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Low-temperature behavior of the large-U Hubbard model from
high-temperature expansions

D.F.B. ten Haaf, P.W. Brouwer, P.J.H. Denteneer, and J.M.J. van Leeuwen
Institute Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
(Received 12 July 1994)

We derive low-temperature properties of the large-U Hubbard model in two and three dimen-
sions starting from exact series-expansion results for high temperatures. Convergence problems and
limited available information prevent a direct or Padé-type extrapolation. We propose a method of
extrapolation, which is restricted to large U and low hole densities, for which the problem can be
mapped on that of a system of weakly interacting holes. In this formulation an extrapolation down
to T = 0 can be obtained, but it can be trusted for the presently available series data for At < 20
and for hole densities n, < 0.2 only. Implications for the magnetic phase diagram are discussed.

I. INTRODUCTION

The single-band Hubbard model is presumably the
simplest model for describing the behavior of correlated
electrons in a solid. Examples of its applications are
its initial use to describe magnetism in transition metals
and, most recently, theories of high-temperature super-
conductivity. Unfortunately, while it seems likely that for
the latter phenomenon more complex models are needed,
even this simple model is not nearly well understood. For
one dimension some rigorous results are known, but in
higher dimensions the main results have been obtained
from Monte Carlo and finite-lattice calculations only.

We are interested in deriving magnetic properties for
the case of large U on a square or simple cubic lattice. A
well-known theorem by Nagaoka® states that a Hubbard
model on a bipartite lattice with one hole and at infi-
nite U has a ferromagnetic ground state. Many authors
have investigated whether this one point in the phase dia-
gram is part of a whole region of ferromagnetic behavior.
Various methods are being used for this purpose,? includ-
ing exact diagonalization of small systems, Monte Carlo
simulations, and mean-field and cluster expansion meth-
ods. Two of us® as well as various other authors?*® have
used the last method to calculate high-temperature se-
ries expansions for the square and simple cubic lattices.
Expressions have been obtained for various thermody-
namical quantities, such as the free energy, the magneti-
zation, the magnetic susceptibility, and also for the pair-
correlation functions between the z components of the
spin at specific sites. These expressions show very well-
converged behavior for high temperatures (kT'/t 2 2).
The aim was to find indications for the onset to ferro-
magnetic behavior at low temperatures by extrapolating
the results of the series expansions. Indeed, these indi-
cations can be found, as is shown in Refs. 3 and 6. How-
ever, predictions for the ground state, based on these re-
sults, are highly unreliable. Due to the fact that we only
have five terms in the series expansions (zeroth-, second-,
fourth-, sixth-, and eighth-order terms), we found it im-
possible to rely on standard extrapolation methods like
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Padé approximants. The obtained results for different
extrapolations vary too much to be able to derive any re-
liable extrapolated value. Henderson et al.® tried to find
an indication for the expected divergence in the uniform
susceptibility

82
Xpm = B 5o Intr e A% (1)
M o(BR)? h=0

by looking for zeros of Xﬁ\l/[- The character of the series
expansion, shown for infinite U as a function of (3t in sub-
sequent approximations in Fig. 1, is such that xpp(5t)
is likely to diverge very quickly for Bt > 1, to plus and
minus infinity alternatingly. This means that zeros are
to be found for Bt 2 1 in the fourth- and eighth-order
approximations, but no zeros exist at second and sixth
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FIG. 1. The inverse ferromagnetic susceptibility as a func-
tion of the parameter 3t, for the Hubbard model on a simple
cubic lattice, with infinite U and particle density n = 0.9. Ap-
proximations up to order 2, 4, 6, 8 in 3t obtained by means
of the cluster expansion method.
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orders. We feel that there is no reason to believe that the
fourth- and eighth-order results should be more reliable
than the others.

Furthermore, we have also constructed the antiferro-
magnetic susceptibility x,y by including a staggered-
field term in the Hamiltonian, and we have calculated
its divergence in the same way as described above. In
Fig. 2 we compare the Curie temperature T¢ as a func-
tion of the particle density, for various values of t/U, to
the Néel temperature T, for calculations up to eighth
order [T¢ and Ty are defined by xy(n,U,Tc) = 0 and
x;;‘(n, U,Tx) = 0, respectively]. This is an extension
of the results presented by Pan and Wang,® who make
the same comparison but only at fourth order. Qualita-
tively, our results are very similar to theirs: As the Néel
temperature is higher than the Curie temperature for the
parameters shown, one should conclude that the system
goes into an antiferromagnetic state before the ferromag-
netic transition is reached. However, regarding the char-
acter of the series expansion, as illustrated in Fig. 1, it
is clear that the plots cannot be trusted qualitatively, let
alone quantitatively.

In this paper we will consider a method that does not
encounter these problems of extrapolation to low tem-
peratures. In this method the density of holes is used
as a small parameter. The high-temperature results are
expressed in terms of an effective density of states for
holes (as was done before by Brinkman and Rice”), and
extended to interactions between hole levels. With this
density of states, expressions for the free energy of the
thermodynamic system can be obtained in the whole
range of temperatures. In Sec. II we will define a parti-
tion function for the holes and express it in terms of an
effective chemical potential for the holes. In Sec. III we
derive the density of states for noninteracting holes, and
we determine its moments, for infinite U. We present
an improvement on the noninteracting hole picture in
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FIG. 2. Néel and Curie temperatures, as a function of the
particle density, for the Hubbard model on a simple cubic
lattice, at constant ¢/U.

Sec. IV, where we consider interacting holes by introduc-
ing a Fermi-liquid-like interaction in energy space. In
Sec. V we show how to use the density of states to calcu-
late zeros of the inverse susceptibility. Section VI deals
with the noninteracting hole approximation applied for
finite U. In Sec. VII we show our conclusions for the
magnetic phase diagram, and we discuss the method in
Sec. VIIIL.

