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«~-temperature behavior of the large-U Hubbard mope] from
high-temperature expansions

D.F.B. ten Haaf, P.W. Brouwer, P.J.H. Denteneer, and J.M.J. van Leeuwen
Institute Lorentz, Leiden University, P.O. Box 9506, 2800 BA Leiden, The Netherlands

(Received 12 July 1994)

We derive low-temperature properties of the large-U Hubbard model in two and three dimen-
sions starting from exact series-expansion results for high temperatures. Convergence problems and
limited available information prevent a direct or Pade-type extrapolation. We propose a method of
extrapolation, which is restricted to large U and low hole densities, for which the problem can be
mapped on that of a system of weakly interacting holes. In this formulation an extrapolation down
to T = 0 can be obtained, but it can be trusted for the presently available series data for Pt ( 20
and for hole densities n& 0.2 only. Implications for the magnetic phase diagram are discussed.

I. INTROl3UCTIGN

The single-band Hubbard model is presumably the
simplest model for describing the behavior of correlated
electrons in a solid. Examples of its applications are
its initial use to describe magnetism in transition metals
and, most recently, theories of high-temperature super-
conductivity. Unfortunately, while it seems likely that for
the latter phenomenon more complex models are needed,
even this simple model is not nearly well understood. For
one dimension some rigorous results are known, but in
higher dimensions the main results have been obtained
IIrom Monte Carlo and finite-lattice calculations only.

We are interested in deriving magnetic properties for
the case of large U on a square or simple cubic lattice. A
well-known theorem by Nagaoka states that a Hubbard
model on a bipartite lattice with one hole and at infi-
nite U has a ferromagnetic ground state. Many authors
have investigated whether this one point in the phase dia-
gram is part of a whole region of ferromagnetic behavior.
Various methods are being used for this purpose, includ-
ing exact diagonalization of small systems, Monte Carlo
simulations, and mean-field and cluster expansion meth-
ods. Two of us as well as various other authors have
used the last method to calculate high-temperature se-
ries expansions for the square and simple cubic lattices.
Expressions have been obtained for various thermody-
namical quantities, such as the &ee energy, the magneti-
zation, the magnetic susceptibility, and also for the pair-
correlation functions between the z components of the
spin at specific sites. These expressions show very well-
converged behavior for high temperatures (kT/t & 2).
The aim was to find indications for the onset to ferro-
magnetic behavior at low temperatures by extrapolating
the results of the series expansions. Indeed, these indi-
cations can be found, as is shown in Refs. 3 and 6. How-
ever, predictions for the ground state, based on these re-
sults, are highly unreliable. Due to the fact that we only
have five terms in the series expansions (zeroth-, second-,
fourth-, sixth-, and eighth-order terms), we found it im-
possible to rely on standard extrapolation methods like

Pade approximants. The obtained results for different
extrapolations vary too much to be able to derive any re-
liable extrapolated value. Henderson et al. tried to find
an indication for the expected divergence in the uniform
susceptibility

+FM p g(pg)2

by looking for zeros of yFM. The character of the series
expansion, shown for infinite U as a function of Pt in sub-
sequent approxiinations in Fig. 1, is such that yFM(Pt)
is likely to diverge very quickly for Pt & 1, to plus and
minus infinity alternatingly. This means that zeros are
to be found for Pt & 1 in the fourth- and eighth-order
approximations, but no zeros exist at second and sixth
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FIG. 1. The inverse ferromagnetic susceptibility as a func-
tion of the parameter Pt, for the Hubbard model on a simple
cubic lattice, with infinite U and particle density n = 0.9. Ap-
proximations up to order 2, 4, 6, 8 in Pt obtained by means
of the cluster expansion method.
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orders. We feel that there is no reason to believe that the
fourth- and eighth-order results should be more reliable
than the others.

