery Rate (FDR),64 where an FDR adjusted p-value < 0.05 was considered signifi cant. 
The permutation test of the nodal betweenness centrality showed a signifi cant group by time 
interaction for the left orbitofrontal cortex and left paracentral lobule (adjusted ps < 0.05). The 
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post-hoc two-sided Tukey t-test demonstrated a decrease of the betweenness centrality of 
the left orbitofrontal cortex in the early manifest HD group as compared to the control group  
(p < 0.001), from the first to the second visit. Moreover, preHD-B patients versus controls 
demonstrated a reduction of betweenness centrality of the left paracentral lobule from visit 1 to 
visit 2 (p < 0.001). Finally, the permutation test of the clustering coefficient revealed a significant 
group by time interaction for the left medial prefrontal cortex (adjusted p < 0.05). The post-hoc 
two-sided Tukey t-test showed that preHD showed a decrease of the clustering coefficient of the 
left medial prefrontal cortex compared to the healthy controls from visit 1 to visit 2 (p = 0.02) .

Important network regions as defined by hub-status in visits 1 and 2
Betweenness centrality was also used to identify the hub regions. In visit 1, the left precuneus was 
shared by all groups. Generally, a lower number of areas functioned as network hubs in visit 2 and 
a remarkable change in hub-status was apparent for regions in visit 2 in each group (as shown in 
Figure 3). Specifically in the early manifest HD group, the left thalamus and right medial part of 
the superior frontal gyrus achieved hub-status in visit 2. Also, many regions lost their hub-status 
in visit 2 within the early manifest HD group. Such areas included the left superior temporal pole, 
right lingual gyrus, right calcarine gyrus, and left middle occipital gyrus. The preHD group also 
showed hub-changes from visit 1 to visit 2, whereby the right medial part of the superior frontal 
gyrus lost hub-status. One brain region, the right superior parietal gyrus, achieved hub-status in 
visit 2. Network nodes in the precuneus, superior temporal pole, and putamen were consistently 
important as hubs throughout visits 1 and 2 in the preHD group.

Table II. Graph metrics. Data is shown as mean and standard error of the groups for each visit

HD = Huntington’s disease, V1 = visit 1, V2 = visit 2.
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Global network metrics

Small world metrics

Local network metrics

0.034

0.035

0.110

0.115

1.620

1.648

1.058

1.057

1.530

1.558

0.051

0.052

0.027

0.027

0.319

0.327

90.836

91.835

0.034

0.034

0.111

0.112

1.616

1.594

1.059

1.056

1.525

1.508

0.051

0.051

0.027

0.027

0.315

0.310

91.799

91.100

     
Healthy controls                                                                                     Premanifest 

HD (A and B)

0.034

0.034

0.112

0.111

1.652

1.605

1.063

1.055

1.553

1.520

0.051

0.051

0.028
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0.326

0.315

92.321

90.806

preHD-A

0.034
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0.109
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1.581

1.583

1.056
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1.496

1.496
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0.027

0.027

0.304

0.304

91.277

91.394

preHD-B 

0.033

0.033

0.107

0.108

1.535

1.524

1.055

1.053

1.453

1.446

0.049

0.049

0.026

0.026

0.291

0.294

89.942

89.436

Early manifest 
HD

V1 

V2

V1 

V2

V1 

V2

V1 
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Global e�ciency
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1.0970
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0.0047
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Figure 3. Group diff erences in betweenness centrality. Upper panel: visit 1, lower panel: visit 2. Size of the nodes (sp-
heres) represents the betweenness centrality. Size of the edges (connections) represents streamline count. Magenta 
as colour of the nodes refers to hub regions.

Overall dynamics of the structural brain network
Both (pre-) HD and healthy controls showed a small-world organization of the structural brain 
networks (as shown in Table II) expressed by a normalized clustering coeffi  cient gamma >1 
(mean|SD; preHD: 1.62|0.14, early manifest HD: 1.54|0.18, healthy participants: 1.62|0.15) and lambda 
~1 (mean|SD; preHD: 1.06|0.01, early manifest HD: 1.06|0.02, healthy participants: 1.06|0.01). The 
small-worldness (sigma) calculated from these indices was also larger than 1 (mean|SD; preHD: 
1.52|0.12, early manifest HD: 1.45|0.16, healthy participants: 1.53|0.14). Furthermore, looking at the 
overall organization characteristics of the brain networks of patients, the normalized clustering 
coeffi  cient gamma did not diff er between preHD, early manifest HD, and healthy controls 
(p = 0.31), nor did the overall normalized path length lambda (p = 0.69). In summary, preHD and 
early manifest HD patients displayed gamma and lambda values close to the values of the brain 
networks of the healthy controls, suggesting an intact overall organization of the structural brain 
network in these disease stages. 
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Between-group differences in baseline graph metrics
Premanifest and early manifest HD patients did not show strong alterations (all ps > 0.05) in 
whole-brain graph metrics (Table II). The absence of these group effects suggests that global 
connectivity is relatively intact in early HD.

Baseline relationships between graph metrics and performance in behavioural benchmark 
tests
There was a significant negative correlation within the preHD group between baseline individual 
differences in the switch cost of the TMT on the one hand, and clustering coefficient (r = -0.44, 
p = 0.05) and local efficiency (r = -0.45, p = 0.04), on the other hand (see Figures 4A and B). 
Hence, better performance on the TMT (i.e., lower switch cost) was associated with an increase 
in efficiency and clustering coefficient within the preHD group. Using the subdivision, we found 
that the switch cost of the TMT was significantly negatively correlated with clustering coefficient 
(r = -0.78, p = 0.008, survived Bonferroni correction) and the local efficiency (r = -0.69, p = 0.03) 
within the preHD-B group. Moreover, within the preHD-B group, we also observed a positive 
correlation between the performance on the SWR and global efficiency (r = 0.62, p = 0.05, Figure 
4C), with higher global efficiency being related to better performance on SWR.

Baseline relationships between graph metrics and burden
No significant correlations were found between burden and the graph organizational 
characteristics in the preHD or early manifest HD groups using a Bonferonni correction or even 
an exploratory uncorrected threshold of p ≤ 0.05. From this, we cautiously conclude that burden 
did not explain our findings.

Longitudinal changes in benchmark behavioural tasks and graph metrics
For the investigation of longitudinal changes on the dependent variables of the behavioural tasks 
and graph metrics, we subjected each behavioural parameter and graph measure separately to 
a 2 x 3 permutation test with the between-subject factor group (controls, preHD, early manifest 
HD) and the within-subject factor time (visit 1, visit 2), while statistically controlling for the effects 
of age.

We observed a significant group by time interaction effect for the motor score (F(2, 52) = 17.62,  
p < 0.001). Post-hoc Tukey t-tests revealed that the early manifest HD group had an increased 
motor score (i.e., more motor abnormalities) compared to the preHD and healthy control groups. 
These group differences were even larger on the second visit (ps < 0.05). Also, main effects of 
the factor group were observed for TFC, SWR, and TMT. The subsequent post-hoc Tukey t-tests 
indicated generally higher performance for the controls compared to the early manifest HD 
group across both assessment times (ps < 0.001). Furthermore, post-hoc Tukey t-tests showed 
significantly superior performance on these behavioural tasks for the preHD group compared to 
the early manifest group (ps < 0.05).

Chapter 4



83  

Figure 4. Baseline correlations between network measures and cognitive performance.

The permutation test on modularity showed a signifi cant eff ect of group, (F(2, 52) = 3.58, p = 0.04, 
see Figure 5A). Across both assessment times, the control group had a larger modularity than 
the preHD-B and the early manifest HD group (ps < 0.05). Furthermore, a trend was observed 
for the eff ects of group by time on the normalized clustering coeffi  cient (p = 0.08) and small-
worldness (p = 0.06, Figure 5B), indicating a trend of increased ‘wiring-effi  ciency’ for the control 
group compared to the (pre) HD groups. Similar results were obtained with the statistical analyses 
with four groups.
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Correlations between changes in graph metrics and changes in performance on tasks of 
executive functioning and clinical scales
Partial correlations (with age as confounding variable) between changes in graph metrics 
from visit 1 to visit 2 in the diff erent groups and the concomitant alterations in the behavioural 
parameters showed moderate associations between changes in structural network connectivity 
and the changes in performance on tasks of executive functioning and clinical scales. For the 
early manifest HD group, there were correlations between the changes in motor score and 
changes in small-worldness (r = -0.67, p = 0.05, exploratory threshold, see Figure 6A). In other 
words, a decrease in ‘wiring-effi  ciency’ was associated with a higher motor score (i.e., more motor 
symptoms) in the early manifest HD group.

Figure 5. Longitudinal changes of graph metrics. Visit 1, black bars; visit 2, white bars.
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For the combined preHD group, there was a signifi cant negative correlation between normalized 
path length and scores on BDI-II, pairing more depression symptoms reported with decreased 
global integration (r = -0.58, p = 0.006, survived Bonferroni correction, Figure 6B). For the preHD-B 
group, correlations were present between changes in scores on the BDI-II and changes in 
betweenness centrality (r = -0.80, p = 0.006, survived Bonferroni correction), normalized path 
length (r = -0.84, p = 0.002, survived Bonferroni correction), global (r = -0.64, p = 0.05, exploratory 
threshold) and local effi  ciency (r = -0.66, p = 0.04, exploratory threshold), pairing more symptoms 
reported on BDI-II with reduced structural connectivity. Furthermore, the diff erence score of the 
switch cost of the TMT was signifi cantly negatively correlated with changes in the clustering 
coeffi  cient (r = -0.69, p = 0.03, exploratory threshold) within the preHD-B group (Figure 6C). In other 
words, an increase in clustering coeffi  cient was associated with better switching performance 
(i.e., lower switch costs) in the preHD-B group. No correlations were present within the preHD-A 
group.

Discussion

We investigated cross-sectional and longitudinal diff erences in regional and global topological 
properties between subjects with premanifest and early manifest HD and healthy controls. In 
this fi rst-of-its-kind analysis in HD, we revealed both baseline and longitudinal changes in the 
connectome of premanifest gene carriers and subjects with early manifest disease. We also 
demonstrated correlations between graph metrics on one hand, and clinical and behavioural 
measures, on the other hand. These results provide novel insights into the dynamics of brain 
neuropathology occurring in HD and the relationships with commonly used neurocognitive 
measures.

Longitudinal decreases in network measures
The principal fi nding from this study was a signifi cant reduction over time of nodal betweenness 
centrality both in the early manifest HD and preHD-B groups within the two year study period 
as compared to the preHD-A and control groups. The locations of these nodes included the left 
orbitofrontal cortex and left paracentral lobule. The reduction of betweenness centrality in these 
regions indicates that the shortest paths passing through these areas were reduced. This in turn 
implies a decrease of importance of these nodes to overall network integrity.

The orbitofrontal cortex is involved in decision making and cognitive and emotional processing.65 

Atrophy in this structure has been associated with impaired recognition of negative emotions in 
HD.66,67 The paracentral lobule, a component of the sensorimotor system,68 has previously been 
implicated in HD where atrophy was also demonstrated.69 The current results corroborate previous 
fi ndings by demonstrating a longitudinal reduction in nodal betweenness centrality, suggesting 
a decreased capability of these nodes in facilitating communication between diff erent brain 
regions in HD.

Dynamics of the connectome in Huntington’s disease: a longitudinal diffusion MRI study

4



 86  

Figure 6. Correlations between changes in network parameters, and changes in clinical and neurocognitive 
functioning.

In the combined preHD group, a signifi cant reduction over time of the clustering coeffi  cient 
was also shown in the left medial prefrontal cortex when compared to healthy controls. This 
fi nding implies a decrease of functional segregation in this node. In other words, the left medial 
prefrontal cortex seems to become less densely interconnected with surrounding nodes over 
time, suggesting a local reduction of internodal processing of information. The medial prefrontal 
cortex is a region involved in planning and problem solving,70 where in a previous study in 
preHD a lower functional connectivity has been demonstrated.71 Moreover, a functional MRI 
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study in preHD and manifest HD revealed reduced connectivity of the medial prefrontal cortex, 
representing a functional correlate of impaired executive function.72 Therefore, in our opinion, 
this is an important fi nding potentially providing a structural explanation for the dynamics of 
observed reductions in higher cognitive abilities occurring in gene carriers prior to manifestation 
of motor signs.

Preserved small-world organization in early HD
Another important fi nding is the preserved small-world organization within preHD and early 
manifest HD compared to healthy controls. With this fi nding in mind, we suggest that also in 
the early manifest stage of the disease, intervention could be aimed at preserving this brain 
organization associated with health, especially because of the presumed degradation of this 
network quality in advanced stages of the disease. Such a disruption in later stages of HD is 
yet to be established, though studies into diff erent disorders aff ecting the brain have revealed 
disruptions in the small-world topological organization.19,29 The results presented here imply that, 
at least at the preHD and early manifest stages of HD, there is no evidence for a ‘disconnection 
syndrome’ from a network perspective. Studies in other neurological disorders, such as multiple 
sclerosis,24,25 Alzheimer’s disease (reviewed by Xie and He),73 schizophrenia29 and traumatic brain 
injury27 have found support for such a pathological model. The lack of this fi nding in this study is 
encouraging, as preservation of normal brain network architecture through intervention might 
be used as a secondary outcome for maintaining effi  cient brain function. It should be clear, 
though, that such a secondary outcome should be coupled with cognitive assessments given 
the intricate relationship between brain structure and function.

Making ‘real-world’ sense of network measures
Providing a translation from network measures to cognitive function and clinical state not only 
validates these measures, but also indicates possible usability in biomarker research. Interesting 
baseline correlations between graph metrics and neurocognitive measures were present in the 
preHD group. Specifi cally an inverse relationship between the switch cost of the TMT, regarded as 
a measure of cognitive fl exibility, and clustering coeffi  cient and local effi  ciency was found. These 
fi ndings suggest that higher switching costs are associated with a loss in capability of processing 
information from a local network perspective. In the preHD-B group only, a positive correlation 
was observed between performance on SWR and global effi  ciency. This suggests that, in line with 
expectations, increases in the effi  ciency with which information can be transmitted globally are 
linked to higher processing speed.

Longitudinally, an increase in the UHDRS-TMS was negatively associated with small- worldness 
in the early manifest HD group, indicating that a decrease in ‘wiring-effi  ciency’ was related to an 
increase in motor score. The association found between increases on the reported symptoms on 
BDI-II and decreases in normalized path length in the preHD group provides evidence for coupled 
decreases in global integration with increases in depression scores. In the preHD-B group, we 
found that longitudinal increases in the switch cost of the TMT were correlated with longitudinal 
decreases in the clustering coeffi  cient, again pointing to an association between this cognitive 
measure and local network properties.
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Changing landscapes of hubs
Hubs are considered essential regions for coordinating brain functions, playing a central role 
in network resilience to brain injury.48,74 The dynamic nature of hub-status found in this study 
could prove informative in understanding the nature of disease progression and compensatory 
mechanisms at play in (pre) HD as reflected by the temporal relation between hub-status loss 
and gain. A highlight from our findings in this context was the hub-status gain found in preHD 
in the right superior parietal gyrus in the second visit. Using functional MRI, this region has been 
shown to play a compensatory role in maintaining normal motor function in preHD.75,76 Although 
admittedly speculative at this stage, this finding could be attributed to an increased need for 
compensation with progression of neurodegeneration in time, making a reorganisation of 
coordinating brain regions necessary for maintaining normal motor function. Another interesting 
finding was the contrast of hub-status gain for the right medial part of the superior frontal gyrus 
in early manifest HD compared to the loss of this status in the preHD group in the second visit. 
This type of information could further our understanding of compensatory mechanisms at play 
maintaining seemingly normal brain function in the premanifest stage of the disease, despite 
clear evidence of neurodegeneration provided by independent imaging studies even more than 
a decade prior to expected disease onset.5,77

Strengths and limitations
Strengths of this study include a standardized scan protocol with high-quality diffusion MRI data 
on two time points with assessments of multiple neurocognitive domains in a well described 
population from the TRACK-HD study. Moreover, in this study we have reconstructed the 
anatomical networks with constrained spherical deconvolution tractography, which in contrast 
to diffusion tensor imaging based tractography has the advantage of taking fibre crossings into 
account.9,43,78

There are several limitations in the methods being applied in the present study, such as the used 
parcellation scheme for defining the network nodes for the graph theoretical analysis. Multimodal 
integration of in- and ex-vivo data into a probabilistic atlas79 may offer a better biologically 
principled approach as a parcellation scheme than the AAL atlas used in this study. Furthermore, 
while reproducibility studies have often demonstrated good or excellent intraclass correlation 
coefficient (ICC) measurements variance (for a recent review, see Welton et al.),80 more studies 
measuring the test-retest reliability of graph metrics of structural networks are needed.