II. HOLE FORMULATION

We consider the Hubbard Hamiltonian

H = Hiin + Hiocal — 1 Z n, —h Z Oy (2)

with
Hyin = —t Z CL,C‘,'(7 s (3)
(4,3),0
Hiocal = U z LT AL (4)

where t is the hopping integral between nearest neigh-
bors, U denotes the on-site interaction strength, u is the
chemical potential, and h is the strength of an external

magnetic field. The operator cL, (c;») creates (annihi-

lates) a particle with spin o at site i, and n,, = czacia
counts the number of particles with spin o at site .
To investigate the thermodynamic properties we want

to calculate the grand canonical partition function
Zg =tr e PH . (5)

For a system consisting of NV sites we can rewrite this as
2N
Zgr = Z eB"N'ZN, ’ (6)
N,=0

with Zp, the canonical partition function for N, = Ny +
N, particles:

N,
Zy = Z eﬁh(NT—NL) Z e_ﬁcﬁN,N..NT) . (7)
N1=0 J
Here {e_g-N’N"NT)} is the set of eigenvalues of Hyin + Hiocal

for N4 up spins and N| down spins on N sites (note that
the €; are functions of ¢ and U only). Via the grand
potential

Q= —%mzs,, (8)

we can now derive the other thermodynamic quantities
by means of the usual manipulations, e.g., the particle
density

_{Ny) 1982
- N = NOBu )

Uz

or the susceptibility as given by (1).
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In order to approach to lower temperatures in the limit
of strong interactions and near half filling, we are going
to express the partition function in terms of an effective
chemical potential for holes. We associate the kinetic
part of the Hamiltonian with the motion of the (dilute)
holes, and its magnetic part with the background of spins.
Thus, we have to divide out the spin degrees of freedom
to obtain the canonical partition function for the holes:

Z?,h = ZN_NheﬁeHF(N_N") . (10)
Here we define the number of holes,
N,=N-N,, (11)

and we introduce a parameter egr which can be viewed
as the free energy per spin in the absence of holes (i.e.,
at half filling; naturally, Z» = 1):

€EHF = -Niﬂ‘ In ZN (12)
- _% 1n(2 cosh 3h) (13)

for infinite U. The grand canonical partition function for
the holes then is

Zh = ZgeP(enr—mN (14)
=" Z§, Plemr i, (15)
Ny

suggesting the definition of an effective chemical potential
for the holes [cf. Eq. (6)]:

Hh = €EHF — 1 . (16)
With this definition we can rewrite (14) as
InZg; = —BunN +1n Zg, . (17)

Note that expression (13) for egp is exactly true only
in the case of infinite U, as the interaction then prevents
particles from occupying the same site. Note also that
we do not define the number of holes as the number of
sites where no particles are present (a definition which
seems obvious), because the interpretation of Egs. (10)
and (15) would then become problematic for finite U.
However, if U is very large, as we assume, a pair of elec-
trons located on the same site causes a very high energy,
and the contribution of the corresponding hole to the ki-
netic part of the Hamiltonian is some orders of magnitude
smaller than the contribution of a “real” (nonremovable)
hole. Therefore we will use (11) also in the case of large,
finite U, and we will show that this leads to terms to
be added to the expressions for infinite U of order 't17 or
higher.

III. CONSTRUCTION OF THE DENSITY
OF STATES FOR INFINITE U

Let us consider a system near half filling, with, for sim-
plicity, infinitely strong coupling U (the case of finite U

will be treated in Sec. VI). We assume that the system
can be described in terms of the kinetic energy of non-
interacting dilute holes and the magnetic energy of the
background particles. We define the spectral distribution
of the energy levels of one hole in an otherwise half-filled
system, p(&, Bh), in terms of the one-hole partition func-
tion ZP, through

4. [ devte.mere, (18)

where we write Ote to make the integration parameter ¢
dimensionless. One can see this as a Laplace tranform,
since Z! is a function of 3t. We take p to be normalized
to 1.

Although we said before that we divide out the mag-
netic degrees of freedom in the spin background, there is
still a dependence of p on the magnetic field k. It is not
easy to see how the hole motion depends on the field ex-
actly, but one can easily understand why this dependence
exists: A magnetic field influences the distribution of the
spin background, which in turn determines the behavior
of the hole. The hole motion depends on the field only
indirectly, and the mechanism that governs the hole dy-
namics can in fact be much better described in terms of
the average magnetization of the spin background than
in terms of the field. It is important to understand that,
in this picture, one has to treat the spin background as
if it were at half filling, with the dilute holes subjected
to its magnetization. Therefore we change variables at
this level from Bh to the magnetization per spin m. This
change is easily performed by a Legendre transformation

éur(m) = euar(Bh) + mh , (19)
yielding
2 _ [ e mamtie
N = / p(e,m)e , (20)
where p(e,m) is obtained from p(e, Bh) via
m=— a;‘;‘“ , (21)

which becomes m = tanh(Bh) for infinite U.

With this definition we can write down a first approx-
imation for the grand canonical partition function. A
one-hole level can be occupied, with a Boltzmann weight
e Pt or it can be unoccupied, in which case there is
an electron in the system with Boltzmann weight e=P#»
(with the magnetic energy included in pz). Thus, in the
case of noninteracting holes we have (dropping the m
dependence of p)

InZg = N / dep(e) In(e~Pte 4 e—Pun) (22)
or equivalently, using (17),
InZh =N / dep(e) In (1 + e-f’("-#»)) . (29)

This equation becomes exact in a one-dimensional sys-
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tem, as in that case the holes cannot disturb the magnetic
background of the particles, thus being really noninter-
acting, and also in a ferromagnetic system (at m = %1),
for similar reasons. In other, higher-dimensional systems
(23) is only correct to first order in ef#*. We make an
expansion of the right-hand side with respect to the small
parameter e?#* to obtain

1
InZg, = N/dep(s) (eﬁ“'-—ﬁ’“ — e ) :
(24)

Comparing this to a similar expansion of the logarithm of
Eq. (15) we see that this is consistent with the definition
of the density of states in the first-order term.

Now, as an illustration of the calculation, let us have
a look at the form that Eq. (8) actually takes when eval-
uating it for this system by means of a cluster expansion
method. In Ref. 3 a general formula is presented for fi-
nite U, which for infinite U reduces to

2n—1 m Q(") eﬁ(mu+lh)

hlZg,()"i- Z(ﬁt)zn Z Z ——r‘)zn— .

m=0 l=—m

In Zg, Z

(25)

Here Zg; o denotes the partition function for a system
consisting of only one site:

Zgr,0 = 1+ 2¢P* cosh(Bh) . (26)

The QS:’), are coefficients, which can, e.g., be calculated
by means of a cluster expansion method. By substitut-
ing pp for p, using (16) and (13), and expanding in the
small parameter e®#», we can obtain an expression for
the grand potential for the holes again, now in the form
of a series expansion:

an E NwBEn S (Bt)2mQU(Np, ), (27)
Np=1 n=0
where
—1)(»-1)
Q(P, O,h) — L (28)
and
2n—1 m r) () oBlk
ptm—1Y\ VPR, e
Qp,nh) = (p +m— 2n) [—2 cosh(Bh)]™

m=0 l=—m
(29)

for n # 0. Finally, we obtain a relation between the co-
efficients Q(1,n, h) and the moments of p(¢) [= p(e, Bh)]
by expanding (18) in powers of Jt:

A = [ aso@rn (30)

n=0

Thus, we see from Eq. (30) and the first-order term
in (27) that we have

/dep(e)ez"

for the even moments of p, all odd moments being zero.
Although we have restricted ourselves to the case of infi-
nite U here, this expression can easily be extended for the
case of finite U, as we will see in Sec. VI. U then enters
the equation as a parameter at the right-hand side.