Ru.thermore, we have also constructed the antiferro-
magnetic susceptibility y&F by including a staggered-
field term in the Hamiltonian, and we have calculated
its divergence in the same way as described above. In
Fig. 2 we compare the Curie temperature T~ as a func-
tion of the particle density, for various values of t/U, to
the Neel temperature TN, for calculations up to eighth
order [Tc and T~ are defined by yFM(n, U, Tc) = 0 and

y&F(n, U, T~) = 0, respectively]. This is an extension
of the results presented by Pan and Wang, who make
the same comparison but only at fourth order. Qualita-
tively, our results are very similar to theirs: As the Neel
temperature is higher than the Curie temperature for the
parameters shown, one should conclude that the system
goes into an antiferromagnetic state before the ferromag-
netic transition is reached. However, regarding the char-
acter of the series expansion, as illustrated in Fig. 1, it
is clear that the plots cannot be trusted qualitatively, let
alone quantitatively.

In this paper we will consider a method that does not
encounter these problems of extrapolation to low tem-
peratures. In this method the density of holes is used
as a small parameter. The high-temperature results are
expressed in terms of an effective density of states for
holes (as was done before by Brinkman and Rice~), and
extended to interactions between hole levels. With this
density of states, expressions for the &ee energy of the
thermodynamic system can be obtained in the whole
range of temperatures. In Sec. II we will define a parti-
tion function for the holes and express it in terms of an
efFective chemical potential for the holes. In Sec. III we
derive the density of states for noninteracting holes, and
we determine its moments, for infinite U. We present
an improvement on the noninteracting hole picture in

Sec. IV, where we consider interacting holes by introduc-
ing a Fermi-liquid-like interaction in energy space. In
Sec. V we show how to use the density of states to calcu-
late zeros of the inverse susceptibility. Section VI deals
with the noninteracting hole approximation applied for
finite U. In Sec. VII we show our conclusions for the
magnetic phase diagram, and we discuss the method in
Sec. VIII.

II. HOLE FORMULATION

We consider the Hubbard Hamiltonian

R —Ri))a + Ri~gai p ) fi h ) 0 A

with

Rkin t ) c)~c .~
(i,j),cr

'R), )
——U n,.tn,-~, (4)

For a system consisting of N sites we can rewrite this as

2Nz„=) e»~ z~. ,

N, =O

where t is the hopping integral between nearest neigh-
bors, U denotes the on-site interaction strength, p, is the
chemical potential, and 6 is the strength of an external

magnetic field. The operator c, (c,. ) creates (annihi-

lates) a particle with spin cr at site i,, and n; = c, c;
counts the nuinber of particles with spin 0 at site i,.

To investigate the thermodynamic properties we want
to calculate the grand canonical partition function

Zg, —tr e-~~ .

with ZN, the canonical partition function for N, = Ng+
Ng particles:
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we can now derive the other thermodynamic quantities
by means of the usual manipulations, e.g. , the particle
density

(X)HB,Nt)Ph(N, —N, ) - —P, ' "
N1.=0 2

Here (s ' " ) is the set of eigenvalues of 'Ri,;„+'Ri,i(N, N. ,N1 )

for Nt up spins and N~ down spins on N sites (note that
the s~ are functions of t and U only). Via the grand
potential

FIG. 2. Neel and Curie temperatures, as a function of the
particle density, for the Hubbard model on a simple cubic
lattice, at constant t/U.

(N, ) 1 BPO
N NBPp

or the susceptibility as given by (1).
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Z Z PeHF (N —NP, )
Np,

Here we de6ne the number of holes,

(10)

Ng ——N —N, )

and we introduce a parameter eHF which can be viewed
as the &ee energy per spin in the absence of holes (i.e.,
at half filling; naturally, Zo = 1):

1
EHF = — lxl ZN

1= ——ln(2 cosh Ph)

for infinite U. The grand canonical partition function for
the holes then is

Zh. Z P(~HF ~)N
gr

Z" P('HF ")N
Np, e

Na

(14)

(»)

suggesting the de6nition of an efFective chemical potential
for the holes [cf. Eq. (6)j:

In order to approach to lower temperatures in the limit
of strong interactions and near half 6lling, we are going
to express the partition function in terms of an efFective
chemical potential for holes. We associate the kinetic
part of the Haxniltonian with the motion of the (dilute)
holes, and its magnetic part with the background of spins.
Thus, we have to divide out the spin degrees of &eedom
to obtain the canonical partition function for the holes:

will be treated in Sec. VI). We assume that the system
can be described in terms of the kinetic energy of non-
interacting dilute holes and the magnetic energy of the
background particles. We de6ne the spectral distribution
of the energy levels of one hole in an otherwise half-6lled
system, p(s, Ph), in terms of the one-hole partition func-
tion Zl through

Zh
dip(s, Ph)e

where we write Pts to make the integration parameter s
dimensionless. One can see this as a Laplace tranform,
since Zi is a function of Pt. We take p to be normalized
to 1.