Moreover, the number of reconstructed fibres was used to weight the edges in the calculation of 
the connection matrix and consequently the network measures. Although other indices of white 
matter organization, such as fractional anisotropy, mean diffusivity, and level of myelination, have 
previously been applied to define the connectivity matrices,81,82 there is currently no consensus 
on the optimal weighting method in terms of sensitivity and specificity to pathological effects.

Chapter 4



89  

Conclusions

This is the fi rst study providing insights into longitudinal structural correlates with clinical state 
and cognitive function from a network perspective in HD. Strengthened by signifi cant correlations 
with clinical and cognitive defi cits, dynamics of the connectome, in the form of decreases of 
global and/or local effi  ciencies, were present in both the premanifest and early manifest stages 
of the disease. Furthermore, a changing hub landscape was demonstrated, contributing to our 
increased understanding of potential compensatory mechanisms at play, especially in preHD. The 
study further demonstrates preserved effi  cient dynamics of brain networks in the premanifest 
and early manifest stages of the disease. We conclude that assessing the connectome provides 
not only a novel approach with a biomarker potential in HD, but also potential new insights into 
compensatory strategies of the brain in neurodegenerative disorders.
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Abstract

Background
Objective and sensitive biomarkers quantifying disease progression in Huntington’s disease (HD) 
are needed. In this study we longitudinally investigated the rate of microstructural alterations in 
the occipital cortex in different stages of HD by applying an automated atlas-based approach 
to diffusion MRI data. The choice for this region was driven by the mounting evidence that the 
occipital cortex is involved early on in HD neuropathology.

Methods
Twenty-two premanifest (preHD), 10 early manifest HD (early HD) and 24 healthy control subjects 
completed baseline and two-year follow-up scans. We stratified the preHD group based on 
their predicted years to disease onset into a far (preHD-A) and near (preHD-B) to disease onset 
group. We collected clinical and behavioural measures per assessment time point. We used an 
automated atlas-based DTI analysis approach to obtain the mean, axial and radial diffusivities of 
the occipital cortex.

Results
We found that the longitudinal rate of diffusivity change in the superior occipital gyrus (SOG), 
middle occipital gyrus (MOG), and inferior occipital gyrus (IOG) was significantly higher in early HD 
compared to both preHD and controls (all ps ≤ 0.005), which can be interpreted as an increased 
rate of microstructural degeneration. Furthermore, the change rate in the diffusivity of the MOG 
could significantly discriminate between preHD-B compared to preHD-A and the other groups 
(all ps ≤ 0.04). Finally, we found an inverse correlation between the Stroop Word Reading task and 
diffusivities in the SOG and MOG (all ps ≤ 0.01).    

Conclusions
These findings suggest that diffusion measures obtained from the occipital cortex can serve as 
sensitive longitudinal biomarkers for disease progression in preHD-B and early HD. These could in 
turn be used to assess potential effects of proposed disease modifying therapies.

Chapter 5



97  

Introduction

untington’s disease (HD) is a rare autosomal dominant neurodegenerative disorder 
caused by an expanded cytosine-adenine-guanine (CAG) repeat on chromosome 4. 
The hallmark feature in HD neuropathology is degeneration of the striatum. However, 

a growing amount of evidence from neuroimaging studies suggests that occipital regions are 
aff ected early on in the disease course.1-14 Furthermore, metabolic abnormalities have also been 
reported in the occipital regions in HD.15-17 Histologically, a study in HD found that atrophy of 
the occipital lobe was most pronounced compared to other cortical areas18 and a more recent 
post-mortem study confi rmed reductions in the absolute nerve cell number of the occipital lobe 
in HD.19 The in vivo microstructural properties of the occipital cortex have, however, not been a 
primary focus in HD research to date.1-22

As carriers of a CAG repeat ≥ 40 within the mutant gene are certain to develop Huntington’s disease 
if they live long enough, carriers in the phase before disease presentation could be examined to 
explore inevitable changes occurring while progressing towards disease manifestation. Viable 
markers representing disease progression in HD and its premanifest stage (preHD) are still needed 
in order to investigate potential intervention eff ects. To this end, various imaging techniques are 
being used in biomarker research settings. One such technique is diff usion MRI, where measures 
can be obtained based on the diff usion characteristics of water molecules in tissues. This, in 
turn, provides indirect information regarding the microstructure of these tissues.23,24 Potential 
associations between disease state on the one hand and divergent longitudinal diff erences in 
diff usivities on the other hand, could give a tool for quantifying disease progression.

We previously explored whole-brain and striatal diff usivities in (pre) HD and healthy controls, 
where we found no evidence for signifi cant longitudinal diff erences between the groups.25 

Other research groups have more recently demonstrated signifi cant longitudinal diff erences in 
various white matter tracts between the groups,11,22 where interestingly Harrington et al.11 found 
diff erences only in the superior fronto-occipital fasciculus. Furthermore, recent cross-sectional 
studies have shown abnormalities related to the occipital regions, such as in white matter 
projections to the occipital lobe,12 in superfi cial white matter13 and in deep white matter tracts of 
the occipital lobe.14     

Given the mounting evidence pointing to an early and preferential involvement of the occipital 
regions in HD,1-19 this study aimed to investigate diff usion measures of the occipital cortex in 
premanifest and early manifest HD and matched healthy controls and explore potential 
diff erences in longitudinal changes between the groups and associations of changes herein with 
clinical and behavioural measures.  

Materials and methods
Procedures regarding participant recruitment, inclusion criteria and clinical measures administered 
have been previously described in detail.1,25 In summary, 56 subjects at the Leiden site of the 
prospective international TRACK-HD study completed a brain MRI scan at baseline and a second 
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scan two years later. The between-scan interval in months is shown in Table I, without significant 
between-group differences. The group consisted of 24 healthy controls (49.0 ± 8.2 years), 22 preHD 
(43.6 ± 8.7 years) and ten early manifest HD (50.2 ± 9.3 years) (Table I). As previously applied by 
Tabrizi et al.,1 to assess the effect of expected proximity to disease onset on diffusion parameters, 
the preHD group was divided at baseline according to the median (10.9 years) for the predicted 
years to disease onset into preHD-A (≥ 10.9 years. Mean ± SD: 14.9 ± 4.7) and preHD-B (< 10.9 years. 
Mean ± SD: 8.6 ± 1.8). The predicted years to disease onset were calculated using the Langbehn 
method.26 This resulted in two groups each consisting of eleven subjects (Table I). The Symbol 
Digit Modalities Test (SDMT) and the Stroop Word Reading (SWR) task, where visual processing is 
required, were administered to evaluate potential associations between these commonly used 
and sensitive longitudinal neurocognitive measures in HD2 and occipital diffusivities. To monitor 
disease state, the following clinical measures were further evaluated longitudinally for all groups: 
Unified Huntington’s Disease Rating Scale (UHDRS-TMS), Total Functional Capacity (TFC) and  
Beck Depression Inventory-II (BDI-II) scores. The study was approved by the Medical Ethics 
Committee of the Leiden University Medical Center and written informed consent was obtained 
from all participants. 

Magnetic resonance imaging acquisition
MRI acquisition was performed with a 3-Tesla whole-body scanner (Philips Achieva, Healthcare, 
Best, The Netherlands) with an eight channel SENSE head coil. T1-weighted image volumes were 
acquired using a 3D MPRAGE acquisition sequence with the following imaging parameters: TR = 
7.7 ms, TE = 3.5 ms, FOV = 24 x 24 cm2, matrix size 224 x 224, number of slices = 164, slice thickness 
= 1.00 mm, and no slice gap. A single-shot echo-planar diffusion tensor imaging sequence was 
applied with 32 measurement directions and the following scan parameters:24 TR = 10,004 ms, TE 
= 56 ms, FOV = 220 x 220 mm2 with an acquisition matrix of 112 x 110, 2.00 mm slice thickness, 
transversal slice orientation, no slice gap, flip angle = 90°, reconstruction voxel dimensions of 
1.96 x 1.96 x 2.00 mm3, number of slices = 64, b-value = 1,000 s/mm2, halfscan factor = 0.61. 
Parallel imaging (SENSE) was used with a reduction factor of two, NSA = 1, and fat suppression 
was applied. DTI acquisition time was 6.55 min.

Image processing
DTI data were analysed using the diffusion MR toolbox ‘ExploreDTI’,27 as previously described.25 

Automated atlas based analysis28 using the LPBA40 parcellation map from the SRI24 atlas29 

(available at http://www.nitrc.org/projects/sri24/) was performed using affine and elastic 
registration based on ‘Elastix’.30 All DTI data were visually checked in terms of quality of tensor 
estimation and quality of registration. As no significant differences were found between 
hemispheres, left and right hemisphere values of mean diffusivity (MD), axial diffusivity (AD) and 
radial diffusivity (RD) were calculated and averaged per occipital region as provided by SRI24/
LPBA40.29 To correct for multiple comparisons (three occipital regions), a Bonferroni corrected 
p-value ≤ 0.017 (0.05/3) was considered significant for omnibus F-tests. As fractional anisotropy 
is not an informative measure in cortical grey matter regions,31,32 MD, AD and RD are reported.
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N
Gender M/F
Age in years (at V1), mean (SD) 
Handedness R/L
Level of education (ISCED), median (range) 
DART-IQ, mean (SD)
CAG repeat length, mean (SD)
Estimated years to onset, mean (SD)
Total functional capacity, mean (SD)

UHDRS-TMS, mean (SD)

SDMT, mean (SD) 

SWR, mean (SD)

BDI-II, mean (SD)

Between-scan interval in months, mean (SD)

24
11/13
49.0 (8.2) 
20/4
4 (3)
105.0 (9.4) 
n/a
n/a

13.0 (0.2) 
12.9 (0.5) 

2.6 (2.5)
2.1 (1.6) 

49.4 (8.9)
50.9 (9.3)

100.1 (13.2) 
102.0 (15.6) 
 
4.1 (4.4)
3.9 (4.1) 
23.0 (0.8)

22‡
9/13
43.6 (8.7) 
18/4
4 (3)
100.5 (11.2) 
42.6 (2.7) 
11.8 (4.7)
 
12.8 (0.5) 
12.6 (0.9)
 
2.6 (1.5) 
5.7 (5.1) ¥

50.1 (11.0) 
50.6 (10.0)

91.9 (14.2)* 
87.9 (15.7)*

6.4 (6.4) 
5.1 (5.6) 
23.0 (0.7)

     
Healthy 
controls                                                                                     

Premanifest 
HD (A and B)

11
4/7 
44.2 (5.7) 
9/2
4 (3) 
101.3 (9.7) 
41.3 (1.4) 
14.9 (4.7)

12.7 (0.7) 
12.7 (0.6)

2.0 (1.5) 
3.5 (2.2)

53.5 (9.3) 
54.7 (10.0)

95.6 (9.6) 
91.4 (9.4) 
 
4.9 (6.0) 
3.2 (4.9) 
23.2 (0.6)

preHD-A

11
5/6 
43.0 (11.2) 
9/2
4 (3) 
99.6 (13.0) 
43.9 (3.1)^ 
8.6 (1.8)^

12.8 (0.4) 
12.5 (1.0)

3.1 (1.2) 
8.3 (6.1)*^

46.7 (11.9) 
46.6 (8.5)^

88.3 (17.3)* 
84.4 (20.0)* 

7.9 (6.8) 
6.9 (5.9) 
22.7 (0.7)

preHD-B 

10
4/6 
50.2 (9.3) 
9/1
4 (3) 
101.8 (13.5) 
42.5 (1.2) 
n/a

11.0 (1.5)Φ 
10.3 (2.2)Φ

14.6 (7.7)Φ 
23.0 (12.1)Φ

41.2 (9.2)Φ 
39.2 (10.6)Φ

87.7 (14.7)* 
86.4 (18.6)* 

10.2 (8.2)* 
8.2 (8.4) 
23.5 (0.7)

Early 
manifest HD

V1 
V2

V1 
V2

V1 
V2

V1 
V2

V1 
V2

Table I. Group demographics with clinical and behavioural scores

N = number of participants, SD = Standard deviation, n/a = not applicable, ISCED = International Standard 
Classifi cation of Education, DART-IQ = Dutch Adult Reading Test Intelligence Quotient, CAG = Cytosine-Adenine-
Guanine, UHDRS-TMS = Unifi ed Huntington’s Disease Rating Scale-Total Motor Score, SDMT = Symbol Digit 
Modalities Test, SWR = Stroop Word Reading task, BDI-II = Beck Depression Inventory-II, V1 = visit 1, V2 = visit 2.
Signifi cance at p ≤ 0.05 level: * signifi cantly diff erent from controls, Φ signifi cantly diff erent from controls and 
preHD, ¥ signifi cantly diff erent from controls and HD, ^ signifi cantly diff erent from preHD-A. 
‡ Including fi ve subjects progressing to the early manifest stage during the two year follow-up period.

Statistical analysis
We used linear mixed models (in R version 3.0.0, R Foundation for Statistical Computing, Vienna, 
Austria) to model the outcome variables with patient as a random factor to accommodate the 
within-person repeated nature of the data and to assess the eff ect of group, corrected for age 
at time of scanning. Correlations between neurocognitive measures and diff usion metrics were 
tested in the model. Statistical analyses of group demographics were performed with SPSS 
(version 20, IBM, USA). Distributions and assumptions were checked. Either Analysis of Variance 
(ANOVA) or Chi-squared tests were applied where this was appropriate. Potential longitudinal 
change in clinical measures between the groups was also investigated. Diff erence values were 
computed and an ANOVA was performed on these delta-scores to evaluate potential group 
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differences. In case of a significant omnibus F-test, exploratory post-hoc analysis using Fisher’s 
least significant difference was performed to assess which means were significantly different 
from each other. As absolute values of diffusivities do not convey meaningful information per se, 
we report percentage change as an informative longitudinal parameter. Supplementary Figure 
1 shows the evolution of the absolute diffusivity levels between the groups and on individual 
study participant level from the first to the second visit. A statistical power analysis was performed 
for sample size estimation based on data from our study, with a Bonferroni corrected α = 0.01 
and power = 90%. Differences in group demographics between preHD-A and preHD-B were 
compared using either independent-samples t-tests or Chi-squared tests, where appropriate.