For infinite U there is another, faster way to calculate
these moments. They can then be expressed directly in
the number of possible paths in state space for a system
with one hole. This has been done first by Brinkman and
Rice,” who calculated the first ten moments of the den-
sity of states for ferromagnetic, antiferromagnetic, and
paramagnetic spin backgrounds on a simple cubic lat-
tice. Yang et al.® have presented a large number of mo-
ments for the same spin backgrounds on two- to five-

= (2n)!Q(1,7n, k) (31)

0.05

0.25
0.2
p(e)

0.15

0.1

0.05

FIG. 3. (a) The density of states for a paramagnetic system
on a square lattice, using up to the number of moments indi-
cated. (b) The density of states in the ferromagnetic regime
on a square lattice. Exact result, and approximations using
up to the number of moments indicated.
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TABLE I. Moments of p(¢) for m = 0 and m = 1, for the square and the simple cubic lattices

(0dd moments vanish).

Square lattice Simple cubic lattice
m=0 m=1 n m=20 m=1

1 1 0 1 1

4 4 2 6 6

30 36 4 72 90

2691 400 6 10721 1860

264132 4900 8 177813 44730

2727912 63504 10 3144033 1172556

2917183% 853776 12 5804323242 32496156

31992502 11778624 14 11054918522 936369720

35766660 = 165636900 16 2156004418 1L 27770358330
405989247 27 2363904400 18
4665921461 301 34134779536 20
54182396281 52132 497634306624 22

dimensional hypercubic lattices, including 18 moments
for the square lattice and 14 for the simple cubic lattice.
In Appendix A, we outline a method which enables us
to enumerate the paths in an efficient way, and by which
we have extended their results to 22 and 16 moments,
respectively. These moments are presented in Table I for
m = 0 and m = 1, corresponding to a paramagnetic and
ferromagnetic system, respectively.

We now approximate p(¢) by a polynomial which we
fit with the moments. In this way we calculate an ap-
proximation for the density of states, to different orders,
in order to get an impression of the convergence of sub-
sequent approximations. In Figs. 3(a) and 3(b) we show
the result for a paramagnetic and a ferromagnetic sys-
tem.

For m = 1 the exact density of states is known:

1 £\2

P(E) = 2u2 K[l (3) ] ’
with K the complete elliptic integral of the first kind. It
has an integrable singularity at ¢ = 0. This is difficult
to approximate and causes some oscillations away from
€ = 0. Convergence towards the exact result is rather
good. For m = 0 convergence is very good, as from 14th
order on the difference between subsequent approxima-
tions becomes very small.

Meshkov and Berkov? fit the density of states by pos-
tulating that the integral of p? be minimal (“smooth-
ness” criterion), using a discretized p. They claim that
this method gives faster convergence than a polynomial
fit. Comparing their results for the ferromagnetic density
of states with the exact result and the results presented
here, however, one may question that claim. We feel that
the polynomial fits, when using an equal number of mo-
ments, give similar or even better results, which are also
easier to handle in further calculations.

(32)

Before calculating various quantities which can tell us
something about the low-temperature properties of the
system, we will in the next section consider a method
to improve the approximation of the density of states by
including interactions between the holes.

IV. INTERACTING HOLES

The crucial question is to see for which domain of hole
densities the assumption of independent holes is justi-
fied. This range can be determined from an estimate of
the interactions between the holes. Very similar to the
theory of the classical dilute gas,'® the interaction can
be deduced from the two-hole partition function as de-
fined by (10) for Np = 2. It is a matter of choice how
to represent the hole interaction. One could think of a
spatial representation, but one must realize that in this
strongly quantal system the interaction is nonlocal, which
complicates the transparency of the representation sub-
stantially. Having the one-hole system represented by
a density of states it is natural here to choose an in-
teraction between energy levels. First we formulate the
interaction in terms of discrete levels and then we take
the continuum limit as in Eq. (22). The discrete version
of this expression can be written in terms of levels ¢;,
distributed according to the density p(e;):

Zg) — e—BurN Z e~ BE:tei—pn)ns
{n:i}

(33)

where {n;} with n; = 0,1 is the occupation of the levels
€;. We have given the expression a superindex 1 to in-
dicate that Zg) matches Zg; up to the one-hole terms.
The next approximation can be of the form
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Zg) = ¢~ BurN Z e—ﬂ[zg(tti—ﬂh)m+2(i,” fijnin;] , (34)
{n:}

where f;; accounts for the interaction between the levels
€; and ;. The second term in the exponent is a sum over
all pairs of levels (¢,7). In the energy space a distance
between levels does not seem to be a measure for the
strength of the interaction as in real space, where inter-
actions usually decay sufficiently fast with the distance,
such that the sum over pairs does not increase with the
square of the number of elements, but only linearly as is
necessary for a thermodynamic system. In order to make
the exponent in (34) of the correct thermodynamic be-
havior the interaction should therefore decrease with the
size of the system as

fij = %451']' ) (35)

with ¢;; of order unity. An additional advantage of (35)
is the fact that interactions of this type can be handled
rigorously in the thermodynamic limit by the mean-field
theory.!! Thus we can write

In Zéf) = —BurN + Z In(1 + e7P%)

+£ 3 dun(En(e) (36)
%7

where the €; are the shifted energy levels,

; t 3
& =tei—pn+ 5 ; #iin(€5) » (37)
F#

and n(€) is the Fermi occupation number,

1

n(é) = T em -

(38)

Now the interaction ¢;; must be chosen such that Zg)

produces the correct two-hole partition function. Ex-
panding Eq. (34) with respect to the number of holes,

M=, (39)
and using Eq. (14) we find
b= Y ettt i) (40)
(4,9)

In our high-temperature expansion we have no direct
information on Z%, but we have the coefficient of
the second-order term in the hole expansion of In Z:l.
[cf. (15)], which is

1
Uy =75 - 5(20)? . (41)

Note that this expression is of order IV, and not of order
N2 as are both terms on its right-hand side. Using (40)
and the corresponding expression for Z we may equate

1
U, = Z e Bt(sitei+ X dij) _ 3 Ee—ﬁt(ti-ﬂj) . (42)
(C¥))] %

For N — oo we may write

1
U, = _% Ze—ﬁt(si+€j)¢ij _ 5 Ze—Zﬁtc.‘ , (43)
(3,3) z

and we see that Uy is indeed of order N by virtue of (35).
Note that the terms ¢ = j in the second term of (42) are
not compensated by the first term. The second term
in (43) gives the ideal-gas term of the hole system on the
two-hole level.