Although we said before that we divide out the mag-
netic degrees of freedom in the spin background, there is
still a dependence of p on the magnetic field h. It is not
easy to see how the hole motion depends on the 6eld ex-
actly, but one can easily understand why this dependence
exists: A magnetic field in8uences the distribution of the
spin background, which in turn determines the behavior
of the hole. The hole motion depends on the 6eld only
indirectly, and the mechanism that governs the hole dy-
namics can in fact be much better described in terms of
the average magnetization of the spin background than
in terms of the field. It is important to understand that,
in this picture, one has to treat the spin background as
if it were at half filling, with the dilute holes subjected
to its magnetization. Therefore we change variables at
this level &om Ph to the magnetization per spin m. This
change is easily performed by a Legendre transformation

ps =~HF —P .

With this definition we can rewrite (14) as

ln Zs, —— Ppx, N + ln Z—", .

(16)
yielding

eHF(m) = eHF(ph) + mh,

zh
dip(s, m)e ~", (20)

Note that expression (13) for EHF is exactly true only
in the case of infinite U, as the interaction then prevents
particles &om occupying the same site. Note also that
we do not define the number of holes as the number of
sites where no particles are present (a definition which
seems obvious), because the interpretation of Eqs. (10)
and (15) would then become problexnatic for finite U.
However, if U is very large, as we assume, a pair of elec-
trons located on the same site causes a very high energy,
and the contribution of the corresponding hole to the ki-
netic part of the Hamiltonian is some orders of magnitude
smaller than the contribution of a "real" (nonremovable)
hole. Therefore we will use (11) also in the case of large,
6nite U, and we will show that this leads to terms to
be added to the expressions for in6nite U of order & or
higher.

where p(s, m) is obtained &om p(s, Ph) via

(21)

ln Zg, ——N dip e ln e ~" + e (22)

which becomes m = tanh(Ph) for infinite U.
With this de6nition we can write down a 6rst approx-

imation for the grand canonical partition function. A
one-hole level can be occupied, with a Boltzmann weight
e ~~', or it can be unoccupied, in which case there is
an electron in the system with Boltzmann weight e
(with the magnetic energy included in px, ). Thus, in the
case of noninteracting holes we have (dropping the m
dependence of p)

III. CONSTRUCTION OF THE DENSITY
OF STATES FOR INFINITE U

Let us consider a system near half filling, with, for sim-
plicity, infinitely strong coupling U (the case of finite U

or equivalently, using (17),

lnZ", = N dip e ln 1+e ~('

This equation becomes exact in a one-dimensional sys-
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tern, as in that case the holes cannot disturb the magnetic
background of the particles, thus being really noninter-
acting, and also in a ferromagnetic system (at m = kl),
for similar reasons. n oI ther higher-dimensional systems
(23) is omy correc o st t first order in e~~". We make an

allexpansion o e rigf th ht-hand side with respect to the sma
parameter e~"' to obtain

lnZh, = N —
(

PII'h Pt'8— e2P+h P +dip e e ——e
~l

(24)

Comparing this to a similar expansion of t e!og~ ~ f h lo arithm of
Eq. 15) we see that this is consistent with the definition
f th densit of states in the first-order term.

Now, as an illustration of the calculation, e uslet us have
a look at the form that Eq. (8) actually takes when eval-

t f th ystem by means of a cluster expansion
method. In Ref. 3 a general formula is presente or
nite U, which for infinite U reduces to

Thus we see from Eq. (30) and the first-order term
in (27) that we have

(31)

for the even moments of p, all odd moments being zero.
Althou h we have restricted ourselves to the case o i
nite U here, this expression can easily be exten e or e

oug we

f fi 'te U as we will see in Sec. VI. U then enterscase o ni e, a
t h d de.the equation as a parameter at the right- an si e.