Results

There were no statistically significant differences in demographic characteristics between 
the groups. Only a trend towards a difference in age (p = 0.06) was observed. Hence, age was 
included as a covariate in subsequent analyses. See Table I for group demographics and clinical 
and behavioural scores. The early HD group differed significantly at baseline in their performance 
in SDMT and SWR when compared to both controls and preHD subjects. For the preHD group, a 
significantly lower baseline score compared to controls was found for SWR. Furthermore, at the 
second visit, the preHD-B group showed a significantly lower SDMT score compared to preHD-A. 
All results presented hereafter are based on the dynamics during the two-year duration of the 
study.

Superior Occipital Gyrus diffusivities
Longitudinal changes in MD were significantly larger in early HD compared to both preHD and 
controls (+12.3%, +7.9% and +6.1%, respectively; p = 0.001). Similar patterns were found for AD 
(+12.7%, +8.0% and +5.6%, respectively; p < 0.001) and RD (+12.0%, +7.8% and 6.4%, respectively; 
p = 0.005) for the three groups. No further longitudinal diffusivity differences in this structure were 
found upon stratifying the preHD group based on expected time to disease onset into preHD-A 
and preHD-B. See Table II and Figure 1 for a summary of the results.   
  
Middle Occipital Gyrus diffusivities
Longitudinal changes in MD were significantly larger in early HD compared to both preHD and 
controls (+9.0%, +5.4% and +3.8%, respectively; p < 0.0001). Similar patterns were found for AD 
(+8.3%, +4.5% and +2.7%, respectively; p < 0.0001) and RD (+9.4%, +5.9% and +4.5%, respectively; 
p < 0.001) for the three groups. Upon stratification of the preHD group based on expected time 
to disease onset, significantly larger longitudinal changes in preHD-B compared to preHD-A were 
found in MD (+6.2 % vs. +4.4%, respectively; p = 0.03), AD (+5.1% vs. +3.7%, respectively; p = 0.04) 
and RD (+6.8% vs. +4.8%, respectively; p = 0.02). See Table II and Figure 1 for a summary of the 
results (data for preHD-B vs. preHD-A are not shown in figure).     
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Inferior Occipital Gyrus diff usivities
Longitudinal changes in MD were signifi cantly larger in early HD compared to both preHD and 
controls (+4.6%, +1.0% and -1.1%, respectively; p = 0.001). Similar patterns were found for AD 
(+3.4%, +0.3% and -1.8%, respectively; p = 0.002) and RD (+5.3%, +1.4% and -0.6%, respectively; 
p = 0.001). No further longitudinal diff usivity diff erences were found upon stratifying the preHD 
group based on expected time to disease onset into preHD-A and preHD-B. See Table II and Figure 
1 for a summary of the results.

Table II.  Longitudinal percentage change in diff usion parameters from v1 to v2†

SOG = Superior Occipital Gyrus, MOG = Middle Occipital Gyrus, IOG = Inferior Occipital Gyrus, MD = mean 
diff usivity, AD = axial diff usivity, RD = radial diff usivity.
Signifi cance at p ≤ 0.017 for the omnibus F-test following Bonferroni correction: Φ signifi cantly diff erent from 
controls and preHD, ^ signifi cantly diff erent from preHD-A, early HD and controls. The MOG is underlined as a 
prime region of interest based on these results.
† Calculated from mixed model-based estimates of the group means for diff usion measures, corrected for age.
‡ Including fi ve subjects progressing to the early manifest stage during the two year follow-up period.
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+ 6.1 

+ 5.6 

+ 6.4

     
Controls                                                                                     preHD (A and B)‡ preHD-A preHD-B Early HD

N

MD

AD

RD

24 22 11 11 10

SOG          MOG          IOG SOG          MOG          IOG SOG          MOG          IOG SOG          MOG          IOG SOG          MOG         IOG

+ 3.8 

+ 2.7

+ 4.5

-1.1 

-1.8 

- 0.6

+ 7.9 

+ 8.0 

+ 7.8

+ 5.4 

+ 4.5 

+ 5.9

+ 1.0 

+ 0.3 

+ 1.4

+ 8.4 

+ 8.8 

+ 8.2

+ 4.4   

+ 3.7   

+ 4.8  

+ 0.5   

+ 0.1   

+ 0.8  

+ 7.4

+ 7.2 

+ 7.4

+ 6.2 ^ 

+ 5.1 ^ 

+ 6.8 ^

+ 1.4 

+ 0.5 

+ 1.9

+12.3Φ 

+12.7Φ 

+12.0Φ

+ 9.0Φ 

+ 8.3Φ 

+ 9.4Φ

+ 4.6Φ 

+ 3.4Φ 

+ 5.3Φ
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Figure 1. Two-year percentage change in mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) of 
the three occipital regions of the groups. Significance levels are indicated in Table II.

Associations between occipital diffusivities and neurocognitive measures
The associations between occipital diffusivities and neurocognitive measures were not statistically 
different between the preHD and early HD groups. No significant associations were found between 
the diffusivities of any of the three occipital structures and SDMT (all ps > 0.05). The SWR showed 
strong associations with the AD of the Superior Occipital Gyrus (SOG) (p = 0.005), and the MD 
(p = 0.01), AD (p = 0.009) and RD (p = 0.01) of the Inferior Occipital Gyrus (IOG). No significant 
associations with any of the diffusivities of the MOG and neurocognitive measures were present. 
See Table III for a summary of the significant associations.
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5

AD - SOG
MD - IOG
AD - IOG
RD - IOG

1.8%
1.2% 
1.1%
1.3%

   10 points
   10 points
   10 points
   10 points

     
Di�usion parameter                                                                                     SWR score

0.005 
0.011 
0.009 
0.013

P

Table III. Associations between occipital diff usivities and neurocognitive measures

SOG = Superior Occipital Gyrus, IOG = Inferior Occipital Gyrus, MD = mean diff usivity, AD = axial diff usivity, RD = 
radial diff usivity.
This table is valid for all participants with a CAG repeat expansion included in the study, as no specifi c group 
eff ects were found on correlations between diff usion parameters and neurocognitive measures. Only signifi cant 
correlations are shown.      = decrease,      = increase.

Power analysis
Power analysis using these results show that a minimum of 9 subjects per group would be 
needed to detect a signifi cant longitudinal diff erence in diff usivity values in 2 years within 
the occipital cortex (90% power and α = 0.01). There were no signifi cant diff erences in power 
between the diff erent diff usivity measures. However, the MOG was the region most prone to 
longitudinal alteration, thereby most sensitive to demonstrating change. The minimum number 
of subjects needed to fi nd statistically signifi cant longitudinal diff erence in the diff usivity of the 
three occipital regions was as follows: SOG 14, MOG 9 and IOG 12. 

Discussion

We investigated longitudinal microstructural property changes of the occipital cortex in HD. Using 
a fully automated procedure, we revealed highly divergent longitudinal quantitative imaging 
measures between preHD, early HD and controls. Associations were found between diff usivity 
change rates and disease stage in the preHD and early HD groups, providing evidence for an 
accelerated rate of change correlated with disease progression. Signifi cant correlations between 
behavioural measures and diff usivity changes in HD were found.

Diff erences observed in the rate and signifi cance of longitudinal change of SOG, MOG and 
IOG diff usivities were similar for all measures tested (MD, AD and RD). As such, it does not 
seem of added value to assess these diff erent diff usivity values individually. However, some of 
the associations found with cognitive functions were present only with specifi c measures, for 
example the inverse relationship found between the Stroop Word Reading task and the AD of 
SOG. Therefore, it would seem useful to further examine the behaviour of the separate diff usion 
measures in future investigations, as this may provide specifi c associations with cognitive tests. In 
preHD, only changes in diff usivities of the MOG could signifi cantly diff erentiate between preHD-B 
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compared to preHD-A and the other groups. This structure might thus be preferentially affected 
in the premanifest phase of HD and, in light of these results, could be viewed as a prime region 
of interest for neuroimaging change within the occipital cortex in preHD. Our power analysis also 
demonstrated that the MOG is the most sensitive structure of the three examined in detecting 
longitudinal change between the groups. 

The occipital cortex is deservingly gaining interest in HD research. Previous, often serendipitously 
found alterations in this region increasingly pointed to this structure as relevant in the 
neuropathology of HD.33 This study provides strong evidence for a highly differential longitudinal 
change of diffusion measures in this structure between the studied groups. The relatively short 
time-frame of the study concomitant with a relatively high rate of change, makes it likely that 
these disease-related changes could also be reproduced in shorter study intervals, making these 
measures potentially suitable to use as outcome parameters in shorter clinical trials. These results 
also pave the way for further investigations into the underlying mechanisms with which the 
occipital cortex is affected in HD and what the clinical relevance is. Although no specific visual 
symptoms are known to exist in HD, performance on cognitive tasks examining visuospatial 
and visuomotor function is known to be reduced in the disorder.34,35 A study investigating the 
cross-sectional relationship between visual area resting state functional MRI (RS-fMRI), volumetric 
changes, and cognitive function revealed differences between HD and controls with significant 
cognitive correlations to visual area RS-fMRI.36 It is further known that impaired emotion recognition 
is a feature of preHD and early HD (see Henley et al.37 for a systematic review), and results from a 
previous task-based functional MRI study in preHD revealed reduced neuronal activity in various 
regions during emotion processing, including the MOG studied in the present report.38

Previous longitudinal reports using diffusion MRI in HD provide heterogeneous findings.11,22,25,39-42 
Using a tract-based spatial statistics (TBSS) approach, Weaver et al.40 compared scans from 
seven controls, four preHD and three manifest HD subjects obtained one year apart. Significant 
longitudinal decreases in white matter fractional anisotropy (FA) and AD in the seven mixed preHD 
and manifest HD group were found compared to the healthy controls. In the study by Sritharan 
et al.,41 a region of interest approach was used to investigate several regions of the brain in 17 
controls and 18 manifest HD subjects over a one-year period, where no significant longitudinal 
differences in MD were found. Vandenberghe et al.39 also applied a region of interest approach in 
eight manifest HD subjects over a two-year period, where no longitudinal differences between 
the groups were found in MD. In our previous histogram-based study, both global and striatal 
differences in cross-sectional diffusivities between preHD, early HD and controls were observed, 
without evidence for any longitudinal differences.25 

Using TBSS, a study by Poudel et al.42 provided evidence for a significantly increased rate of 
longitudinal change in FA of the corpus callosum and cingulum of HD patients compared to 
preHD and controls. Also applying TBSS, Harrington et al.11 demonstrated significant longitudinal 
differences in MD of the superior fronto-occipital fasciculus between preHD and controls using 
a cohort from the prospective international Predict-HD study.43 It should be noted, however, that 

Chapter 5



105  

the defi nition of the premanifest phase in the aforementioned study is diff erent than in our study, 
making a direct comparison diffi  cult. In the study of Harrington et al.11 mutant gene-carriers 
scoring more than 5 points on the UHDRS-TMS were also included to the preHD group, as long 
as a diagnostic confi dence level of 4 was not reached, a level in which an examiner had to have 
≥ 99% confi dence of seeing unequivocal signs of HD. In our clinical phenotypic characterization 
of preHD, mutant gene carriers had an UHDRS-TMS of ≤ 5, making the selection much more 
stringent and the results of the “preHD” group not comparable. Another study by Shaff er et al.22 

demonstrated longitudinal diff erences in cortico-striate tracts using a whole brain tractography 
approach in a larger cohort of preHD subjects from the same Predict-HD study. The inconsistencies 
in the literature might very well be attributed to inconsistencies in defi ning the regions/tracts 
of interest, not selecting the regions/tracts of interest most prone to change, variations in the 
defi nition of the premanifest phase, and/or other methodological limitations, such as for TBSS.44    

This present study investigates cortical grey matter, where FA is generally not informative31,32 

and where MD, AD and RD were derived instead. Although the underlying structures studied by 
Poudel et al.42 are diff erent than in this study, one of the goals in HD biomarker research remains to 
identify the most sensitive longitudinal tools diff erentiating between preHD, early HD and healthy 
controls. The annualized rates of diff usivity measure changes in white matter microstructure 
found by Poudel et al.42 were between 1.5%-3.5%, which given the period in the present study 
would roughly translate into a 3%-7% change rate. Also, no evidence was found for a longitudinal 
diff erence in diff usivity change for the preHD group in that report. The rates of change found 
in the present study are generally more prominent compared to those reported by Poudel et 
al.42 Moreover, a distinct longitudinal diff usivity change was demonstrated in preHD-B, implying 
that investigating the occipital cortex as a region of interest may provide a more sensitive way 
to track disease advancement in preHD compared to the corpus callosum and/or cingulum. An 
important quality for a robust biomarker is reproducibility of results. This makes unbiased, fully 
automated approaches desirable in order to investigate the eff ect of an intervention within and 
between centres as easily and reliably as possible. 
Inference of biological meaning based on the observed changes in diff usivity is challenging, 
especially in grey matter.31,32 Therefore, caution should be taken when attempting to interpret 
these results in the light of a disease-specifi c microstructural eff ect on the occipital cortex. The 
fi ndings of small changes in diff usivity values within the healthy control group in the two-year 
between-scan interval is most likely explained by natural, ongoing, age-related processes of the 
brain.45,46 It is likely that the fi ndings of increased changes in the diff usivities of both preHD and 
early HD subjects reflect progressive disruption of cell boundaries in this cortical region with 
disease advancement, causing an increase in tissue permeability and interaxonal spacing due to 
neural tissue loss.20,47 Evidence for ongoing macrostructural neurodegeneration in HD is already 
known from previous MRI volumetric investigations.1-7,9,10,39 The value of the current results lie in 
the high rate of observed microstructural changes that is disease stage-specifi c. Potential eff ects 
of a therapeutic agent could theoretically be examined by concomitant monitoring of the rate of 
change in microstructural integrity of the occipital cortex, thereby inferring potential protective 
eff ects.
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Strengths of this study include a longitudinal design specifically focused on DTI measures 
obtained from the occipital cortex in HD. Also, an automated atlas based procedure was applied, 
which has already shown to provide objective and reproducible results in the clinical setting.28 

Furthermore, between-scan intervals were alike between all the groups and the same scanner 
and scan protocol were used at both time points, reducing test-retest variation in DTI data.48 

Potential limitations of this study include the relatively small sample size of early HD patients and 
potential imperfect atlas-based segmentations of the occipital cortex.28 Notwithstanding these 
concerns, these results provide evidence for a robust effect on longitudinal diffusivity measures 
in HD. 

Conclusions

Findings in this study reinforce previous research of disease-stage related occipital involvement 
in HD, adding evidence for a divergent longitudinal evolution of diffusion measures reflecting 
microstructural change compared to healthy controls. The results were complemented by 
significant associations between diffusion measures and SWR, a cognitive task frequently 
administered in HD research. Investigating the occipital cortex with DTI measures seems to be 
a promising and sensitive tool to assess the efficacy of future planned disease modifying clinical 
trials in premanifest and early manifest HD.     
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Chapter 6

Abstract 

Background
Reliable markers measuring disease progression in Huntington’s disease (HD), before and after 
disease manifestation, may guide a therapy aimed at slowing or halting disease progression. 
Quantitative electroencephalography (qEEG) may provide a quantification method for possible 
(sub)cortical dysfunction occurring prior to or concomitant with motor or cognitive disturbances 
observed in HD. In this pilot study we construct an automatic classifier distinguishing healthy 
controls from HD gene carriers using quantitative qEEG and derive qEEG features that correlate 
with clinical markers known to change with disease progression in HD, with the aim of exploring 
biomarker potential.  