Since we have moments of U, by our high-temperature
expansions, and also the last term in (43) is known from
our one-hole density of states, it is convenient to split U,
into an interacting and an ideal part:

U, =U™ + U4, (44)
with

id
UZ

____1_ —20te;
2 Z ¢

—g /dsﬁ(a)e“w“ (45)

[cf. (24)]. ¢i; must then be determined from Ui*. In a
continuous version the equation for ¢(e,e’) becomes

Uzt = —%N / dep(e) / de'p(e")e P g e, ') .
(46)

This relation is not strong enough to yield a unique
¢(g,€’), in the same way as the second virial coefficient
of a classical gas is not sufficient to determine the in-
teraction potential. The freedom in choice will be re-
flected upon the efficiency of the program to determine
the higher-order interactions. We have chosen to have the
dependence of ¢(e,&’) only on the sum variable e+¢’, and
we approximate it by a polynomial:

¢'(5’5l) = Zd’l(é’ + 61)1 . (47)
]

Equating moments in (46) and in

U™t = (U3™)k(8t)* (48)
k
we have
in —1)¢*N B oy .
(U3 t)k = ;é(k‘zl—)!/dsp(s) de'p(e') (e + ')~ 1Hg,.

(49)

Because we are working on a bipartite lattice, all odd
moments of Ui are identically zero. Hence k is even,
and as also p(€) has only even moments, the combination
k—1+1 must be even and therefore the sums in Egs. (47)
and (49) contain only odd I. The set of equations (49)
for a finite number of the moments (Ué“")k determines
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TABLE II. Values of + (U;’“)k for m = 0 and m = 1, for
the square lattice with U = oo.

k m=20 m=1

0 0 0

2 0 0

4 -3 0

6 -5 0

8 -1 0
10 - 5988096608810 0
12 - s 0

an equal number of coefficients ¢;. We have computed
(U{,"‘)k for the square lattice at U = oo, up to k = 12.
This involves six terms (k = 2,4,...,12) and so we can
determine six values ¢, @3, ..., d11. In the equations we
thus need k — 1+ = 12 — 1 + 11 = 22 as the highest
moment of p(e), which is just the number of moments
we have determined. The values of % (Ug"‘),c are given
in Table II. For the ferromagnetic system (m = 1) these
coefficients are zero, as the holes do not interact in that
case.

Finally we give the continuum form of the expres-
sions (36) and (37) for the grand potential:

InZ® =-purN + N / dep(e) In(1 + e7P%)

+o N [ [ @ pem@aen@)ste. ) |

50

with (50)
E=te—pp+t / de'p(e) o (e, e )n(E') . (51)

V. INVERSE SUSCEPTIBILITY
We return to the uniform susceptibility
oM
= — 52
XFM oh heo ’ ( )

with M the total magnetization of the system. As before,
we try to find indications of divergences of Xy, Which
should be related to second-order phase transitions be-
tween a paramagnetic and a ferromagnetic state. It is

|

— / de
m=0

OBhyur

-1
ANxrm = n,Om

3%p(e)
n20m?

usually more convenient to express this by stating that
the inverse susceptibility must be zero,

Xem =0, (53)
and to study
Xy = 2 (54)
FM = Znr
or OM |ar=0
-1 8ph
BNxpy = ;L,c'?—m . ) (55)

where m is the magnetization per spin as defined in
Sec. III. In order to find an expression for A, to be able to
calculate (55), we construct a generalized (Landau like)
free energy

1

AN In Zy + png — hmn, (56)

o(ng, u,m,h) = —
where In Z,, is given by (22). ¢ has to be minimized
with respect to 1 and m at fixed particle density n, and
field h, to obtain the free energy. Note that this A is
not the same field as we used before in Sec. III. There
we interpreted h as a field that is felt only by the spins
in the background, whereas now we obtain the physical
external field that would be necessary to yield the given
magnetization. Of course, in the case of a finite number
of holes (the limit of half filling), these fields are the same,
as we will see in the resulting expressions. Note also that,
due to the definition of m as the magnetization per spin,
its conjugated variable is hn,, not h.

We can rewrite (56) using (16) and (19):

1
By = Beurn, + Bunns — - In Zg. , (57)

where we can interpret the first term as the contribu-
tion of the background of spins, and the other terms as
the contribution of the holes. Minimization leads to the
following equations:

_ 1
nn = / dep(e) T zae gy (58)
— Bﬁ(e) —B(te—pn)
ﬁh—ﬂhHF—/dE"—l—s"a;ln(l‘*'e ) ) (59)
with
o
hyp = ‘;ZF (60)

The expression for the inverse uniform susceptibility (55)
then becomes

In (1 + e—ﬂ(“""‘)) . (61)

m=0

This can be rewritten in terms of p(g), using the Legendre transform (19) [thus p(e, m) = p(e, Bhur)]:

O0Bhgr

n,0m

-1
,BNXFM =

1 9Bhur
m=0 n,0m

d?p(e, Bhur)

/ de
m=0

9(Bhur)?

hyr=0

In (1 + e—ﬂ("""-))) . (62)
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Note that m = 0 is equivalent to Agr = 0, and that, for
reasons of symmetry, the first derivative of p with respect
to hgr vanishes at hgr = 0.

According to (53) we want to find values of n, and St
for which the right-hand side of (62) is zero, with n; fixed
by Eq. (58). One can easily verify that, for infinite U, we
have Bhyr(m) = arctan(m), and so putting (62) to zero
gives

/de 82p(e, Bhur)

1 —Bte—pn)) =1 — .
a(ﬂhﬂp)z In ( +e ) nhp

hur=0

(63)

This equation can be solved by an iterative procedure
to calculate the value of u; for a given value of Bt. The
density of states p(¢), necessary to calculate ny, according
to (58), is determined from its moments as described in
Sec. ITI, and its second derivative is calculated in a similar
way.