For infinite U there is another, faster way to calculate

the number of possible paths in state space for a system
with one hole. This has been done first by Brinkman an
Rice, ~ who calculated the first ten moments of the den-
sity of states for ferromagnetic, antiferromagnetic, an
paramagnetic spin backgroun s o

'
p

~ ~

n a sim le cubic lat-
tice. Yang et al. have presented a large number of mo-
ments for the same spin backgrounds on two- to ve-

2n —1 (~) P(m, p, +Eh)
m, l

(Z )2n
E=—m. 0.15—

Here Z+, o denotes the partition function for a systemgzqO

consisting of only one site:

zs, II ——1+2ep" cosh(ph) . (26)

The 0 "~ are coefBcients, which can, e.g. , bebe calculated
by means of a cluster expansion meth . ybod. 8 substitut-
ing pI, for p, using (16) and (13), and expanding in the
small parame er e, wt ~~" we can obtain an expression for
the grand potential for the holes again, now in the form
of a series expansion:

0.05—

o

10
14
18
22

] I I I I I I I ~llI I I I I

—2 0 p 2

h
s' = ) "» ) (pt)2"n(m, n h),

Np, ——1

0.25

where

( 1)(&—i)
n(p, o, h) = (28)

0.2

0.15

and

21l—i 171 ) q ( 1) (~) PEh

JI+ m —2n) [
—2cosh(Ph)]

m, =O I=—m

(29)

0.1

0.05
14
18
22
exact

Zh ~ 1o= ) (Pt)", dip(e)s" . (30)

for n g 0. Finally, we obtain a relation between the co-
efficients n(1, n, h) and the moments of p(e) [= p(e, P )]
by expanding (18) in powers of Pt:

0 I l

0 p 2

FIG. 3. (a) The density of states for a paramagnetic system
on a square lattice, using up to the number of moments indi-
cated. (b) The density of states in the ferromagnetic regime
on a square lattice. Exact result, and approximations using
up to the number of moxnents indicated.
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TABLE I. Moments of p(s) for rn = 0 and m = 1, for the square and the simple cubic lattices
(odd moments vanish).

Square lattice Simple cubic lattice

m=o m=1 m=o m=1

30

269-

2641-

2727910

291718—2

3199250

35766660—

405989247 o

4665921461

54182396281

400

4900

63504

853776

11778624

165636900

2363904400

34134779536

497634306624

10

20

22

72

1072-

17781-

314403—

5804323—

110549185—'„'
21560044182 6

90

1860

44730

1172556

32496156

936369720

27770358330

dimensional hypercubic lattices, including 18 moments
for the square lattice and 14 for the simple cubic lattice.
In Appendix A, we outline a method which enables us
to enumerate the paths in an eKcient way, and by which
we have extended their results to 22 and 16 moments,
respectively. These moments are presented in Table I for
m = 0 and m = 1, corresponding to a paramagnetic and
ferromagnetic system, respectively.

We now approximate p(s) by a polynomial which we
fit with the moments. In this way we calculate an ap-
proximation for the density of states, to di6'erent orders,
in order to get an impression of the convergence of sub-
sequent approximations. In Figs. 3(a) and 3(b) we show
the result for a paramagnetic and a ferromagnetic sys-
tem.

For m = 1 the exact density of states is known:

P(e)= K 1 —
(

—
) (32)

with K the complete elliptic integral of the first kind. It
has an integrable singularity at e = 0. This is diKcult
to approximate and causes some oscillations away &om
e = 0. Convergence towards the exact result is rather
good. For m = 0 convergence is very good, as &om 14th
order on the difference between subsequent approxima-
tions becomes very small.

Meshkov and Berkov fit the density of states by pos-
tulating that the integral of p2 be minimal ("smooth-
ness" criterion), using a discretized p. They claim that
this method gives faster convergence than a polynomial
fit. Comparing their results for the ferromagnetic density
of states with the exact result and the results presented
here, however, one may question that claim. We feel that
the polynomial fits, when using an equal number of mo-
ments, give similar or even better results, which are also
easier to handle in further calculations.

Before calculating various quantities which can tell us
something about the low-temperature properties of the
system, we will in the next section consider a method
to improve the approximation of the density of states by
including interactions between the holes.