Methods
We included twenty-six HD gene carriers (49.7 ± 8.5 years) and 25 healthy controls (52.7 ± 8.7 
years). EEG was recorded for three minutes with subjects at rest. An EEG index was created by 
applying statistical pattern recognition to a large set of EEG features, which was subsequently 
tested using 10-fold cross-validation. The index resulted in a continuous variable ranging from 0 
to 1: a low value indicating a state close to normal and a high value pointing to HD. qEEG features 
that correlate specifically with commonly used clinical markers in HD research were derived. 

Results
The classification index had a specificity of 83%, a sensitivity of 83% and an accuracy of 83%. 
The area under the curve of the receiver operator characteristic curve was 0.9. qEEG analysis on 
subsets of electrophysiological features resulted in two highly significant correlations with clinical 
scores. 

Conclusions
The results of this pilot study suggest that qEEG may serve as a biomarker in HD. The indices 
correlating with modalities changing with the progression of the disease may lead to tools based 
on qEEG that help monitor efficacy in intervention studies. 
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Introduction

untington’s disease (HD) is an autosomal dominant neurodegenerative disorder 
characterized by motor, cognitive and psychiatric symptoms with a mean age at onset 
between 30-50 years.1 It is caused by an expanded cytosine-adenine-guanine (CAG) 

trinucleotide repeat in the huntingtin gene on the short arm of chromosome 4. The disease 
causes widespread brain pathology. Magnetic resonance imaging (MRI) studies in HD have 
revealed extensive brain atrophy, most notably in the striatum.2,3,4 With disease progression, 
neurodegenerative changes further extend to the cortical grey-matter areas.5,6 Cortical atrophy 
is found in both premanifest (preHD) as well as manifest stages of HD, with an increasing cortical 
thinning detectable with progressing disease severity.2,7 

A challenge in HD research is to establish reliable markers to measure disease progression, both 
before and after disease manifestation, in preparation for the advent of new therapy aiming to 
slow or halt disease progression. This will be of tantamount importance for carriers of CAG repeat 
lengths of 40 or higher as they will develop manifest HD with certainty.

Electroencephalography (EEG) is an easy, cheap and rapid technique to assess (sub)cortical 
pathology. Quantitative electroencephalography (qEEG) provides objective parameters to assess 
(sub)cortical dysfunction occurring prior to or concomitant with motor or cognitive disturbances 
in HD. Combining such measures with clinical tests in HD gene carriers may provide added insights 
into progression of pathology and increased sensitivity for detecting subtle changes. Previous 
studies have found EEG abnormalities in HD.8 A study using a diff erent automated method 
compared to the one used in this paper, called automated artifi cial neural networks (ANN), 
showed promising results in discriminating between EEGs of HD gene carriers and controls.9 

In this pilot study, we hypothesized that machine learning automatic classifi cation of EEG patterns 
may discern healthy controls from HD gene carriers. If so, this would be the fi rst step to assess 
this technique as a longitudinal biomarker in HD. Secondly, we aimed to derive qEEG features 
that correlate with commonly used clinical and cognitive markers in HD research, known to 
change with disease progression. This is done to evaluate the usefulness of these qEEG features 
as biomarkers for tracking disease state and progression in HD. 

H
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Table I. Group characteristics and clinical scores

N = number of participants, SD = Standard deviation, n/a = not applicable, ISCED = International Standard 
Classification of Education, CAG = Cytosine-Adenine-Guanine, UHDRS-TMS = Unified Huntington’s Disease Rating 
Scale-Total Motor Score, SDMT = Symbol Digit Modalities Test, SWR = Stroop Word Reading task, BDI-II = Beck 
Depression Inventory-II.
Significance at p ≤ 0.05 level: * significantly different from controls, Φ significantly different from controls and 
preHD, ¥ significantly different from preHD. ^ p = 0.07. 

Materials and methods

Participants
Twenty-six HD gene carriers and 25 healthy controls were recruited from the Neurology outpatient 
clinic of the Leiden University Medical Center (LUMC), the Netherlands (Table I). The preHD group 
(6 subjects) had a CAG repeat ≥ 40 with a total motor score on the Unified Huntington’s Disease 
Rating Scale (UHDRS-TMS) ≤ five. The early manifest HD group (20 subjects) had a CAG repeat ≥ 40 
with a UHDRS-TMS ≥ five and a Total Functional Capacity score (TFC) ≥ 7. A burden of pathology 
score greater than 250 ((CAG repeat length - 35.5) x age) was required as a further inclusion 
criterion for the HD gene carrier group.2,10 Healthy gene-negative partners (or family members in 
three instances) were recruited as controls (25 subjects). None of the participants suffered from 
a concomitant neurological or psychiatric disorder or had a history of severe head injury. The 
study was approved by the Medical Ethics Committee of the Leiden University Medical Center 
and written informed consent was obtained from all participants. All methods were performed in 
accordance with the relevant guidelines and regulations.

Clinical measures
The following clinical measures were evaluated in all participants: UHDRS-TMS, TFC, Symbol Digit 
Modalities Test (SDMT), Stroop Word Reading (SWR) and Beck Depression Inventory-II (BDI-II) 
scores.

Chapter 6

N
Gender M/F
Age in years (at V1), mean (SD) 
Handedness R/L
Level of education (ISCED), median (range) 
CAG repeat length, mean (SD)
Estimated years to onset, mean (SD)
Total functional capacity, mean (SD)
UHDRS-TMS, mean (SD) 
SDMT, mean (SD)
SWR, mean (SD)
BDI-II, mean (SD)

25
7/18
52.7 (8.7)
24/1
4 (6)
n/a
n/a
13.0 (0.2)
1.3 (1.7)
54.7 (11.5)
108.0 (16.1)
3.6 (3.9)

26
10/16
49.7 (8.5)
22/4
5 (5)
43.2 (2.3)
n/a
12.3 (1.2)*
10.5 (6.9)*
49.3 (10.0)^
95.0 (14.5)*
6.6 (7.3)^

     
Healthy controls                                                                                     Combined(pre)HD

6
1/5
49.1 (4.9)
5/1
4.5 (4)
41.3 (1.2)
10.8 (2.6)
12.8 (0.4)
2.8 (2.1)
56.7 (10.4)
99.0 (7.2)
3.3 (2.9)

preHD

20
9/11
49.9 (9.4)
17/3
5 (5)
43.8 (2.2)¥
n/a
12.1 (1.3)Φ
12.8 (6.1)Φ
47.1 (9.0)*
93.9 (16.0)*
7.6 (8.0)Φ

Early HD
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The UHDRS-TMS is the current gold-standard which defi nes manifest disease state in HD. The 
SDMT and SWR have been shown to be sensitive neurocognitive measures in HD, independent 
of disease related motor eff ects.11

EEG recording
The International 10–20 system was used for electrode placement using 19 Ag/AgCl electrodes. 
The average potential was used as a reference in subsequent analyses. Two horizontal bipolar eye 
movement leads and one for the electrocardiogram were applied to monitor artefacts. The EEG 
was recorded for three minutes with subjects at rest with eyes closed. Subjects were instructed to 
sit comfortably in a chair and close their eyes, but to remain awake. Subjects were alerted if they 
became visibly drowsy or if there were indications of that on the EEG. EEGs were recorded using a 
Nihon Kohden Neurofax 1200 system. Matlab (MathWorks® Version 7.1) and the LIBSVM toolbox33 
were used for analyzing the data. 

EEG and statistical analysis
The analysis started by calculating the power spectrum followed by the connectivity and 
synchronization between electrodes. This was done to extract features from the recordings that 
refl ect the variations of the spatial and temporal information in the multivariate data. First the 
power spectrum was calculated in the average montage for the signal at each individual electrode 
using a Fast Fourier Transformation (FFT) algorithm12 for consecutive 2 second segments with 
an overlap of 1 second. The EEG of each segment was subjected to a Bartlett window and a 
power spectrum using the FFT method was calculated, so for each electrode/lead N spectra were 
obtained, in which N was the number of segments. A fi nal estimate for the power spectrum was 
then obtained by applying robust fi ts13 for each point in the spectrum, over the ensemble of N 
spectra. The second step of the analysis involved the connectivity and synchronization between 
electrodes, through the power spectrum of the auto correlation function between all possible 
pairs of electrodes. This was done in the average montage. The same segments were used as 
described above. The choice of 2 second segments resulted in a spectral resolution of 0.5 Hz. We 
chose to work with a spectral cut-off  of 45 Hz. This resulted in 91 spectral power values for each 
spectrum. The total number of spectral estimates entering the evaluation was 19 for the spectra 
for each electrode as well as 171 for all the possible autocorrelation spectra. Together, there 
were 17290 spectral features for each qEEG. The full spectrum was considered for investigation 
of the group level diff erences between the single electrode spectra. For the statistical pattern 
recognition (SPR) analysis the feature set was reduced. To do so, each spectrum was fi rst reduced 
by dividing it into overlapping bands of 8 Hz width with an overlap of 4 Hz. Each band was 
modulated by a Bartlett window reducing the number of features from 91 spectral features to 11. 
This procedure reduced the total number of features to 2090. 

As the cohort in this study was small, it was important to avoid instability and overfi tting in the 
SPR analysis if all features were taken into account simultaneously. This can occur even though 
support vector machine are applied in the SPR, which depend on the number of support vectors 
but not the number of features.14 A subset of only 20 features were used in the analysis. The 
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subset of features was chosen by applying a genetic algorithm that optimized the area under 
the curve (AUC) of the resulting receiver operator characteristic (ROC) curve.15 The ROC statistics 
were estimated for each candidate feature subset using 10-fold cross-validation.16 For comparison 
of bias, 3- and 5-fold cross-validations were also performed, where the resulting estimates of 
the ROC statistics did not differ significantly. The combined HD gene carrier group (26 subjects) 
was pooled in the EEG analysis due to low numbers of preHD participants when considered 
separately, where it was not feasible to create a separate classifier, and in order to increase overall 
power. Furthermore, combining data from the preHD group with the early HD group did not 
affect outcomes. A classifier was constructed that contrasted the control group and the HD gene 
carrier group. The classifier yielded an HD vs. control (HDvsCT) Index, ranging from 0 to 1, with 
low values for controls and high values indicating HD. The performance of the classifier was 
determined using repeated 10-fold cross-validation.

Correlations between the electrophysiology and clinical modalities were sought using a similar 
approach. In this case, however, principal component analysis (PCA) was applied on each feature 
subset. The linear Pearson correlation between the principal components and the clinical 
modalities was optimized. Statistical analysis of group demographics and clinical measures was 
performed using IBM SPSS Statistics (version 20, IBM, USA). Distributions and assumptions were 
checked and appropriate statistical tests were applied.

Results

Group characteristics and clinical scores
The groups did not differ significantly in terms of age, gender, handedness or level of education. 
TFC and SWR were significantly lower for the HD gene carrier group compared to the control 
group (p = 0.007 and p = 0.004, respectively; Mann–Whitney U test and independent-samples 
t-test, respectively). The HD gene carrier group had higher UHDRS-TMS than controls (p = 
0.00001, independent-samples t-test). There was a trend for lower SDMT scores and higher BDI-II 
scores for the HD gene carrier group compared to controls (both p = 0.07; independent-samples 
t-tests). The early HD group had lower SDMT scores compared to controls only (p = 0.02; analysis 
of variance) and higher BDI-II scores compared to both preHD and controls (p = 0.04 and p = 0.01, 
respectively; analysis of variance). See Table I for a summary of these results.  

The HD classifier
A classifier was constructed that optimized the contrast between the HD gene carrier and control 
groups with a specificity of 83%, a sensitivity of 83% and an accuracy of 83%. The AUC was 0.9 
(Figure 1). The estimated group distributions are illustrated in Figure 2. There were no significant 
relationships between the HDvsCT Index and any of the clinical measures.

Correlating qEEG subsets with clinical modalities
The analysis of the correlations between electrophysiological features and clinical modalities 
resulted in two highly significant correlations in the HD gene carrier cohort. The first factor, 
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referred to as Index-A, correlated strongly with the SDMT score, see Figure 3. Pearson’s correlation 
coeffi  cient was 0.86 (p = 0.0001). The second factor, referred to as Index-B, correlated strongly 
with the UHDRS-TMS, see Figure 4 (r = 0.84, p = 0.0001). See Supplementary Figures 1 and 2 for 
an overview of the spatial and spectral dependence of the coherences entering indices A and B.

Full power spectrum analysis
The full power spectra for the 19 electrodes were evaluated and group averages were compared 
(Supplementary Figure 3). The average spectra were signifi cantly diff erent (p = 0.001). Most 
prominently, the overall power was less in the HD gene carrier group. An extra resonance 
appeared in the average spectra of the HD gene carrier group at about 22 Hz, not present in the 
control group in the right temporal region. The alpha peak was distinctly divided into two peaks 
in the occipital, temporal and parietal areas. 

qEEG spectral diff erences
In the area of the anterior prefrontal cortex (Brodmann area 10; BA10), channels Fp1 and Fp2, the 
HD gene carrier group had a higher power than controls in the delta band. At all other locations 
signifi cant diff erence in power was such that the power was higher in the control group except 
for the delta bands (higher in the HD gene carrier group): at the frontal eye fi elds (BA8), F3, F4 and 
Fz (theta); at the primary somatosensory cortex (BA2) and motor cortex (BA4), C3 (delta, theta 
and alpha), C4 (theta and alpha), Cz (theta); at the temporal regions infl uenced by the auditory 
somatosensory cortex (BA42), primary somatosensory cortex (BA2) and motor cortex (BA4), T3 
(theta and alpha), T4 (delta, theta and alpha); and also infl uenced by the fusiform gyrus (BA37), T5 
(theta and alpha), T6 (delta and theta); fi nally in the parietal area (BA7), Pz (theta and alpha). See 
Table II for a summary of these results, including p-values, t-statistics and Cohen’s d for eff ect sizes.

Figure 1. The ROC curve for the HD vs. control Index estimated with repeated 10-fold cross-validation along with 
the result. SPE = specifi city; SEN = sensitivity; ACC = accuracy; AUC = area under the curve.
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Figure 2. Controls and Huntington’s disease subjects in the HD vs. control (HDvsCT) Index as estimated with 
repeated 10-fold cross validation. The frequency is an estimate of the continuous likelihood distribution.
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Figure 3. Relationship between Index-A and the SDMT score. The contribution of Index-A was evaluated in 5 
consecutive segments of the EEG recording for each subject. All results are shown, illustrating the inter-subject 
variability of Index-A.

Figure 4. Relationship between Index-B and the UHDRS-Total Motor Score. The contribution of Index-B was 
evaluated in 5 consecutive segments of the EEG recording for each subject. All results are shown, illustrating the 
inter-subject variability of Index-B.
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Discussion

In this exploratory study, the qEEG automatic classification index proved to separate HD gene 
carriers from healthy controls with good specificity and sensitivity. This method has therefore a 
potential to be further developed as a biomarker in HD. The study also revealed strong correlations 
between qEEG features and the UHDRS-TMS and SDMT, both relevant clinical markers in HD 
research. Finally, global EEG average power spectra were shown to be significantly lower in the 
HD gene carrier group compared to controls and qEEG spectral differences between the groups 
were demonstrated. 