To include the interaction described in Sec. IV, one
should use the grand potential as given in (50) rather
than the noninteracting-hole approximation of (22). The
final equation, equivalent to (62), then involves one extra
term which contains the second derivative with respect
to Bhur of the interaction ¢. We give a derivation of this
equation in Appendix B.

In Fig. 4 we show Curie temperatures for the square-
lattice Hubbard model at infinite U, in three different
approximations: (a) the noninteracting-hole approxima-
tion, with p determined by interpolation from 8 of its mo-
ments (of which 4 moments are nonzero); (b) the same
but with p determined from 22 (11 nonzero) moments;
and (c) the interacting-hole approximation, with p de-
termined from 22 moments and ¢ from 12 (5 nonzero)
interaction coefficients.

One can see that the difference between the 8th- and
the 22nd-order noninteracting approximations is small.
In both approximations, ferromagnetism is stable against
paramagnetism for n;, < 0.27, at low T. The interac-
tion does not change this picture very much. It slightly
enhances the stability of the ferromagnetic state, up to
np S 0.29. The difference between the noninteracting
and the interacting approximations becomes larger with
increasing hole density, as expected. Numerically, the
results agree very well for nj, < 0.06.

In the next section we will treat the case of finite U. We
have been able to calculate eight moments of the density
of states in that case; thus we can do an eighth-order ap-
proximation at the most. One can then calculate merely
two coefficients ¢; of the interaction, resulting in an ap-
J

BQ

4ePr(1 + e2Pr—RU) cosh(Bh) + %ezﬂu(l —e~PY)

0.06

FIG. 4. Curie temperatures (contours of zero inverse fer-
romagnetic susceptibility) for the square lattice at infinite U.
(a) Noninteracting-hole approximation, 8th order; (b) nonin-
teracting-hole approximation, 22nd order; (c) interacting-hole
approximation, 22nd order.

proximation of the interaction which is rather crude. We
have seen that the picture in the noninteracting-hole ap-
proximation is qualitatively the same as the one in the
interacting-hole approximation, in eighth order already.
For small np, it agrees rather well also numerically. There-
fore, we will not include the interaction in the following
calculations.

VI. NONINTERACTING-HOLE
APPROXIMATION FOR FINITE U

As we pointed out before, at finite U, excitations in
the spin background become possible due to the creation
of pairs of electrons with opposite spin at the same site.
This means that extra empty sites are created, and thus
the number of empty sites in the system is no longer fixed.
Taking U large, however, we can consider the contribu-
tions to the partition function due to these excitations
to be small corrections of the infinite-U system, and we
can neglect the terms that would arise from permanently
present electron pairs. To do this, we consider the grand
potential of the Hubbard model on a square lattice up to
the second-order term (taken from Ref. 3; note that h is
the parameter in the Hamiltonian here, not the physical
magnetic field we discussed in the previous section):

-5 = In [1 + 2ePH cosh(Bh) + ezﬂ“_ﬁu] + (,Bt)z

+oee . (64
[1 + 2eB¥ cosh(Bh) + e28u—BU1? (64)

In this expression, we will neglect the terms that contain the exponential of —BU, but we keep terms that are
proportional to a power of 1/U. This precisely distinguishes the terms that are due to permanent electron pairs, which
cause an energy (U, from those due to temporary excitations in a system where otherwise no double occupancies
are present. It is necessary to make this approximation, as the exponential terms cannot be treated in this method.
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However, it can be seen easily that these terms are always exponentially smaller than other terms in the expansion,
and thus that this approximation is justified.
First we consider the case of half filling, where we have p = U/2:

8¢PU/2 cosh(Bh) + zp (e?V — 1)
[2 + 2¢8U/2 cosh(Bh)]*

_BQur
N

= In[2 4 2¢PY/2 cosh(Bh)] + (Bt)® (65)

Here we can neglect all but the most important terms at large U; i.e., we only take the terms containing the highest
power of eV to get

Bur _BU o 2 2
—TN = tIm(Zeosh(BR] + (B o oGP T (66)

By definition, this expression must be equal to % + % In Zy, and so using the definition (12) for egr we get

2

e = nfzcomh(Bh)] + (90" o

and we see that this is indeed a correction of order —117 in Eq. (13). Note that we obtain the same result if we first

omit the e AV terms in (64), and only then substitute U/2 for pu. This once more supports our statement that these
terms may be neglected.

Off half filling, we have to rewrite (64) (without the e PU terms) in terms of the effective chemical potential up for
the holes, as defined by Eq. (16), but now containing the corrected ey as given by (67). For simplicity, we do this
in a few steps. First, we substitute the chemical potential for the holes without the correction terms, as in Sec. III.
Then we expand the logarithm and the numerators with respect to the exponential of this chemical potential. Finally,
we include the corrected u; by expanding the exponentials with respect to the correction terms. Thus, we obtain for
the grand potential

_EQ:_ eBun __.__2___
N (l e [2 @0) [cosh(ﬂh)lz} * ) T ©

The coefficient of e®#» in this expression again determines the moments of the distribution p(e, 8h), as described in
Sec. ITII. Of course these are now functions of U. In Table III we give the moments that we have been able to derive

TABLE III. Moments of the density of states for the square and simple cubic lattices (odd
moments vanish), for large but finite U, at h = 0.

n Square lattice

0 1
2 2(2-47)
5 2 12 3
4 Z‘W‘@W+W)

539 59 93 89 1 127
6 720 1440 ~ 488U  8(pU)2 ~ 6(BU)3 + 2(BU)2 + 2(50)5)

10567 271 1459 377 4531 4043 28837 78593
8 40320 ( - - ~ 3360)° T se(u)F T 8 - + )

161280  576@U  320(BU)Z (BU)® 8(BU)° 8(BU)T

n Simple cubic lattice

s 271 3
4 24(3- 50 (ﬂu)=+(/3v)§)

6 720 143 67 315

_ _ 7T ___ _e33 . 825
96 168U ~ 8(BU)? ~ 2(BU)®  2(BU)T T 2(BU)®
8 40320 (1129 869 7407 249 10551 13725 215739 279837)

2560 32080 ~ 320(8U)2 ~ 32(BU)3 ~ 32(@U)% 8(BU)S 8(BU)8 + 4(BU)Y?
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from the series-expansion data, for the square lattice, at h = 0. Note that the moments for A = oo are the same as in
the case of infinite U (Table I), because U has no significance in a system where all spins point in the same direction.