IV. INTERACTING HOLES

The crucial question is to see for which domain of hole
densities the assumption of independent holes is justi-
fied. This range can be determined &om an estimate of
the interactions between the holes. Very similar to the
theory of the classical dilute gas, the interaction can
be deduced &om the two-hole partition function as de-
fined by (10) for Ng = 2. It is a matter of choice how
to represent the hole interaction. One could think of a
spatial representation, but one must realize that in this
strongly quantal system the interaction is nonlocal, which
complicates the transparency of the representation sub-
stantially. Having the one-hole system represented by
a density of states it is natural here to choose an in-
teraction between energy levels. First we formulate the
interaction in terms of discrete levels and then we take
the continuum limit as in Eq. (22). The discrete version
of this expression can be written in terms of levels e;,
distributed according to the density p(e, ):

g(1) —p~p, N ~ —p p,. (te; —p, p, )n;
gr

(n;)

where (n;) with n; = 0, 1 is the occupation of the levels
We have given the expression a superindex 1 to in-

dicate that Zg, matches Zz, up to the one-hole terms.(~)

The next approximation can be of the form
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Z(2l pp—iv g —p[g,. (te; —pp, )n, ,+g( ~ ) f; n;n ) (34)g
—8 )

(n;)
(42)

where f;~ accounts for the interaction between the levels
e; and e~. The second term in the exponent is a sum over
all pairs of levels (i, j). In the energy space a distance
between levels does not seem to be a measure for the
strength of the interaction as in real space, where inter-
actions usually decay sufficiently fast with the distance,
such that the sum over pairs does not increase with the
square of the number of elements, but only linearly as is
necessary for a thermodynamic system. In order to make
the exponent in (34) of the correct thermodynamic be-
havior the interaction should therefore decrease with the
size of the system as

u N~'~ '

For N ~ oo we may write

pt(e, —+c ly g —2pte,

(' ~)

(43)

and we see that U2 is indeed of order N by virtue of (35).
Note that the terms i = j in the second term of (42) are
not compensated by the Grst term. The second term
in (43) gives the ideal-gas term of the hole system on the
two-hole level.

Since we have moments of U2 by our high-temperature
expansions, and also the last term in (43) is known from
our one-hole density of states, it is convenient to split U2
into an interacting and an ideal part:

with (t,~. of order unity. An additional advantage of (35)
is the fact that interactions of this type can be handled
rigorously in the thermodynamic limit by the mean-6eld
theory. Thus we can write

with

U = U'"'+ U'

1
2

(44)

ln Zs(, l —— PIJ,hN +—) ln(1+ e P ')
dep(e) e

N
2

(45)

~—) P,,n(e, )n(e, ),
(' )

where the e, are the shifted energy levels,

t
e~ = tet —p,h + ) (t'ijn(ej )

2W&

and n(e) is the Fermi occupation number,

1
n(e) = (3S)

Now the interaction P;~ must be chosen such that Zs(, l

produces the correct two-hole partition function. Ex-
panding Eq. (34) with respect to the number of holes,

4(e, e') = ) 4x(e + e')' . (47)

[cf. (24)]. P;~ must then be determined from U2 t. In a
continuous version the equation for (t)(e, e') becomes

Ue
' = — NdeP(e) f d—e p(e )e ~''~ +'~P(e*e') . ,2 2

(46)

This relation is not strong enough to yield a unique
P(e, e'), in the same way as the second virial coefficient
of a classical gas is not sufficient to determine the in-
teraction potential. The &eedom in choice will be re-
Qected upon the efficiency of the program to determine
the higher-order interactions. We have chosen to have the
dependence of (t (e, e') only on the sum variable e+e', and
we approximate it by a polynomial:

Nh=) n;,

and using Eq. (14) we find

Zh + —Pt(r;+to~+ ~~ P,~ )
2

(' ~)

(39)

(40)

Equating xnoments in (46) and in

U int ) (U.int) yt) h

we have

(4s)

In our high-temperature expansion we have no direct
information on Z2, but we have the coefficient of
the second-order term in the hole expansion of lnZ",
[cf. (15)], which is

