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Superfluid density in the two-dimensional attractive Hubbard model:
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A nonzero super8uid density is equivalent to the occurrence of a Meissner e6ect and therefore
signals superconductivity. A recent theorem shows that in the case of a spectrum with a gap
the super6uid density is equivalent to the Drude weight. This theorem is employed to compare
approximate calculations of the super6uid density in the two-dimensional attractive Hubbard model
using the Hartree-Fock approximation with exact diagonalization calculations of the Drude weight.
Direct comparison of the approximate results with recent finite-temperature quantum Monte Carlo
calculations is also made. The approximate results are found to be quantitatively accurate for all
fillings, except close to half-filling.

The super6uid density is the characteristic quantity in
describing superauid or superconducting order of physi-
cal systems. Experimentally, it is observed as the portion
of the total density which is not susceptible to mechan-
ical drag. Theoretically, it can be introduced in a vari-
ety of ways: the proportionality constant in the incre-
mental &ee energy upon twisting the order parameter, ~

the linear response to a twisted boundary condition, or
it can be related to a limit of the current-current cor-
relation function. In a system in a superconducting
state the super6uid density is inversely proportional to
the square of the penetration depth of magnetic lines of
force. A nonzero superBuid density therefore corresponds
to a Meissner effect.4 In two dimensions, the transition
to the ordered state is of the Kosterlitz-Thouless type
and the superfiuid density exhibits a universal jump at
the transition. Knowledge of the superauid density is
therefore important to decide whether a system is in a
superfiuid (superconducting) state and can also be used
to estimate the critical temperature.

The Hubbard model is a simpli6ed model for interact-
ing electrons on a lattice. The electrons hop between
lattice sites and experience each others presence, besides
the effect of the Pauli exclusion principle, only if two elec-
trons of opposite spin occupy the same site. Since the
model includes both charge and spin degrees of &eedom,
it may be useful to understand the behavior of materi-
als in which both magnetism and superconductivity can
occur. Examples of such materials are high-temperature
superconductors and heavy fermion materials. Although
a connection with these materials is more likely to be
found in the Hubbard model with on-site repulsion (be-
cause it is an antiferromagnetic insulator for a density of
one electron per site like the undoped copper oxides), it
is of interest (see below) to study the "uegative-U" Hub-
bard model, which has on-site attraction. The Hamilto-
nian for the attractive Hubbard model is given by

8 = —) t,,ct c, +U) n;gn, q
—p, ) n;,

where c,. creates an electron at site i with spin o, n;

c~ c, , t,~ is the one-electron transfer integral between
sites j andi (t;s. equals t if i and j are nearest neighbors
and 0 otherwise), U the on-site attraction (U ( 0), and

p the chemical potential (y, = U/2 corresponds to a half-
filled lattice, i.e., g,. (n; ) = 1).

The attractive Hubbard model on a (two-dimensional)
square lattice is found to have superconducting order, "
probably for the whole range of interaction constants.
This model therefore opens the possibility of comparing
approximate calculations (for instance using trial wave
functions) of the superfiuid density (to be denoted by p,
in the following) with more exact results, for instance ob-
tained using exact diagonalization of the Hamiltonian on
small clusters as well as quantum Monte Carlo (QMC)
calculations. Such a comparison is the purpose of this
paper and has become possible through an important re-
cent paper by Scalapino et al. Besides containing results
of QMC calculations of p, at very low temperatures, it
proves the theorem that the superfiuid weight D, (re-
lated to p, by p, = D, /4 en)2and the Drude weight D
are equal if there is a gap in the spectrum. The theorem
therefore enables comparison of approximate results for

p, with recent results of exact diagonalization studies of
D on small lattices. 9 Scalapino et al. obtain expressions
for D, and D in terms of different limits of the current-
current correlation function:

D,' =(—k ) —A, (q =Oq„mOi~ =0),

D =(—k ) —A (q=Oi(u mO) .