We can now apply the method described in Sec. V to calculate Curie temperatures for finite U. One has to realize,
though, that at half filling the inverse susceptibility depends on the temperature, which was not the case for infinite U.
Due to the excitations we get corrections of the type 8t?/U; thus we still have a series expansion in the parameter Gt.
The coefficients in this expansion are suppressed by large factors U, however, and the range of convergence of the
expansion is Bt < 30 or further, depending on the value of BU. Thus, we may hope that convergence is good enough
in the region where we expect to find solutions of (53). We give the full expression for the inverse susceptibility at
half filling, for the square lattice and up to the (5t)® terms:

_ OBhur

4 8(=2+50) (Bt)* +

[1131 — 6488U + 32(8U)?] (Bt)®

om m=0 (ﬂU)

(BU)3
N [—9129 + 62964U — 1132(8U)? + 4(8U)?] (8t)®

3(8U)*

We have checked that (69) does not become zero for
any value of Bt and BU. Therefore we expect no tran-
sition from a paraniagnetic to a ferromagnetic state in
the half-filled system. Thus, we only have to consider
the second factor on the right-hand side of (62), which
vanishes at

/d 8%p(e, 0°p(e, Bh)
IO

hzoln (1 + e—ﬁ(te—m.))

=(1- n,,) XHF . (70)

We show the results for the square and the simple cubic
lattices in the next section.

VII. MAGNETIC PHASE DIAGRAM

We have used the theory described above to calculate
Curie temperatures for the square and simple cubic lat-
tices. For both lattices, we find a surface of Curie tem-
peratures in the nh———T diagram. In Figs. 5 and 6 we
display these results in various ways.

In Figs. 5(a) and 6(a), contours of fixed Curie tem-
perature are plotted in the ny—F plane. In the range of
e

temperatures up to abou = 0.20 we ﬁnd a curve en-

closing a region of ferromagnetism. For & T 2 0.07 these
curves are closed and lie away from the £ ¢ = 0 axis. Thus,
at given density np, and temperature T¢, one has to go
to finite U to find a transition. In other words, allowing
for excitations in the spin background enhances the fer-
romagnetic behavior. Furthermore, curves are generally
not enclosed by all contours at lower temperatures This
would imply that, at given n, and &, one would find
a paramagnetic-ferromagnetic transition when lowering
the temperature from a region of high temperature, but
also when letting it increase from zero. This reentering of
a paramagnetic phase at low temperatures does not seem
to be physical. It is in fact an artifact of this method, due
to convergence problems at very low temperatures. One
can understand this by looking at the expression (69). If
the highest-order term becomes of order 1, the series is

f

clearly too short and does not converge properly. This
means that the results become unreliable for 5 P % in
the case of the square lattice, and ,tj 2 ’fg' on the simple
cubic lattice. For a few curves we have indicated this

by a dashed line. As the approximations are better for

0.06
t
U |
0.04

0.02 -

0.05

©
—_
UL L L L L AL

FIG. 5. Magnetic phase diagram for the square lattice. (a)
Contours of fixed Curie temperature, with kT¢c /t = 0.03, 0.04,

, 0.19 (increment 0.01). (b) Curie temperature at fixed
t/U = 0,0.005, ..., 0.055 (increment 0.005).
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higher temperatures, we assume that the actual curve at
Tc = 0 (for which we can only perform a calculation at
infinite U) should enclose all curves shown.

In Figs. 5(b) and 6(b), we show Curie temperatures
in contours of fixed {7 Again we see the nonphysical
behavior of curves being closed at the low-temperature
side, for almost all values of 5 Figure 7 shows Curie
temperatures at fixed n; = 0.09, for the simple cubic
lattice, indicated by the dot-dashed lines in Figs. 6(a)
and 6(b). The dotted line in Fig. 7 indicates the region
where the series expansion becomes unreliable, according
to the arguments presented above.

There is one other point we want to mention here.
As we have stated in the Introduction, we have also
constructed the staggered susceptibility by replacing the
magnetic field A by a staggered field h,. Although
it is much more complicated to calculate the high-
temperature expansions for that case, as the number

0.03
t
U

0.02

0.01

0.05

II\Illllilllll‘(lllJlLlll

0 0.05 0.1 0.15_ 0.2 0.25
n

h

FIG. 6. Phase diagram for the simple cubic lattice. (a)
Contours of fixed Curie temperature, with kT¢ /t = 0.03, 0.04,
..., 0.14 (increment 0.01). (b) Curie temperature at fixed
t/U =0, 0.002, ..., 0.022 (increment 0.002).

0.15 -
KT,
t
0.1
0.05
)_
o | .
O Ol 1 1 1 1 1 1 1 1 1 1 .} 1
0 0.01 t/U 0.02 0.03

FIG. 7. Curie temperature for the simple cubic lattice, at
np = 0.09. The dashed part of the curve is unreliable, due to
lack of convergence (indicated by the dotted line).

of terms involved increases significantly, it is not diffi-
cult to obtain expressions for the staggered susceptibility,
both at half filling and in the one-hole approximation, for
h, = 0. Thus, one may think that it is possible to obtain
similar results for the transition between a paramagnetic
and an antiferromagnetic state, and conclude which tran-
sition occurs first. When putting the inverse staggered
susceptibility at half filling [the equivalent of (69) for the
antiferromagnetic system] to zero, one finds solutions for
all values of the parameter SU. This means that the
staggered susceptibility of the half-filled system diverges
at a finite temperature. Apparently, the paramagnetic-
antiferromagnetic transition is driven by the background
itself, and may be disturbed by a finite hole density. In
our formulation, however, it is the holes that drive the

0.3

)_ ///
kTN i 2 4,/’ 8
t I //
- K Ve
7
0.2 .
7
|- rd 7/
7
- ///
L 6
/
- Y/
Y
0.1 —
O 1 1 1 ' 1 1 1 | 1 1 1 I 1 1 1 ! 1
[¢] 0.02 0.04 0.06 0.08

FIG. 8. Néel temperature for the simple cubic lattice at
half filling. Approximations to different orders in 8t, as indi-
cated.
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system into an ordered state, and the background only
indirectly contributes to the transition via its interaction
with the holes. This formulation is clearly not suitable
to describe the transition to an antiferromagnetic state.
Therefore we only briefly indicate what we expect for the
paramagnetic-antiferromagnetic transition.

In Fig. 8 we plot Néel temperatures for the simple cu-
bic lattice at half filling, in approximations to different
orders in the parameter 3t. We see that the convergence
of the series expansion is very good for large U. A transi-
tion from a paramagnetic to an antiferromagnetic phase
is expected for all values of U. It is at Ty = 0 for in-
finite U, and at increasing temperatures with decreas-
ing U. For finite hole densities we expect the transition
to occur at lower temperatures, and at some point cross
the paramagnetic-ferromagnetic transition.