Table II. Significant differences in qEEG spectral power

Power values are log10-transformed. N = number of participants. Two-tailed t-test p-values are reported. Degrees 
of freedom = 49.
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Fp1
Fp2
F3
F4
Fz
C3
C3
C3
C4
C4
Cz
T3
T3
T4
T4
T4
T5
T5
T6
T6
Pz
Pz

4.5
4.5
3.3
3.3
3.4
3.6
3.1
3.2
3.1
3.2
3.3
3.3
3.4
3.9
3.3
3.4
3.5
3.7
3.9
3.4
3.2
3.5

4.9
4.9
3.0
3.1
3.1
3.8
2.9
2.9
2.9
2.9
3.1
3.1
3.1
4.1
3.1
3.1
3.2
3.4
4.1
3.2
3.1
3.1

     
Band                                                                                     

     
Channel                                                                                     Power - Healthy 

controls (N = 25)

0.004
0.005
0.007
0.016
0.003
0.048
0.011
0.025
0.004
0.022
0.024
0.025
0.049
0.031
0.024
0.047
0.009
0.025
0.042
0.042
0.031
0.042

Power - Combined
(pre)HD (N = 26)

3.0
2.9
2.8
2.5
3.1
2.0
2.7
2.3
3.0
2.4
2.3
2.3
2.0
2.2
2.3
2.0
2.7
2.3
2.1
1.8
2.2
2.1

-
-

-

- 

- 

t-statisticp-value

0.85
0.82
0.78
0.70
0.88
0.57
0.74
0.65
0.85
0.66
0.65
0.65
0.56
0.62
0.66
0.57
0.77
0.65
0.58
0.51
0.62
0.58

- 
- 
- 

- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 

- 
- 
- 

Cohen’s d

delta
delta
theta
theta
theta
delta
theta
alpha
theta
alpha
theta
theta
alpha
delta
theta
alpha
theta
alpha
delta
theta
theta
alpha
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Using the index created in this study, it is possible to separate EEGs of HD and control subjects 
with an accuracy of over 80%. Considering direct correlations between the index and commonly 
used clinical measures is interesting, though less likely to result in signifi cant fi ndings as the 
measure is derived globally from all recorded regions of the brain, therefore lacking specifi city. 
The index did indeed not correlate with any of the commonly used clinical and neurocognitive 
measures in HD research. This fi nding is in line with a previous study using a classifi er approach.9 

When specifi c EEG features were considered, highly signifi cant correlations with the UHDRS and 
SDMT scores were found, disease measures that are known to be altered in a longitudinal fashion 
in the (pre-) manifest state compared to healthy controls. This highlights the importance of using 
diff erent approaches in biomarker research based on structural and/or functional brain data. 
Analyses focusing on global versus local measures provide diff erent insights on disease state and 
possible correlations with clinical measures. Previous machine learning studies using diff erent 
MRI modalities to discriminate HD gene carriers and controls achieved accuracies up to 83% and 
76%, respectively, when specifi c regions aff ected by the disease were preselected for analysis.34,35

On EEG average power spectra a global decrease in theta and alpha power in HD was found, 
while delta power was increased in a few brain areas in HD. As the earliest structural brain 
changes in HD start within the striatum, this conceivably leads to disrupted projections in the 
cortico-striato-thalamo-cortical loops, which in turn lead to disruptions in brain rhythms.17 The 
striatum represents a crucial node in these loops.18 Reductions in the theta band power in HD 
have been reported in previous studies,19,20,21,22 while other studies found an increase in this 
band9,23,24. Reductions in the theta band power were correlated with increased cognitive and 
motor defi cits.20 There seems to be consensus in the literature regarding globalized reductions 
in the alpha band in (pre)HD.9,20,21,24,25,26 Some studies reported that reductions in the alpha band 
correlated signifi cantly with increases in cognitive and motor defi cits in HD,19,20 while others could 
not replicate this fi nding9. Both theta and alpha EEG rhythms appear to refl ect important neuronal 
processes in human cognition.27,28,29 Decreases,20,24 as well as increases19 in beta power in HD have 
been reported, something we could not replicate. Most studies point to an increase in delta 
power in HD,9,19,20,22,24,26 which is corroborated by fi ndings in our study. It has been observed that 
alterations in delta power might be disease stage dependent and increase in advanced stages of 
HD.20 This might explain the localized diff erences in delta power between the groups observed in 
this particular study sample, which represents premanifest or early stage patients. 

The GABAergic network is postulated to be a driving force in producing synchronized brain 
oscillations.30 Combined with the knowledge that dysfunction and loss of GABAergic neurons 
occurs early on in the striatum of HD31,32 we hypothesize that the diff erence found in this study, 
both in the classifi cation index as well as in diff erences in power spectra, are primarily derived 
from a deregulation of brain network oscillations through GABAergic dysfunction in HD. Another 
potential explanation for these fi ndings might be a neurodevelopmental diff erence of HD brains 
refl ecting an endophenotype. To explore the latter point, it is necessary to conduct longitudinal 
trials evaluating the potential progressive nature of these diff erences with advancing disease. 

EEG may serve as a biomarker in Huntington’s disease using machine learning automatic classification
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In this study we have observed several statistically significant results in the performance 
of classifiers as well as indices designed to correlate with relevant modalities related to HD 
progression. As with EEG related physiological interpretation in general, it is very hard to assign 
physiological meaning to these indices as the knowledge of relationships between EEG activity 
and the underlying physiology are poorly known or understood. The field is still in its data driven 
empirical era, which the present work contributes to. We have also observed significant differences 
between classical qEEG features when comparing between HD gene carriers and controls. These 
are exploratory findings limited in scope when it comes to the number of subjects participating. 
It is therefore pertinent to confirm these findings in independent studies conducted with pre-
defined end points. Also, there is an increased risk of overfitting the separation model when using 
a small sample size as the one in this study. Another potential limitation is the use of the same 
system to record all EEGs, possibly reducing the validity of the model on other EEG equipment. 
Also, as this is a cross-sectional study, we can only speculate about the expected changes to 
the findings occurring during clinical deterioration in HD. Therefore, longitudinal studies are 
needed to evaluate the true usefulness of these indices. However, the fact that we have found 
indices strongly correlating with clinical markers of decline support the notion of a measurable 
progressive change in HD brain function rather than a purely neurodevelopmental difference. 
  
Conclusion

In this exploratory study we show promising results where qEEG related modalities may help 
to unravel how HD evolves and how different areas of the brain are influenced as the condition 
progresses. The indices correlating with modalities changing with the progression of the disease 
may lead to tools based on qEEG that can help monitor efficacy in intervention studies. These 
points will need further independent studies before such applications can be put into force.
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Supplementary material

Supplementary Figure 1. Spatial (A) and spectral (B) dependence of the coherences entering Index-A.

Supplementary Figure 2. Spatial (A) and spectral (B) dependence of the coherences entering Index-B.
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Supplementary Figure 3. The average full power spectra on group level. The dotted curves are the average over the 
control group. The solid curves are the average over the HD gene carrier group.
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Abstract

Background
A sensorimotor network structural phenotype predicted motor task performance in a previous 
study in Huntington’s disease (HD) gene carriers. We investigated in the visual network whether 
structure-function-behaviour relationship patterns, and the effects of the HD mutation, extended 
beyond the sensorimotor network.

Methods
We used multimodal visual network MRI structural measures (cortical thickness and white matter 
connectivity), plus visual evoked potentials and task performance (Map Search; Symbol Digit 
Modalities Test) in a cohort of healthy controls and HD gene carriers.

Results
Using principal component (PC) analysis, we identified a structure-function relationship 
common to both groups. PC scores differed between groups indicating decreased white matter 
organization (higher RD, lower FA) and slower, and more disperse, VEP signal transmission (higher 
VEP P100 latency and lower VEP P100 amplitude) in the HD group compared to the control group 
while task performance was similar.

Conclusions
These findings suggest that HD may be associated with reduced white matter organization and 
efficient visual network function, but normal behavioural performance. The lack of correlation 
with visual task performance indicates a possible dissociation between behaviour and the 
assessed properties of the visual network or alternatively, the possible effects of compensatory 
processes.
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Introduction

Brain structure, function and behaviour are clearly linked, but the relationship between them is 
highly complex. In Huntington’s disease (HD), for example, cerebral white and grey matter loss, 
particularly within the basal ganglia is detectable from 15-20 years prior to clinical diagnosis,1-4 

yet performance levels remain normal for a considerable time suggesting onset of compensatory 
processes.5-7 On the other hand, structural imaging measures of brain volume, together with task 
performance can improve predictions of motor diagnosis based solely on the HTT mutation and 
age.5 Together, this supports the notion that structural alterations contribute to functional brain 
changes underlying the manifestation of clinical signs of HD.

Examining the relationship between structure, function and task performance within a priori 
selected brain networks in HD gene carriers could help diff erentiate between a) network-wide 
changes that are specifi c to the presence of the HTT mutation and b) natural variations in network 
properties amongst healthy people that infl uence the eff ects of the HTT mutation. We previously 
examined this concept within the sensorimotor network in HD using multimodal structural 
and functional data.8 We found a structural pattern of reduced volume and cortical thickness 
in sensorimotor regions coupled with increased diff usivity in white matter pathways that was 
closely linked to the HD mutation and predicted performance. However, we also identifi ed an 
inverse relationship between axial diff usivity (AD; diff usivity in the main direction of the fi bre) 
and radial diff usivity (RD; diff usivity perpendicular to the main fi bre) that was common to both 
controls and HD gene carriers. This relationship pattern predicted HD disease status and motor 
performance independent of HD-associated factors such as CAG, age and brain volume. This 
relationship may, therefore, refl ect a pattern of natural variability in white matter microstructure 
that itself does not cause disease. However, in the presence of the HD mutation it may modify the 
eff ects of HD pathogenesis on white matter microstructure.

Given our previous fi ndings, here we asked to what extent these observations were specifi c to the 
sensorimotor network or whether they refl ected patterns that are also present in other networks 
potentially impacted by HD pathology. This has important implications for disease modifi cation 
in terms of network-wide versus network-specifi c patterns of structure, function and behaviour 
relationships. Although characteristically defi ned by motor, cognitive and neuropsychiatric 
symptoms, the visual cortex is one of the fi rst areas aff ected in HD with evidence of neuronal 
loss,3,9-13 white matter pathway degeneration14 and defi cits in visual-processing.15-17

Consistent with our earlier study, we used multimodal MRI and electrophysiological data to 
examine the relationship between structural integrity, functional processing and task performance 
in the visual network in a cohort of controls and HD gene carriers. We investigated both structure 
(V1 cortical thickness; visual pathway connectivity) and function (Visual Evoked Potentials (VEP)) 
in conjunction with task performance on Map Search and Symbol Digit Modalities Test (SDMT). 
We investigated correlations between individual measures and then used Principal Component 
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Analysis (PCA) to identify patterns across modalities. Finally, we examined to what extent these 
patterns identified group status. We predicted independent structure-function relationships a) 
characteristic of HD only and b) common to both controls and HD reflecting natural variability.

Methods

Participants
Participants were recruited from the Leiden site of the international multi-site Track-On HD study8 

and comprised 20 HD gene mutation carriers (mean age 49.2 years, 12 female) and 24 healthy 
controls (mean age 52.5 years, 16 female). All HD gene mutation carriers had a CAG repeat length 
≥40; and a burden of pathology score (disease burden) greater than 250 ((CAG repeat length 
- 35.5) x age) (Table I).9,18 Healthy family members without the HD mutation or partners were 
recruited as control participants. All participants were screened for major psychiatric, neurological 
or medical disorders or a history of severe head injury. Education was measured using the 
International Standard Classification of Education (ISCED) that distinguishes 10 different levels of 
education. The total motor score was obtained from the motor part of the Unified Huntington’s 
Disease Rating Scale (UHDRS). Visual acuity was documented prior to VEP acquisition, and all 
participants had normal or corrected-to-normal vision. The study was approved by the Leiden 
University Institutional Review Board. All participants gave their written informed consent to the 
study, and all methods were used and experiments performed, in accordance with the ethical 
standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Table I. Demographics and clinical measures

Behavioural measures
The Map Search Task is a subtest from the Test of Everyday Attention and measures visuospatial 
selective attention.19 Participants were presented with an A3 sized map, which displayed a portion 
of the city of Philadelphia in the United States. They were then timed for two minutes while they 
searched for and circled a target symbol that occurred in multiple places on the map among 
other distracter symbols. After one minute, the examiner exchanged the pen for a different colour 
to facilitate differentiation of those responses made in the first and second minutes of testing. Test 
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Gender N  (%F)
Age (SD; range)
Education (SD; range)
CAG repeat length (SD; range)
Disease burden (SD; range)
Motor score   (SD; range)

12 (60.0)

49.2 (9.6; 32-68)

4.3 (0.9; 2-5)

42.8 (3.0; 39-50)

338 (79; 192-478)

12.8 (11.4; 1-50)

Χ    = 0.21 (0.65)

t = -1.15 (0.26)

t = 1.97 (0.06)

--

--

t = 4.48 (0.0002)

     
HD (N=20)                                                                                    

     
Control 
(N=24)                                                                                     

     
Variable                                                             

                        

Test statistic 
(p-value)

15  (75.0)

53.2 (8.9; 33-68)

3.6  (1.3; 2-6)

--

--

1.2 (1.7; 0-5)

Control 
(N=20)

9 (56.3)

49.4 (9.4; 32-68)

4.5 (0.7; 3-5)

42.5 (2.9; 39-50)

326 (79; 192-469)

10.1 (7.6; 1-28)

HD (N=16) 

Χ    = 1.41 (0.24)

t = -1.26 (0.22)

t = 2.80 (0.01)

--

--

t = 4.59 (0.0003)

Test statistic    
(p-value)

16. (66.7)

52.5 (9.1; 33-68)

3.7 (1.2; 2-6) 

--

--

1.3 (1.7; 0-5)

Full sample PCA sample

2
1

2
1
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performance was measured as the number of correctly circled target symbols, scored separately 
at one minute and at two minutes with a maximum possible score of 80. For the current study, 
we used the percentage number of correct responses in two minutes as a behavioural measure.

The Symbol Digit Modalities Test (SDMT) is a test of visuomotor integration, measuring visual 
attention and motor speed. Participants were required to match symbols and digits as quickly 
as possible, following a key located at the top of the page during a 90 second period; the total 
number of correct responses were recorded and included as our second behavioural measure.

Electrophysiology measures
Four Ag/AgCl electrodes were attached to the scalp at position O1, O2 and Oz with Cz as a 
reference according to the international 10-20 system for electrode placement. Participants 
were seated at a distance of 1m in front of a 23 inch computer screen displaying a checkerboard 
pattern that fi lled the entire screen with squares of 1˚ visual angle fl ashing at a frequency of 2Hz. 
The brightness of the squares was 100lux with a black/white contrast. For each eye, 2 x 100 trials 
were recorded. The duration of each trial was dependent on the registered signals, approximately 
one minute in duration, or 30 seconds per trial. The stimulus was presented continuously and 
fl ashing, with no stop between trials. VEPs were obtained using Medelec Synergy version 11.0 
(Oxford Instruments, Abingdon, United Kingdom). Data were fi ltered and visually checked for 
artefacts, noisy trials were deleted from the set. The trials were averaged and peak latencies and 
peak-to-peak amplitudes of N70, P100 and N135 were identifi ed. The N70 was defi ned as the 
most prominent negative peak between 60 and 80ms post stimulus. For the P100 a time window 
of 90-115ms and for the N135 a time window of 115-150ms was applied.

MRI measures 

Cortical thickness
3D T1 images were acquired as previously described.5 Cortical thickness measures were 
generated for each participant using Freesurfer version 5.3.0 applying default parameters and 
optimized for 3T data.20 Measures were extracted from Brodmann area in the left hemisphere: 
BA17 (Primary Visual Cortex) (https://surfer.nmr.mgh.harvard.edu/fswiki/BrodmannAreaMaps). All 
segmentations were visually inspected for accuracy, blind to participant status.