For two dimensions, (k ) is half the kinetic energy per
site and A (q, ru) is the double Fourier transform of the
current-current correlation function. The theorem is thus
equivalent to the statement that if there is a gap in the
spectrum the order in which q„and iu go to zero may
be interchanged. For further details, we refer to Ref. 4.
In a previous paper, we presented calculations of p, in
the Hartree-Fock approximation (HFA), as well as vari-
ational Monte Carlo calculations using a Gutzwiller pro-
jected trial wave function. The superfiuid density p, is
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calculated as a second derivative of the free energy per
site f with respect to a phase twist P of the (complex)
order parameter b, : f(P) = f(0) + zp, P + G(P ) for
b, (r) = ~h~e'i' with q = ($,0). We found that the vari-
ational Gutzwiller Monte Carlo calculation increased the
values of p, only by typically 5%. Because of this small
difFerence and because, using the HFA, p, can be found
easily as a function of U/t, density n, and temperature
T, in the following we will only consider the HFA results.
The expression for p, as a function of U/t, n, and T is
a sum over the Brillouin zone of the square lattice. The
formula was given before ' and is not repeated here; we

just note that it can be evaluated both on finite lattices
and in the thermodynamic limit. In the HFA at T = 0,
p, is given by just the kinetic energy term in (2) (see
Refs. 4 and 10); comparison with exact results will thus
reveal the importance of current-current correlations.

First, we compare our Hartree-Fock calculations of p,
with the results for the Drude weight D from exactly
diagonalizing the Hubbard Hamiltonian using Lanczos
techniques. s The latter results were obtained on 4 x 4
lattices and are for temperature T = 0. The HFA
calulations of p, are extensively described in Ref. 10.
In Fig. 1, D/2ne is compared to two times p, for
U/t = —4, —8, —10,and —20. We have to multiply our
results for p, as obtained in Ref. 10 by a factor of 2 in
order to compare with D/2me2. This calibration is most
easily obtained by considering the U/t ~ 0 limit on an in-
finitely large lattice. In this limit, at half-filling, D/2me
is exactly 4/vr2, s whereas p, is exactly 2/z 2.io For a bet-
ter comparison, the HFA results are also computed on a
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FIG. 1. Drude weight D/2xe as a function of density n
for the negative-U Hubbard model on a square lattice ob-
tained by exact diagonalization on 4 x 4 lattices compared
to two times the super8uid density p, calculated using the
Hartree-Foe% approximation (for comparison also computed
on a 4 x 4 lattice using periodic boundary conditions in
both directions). The open triangles, full triangles, open
squares, and crosses denote the exact diagonalization results
for U/t = —4, —8, —10, and —20, respectively. The drawn
lines are the corresponding Hartree-Fock results. The full
square denotes the exact U/t = 0 result in the thermody-
namic limit, 4/s . Dotted lines are guides to the eye.

4 x 4 lattice, using periodic boundary conditions in both
the z and y directions. Only for U/t = —4 (or closer
to 0) going to larger lattices or changing the boundary
conditions (for instance to periodic in the x direction and
antiperiodic in the y direction) would visibly affect the
curves in Fig. 1; however, not in a very significant way.

Although not explicitly stated there, we assume that the
exact diagonalization results were obtained using peri-
odic boundary conditions.

Two important conclusions may be drawn &om Fig. 1.
In the first place, the approximate Hartree-Fock results
agree surprisingly well with the exact results for densi-
ties n & 0.8. Only for densities close to half-filling the
agreement is not very good and the approximate result
misses the qualitative feature of an initial rise of p, when

going off half-filling. We observe that for decreasing (ab-
solute) values of U/t the differences close to half-filling

get larger. We conclude that only close to half-filling the
contribution of the current-current correlation function,
which is neglected when making the HFA, becomes signif-
icant. Second, even at half-filling the exact result for D
does not vanish, implying a nonzero superfluid density
at T = 0. However, since the Hubbard model at half-

filling has the full Heisenberg symmetry, it must have a
critical temperature T, for the onset of long-ranged or-
der equal to zero (Mermin-Wagner theorem). Because
the HFA breaks down the Heisenberg symmetry to XY
symmetry, it incorrectly renders a finite T„when invok-

ing the Kosterlitz-Thouless universal jump relation for

p, .s'is However, as becomes clear from the comparison
in Fig. 1, the value of p, at T = 0 obtained in the HFA
never difFers &om the exact result by more than a factor
of 2 (for the values of U/t considered). Therefore the es-
timate of p, in the HFA is not so much incorrect as is its
temperature dependence: any nonzero T will make the
exact p, vanish, but a finite value at T = 0 is allowed.