VIII. DISCUSSION AND CONCLUSIONS

We have calculated Curie temperatures for the large-U
Hubbard model on the square and simple cubic lattices,
by means of an extrapolation method to extract informa-
tion on low-temperature behavior from high-temperature
series expansions. We find a region of ferromagnetic be-
havior in the magnetic phase diagram, near half filling.

Comparing previous results for the simple cubic lat-
tice, as depicted in Fig. 2, to our current results, shown in
Fig. 6, we see that we now find a Curie temperature that
is an order of magnitude smaller than before. Further-
more, as we have checked in the case of infinite U, subse-
quent approximations in the current method do give con-
sistent results, instead of alternatingly producing Curie
temperatures or not. These convergence problems in the
primitive series expansions are likely due to the Fermi de-
generacy of the electron gas. At Ot = 1, the wavelength of
the electrons becomes equal to the lattice distance, caus-
ing this degeneracy and divergences to be present. When
applying a straightforward extrapolation technique, one
cannot account for this degeneracy, leading to results
that are erroneous for 8t 2 1. In our approximation,
using a density of states for holes, we take the Fermi de-
generacy into account, and therefore we are able to pro-
ceed to lower temperatures. We are confident that our
present results do not suffer from the above-mentioned
convergence problems.

As we show in Fig. 4, the difference between approxi-
mations to different orders in the parameter (3t is rather
small, and adding the interaction also does not change
the result considerably. Thus we believe the eighth-order
noninteracting-hole approximation to be sufficient to de-
scribe the qualitative behavior, and to obtain a good in-
dication for numerical values. We may add that, as a
check, we have compared the free energy from calcula-
tions by this method to results following directly from
the series expansions, at Bt < 0.5, where the expansions
are almost exact, and that these results agree very well.

Our method works only for large U, low hole density
(nn £ 0.2), and, depending on the value of U, sufficiently
high temperature. This is clear from Figs. 5-7, where we

see that the results are unreliable for % P %. We be-

lieve, however, that our method gives a correct descrip-
tion for the tendencies in the half-filled system at infi-
nite U, and for the qualitative behavior up to ns ~ 0.2.

There are, however, some important limitations to this
method, due to which we are not able to predict a ferro-
magnetic state with certainty.

As we know from a theorem by Ghosh,'? similar to
the Mermin-Wagner theorem for the Heisenberg model,
the Hubbard model does not have long-range ordering in
two dimensions for finite temperatures. Thus, we must
expect a ferromagnetic phase in the two-dimensional case
to be of the Kosterlitz-Thouless type. Our method is es-
sentially based on short-range information from the high-
temperature expansion (which is obtained via calcula-
tions on small systems). It gives similar results for the
square and the simple cubic lattices, as can be seen in
Figs. 5 and 6, and we cannot distinguish between differ-
ent kinds of phases occurring.

Also, the method currently fails to describe the case of
a paramagnetic-antiferromagnetic transition, due to the
fact that a divergent background is not treated correctly.
We can therefore calculate only possible second-order
phase transitions between a paramagnetic and a ferro-
magnetic phase, for the case of finite hole density. At half
filling, we do find a finite Néel temperature for any finite
value of the parameter SU (see Fig. 8). This implies that,
near half filling, there is a transition from a paramagnetic
to an antiferromagnetic state at a higher temperature
than the calculated paramagnetic-ferromagnetic transi-
tion. Thus, the paramagnetic-ferromagnetic transition
cannot occur, and one must study the antiferromagnetic-
ferromagnetic transition to determine the ground-state
behavior.

Finally, due to the thermodynamic approach in which
all possible states are taken into account, our method
cannot distinguish special states that may start to domi-
nate the system at low temperatures. Such states, if any,
are not recognized by the high-temperature expansion.
An example of this is the fact that it fails to reflect the
influence of m = 1 states in an m = 0 system.

We can compare our results to the work of Putikka
et al.,'® who calculate series expansions similar to those
used by us, for the related ¢t-J model, and extrapolate to
low temperatures by means of Padé approximants. For
J > 0, in the limit of small J, the ¢t-J model is equivalent
to the large-U Hubbard model. They find a region of
weak ferromagnetism (i.e., the spins are not fully aligned)
for small positive J, at hole density n, < 0.28 £ 0.05,
which is in good agreement with our results.

It is also encouraging to note that some of our re-
sults are in reasonable quantitative agreement with re-
sults using an approximation of an entirely different na-
ture. By means of the slave-boson mean-field approach
(at T = 0), Denteneer and Blaauboer!* find a critical
hole density n§, = 1/3 for ferromagnetism to occur at
U = oo, in agreement with the values 0.27-0.29 found
here (see Fig. 4). They also find that the value of U/t
above which ferromagnetism can occur is U/t = 20 (at
np = 0.17), whereas one may extrapolate the results of
our Fig. 5(a) to T =0 to find U/t = 15 (at np = 0.15).

von der Linden and Edwards!® use a variational ap-
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proach to find a ferromagnetic region in the 7' = 0 phase
diagram of the square-lattice Hubbard model. They rig-
orously conclude that the state of complete spin align-
ment is unstable when n; > 0.29, for all U, and when
U/t < 42, for all n,. The latter value is significantly
higher than the value above which we find ferromag-
netism, but we assume that that is due to the fact that
they consider only strong ferromagnetism (full alignment
of the spins), whereas our method may also include weak
ferromagnetism.

Also the results of Barbieri et al.,'® who consider sys-
tems with a large (but finite) number of holes, support
the existence of ferromagnetic behavior.