Diff usion tensor imaging
Diff usion-weighted images with 42 unique gradient directions (b = 1000 sec/mm2) and one image 
with no diff usion weighting (b = 0 sec/mm2) were acquired using a Phillips Achieva scanner. 
Acquisition parameters were as follows: TE = 56ms and TR = 11s, with voxel size 1.96 x 1.96 x 2; 75 
slices were collected for each diff usion-weighted and non-diff usion weighted (B0) volume. The 
diff usion data were preprocessed using standard FSL pipelines.21

Data were initially quality checked for movement artefacts and then corrected for eddy 
current distortions. Diff usion tensors were fi tted to the corrected data using dtifi t; FA (fractional 
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anisotropy), AD and RD values were subsequently derived from the tensors. The B0 image and the 
T1-weighted structural image were both skull-stripped using the Brain Extraction Tool and then 
manually edited. The T1 image was then registered to the B0 image using FLIRT.22 Crossing fibres 
were modelled using Bedpostx.23 Probtrackx was used for fibre-tracking of the visual pathway 
using three regions of interest: the primary visual cortex (V1), extrastriate area V4 and the visual 
thalamus.24 All seed regions were created in standard space using the Anatomy toolbox and then 
warped into native space (using the DARTEL inverse deformation parameters) for fibre-tracking. 
Masks were used to exclude streamlines that tracked into the right hemisphere and into grey 
matter, cerebrospinal fluid (CSF) or dura. The visual pathway images were then warped into 
diffusion space using FLIRT and FA, AD and RD values extracted for each participant.

Statistical analyses
Control and HD groups were compared for each individual modality using two sample 
t-tests with a false discovery rate (FDR) adjustment for multiple comparisons. The equality of 
variances assumption was tested and the Satterthwaite approximation of the standard errors 
and degrees of freedom were used when necessary. Pearson’s correlations were performed 
between the structure-function and behavioural measures across a) HD gene carriers, and b) 
control participants. Structural integrity and functional processing measures were investigated 
through PCA, a method used to reduce the dimensionality of multivariate data by producing 
linear combinations of the original variables. These principal components (PC) are mutually 
independent and retain most of the variability present in the original measures.25 The number of 
components was determined from the results of 2-fold split-sample validation.26

After obtaining the PCs, a series of ANCOVA models, adjusting for age and gender, were utilized 
to evaluate the relationships among the PCs, the behavioural measures, and group status. 
The first set of models was used to examine the relationship of the PCs and the behavioural 
measures with group status. The next set assessed the association of the PCs and the behavioural 
measures (1) without controlling for group status, (2) controlling for group status, and (3) with a 
group*component interaction. Corrections for multiple comparisons were made using an FDR 
threshold of q = 0.05 within all sets of analyses.27

Results

Individual modality analyses
Demographic and clinical data for the control and HD groups are presented in Table I. We focused 
on eight variables that captured the structure-function relationship within the visual system in 
the left hemisphere. These included 4 structural MRI measures (V1 cortical thickness, FA, RD, AD) 
and 2 electrophysiological measures (VEP P100 latency and amplitude recorded from O1) in 
addition to 2 behavioural measures (Map Search and SDMT). We first compared each individual 
modality in controls and the HD group (Table II). Group comparisions revealed evidence of 
significantly higher RD (p = 0.014, q = 0.11) in the visual pathway connecting the visual thalamic 
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region and V1 and non-signifi cantly longer VEP P100 latencies (p = 0.082, q = 0.24) for those 
with HD versus controls. In contrast, V1 cortical thickness, FA, AD, VEP P100 amplitudes and both 
behavioural measures were similar in the HD group and the controls. Note that the Satterthwaite 
approximations for standard errors and degrees of freedom were used for FA, AD, and RD because 
of unequal variances between the groups for these measures.

Table II. Individual modality results

Descriptive statistics and group comparison data for behavioural measure. Abbreviations: SD - standard deviation; 
df - degrees of freedom; q- value - false discovery rate adjusted p-value; CT - Cortical Thickness; DTI - Diff usion 
tensor Imaging; VEP - Visual Evoked Potentials; V1 - Primary Visual Cortex; FA - Fractional Anisotropy; RD - Radial 
Diff usivity; AD - Axial Diff usivity.

Multimodal structure-function-behaviour analyses
Correlations were performed between the structure-function and behavioural measures across 
a) HD gene carriers (Table III), and b) control participants (Table IV). Across HD participants, worse 
SDMT performance was associated with lower FA (r = 0.63, p = 0.0091, q = 0.055), higher RD (r = 
-0.55, p = 0.026, q = 0.11) and longer VEP P100 latency (r = -0.41, p = 0.079, q = 0.24); worse Map 
Search performance also correlated with longer VEP P100 latency (r = -0.60, p = 0.0056, q = 0.055) 
(Table III). Correlations for control participants, on the other hand, were not signifi cantly diff erent 
from zero (Table IV). We then used a regression model to further investigate the group factor. 
Before FDR adjustment, we found marginal signifi cance between the groups in the association 
of SDMT with FA, RD, and VEP P100 amplitude (p = 0.063, 0.061, and 0.044 respectively) and in 
the association of Map Search with VEP P100 latency (p = 0.060). The FDR adjusted values are all 
non-signifi cant (q > 0.15 for all).
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Mean                                                                                    

     
SD                                                                                    

     
Mean                                                                                    

     
SD                                                                                    

     
t-test                                                                                    

     
df                                                                                    

     
p-value                                                                                    

     
q-value                                                                                    

CT

DTI

VEP P100

Behaviour

V1

FA

AD

RD

Latency

Amplitude

Map Search

SDMT

3853

0.35

1.14

0.65

100.1

6.72

65.63

55.42

665

0.034

0.051

0.039

6.0

2.43

8.09

11.87

3713

0.32

1.16

0.72

103.3

5.87

62.40

50.16

513

0.056

0.092

0.065

6.0

2.36

9.12

10.53

0.77

1.78

0.85

2.86

1.78

1.16

1.24

1.52

-

-

-

42

23.1

22.0

23.0

42

41

42

41

0.45

0.089

0.44

0.014

0.082

0.25

0.22

0.14

0.45

0.24

0.45

0.11

0.24

0.33

0.33

0.27

     
Modality                                                                                    

     
Controls                                                                                    

     
HD                                                                               
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Table III. Correlations between two behaviour measures and six structure-function measures for HD participants

Pearson’s correlations (p-value; q-value) and sample size for each MRI, electrophysiological and behavioural 
measure. Correlations greater than 0.40 or smaller than -0.4 are in bold. Abbreviations: V1 - Primary Visual Cortex; 
FA - Fractional Anisotropy; RD - Radial Diffusivity; AD - Axial Diffusivity.

Table IV. Correlations between two behaviour measures and six structure-function measures for control 
participants

Pearson’s correlations (p-value; q-value) and sample size for each MRI, electrophysiological and behavioural 
measure. Abbreviations: V1 - Primary Visual Cortex; FA - Fractional Anisotropy; RD - Radial Diffusivity; AD - Axial 
Diffusivity.

Chapter 7

FA

AD

RD

V1 cortical 
thickness

VEP P100 
latency

VEP P100 
amplitude

r = -0.34 (p = 0.20; q = 0.47)
16

r = -0.16 (p = 0.56; q = 0.61)
16

r = 0.23 (p = 0.40; q = 0.60)
16

r = 0.25 (p = 0.30; q = 0.59)
20

r = -0.60 (p = 0.0056; q = 0.055)
20

r = -0.15 (p = 0.52; q = 0.61)
20

     
Map Search                                                                                     

r = 0.63 (p = 0.0091; q = 0.055)
16

r = 0.10 (p = 0.72; q = 0.72)
16

r = -0.55 (p = 0.026; q = 0.11)
16

r = 0.16 (p = 0.50; q = 0.61)
19

r = -0.41 (p = 0.079; q = 0.24)
19

r = 0.22 (p = 0.36; q = 0.60)
19

SDMT

FA

AD

RD

V1 cortical 
thickness

VEP P100 
latency

VEP P100 
amplitude

r = -0.092 (p = 0.69; q = 0.86)
21

r = -0.077 (p = 0.74; q = 0.86)
21

r = 0.15 (p = 0.53; q = 0.86)
21

r = 0.13 (p = 0.53; q = 0.86)
24

r = -0.15 (p = 0.48; q = 0.86)
24

r = -0.27 (p = 0.21; q = 0.86)
23

     
Map Search                                                                                     

r = -0.079 (p = 0.73; q = 0.86)
21

r = 0.0080 (p = 0.97; q = 0.97)
21

r = 0.064 (p = 0.78; q = 0.86)
21

r = -0.27 (p = 0.20; q = 0.86)
24

r = -0.13 (p = 0.53; q = 0.86)
24

r = -0.11 (p = 0.62; q = 0. 86)
23

SDMT
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Next, we employed PCA to describe the patterns of relationships within the dimensions of 
the structure-function measures (Figure 1; Table V). The PCA was run on a reduced number 
of 36 participants who had complete data (20 controls and 16 HD). The six structure-function 
measures and their relationships could be reduced to 3 principal components (Figure 1; Table 
V) as determined by 2-fold cross validation. The 3 components explained 74.5% of the variance.

The fi rst PC (PC1) explained 34.0% of data variance and included correlations between increased 
FA, lower RD in the visual pathway connecting the visual thalamic region and V1, thicker V1, 
reduced VEP P100 latency and increased VEP P100 amplitude (Figure 1A). PC1 scores were 
associated with group status, diff erentiating between controls and HD participants (t = -2.34, p 
= 0.026, q = 0.077). The controls showed mean PC scores of 0.286 (4 of 20 had negative scores) 
compared to the HD group, in which the majority of participants (11 of 16) had negative scores 
with an average negative PC score of -0.474 (Figure 1B). This is indicative of higher RD, lower FA, 
higher VEP P100 latency and lower VEP P100 amplitude in the HD group compared to the control 
group.

Table V.  Correlations between three classic principal components and six structure-function measures

Pearson’s correlations for each MRI and electrophysiological measure with the three principal components. 
Correlations greater than 0.40 or smaller than -0.4 are in bold. Abbreviations: V1 - Primary Visual Cortex; FA - 
Fractional Anisotropy; RD - Radial Diff usivity; AD - Axial Diff usivity.

The second PC (PC2; 23.6% of variance explained) showed a pattern of reduced FA and AD in 
the visual pathway connecting the visual thalamic region and V1, coupled with an increase in V1 
cortical thickness (Figure 1A). The third PC (PC3; 16.9% of variance explained) captured a pattern 
of reduced AD in the visual pathway connecting the visual thalamic region and reduced V1 
cortical thickness (Figure 1A). Neither PC2 (t = -0.23, p = 0.82, q = 0.82) nor PC3 (t = -0.66, p = 0.51, 
q = 0.77) were associated with group status (Figure 1C and D).
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FA
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VEP P100 latency
VEP P100 amplitude

0.63
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-
-
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0.76
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-
-

-

     
Comp1                                                                                     Comp2  

0.11
0.50
0.28
0.72
0.23
0.32

-
-
-
-
-
-
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Figure 1. Multimodal principal component (PC) analysis. A. Heat map of correlation coefficients for each modality 
with dimensions derived from principal component analysis for the combined group of healthy controls and HD 
participants. The first PC (PC1) showed the highest correlation with structural and functional measures including 
lower AD and RD in the visual pathway, and thicker V1. The second PC (PC2) showed a pattern of higher FA and 
lower RD in the visual pathway. The third PC (PC3) captured a pattern of higher RD in the visual pathway. B. 
Individual participants’ PC1 scores differentiated significantly between the control and HD groups (*p=0.026) while 
PC2 (C) and PC3 scores (D) were similar in both groups.
Abbreviations: VEP - visual evoked potentials; DTI - Diffusion Tensor Imaging; FA - Fractional Anisotropy; AD - Axial 
Diffusivity; RD - Radial Diffusivity; HD: Huntington’s disease.

Discussion

In this study, we have identified structure-function relationships showing an association between 
structural integrity and efficient functional processing within the visual system in healthy controls 
and HD. Lower levels of white matter organization and VEP responsivity correlated with lower levels 
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of task performance in HD gene carriers, but not in control participants. We further examined these 
associations using Principal Component Analysis, identifying a structure-function relationship of 
white matter organization and VEP responsivity. Although this relationship was common to both 
HD and controls, the majority of HD gene carriers displayed negative scores, such that they were 
characterized by increased white matter disorganization in the visual pathway and a less eff ective 
visual processing system. However, despite this disrupted structure-function relationship, HD 
gene carriers performed visual tasks at a normal level. Given the correlations between structure-
function measures and performance, this would indicate that despite an abnormal structure-
function relationship, HD gene carriers may experience some degree of compensatory brain 
activity in the visual network.

We previously explored structure-function relationships within the sensorimotor network in HD 
and characterised a macro- and micro-structural phenotype associated with HD.8 We showed that 
structural degeneration within the sensorimotor network was related to both motor performance 
and pathology, but we also identifi ed an independent inverse relationship between axial and 
radial diff usivities that was common to both HD and control groups and which predicted motor 
performance and disease status. Here, we have similarly identifi ed a white-matter structural 
pattern in the visual network common to both controls and HD gene carriers, but which were 
also associated with visual processing.

Using principal component analysis, we showed that controls and HD gene carriers shared a 
similar structure-function relationship of higher white matter organization (i.e., higher FA and 
lower RD) combined with higher VEP responsivity (i.e., higher amplitude and lower latency) and to 
a lesser extent higher cortical thickness in the V1. However, despite the fact that this relationship 
was common to both groups and, therefore, likely due to natural biological variation in these 
network properties in the population, it actually diff erentiated the control and HD gene carrier 
groups, i.e., the average PC scores for each group diff ered signifi cantly. As such, the majority of 
the HD group displayed negative scores, exhibiting a converse pattern of reduced white matter 
organization (i.e., lower FA and higher RD) and VEP responsivity (i.e., lower amplitude and higher 
latency). This supports our previous fi ndings whereby we identifi ed a pattern of volume loss and 
increased diff usivity in the sensorimotor network, associated with HD pathology. In healthy people 
the structure-function relationship may be variable, something we found in the somatosensory 
and now in the visual network so that in some people white matter organization will be higher, 
and function better, than in others. The HD mutation may exert its eff ect on top of that normal 
variability, and it is conceivable that these eff ects may take longer in a person with, by nature, 
higher than in someone with lower white matter organization. Given that we fi nd evidence to 
support this notion now in two networks it may be worth extending this to other networks, e.g. 
those involved in cognition.28 While we have not examined clinical markers of HD in the current 
study, the eff ect of HD pathology on the effi  ciency of the visual network is evident and refl ects a 
pattern not only of structural disturbance as was the case in the sensorimotor network, but also 
of functional impairment.

Multimodal characterization of the visual network in Huntington’s disease gene carriers
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Despite this structural degeneration and functional deficit, there were no significant behavioural 
differences in visual task performance between controls and HD gene carriers at a group level. 
However, in the HD group the results of the correlation analyses between measures of structure-
function (i.e., diffusivity and VEP responsivity) and behaviour, had shown that higher FA and 
reduced RD both correlated with improved SDMT performance, while shorter VEP latency tended 
to be associated with both better SDMT and Map Search performance.

PCA analyses further revealed relationships between structural and functional network properties 
that vary systematically between individuals including HD gene carriers. However, although HD 
pathology additionally affects network properties of efficient visual processing and associated 
structure, there was no evidence of abnormal task performance at the group level. The correlations 
between behaviour, which is unimpaired, and higher levels of white matter organization and VEP 
responsivity may, therefore, indicate some degree of compensatory brain activity.