U, z, —-(z, ) .h i h 2

2

Note that this expression is of order N, and not of order
N2 as are both terms on its right-hand side. Using (40)
and the corresponding expression for Zz we may equate

«p(e) «'p(e')(e+ e')" '"4t.
t

(49)

Because we are working on a bipartite lattice, all odd
moments of U2" are identically zero. Hence k is even,
and as also p(e) has only even moments, the combination
k —1+1must be even and therefore the sums in Eqs. (47)
and (49) contain only odd l. The set of equations (49)
for a finite nuxnber of the xnoments (U2"t) „determines
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TABLE II. Values of ~ (U2"') for m = 0 and m = 1, for
the square lattice with U = oo.

usually more convenient to express this by stating that
the inverse susceptibility must be zero,

m=o m= 1

and to study
(53)

1
3

47
80

or

Oh
~FM

M=0
(54)

12

1713
4032

989681
5806080

160327813
3832012800

—1
PNXFM Asm 0

(55)

where m is the magnetization per spin as defined in
Sec. III. In order to find an expression for h, to be able to
calculate (55), we construct a generalized (Landau like)
&ee energy

an equal number of coefficients P~. We have computed
(U2"~)& for the square lattice at U = oo, up to k = 12.
This involves six terms (k = 2, 4, . . . , 12) and so we can
determine six values Pi, Ps, . . . , Pii. In the equations we
thus need A: —1 + l = 12 —1 + 11 = 22 as the highest
moment of p(s), which is just the nuinber of moments
we have determined. The values of ~ (U2"t)„aregiven
in Table II. For the ferromagnetic system (m = 1) these
coefBcients are zero, as the holes do not interact in that
case.

Finally we give the continuum form of the expres-
sions (36) and (37) for the grand potential:

lnZ™= —PHelV+
he/

deP(e) ln(1 + e H')

t+—N dc depcnZpc n Z

1
(p (n„p,m, h) = — ln Zs, + pn, —hmn, ,

where lnZs, is given by (22). (p has to be minimized
with respect to p and m at fixed particle density n, and
field h, to obtain the free energy. Note that this h is
not the same field as we used before in Sec. III. There
we interpreted h as a field that is felt only by the spins
in the background, whereas now we obtain the physical
external field that would be necessary to yield the given
magnetization. Of course, in the case of a finite number
of holes (the limit of half filling), these fields are the same,
as we will see in the resulting expressions. Note also that,
due to the definition of m as the magnetization per spin,
its conjugated variable is hn„not h.

We can rewrite (56) using (16) and (19):

with
(5o) p(p —peHFnd + pphng ——ln ZsH (57)

dE, "p e' r, c' n F' (51)
where we can interpret the first term as the contribu-
tion of the background of spins, and the other terms as
the contribution of the holes. Minimization leads to the
following equations:

V. INVERSE SUSCEPTIBILITY

We return to the uniform susceptibility

OM
~FM

h,=o

1

1 + ~P(te —gag)

Ph=Phne — de ln l+e Hl* "l)&p(s)
As |9774

with

(58)

(59)

with M the total magnetization of the system. As before,
we try to find indications of divergences of gFM, which
should be related to second-order phase transitions be-
tween a paramagnetic and a ferromagnetic state. It is

0@HF
HF =

07A
(6o)

The expression for the inverse uniform susceptibility (55)
then becomes

phe
' — p "e d H() l (l

—H(" —el)
AsBfD 0 A 0

This can be rewritten in terms of p(c), using the Legendre transform (19) [thus p(s, m) = p(s, PhHF)]:

—1 PPhHH ( PPhne p( P He)
n, am o n. o)m o O(PhHF)'

(61)

(62)
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Note that m = 0 is equivalent to hHF ——0, and that, for
reasons of symmetry, the Grst derivative of p with respect
to hHF vanishes at hHF ——0.

According to (53) we want to And values of ng and Pt
for which the right-hand side of (62) is zero, with n~ fixed
by Eq. (58). One can easily verify that, for infinite U, we
have PhHF(m) = arctan(m), and so putting (62) to zero
gives

p(~ P Hp) { (y
—p{t, p„))

{9(phHF) 2

(63)

0.06

0.04

This equation can be solved by an iterative procedure
to calculate the value of pi, for a given value of Pt. The
density of states p(e), necessary to calculate ni„according
to (58), is determined &om its moinents as described in
Sec. III, and its second derivative is calculated in a similar
way.