We further note that, because negative-U and positive-
U Hubbard models at half-filling can be mapped onto
each other, thereby interchanging spin and charge de-
grees of freedom, the exact diagonalization results have
implications for the positive-U Hubbard model at half-
filling as well. In particular, the spin stiffness associ-
ated with the antiferromagnetic order that the positive-U
Hubbard model has at half-fillingi2 maps onto p, (Ref.
13) and is given by 0.096, 0.077, 0.065, and 0.036 for
U/t = 4, 8, 10, and 20, respectively (see Fig. 1). Corre-
sponding HFA values are 0.161, 0.108, 0.090, and 0.049.
In the limit U/t ~ oo the HFA gives 0.25J for p, (with
J = 4t2/U), which is the linear spin-wave approximation
result for the 8 = 1/2 Heisenberg antiferromagnet.
We note that for U/t = 20, the exact diagonalizations
give p, = 0.18J, which is exactly the result &om series
expansions for the S = 1/2 Heisenberg antiferromagnet,
p, / J = 0.18 + 0.01 i '

The second comparison that can be made is that of our
Hartree-Fock calculations of p, with the quantum Monte
Carlo calculations of the super8uid weight D, for the
negative-U Hubbard model. The latter calculations were
done with a finite, but very low, temperature (T = O.lt)
on an 8 x 8 lattice for U/t = —4. In the QMC calcula-
tions, following (2), half the average kinetic energy per
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site, (k ), is computed as well as the current-current cor-
relation function A (g, u). Because of the finite lattice
on which the computations are performed the correlation
function is only obtained for a discrete set of values of g,
the smallest of which has length q = 2n/L, where L is
the linear size of the lattice (L = 8 in Ref. 4). The re-
quired limit q„ i 0 in (2) can only be found by going
to larger lattices or &om an (uncontrolled) extrapolation
using the values at q„= x/2 and q„= x/4. In Fig. 2, the
HFA result for two times p, is compared to the QMC re-
sults. For a good comparison, the HF result is calculated
on an 8 x 8 lattice and for T = O.lt just as the QMC
result; the change to the curve would however be barely
visible if computed for a much larger lattice and T = 0.
The QMC results are extracted &om Figs. 8 and 10 of
Ref. 4 for five densities. We plot three quantities: the
kinetic energy contribution to D, /27re~ (octagons), the
full D, /2me2 as obtained &om the smallest qz (=x/4)
possible on the lattice (crosses), and the full D/ 2vre 2as

obtained from extrapolating A (q, ur = 0) to q„= 0 (tri-
angles). The crosses correspond to the quantity plotted
in Fig. 11 of Ref. 4, apart Rom a factor of 2. " From
Fig. 2 we see that the HFA result for two times p„which
only contains the kinetic energy contribution, agrees very
well with the kinetic energy from QMC. This means that
in the HFA the kinetic energy is very well described quan-
titatively. We furthermore see that the extrapolated re-
sult for A (g, u = 0) brings D, /27re in better agree-
ment with the HFA result than the values obtained for
q„= m /4. In this respect, it is also worth mentioning that
in the QMC calculations A (q = O, q„= m/4, iur = 0)
is still somewhat temperature dependent (see Fig. 8 of
Ref. 4) and will decrease when lowering the temperature
further, thereby improving the agreement with the HFA
result.

Finally, we note that, comparing Figs. 1 and 2, there
is qualitative agreement between QMC results and ex-
act diagonalization studies. Quantitative agreement is
best if we use the extrapolated current-current correla-
tion function &om the QMC calculations. Quantitative
agreement is likely to improve if the QMC calculations
are performed for lower temperatures. If the finite-size
effects in the exact diagonalization studies are similar to
those in the HFA, going to larger lattices (which is hardly
possible with present-day computers) will not seriously
afI'ect the exact diagonalization results for p, .

In summary, we have shown that a key quantity in
studying systems that may exhibit superconducting or
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FIG. 2. Super8uid weight D, /2me as s function of den-
sity n for the negative-U Hubbard model on a square lattice
obtained from quantum Monte Carlo (QMC) calculations on
an 8 x 8 lattice for temperature T = O. lt snd U/t = —4
compared to two times the superiuid density p, calculated
using the Hsrtree-Fock approximation (for comparison also
computed for T = O. lt on an 8 x 8 lattice using periodic
boundary conditions in both directions). The octsgons de-
note the QMC result for the kinetic energy term contributing
to D„whereas the crosses snd triangles denote the QMC re-
sults for D, /2xe if the current-current correlation function
is evaluated for the smallest q„attainable on an 8 x 8 lattice
(q„= n /4) or extrapolated to q„= 0, respectively (see text).
The drawn line is the Hartree-Fock result. Dotted lines are
guides to the eye.
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superfiuid order, the superfiuid density, for the two-
dimensional attractive Hubbard model, is described sur-
prisingly well in the Hartree-Fock approximation by com-
paring with exact diagonalization and quantum Monte
Carlo calculations. Only for densities close to half-filling
the quantitative agreement is not very good, implying
that for such densities the contribution kom the current-
current correlation function significantly reduces p„al-
though not to the extent that p, vanishes at half-filling.
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