The two remaining components from our PCA analysis display patterns that are common to both 
controls and HD, but are not related to pathology, i.e., they did not distinguish between groups. The 
second component shows a pattern of reduced FA, reduced AD and increased cortical thickness, 
while the third shows a pattern of reduced AD and reduced cortical thickness. Interestingly in 
both the second and third components, there is an inverse relationship between AD and (lower 
levels of ) RD, similar to that within the sensorimotor network - this was also independent of group 
status. The underlying basis of reduced FA and AD in terms of white matter organization is unclear, 
but reduced FA may be associated with increased RD. This may also explain why FA reductions 
are substantially pronounced as part of component three, because here RD is considerably lower.

In summary, we have identified patterns of visual network white matter organization that 
were correlated with both visual processing and visual performance. Interestingly, the pattern 
of higher white matter organization and visual processing efficiency, while common to both 
control and HD gene carriers, distinguished the groups describing higher levels of white matter 
disorganization and impaired visual processing in HD. In common with our previous analysis 
of the sensorimotor network we also characterized inverse patterns of AD and RD in the visual 
network; however, in the sensorimotor network we had not seen a functional contribution as we 
did here in the visual network.8 Our findings indicate that the structure–function relationships, 
and the susceptibility to the effects of the HTT mutation, may differ between brain networks in 
HD. This requires further investigation across a series of other networks, which may be particularly 
relevant and/or susceptible to the effects of HD pathology.
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Summarizing remarks and future perspectives 

The neuroimaging and neurophysiological fi ndings presented in this thesis add several important 
insights into the potential usefulness of these parameters as biomarkers in Huntington’s disease 
(HD). A wider understanding of structural and functional brain pathology at diff erent stages 
of HD also enables us to formulate recommendations for future research. Using resting state 
functional magnetic resonance imaging (RS-fMRI), diff usion MRI, electroencephalography (EEG) 
and visual evoked potentials (VEP), we have provided a broad view into the interplay of structure 
and function in HD neuropathology and between disease state and progression. Using these 
methods, we laid out potential suitable objective surrogate clinical trial endpoints and enhanced 
our understanding of the (subclinical) change in the disease.

We could not demonstrate any longitudinal diff erences in functional connectivity changes 
between premanifest HD (preHD) subjects and healthy controls using RS-fMRI over a period of 
three years (Chapter 2). This was unexpected, as earlier cross-sectional results suggested that 
functional connectivity, at the group level, was a fairly sensitive measure to diff erentiate preHD 
subjects from controls.1 Despite the fact that we used three diff erent analysis methods, we 
could not demonstrate any longitudinal change in functional connectivity within our cohort in 
a time frame of three years with two measurement points. At the same time, striatal atrophy 
rates were signifi cantly higher in preHD compared to healthy controls. Therefore, we concluded 
that these results indicate an inferior sensitivity of RS-fMRI in demonstrating longitudinal changes 
in the preHD population compared to volumetric striatal MRI measures. We speculate that the 
reason for the lower sensitivity is due to the low signal-to-noise ratio of RS-fMRI compared to 
volumetric measures. Alternatively, this might be due to compensatory mechanisms responsible 
for apparently normal brain function in preHD despite ongoing neurodegeneration. Either way, 
the conclusion is highly relevant in light of longitudinal biomarker research in preHD, suggesting 
that RS-fMRI may not be a feasible marker for assessing the effi  cacy of an intervention in this 
population during a realistic clinical trial time frame. 

Using diff usion tensor imaging (DTI) we showed global as well as striatal microstructural brain 
abnormalities at diff erent stages of HD as well as signifi cant associations between neurocognitive 
and diff usivity measures (Chapter 3). Performance on the Symbol Digit Modalities Test (SDMT) 
was mostly associated with white matter diff usivity measures, whereas performance on the 
Stroop Word Reading task was only associated with grey matter diff usivities. These fi ndings may 
guide the selection of the most suitable cognitive measures to assess, depending on the prime 
target of a treatment intervention. This study did not reveal any signifi cant longitudinal diff erences 
in microstructural organization between manifest HD, preHD and healthy controls within the 
two-year study period. These results were also unexpected, as neurodegeneration in HD is a 
slow process and microstructural alterations are expected to be present before macrostructural 
abnormalities become apparent. However, this method was clearly less sensitive in detecting any 
longitudinal changes when compared to studies using longitudinal volumetric MRI measures 
(particularly of the striatum). This is most likely caused by the lower signal-to-noise ratio of 
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this method compared to volumetric MRI methods. Alternatively, this could be due to a true 
absence of observable significant alterations in the diffusion profile of the examined global and 
striatal structures using DTI in the two-year time frame. Nonetheless, this study did provide some 
interesting insights into the microstructural organization of the (pre)HD brain. In manifest HD 
we found a diffusivity pattern which could reflect an increase in tissue permeability, extracellular 
space fluid, and/or interaxonal spacing due to neural tissue loss. This pattern of diffusivity changes 
has been associated with chronic white matter degeneration.2,3 In the preHD group we found that 
only the axial diffusivity of the white matter was significantly higher than that of healthy controls, 
a finding that may indicate axonal atrophy. These findings suggest that both axonal degeneration 
as well as myelin abnormalities play an important role in white matter pathophysiology of HD and 
are present throughout the entire brain. Given that the earliest detected abnormality is a higher 
axial diffusivity of the white matter in preHD subjects, this may point to axonal degeneration as 
preceding the pattern of chronic white matter degeneration found in later stages of the disease, 
reinforcing previous findings and further supporting this hypothesis.4  

In a first-of-its-kind study in HD, we applied longitudinal graph theoretical analysis (GTA) to 
diffusion MRI (Chapter 4). Using this method, we described the dynamics of the connectome 
and characterized regional and global topological properties of brain networks in different stages 
of HD compared to healthy controls. By applying this method, we departed from the traditional 
neuroimaging approach of examining individual components of the brain, such as regions of 
interest, towards characterizing regional or global structure of networks. We showed both baseline 
and longitudinal differences between the different groups and correlations between graph 
metrics on the one hand, and clinical and behavioural measures on the other hand, providing 
us with novel insights into the dynamics of brain neuropathology occurring in HD. For instance, 
both the left orbitofrontal cortex and left paracentral lobule were affected longitudinally in early 
manifest HD as well in preHD-B (the group with the closest expected proximity to the occurrence 
of characteristic motor symptoms, which define the manifest stage). The orbitofrontal cortex is 
involved in decision making and cognitive and emotional processing, processes that are known 
to be progressively impacted in HD.5 The paracentral lobule, a component of the sensorimotor 
system has previously been implicated in HD where atrophy was also demonstrated.6 In the 
combined preHD group, the left medial prefrontal cortex was impacted when compared to 
healthy controls. This region is involved in planning and problem solving and a previous study 
linked reduced functional connectivity in the region to impaired executive function in HD.7,8 These 
findings provide potential clues to the structural correlates of the reductions in higher cognitive 
capabilities occurring in gene carriers prior to manifestation of motor signs. We also showed 
that the small-world organization was preserved in preHD and early HD. We suggested that 
intervention could be aimed at preserving this brain organization quality associated with health, 
especially because of the presumed degradation of this network quality in advanced stages of 
the disease. Such a disruption in later stages of HD is yet to be established, but is suggested 
by the (non-significant) decreases we have observed in our cohort. Longitudinal increases in 
the Unified Huntington’s Disease Rating Scale total motor score (UHDRS-TMS) were negatively 
associated with small-worldness in the early manifest HD group, indicating that a decrease in 
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‘wiring-effi  ciency’ was related to an increase in motor symptoms. A noteworthy fi nding in preHD 
was the hub-status gain of the right superior parietal gyrus in the second visit, as this structure 
has been previously implicated in a compensatory role for maintaining normal motor function 
in preHD.9,10 We concluded that assessing the connectome not only provides a novel approach 
with a biomarker potential in HD, but also potential new insights into compensatory strategies 
of the brain in neurodegenerative disorders. Previous studies of the connectome in other 
neurodegenerative disorders such as Alzheimer’s disease had already shown the usefulness of 
this approach.11,12   

We investigated longitudinal microstructural changes occurring in the occipital cortex in 
diff erent stages of HD (Chapter 5). This structure has not been the primary focus of HD research, 
even though mounting evidence has suggested early involvement of the occipital regions in HD 
neurodegeneration.13-15 We found some distinctive disease stage-specifi c longitudinal diff erences 
in HD as well as correlations with behavioural measures. We concluded that these fi ndings 
provide added evidence of a strong involvement of the occipital cortex in HD neuropathology. 
Moreover, as these fi ndings were highly signifi cant and obtained using a fully automated 
method, we concluded that this approach is an objective biomarker candidate in HD. The two-
year duration of the study is also feasible for evaluating the potential eff ect of an intervention 
trial. In preHD-B patients, only the middle occipital gyrus showed a signifi cant longitudinal 
diff erence in the diff usivity profi le suggesting that this structure may be the earliest involved 
in the neurodegeneration cascade of the occipital regions in HD. We discussed that although 
no specifi c visual symptoms are known to exist in HD, performance in visuospatial, visuomotor, 
as well as emotion recognition is known to be impaired.16-18 We suggested that investigating 
the occipital cortex as a region of interest may provide a more sensitive way to track disease 
advancement in preHD compared to the corpus callosum and/or cingulum.19 Based on our 
fi ndings, we hypothesized that disruption of cell boundaries due to neural tissue loss in the 
occipital cortical region during disease progression causes an increase in tissue permeability and 
interaxonal spacing. Although the reason for a preferential neurodegeneration of the occipital 
region in HD remains unknown, we speculate that this might be due to the high metabolic 
demand of this region making it more exposed to excitotoxicity. 

Turning our attention to electrophysiology, we explored quantitative electroencephalography 
(qEEG) measures as potential biomarkers in HD (Chapter 6). In this cross-sectional study we 
created a high-quality classifi er using a machine learning algorithm. In summary, we were able to 
separate EEGs of HD and healthy control subjects with an accuracy of over 80%. We concluded 
that this automatic classifi cation method has a potential for further development as a biomarker 
in HD. Interestingly, we found strong correlations between qEEG measures, the UHDRS-TMS and 
SDMT, both clinical markers known to be altered in a longitudinal fashion in the (pre-) manifest 
state. We hypothesized that the diff erences found in this study are primarily derived from a 
deregulation of brain network oscillations through GABAergic dysfunction in HD. As this was a 
cross-sectional study, we need longitudinal studies to evaluate the potential usefulness of this 
method as a biomarker in HD. We do expect this potential to be present given the fi ndings 
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of strong correlations with clinical markers of decline supporting the notion of a measurable 
progressive change in HD brain function. Correlations between qEEG and modalities changing 
with the progression of the disease may lead to tools based on qEEG that can help monitor 
efficacy in intervention studies.

Using a multimodal approach, we identified patterns that suggest a close relationship between 
structural organization of the visual system and efficient functional processing (Chapter 7). Our 
findings of higher diffusivity and less efficient processing within the visual system combined with 
reduced VEP responsivity point to a less effective visual processing system in HD. We could not, 
however, demonstrate correlations with the performance on two visual tasks. The latter might 
suggest different processing pathways for these tasks compared to the parameters of the visual 
system that we assessed in this study or compensatory brain activity at play. Although these 
results are not expected to be suitable as practical biomarkers in HD, these do provide added 
insights into the impact of neurodegeneration on the visual system in HD, relevant in light of 
findings described in Chapter 5. As the relationship between brain structure and function is 
highly complex, a multimodal approach such as the one we used here is most likely the best 
approach in attempting to elucidate such a relationship.     

Future perspectives 

We have presented potential HD biomarker options in the previous chapters. When viewing 
our findings together with these of the literature, we anticipate that a combination of different 
modalities and methodologies will reveal the most sensitive and accurate biomarker. In the case 
of (micro-)structural brain imaging, we predict that an imaging “polymarker” consisting of different 
imaging techniques would provide the best disease tracking measure. Longitudinal volumetric 
measures of the striatum combined with diffusion measures of the occipital cortex, for instance, 
may provide such a measure. Using machine learning algorithms to discern the best possible 
combination of discriminative imaging patterns is most likely a good approach to take.20 On the 
brain function front, we do not expect (resting state) fMRI to play an important role as an effective 
longitudinal biomarker in HD. We do however think that EEGs analysed with advanced methods 
such as machine learning, may provide a biomarker of brain function in different stages of HD and 
as such be potentially useful in evaluating the effect of disease modifying therapies. 

As stated in the introduction, HD should be viewed as a multisystem neurodegenerative disorder 
of the brain, which makes a multifaceted, multivariate biomarker approach a sensible one. Such 
a holistic approach would provide needed insights into the cascade of the different events 
leading to the final common pathway of neuronal dysfunction and death. We recommend using 
automated methods where possible to ensure the highest degrees of objectivity and to facilitate 
fast and standardized interpretation of data in large multi-centre studies. When using automated 
techniques for MRI segmentation, visual quality control remains essential.   
   
  

Chapter 8



153  

Beyond the biomarkers investigated in this thesis, a combination with clinical and biofl uid markers 
will be necessary to fully assess the eff ects of any interventional trial. These markers will provide 
complementary information, both on disease state and on the specifi c eff ects of a potential 
therapy. This is also important as the measurable eff ect of a therapy on the various markers may 
be diff erent. Such an approach is central in elucidating the sequence in which diff erent markers 
change, which in turn may help reduce the number of participants needed to demonstrate 
eff ects of an intervention by selecting disease stage-specifi c sensitive makers.21 Also, these kinds 
of investigations could lead to improved predictions for the expected time to disease onset on 
the individual level. To conclude, the keyword we recommend for future biomarker research in 
HD is combination.
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Nederlandse samenvatting

De in dit proefschrift gepresenteerde neuroimaging en neurofysiologische bevindingen geven 
een aantal belangrijke inzichten in de potentiële waarde van deze parameters als biomarkers bij 
de ziekte van Huntington (HD). Een breder begrip van structurele en functionele hersenpathologie 
in verschillende stadia van HD helpt ons ook richting te geven aan toekomstig onderzoek. Door 
gebruik te maken van resting state functional magnetic resonance imaging (RS-fMRI), diffusie 
MRI, elektro-encefalografie (EEG) en visual evoked potentials (VEP), hebben wij gepoogd een 
brede benadering te hanteren om het samenspel tussen structuur en functie in de pathogenese 
van HD en tussen ziektestadia en progressie weer te geven. Door deze methodes toe te passen 
hebben wij potentiële objectieve surrogaatmarkers gepresenteerd die gebruikt kunnen worden 
als uitkomstmaten in klinisch onderzoek. Ook hebben wij ons begrip van de (subklinische) 
veranderingen van de ziekte vergroot. 