To include the interaction described in Sec. IV, one
should use the grand potential as given in (50) rather
than the noninteracting-hole approxiination of (22). The
final equation, equivalent to (62), then involves one extra
term which contains the second derivative with respect
to PhHF of the interaction P. We give a derivation of this
equation in Appendix B.

In Fig. 4 we show Curie temperatures for the square-
lattice Hubbard model at infinite U, in three difFerent
approximations: (a) the noninteracting-hole approxima-
tion, with p determined by interpolation &om 8 of its mo-
ments (of which 4 moments are nonzero); (b) the same
but with p determined &om 22 (11 nonzero) moments;
and (c) . the interacting-hole approximation, with p de-
termined &om 22 moments and P &om 12 (5 nonzero)
interaction coeKcients.

One can see that the difI'erence between the 8th- and
the 22nd-order noninteracting approximations is small.
In both approximations, ferromagnetism is stable against
paramagnetism for np, & 0.27, at low T. The interac-
tion does not change this picture very much. It slightly
enhances the stability of the ferromagnetic state, up to
nI, + 0.29. The difference between the noninteracting
and the interacting approximations becomes larger with
increasing hole density, as expected. Numerically, the
results agree very well for np, + 0.06.

In the next section we will treat the case of finite U. We
have been able to calculate eight moments of the density
of states in that case; thus we can do an eighth-order ap-
proximation at the most. One can then calculate merely
two coefficients Pi of the interaction, resulting in an ap-

I

0. 1 ~ 0.2
h

0.3

FIG. 4. Curie temperatures (contours of zero inverse fer-
romagnetic susceptibility) for the square lattice at infinite U.
(a) Noninteracting-hole approximation, 8th order; (b) nonin-
teracting-hole approxiination, 22nd order; (c) interacting-hole
approximation, 22nd order.

proximation of the interaction which is rather crude. We
have seen that the picture in the noninteracting-hole ap-
proximation is qualitatively the same as the one in the
interacting-hole approximation, in eighth order already.
For small np it agrees rather well also numerically. There-
fore, we will not include the interaction in the following
calculations.

VI. NONINTERACTING-HOLE
APPROXIMATION FOR FINITE U

As we pointed out before, at 6nite U, excitations in
the spin background become possible due to the creation
of pairs of electrons with opposite spin at the same site.
This means that extra empty sites are created, and thus
the number of empty sites in the system is no longer Axed.
Taking U large, however, we can consider the contribu-
tions to the partition function due to these excitations
to be small corrections of the in6nite-U system, and we
can neglect the terms that would arise &om permanently
present electron pairs. To do this, we consider the grand
potential of the Hubbard model on a square lattice up to
the second-order term (taken from Ref. 3; note that h is
the parameter in the Hamiltonian here, not the physical
magnetic field we discussed in the previous section):

pQ 4e»(1+ e ~" ~+) cosh(Ph) + &&ez»(1 —e ~ )= ln 1+2e~" cosh(ph) + e ~" ~+ ~ (pt)2 + " (64)N [1+2e~l' cosh(Ph) + e'PI" ~ijj'

In this expression, we will neglect the terms that contain the exponential of —PU, but we keep terms that are
proportional to a power of 1/U. This precisely distinguishes the terins that are due to permanent electron pairs, which
cause an energy PU, &om those due to temporary excitations in a system where otherwise no double occupancies
are present. It is necessary to make this approximation, as the exponential terms cannot be treated in this method.
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However, it can be seen easily that these terms are always exponentially smaller than other terms in the expansion,
and thus that this approximation is justified.