A final comparison that can be made is for the re-
lation between the Néel temperature and U/t in the
half-filled system. From Fig. 8 one can calculate that
the paramagnetic-antiferromagnetic transition occurs for
kTy =~ 3.85t/U. The large-U Hubbard model at half
filling is known to be equivalent to an antiferromagnetic
Heisenberg spin model, for which estimates of the values
of the critical temperature are given in Ref. 17. Accord-
ing to the results mentioned there, the relation would be
kTxn =~ 3.80t/U, which is in very good agreement.
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APPENDIX A: ENUMERATION OF PATHS

In this appendix we describe an efficient way to cal-
culate the moments of the density of states, for the case
of infinite U, by which we have calculated 22 of these
moments for the square lattice, and 16 for the simple cu-
bic lattice. We start from Eq. (20), which we expand in
terms of the parameter St:

oo

=2 Y . (A1)

with the moments of the density of states defined as

M,(m) = /deﬁ(s,m)s" . (A2)

We can write the partition function for one hole according
to its definition [cf. (10)] also as

Zh = eW—DBenr 7, | (A3)

= N-1)" i, a;(m)|e PHuin i, oy (m
(M@w)mgix i(m)] 5, ai(m)), (A4)

where the summation is over all states |7, a;(m)) with a
hole at site 7z and with a spin background a;(m) such that
the magnetization per spin is indeed m. N; denotes the

number of electrons with spin up, which depends on m,

and the factor (x:(}n)

background configurations given the location of the hole,
which accounts for the spin degrees of freedom. In the
thermodynamic limit, this factor is exactly equal to the
exponential factor in (A3), as one easily checks by apply-
ing Stirling’s formula for the binomial, and with (13) for
egr. The summation over ¢ gives a trivial (translational)
factor IV, and we can expand the exponential in powers
of Bt to obtain

Zy (N - —1)" )
E (o) = = S a@emeor,

la(m)) m

) is the total number of possible

(A5)
where

7'lkin

An(a(m)) = (a(m)| (25 (46)

)" jx(rm))

is the number of walks of length n in the configuration
space that restore the spin background a(m) to its orig-
inal state. Comparing (A1) and (A5) we see that

N-1\""
MHM:(NWM) Y An(a(m)). (A7)

|a(m))

Thus M,(m) is precisely the sum over all possible closed
walks w,, of length n, summing the fraction of spin back-
grounds that is restored by w,. Such a walk induces a
permutation P(w,) of the background spins, which can
be written as a product of disjunct cyclic permutations
P;(wy,) with length |P;(w,)| > 1. In order to restore
the spin background a(m), the direction of the spin on
each site must remain unchanged, when applying P;(w.,).
Thus, all spins that are interchanged by this permutation
must point in the same direction. As the number of spins
involved is negligible compared to the total number of
spins, we may approximate that the probability to find
an individual spin pointing up or down is given by —liz'ﬂ
and 1"—2’"—, respectively. Hence the fraction of backgrounds
in which the alignment of the spins remains unchanged
under the permutation P;(wy) is (1%"-)1+ (l:zm)', where
! = |Pi(w,)| is the number of spins involved in the per-
mutation. Thus, we can calculate M, as

e = ST (52)

4 1—m |Pi(wn)]
2 .

For the actual evaluation of this expression we proved an
elegant theorem that enables us to significantly extend
earlier calculations of the moments to n = 22. Defining
a retracing sequence as two subsequent steps of the hole
in opposite directions (thus after two steps the hole is
back in its previous position; note that the last and first
steps of a closed walk are considered to be subsequent

(A8)
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as well), one can make a distinction between reducible
and irreducible closed walks: An irreducible walk does
not contain any retracing sequence, whereas a reducible
walk does. A reducible walk can be made irreducible by
repeatedly removing its retracing sequences; the result
is called the irreducible part of the walk. Note that a
retracing sequence does not permute spins, and so the
irreducible part of a walk induces the same permutation
of the spins as the walk itself. Thus, it is sufficient to
study only irreducible walks if one knows of how many

reducible walks of a given length it is the irreducible part.
We proved the following formula: The number of closed
walks of length | + 2n on a hypercubical lattice with co-
ordination number z that have a given irreducible part
of length I > 0 is

Nullym) = (2 — 1) (’““) . (A9)

n

This greatly facilitates the calculation of (A8).

APPENDIX B: INVERSE SUSCEPTIBILITY IN THE INTERACTING-HOLE APPROXIMATION

In this appendix we give the formula for the inverse susceptibility in the interacting-hole approximation, using the
theory given in Sec. IV. We start from Eq. (56), which has to be differentiated with respect to m in order to get the
equivalent of (59), with (50) for ln Z,

Bh = Bhur + np 2%:; - /d Bpé ) In(1 4 e7P%) + /dsp(s)n(e) ’g;n

_ﬂt/ de [ de' 22 m@)ple (e ole, o) - p [ de [ de'ple) oD ple (e,
/d&/de p(e)n(é)p(e’ )n(“’)6¢(€ ,€")

n,0m

; (B1)

where ny, is given by

- / dsﬁ(e)n(é)% + Bt / de / de'ﬁ(s)n(é)p‘(e')?;8(5;)¢(5,e') .

This may look awkward, but if we look at the derivatives of € [see Eq. (51)] we see that many of these terms cancel.
Let us first look at the expression (B2) for the hole density. As we are working at fixed hole density, derivatives of the
Fermi factor do not play a role in these equations, and they vanish. We need the derivative of & with respect to Bup,

8Be an(&")

(B2)

=-1+ t/ds"e' e, & , B3
s =1+t [ de'ple)(e,e) S (B3)
and so we see that indeed there is a cancellation of terms, leaving us with the relation
ny = /dr—:ﬁ(s)n(é’) . (B4)
Then, we rewrite the expression for the magnetic field with
9B 9Bun ,9p(c") 6n(é’) , N a¢(e ¢')
o =~ 1t [ e B n(@g(e,e) + ot [ el ) dle.e) + 8t [ deplen(E) 20 B) . (Bs)
Using this expression it is straightforward to check that (B1) reduces to
_ Bﬁ(e) —Bé ,Bt !~ ~\ =1 ~ 6¢(6’ el)
Bh = Bhur — /dsnsam In(1+e77°) + 5 /de/ds ple)n(&)p(e")n(é )m— . (B6)

In order to derive the inverse susceptibility from this expression, we have to take the derivative with respect to n,m
again, and put m = 0. For reasons of symmetry it is easy to show that the first derivatives with respect to m of
all functions appearing in the integrals vanish at m = 0. Thus, in the terms in (B6) we only have to consider the
derivatives of the functions that have been differentiated once already:

_ aﬂhHF 32[)(6) —Bé Bt - Nz 97 P(e,¢€’)
N = o | [de | wOre )+ B fae [apem@neime) Z50) @)
This can again be expressed in terms of p(¢) (note that also ¢ is being Legendre transformed):
- OBhur OBhur 3p(e) —Bé
1 = —_ Bé
BNXxrm n.0m m_0<1 n,Bm _0[ de B(ﬂh)zl n(1 + e 7%)
N, = 02 B(e, 5)
+ 5 [ [aenem@eeme Hra] ) (B8)

which is the modification of (62) for interacting holes.
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