In een vervolgonderzoek van drie jaar hebben wij ondanks het toepassen van drie verschillende 
analysemethodes geen verschillen in de mate van veranderingen in functionele connectiviteit 
kunnen vinden tussen premanifeste HD (preHD) en gezonde controles met RS-fMRI (Hoofdstuk 2). 
Dit was onverwacht gezien eerdere cross-sectionele resultaten die suggereerden dat functionele 
connectiviteit op groepsniveau een onderscheidende marker zou kunnen zijn tussen preHD en 
gezonde controles.1 Tegelijkertijd was er wel significant meer striatale atrofie in preHD vergeleken 
met gezonde controles. Wij concludeerden dat deze resultaten wijzen op een lagere sensitiviteit 
van RS-fMRI om longitudinale verschillen in de preHD groep te laten zien vergeleken met volume 
MRI-maten van het striatum. Dit zou kunnen komen door de lagere signaal-ruisverhouding van 
RS-fMRI vergeleken met volumematen. Anderzijds zou dit mogelijk verklaard kunnen worden 
door compensatoire processen die zorgen voor een ogenschijnlijk normale hersenfunctie in 
preHD ondanks voortschrijdende neurodegeneratie dan wel volumeverlies. Wat de eigenlijke 
verklaring ook is, het is wel een zeer relevante bevinding in het kader van de zoektocht naar 
longitudinale biomarkers in preHD. Hierbij lijkt RS-fMRI geen reële kandidaat te zijn om de 
effectiviteit van interventies in deze populatie te beoordelen, zeker niet binnen een realistisch 
tijdskader voor een klinisch onderzoek.

Door gebruik te maken van diffusion tensor imaging (DTI) hebben wij laten zien dat zowel globale 
alsook striatale microstructurele hersenafwijkingen in verschillende stadia van HD voorkomen en 
dat er significante associaties zijn tussen neurocognitieve en diffusiematen (Hoofdstuk 3). Prestatie 
op de Symbol Digit Modalities Test (SDMT) was hoofdzakelijk geassocieerd met diffusiematen 
verkregen uit witte stof, terwijl prestatie op de Stroop Word Reading task alleen geassocieerd 
was met diffusiematen verkregen uit grijze stof. Dergelijke bevindingen kunnen de selectie van 
de meest geschikte cognitieve maten bevorderen, afhankelijk van het verwachte hoofdeffect 
van een interventiestudie. Deze studie heeft geen significante longitudinale verschillen in 
microstructurele organisatie tussen manifeste HD, preHD en gezonde controles laten zien 
over een tijdsperiode van twee jaar. Ook deze resultaten waren onverwacht, gezien het feit dat 
neurodegeneratie in HD een langzaam proces is en microstructurele veranderingen logischerwijs 
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vooraf moeten gaan aan de macrostructurele afwijkingen. Toch bleek ook deze methode minder 
sensitief te zijn in het aantonen van longitudinale verschillen vergeleken met volume MRI-maten 
(in het bijzonder van het striatum). Deze bevinding wordt waarschijnlijk veroorzaakt door de 
lagere signaal-ruisverhouding van deze methode vergeleken met volumematen. Anderzijds zou 
dit kunnen komen door een werkelijke afwezigheid van meetbare significante veranderingen 
in het diffusieprofiel van de bestudeerde globale en striatale structuren zoals gemeten met 
DTI binnen twee jaar. Niettemin gaf deze studie interessante inzichten in de microstructurele 
organisatie van (pre)HD hersenen. In manifeste HD vonden wij een diffusiepatroon wat kan wijzen 
op een toename van weefselpermeabiliteit, extracellulair vocht en/of interaxonale ruimte door 
neuronaal verval. Een dergelijk patroon van diffusieveranderingen is geassocieerd met chronische 
witte stof degeneratie.2,3 In de preHD groep vonden wij dat alleen de axiale diffusiviteit in witte 
stof significant hoger was dan die van gezonde controles, een bevinding wat richting axonale 
atrofie kan wijzen. Deze bevindingen suggereren dat zowel axonale degeneratie als myeline 
veranderingen een belangrijke rol spelen in witte stof pathologie in HD en verspreid aanwezig 
zijn door de hersenen. Gezien het feit dat de eerste verandering die in preHD gezien wordt een 
hogere axiale diffusiviteit van witte stof is, kan dit betekenen dat axonale degeneratie optreedt 
voorafgaand aan het later gevonden patroon passend bij chronische witte stof degeneratie. Deze 
resultaten bevestigen eerdere bevindingen en geven meer steun aan deze hypothese.4   
      
Voor het eerst in HD onderzoek hebben wij een longitudinale analyse uitgevoerd met 
behulp van grafentheorie (GTA) op diffusie MRI data (Hoofdstuk 4). Met behulp van deze 
methode hebben wij de dynamiek van het connectoom beschreven en regionale en globale 
topografische eigenschappen van hersennetwerken in kaart gebracht in verschillende stadia 
van HD vergeleken met gezonde controles. Door deze methode toe te passen hebben wij de 
traditionele neuroimaging aanpak van het bestuderen van losse hersencomponenten verruild 
voor een integraal netwerkaanpak. We lieten zowel cross-sectionele als longitudinale verschillen 
tussen de groepen zien en correlaties tussen graafeigenschappen enerzijds en klinische- en 
gedragsmaten anderzijds, wat ons nieuwe inzichten gaf in de dynamiek van hersenpathologie in 
HD. Zo waren zowel de linker orbitofrontale cortex als de linker lobulus paracentralis longitudinaal 
aangedaan in vroeg manifeste HD en in preHD-B (de groep die het dichtst zit bij het voorspelde 
optreden van de karakteristieke motore symptomen, waarna de manifeste fase volgens definitie 
begint). De orbitofrontale cortex is betrokken bij besluitvorming en cognitieve en emotionele 
verwerking, processen waarvan bekend is dat die progressief aangedaan raken in HD.5 In de 
lobulus paracentralis, een component van het sensomotore systeem, is bij eerder onderzoek in 
HD atrofie aangetoond.6 In de gecombineerde preHD groep was de linker mediale prefrontale 
cortex aangedaan vergeleken met gezonde controles. Deze regio is betrokken bij planning en 
probleemoplossing en eerder onderzoek heeft een verbinding gelegd tussen verminderde 
functionele connectiviteit aldaar met een aangetaste executive functie in HD.7,8 Deze bevindingen 
geven potentiële aanwijzingen voor de structurele correlaten van de achteruitgang van hogere 
cognitieve functies in premanifeste gendragers. Daarnaast hebben wij laten zien dat de small-
world organisatie nog gespaard is in preHD en in vroeg manifeste HD. We suggereerden dat 
interventie gericht kan zijn op het behoud van deze normale hersenorganisatie, zeker gezien de 
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verwachte achteruitgang hierin in latere stadia van de ziekte. Hoewel een dergelijke achteruitgang 
nog niet in studies aangetoond is, bestaat wel de suggestie hiervoor gezien de (niet significante) 
afname in deze maat die we binnen onze HD cohort vonden. Longitudinale toenames in de 
Unified Huntington’s Disease Rating Scale total motor score (UHDRS-TMS) waren negatief 
gecorreleerd aan de small-world maat in de vroeg manifeste groep, wat suggereert dat een 
afname in de “bedradingsefficiëntie” gerelateerd was aan een toename in motorsymptomen. Een 
noemenswaardige bevinding in preHD was het verkrijgen van de hub-status van de rechter gyrus 
parietalis superior in het tweede meetmoment, aangezien deze structuur eerder aangewezen is 
als een gebied wat zorgt voor een compensatoir effect voor het behoud van normale motore 
functie in preHD.9,10 We concludeerden dat het bestuderen van het connectoom niet alleen een 
nieuwe benadering biedt met een biomarker potentie in HD, maar ook nieuwe inzichten geeft in 
compensatoire strategieën van de hersenen in neurodegeneratieve aandoeningen. Voorgaande 
studies van het connectoom in andere neurodegeneratieve ziekten zoals de ziekte van Alzheimer 
hadden de waarde van deze benadering reeds laten zien.11,12

Wij hebben microstructurele veranderingen in de occipitale cortex in verschillende stadia van HD 
longitudinaal onderzocht (Hoofdstuk 5). Deze structuur heeft geen primaire aandacht genoten 
in HD onderzoek, terwijl er toenemend bewijs is voor een vroege betrokkenheid van de occipitale 
regio’s in HD neurodegeneratie.13-15 Wij vonden ziektestadium specifieke longitudinale verschillen 
in HD alsook correlaties met gedragsmaten. We concludeerden dat deze bevindingen het bewijs 
versterken van een belangrijke betrokkenheid van de occipitale cortex in HD neuropathologie. 
Omdat deze resultaten statistisch sterk significant waren en verkregen waren via een volledig 
automatische methode, hebben wij verder geconcludeerd dat deze benadering een objectieve 
biomarker kandidaat is in HD. De twee jaar tijdspanne van de studie is ook haalbaar voor het 
evalueren van potentiële effecten van een interventiestudie. In de preHD-B populatie liet alleen 
de gyrus occipitalis medius longitudinale veranderingen zien in diffusieprofiel, wat de suggestie 
wekt dat deze structuur als eerste betrokken raakt in de neurodegeneratieve cascade van de 
occipitale regio’s in HD. We bespraken dat hoewel er geen specifieke visuele symptomen 
bekend zijn in HD, er wel afwijkingen zijn in visuomotore verwerking alsook problemen met 
emotieherkenning.16-18 We suggereerden dat het bestuderen van de occipitale cortex mogelijk 
sensitiever is om ziekteprogressie in preHD te meten vergeleken met het corpus callosum en/
of cingulum.19 De gevonden afwijkingen in diffusieprofiel van de occipitale cortex in HD komen 
mogelijk door verstoring van celmembranen door neuronaal verval waarbij een toename 
van permeabiliteit en interaxonale ruimte ontstaat. Hoewel de oorzaak van een preferentiële 
neurodegeneratie van de occipitale regio in HD onbekend blijft, menen wij dat dit te maken kan 
hebben met de hoge metabole eisen aldaar. Hierdoor zouden de gevolgen van excitotoxiciteit in 
deze regio eerder merkbaar zijn.

We hebben vervolgens onze aandacht gevestigd op neurofysiologie, waarbij we kwantitatieve 
elektro-encefalografie (qEEG) maten als potentiële biomarkers in HD hebben onderzocht 
(Hoofdstuk 6). In deze cross-sectionele studie construeerden wij een calssifier van hoge kwaliteit 
door gebruik te maken van een machinaal leren algoritme. In het kort waren wij in staat om EEG’s 
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van HD en gezonde controles van elkaar te onderscheiden met een nauwkeurigheid groter dan 
80%. We concludeerde dat deze vorm van automatische classificatie potentie heeft om verder 
ontwikkeld te worden als een biomarker in HD. Interessant genoeg vonden wij sterke correlaties 
tussen qEEG maten en zowel de UHDRS-TMS als de SDMT, beide klinische maten waarvan bekend 
is dat die longitudinaal veranderen in de (pre-)manifeste fase. We veronderstelden dat de in deze 
studie gevonden afwijkingen primair worden gedreven door een deregulatie van hersennetwerk 
oscillaties door GABA-erge disfunctie in HD. Omdat het om een cross-sectionele studie ging, 
hebben wij longitudinale data nodig om de potentie van deze methode als biomarker in HD 
te kunnen evalueren. Wel verwachten we dat deze potentie aanwezig zal zijn gezien de sterke 
correlaties met klinische markers van achteruitgang, wat ondersteuning geeft aan het idee van 
een meetbare en progressieve verandering in hersenactiviteit bij HD. Correlaties tussen qEEG en 
modaliteiten die veranderen met ziekteprogressie kunnen tot qEEG gedreven tools leiden die 
helpen om het effect van interventiestudies te monitoren.   
                                      
Door een multimodale benadering te hanteren, hebben wij patronen gevonden die een 
nauwe relatie suggereren tussen de structurele organisatie van het visuele systeem en de 
bijbehorende functionele verwerking (Hoofdstuk 7). Onze bevindingen van hogere diffusiviteit 
en minder efficiënte verwerking binnen het visuele systeem gecombineerd met een verlaagde 
VEP responsiviteit, wijzen op een minder effectief visueel verwerkingssysteem in HD. We 
konden echter geen correlaties vinden met twee visuele testen. Dat laatste zou kunnen komen 
door andere visuele netwerken die gebruikt worden voor het verwerken van deze testen of 
compensatoire hersenactiviteit. Hoewel niet verwacht wordt dat deze resultaten geschikt zullen 
zijn als praktische biomarkers in HD, bieden die wel additioneel inzicht in de gevolgen van 
neurodegeneratie op het visuele systeem in HD, wat relevant is in het kader van de bevindingen 
zoals beschreven in Hoofdstuk 5. Gezien de complexe relatie tussen hersenstructuur en -functie 
zal een multimodale benadering zoals we hier hebben gebruikt waarschijnlijk de meest geschikte 
manier zijn om dergelijke relaties te kunnen verhelderen.    

Toekomstperspectieven  

In de vorige hoofdstukken presenteerden wij potentiële biomarker opties voor HD. Wanneer 
we onze bevindingen samen met die in de literatuur beschouwen, verwachten we dat een 
combinatie van verschillende modaliteiten en methodologieën de meest sensitieve en accurate 
biomarker zal onthullen. In het geval van (micro-)structurele hersenbeeldvorming verwachten wij 
dat een “polymarker” van beeldvormingstechnieken de beste ziekteprogressie maat zal bieden. 
Longitudinale volumematen van het striatum gecombineerd met diffusiematen van de occipitale 
cortex, bijvoorbeeld, zouden een dergelijke maat kunnen bieden. Gebruikmaken van machinaal 
leren algoritmes om de best mogelijke combinatie van onderscheidende beeldvormingspatronen 
te vinden is waarschijnlijk een goede benadering.20 Op het vlak van hersenfunctie verwachten 
wij niet dat (resting state) fMRI een belangrijke rol zal spelen als longitudinale biomarker in HD. 
Wel verwachten wij dat EEG’s geanalyseerd met geavanceerde methodes zoals machinaal leren 
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mogelijk wel als biomarkers van hersenfunctie in HD zouden kunnen dienen, waarmee die 
mogelijk bruikbaar kunnen worden voor het beoordelen van het effect van ziekte-modificerende 
middelen.

Zoals in de introductie reeds benoemd, zou HD als een multisysteem neurodegeneratieve 
aandoening beschouwd moeten worden, wat maakt dat een veelzijdige, multivariate biomarker 
benadering doelmatig zal zijn. Een dergelijke holistische aanpak zou inzichten kunnen bieden in 
de achtereenvolgende veranderingen die uiteindelijk leiden tot de laatste gemeenschappelijke 
route van neuronale disfunctie en dood. We bevelen, waar mogelijk, het gebruik van 
geautomatiseerde methodes aan om de hoogste mate van objectiviteit te waarborgen en om 
snelle en gestandaardiseerde interpretatie van data te faciliteren in grote multicenter studies. 
Wel blijft visuele kwaliteitscontrole essentieel bij gebruik van automatische technieken voor MRI 
beeld segmentatie.

Als toevoeging aan de biomarkers onderzocht in dit proefschrift, zal een combinatie met 
klinische en biochemische markers nodig zijn om het effect van een interventiestudie volledig in 
kaart te brengen. Deze markers zullen complementaire informatie geven over zowel ziektestaat 
als specifieke effecten van een potentiële therapie. Het is verder van belang om verschillende 
markers te gebruiken, gezien het feit dat een therapie effect verschillend kan zijn op verschillende 
markers. Een dergelijke benadering is essentieel voor het verduidelijken van de sequentie waarin 
de verschillende markers tijdens het ziekteproces veranderen. Dit kan op zijn beurt helpen om 
het aantal deelnemers dat nodig is om een interventie effect aan te tonen te reduceren door 
selectie van ziektestadium specifieke markers.21 Verder kunnen dergelijke onderzoeken leiden tot 
nauwkeurigere voorspellingen voor de verwachte tijd tot ziektepresentatie op individueel niveau. 
Resumerend raden wij als kernwoord voor toekomstig biomarker onderzoek in HD combinatie 
aan.
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