First we consider the case of half filling, where we have y, = U/2:

poHp ,Se~~~2 cosh(ph) +,' (.~~ —1)= in[2+ 2e~ ~ cosh(Ph)]+ (Pt) +
2 + 2e~~~' cosh(Ph)

Here we can neglect all but the most ixnportant terms at large U; i.e. , we only take the terms containing the highest
power of e~, to get

p~Hp pU + ln [2 cosh(Ph)] + (Pt) 2 2
2 +

N 2 (PU) [cosh(Ph))

By definition, this expression must be equal to ~2 + N ln Z~, and so using the definition (12) for eHp we get

2—peHp = ln[2cosh(ph)]+ (pt) 2 + ~

(PU) [cosh(Ph)]

(66)

(67)

and we see that this is indeed a correction of order ~ in Eq. (13). Note that we obtain the same result if we first

omit the e ~U terms in (64), and only then substitute U/2 for p. This once xnore supports our statement that these
terms may be neglected.

Off half filling, we have to rewrite (64) (without the e ~U terms) in terms of the effective chemical potential p~ for
the holes, as defined by Eq. (16), but now containing the corrected eHp as given by (67). For simplicity, we do this
in a few steps. First, we substitute the chemical potential for the holes without the correction terms, as in Sec. III.
Then we expand the logarithm and the numerators with respect to the exponential of this chemical potential. Finally,
we include the corrected p, h by expanding the exponentials with respect to the correction terms. Thus, we obtain for
the grand potential

rpo
Ppa + e~"—" 1+ (Pt) 2—

N l
2

(PU) [cosh(Ph)] )
(6s)

The coefBcient of e~"" in this expression again determines the moments of the distribution p(s, Ph), as described in
Sec. III. Of course these are now functions of PU. In Table III we give the moments that we have been able to derive

TABLE III. Moments of the density of states for the square and simple cubic lattices (odd
moments vanish), for large but finite U, at h = 0.

Square lattice

0 1

2 (2 ——')
5 2 12 + 3
4 P& (PU)' (PU)'

539 59 93 89
1440 48PU 8(PU)~ 6(PU)~

10567 271 1459
161280 576PU 320(PU)2

++ 2(~U)' + 2(~U)'
377 + 4531 + 4043 28837 + 78593

32(PU) 3 96(PU) 4 S(PU) 5 8{PU)~ 8(PU) 7

Simple cubic lattice

0 1

2 (3 ——')
9 27 + 3

2PU (PU)' (PU)'
143 67 315 71 633
96 16PU 8(PU) 2(PU) 2(PU)

1129 869 7407 249
2560 320PU 320(PU) 2 32(PU)3

825
2(PU)'

10551 + 13725 215739 + 279837
32(PU)4 + 8(PU)5 S(PU)& + 4(PU)7
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&om the series-expansion data, for the square lattice, at h = 0. Note that the moments for h = oo are the same as in
the case of infinite U (Table I), because U has no significance in a system where all spins point in the same direction.

We can now apply the method described in Sec. V to calculate Curie temperatures for finite U. One has to realize,
though, that at half filling the inverse susceptibility depends on the temperature, which was not the case for infinite U.
Due to the excitations we get corrections of the type Pt2/U; thus we still have a series expansion in the parameter Pt.
The coefficients in this expansion are suppressed by large factors PU, however, and the range of convergence of the
expansion is Pt & 30 or further, depending on the value of PU. Thus, we may hope that convergence is good enough
in the region where we expect to find solutions of (53). We give the full expression for the inverse susceptibility at
half filling, for the square lattice and up to the (Pt) s terms:

DphHF 4(pt)2 8 (—2+ pU) (pt)4 1131—648pU+ 32(pU) (pt)
0~ o (PU) (PU) 3(PU)

—9129+ 6296PU —1132(PU)2 + 4(PU)s (Pt)s
(&U)' (69)

We have checked that (69) does not become zero for
any value of Pt and PU. Therefore we expect no tran-
sition &om a paramagnetic to a ferromagnetic state in
the half-filled system. Thus, we only have to consider
the second factor on the right-hand side of (62), which
vanishes at

clearly too short and does not converge properly. This
means that the results become unreliable for U

&
z~ in

the case of the square lattice, and &
&

4~ on the simple
cubic lattice. For a few curves we have indicated this
by a dashed line. As the approximations are better for

= (1 —n„) "' . (70)

0.06

We show the results for the square and the simple cubic
lattices in the next section.

0.04

VII. MAGNETIC PHASE DIAGRAM 0.02

We have used the theory described above to calculate
Curie temperatures for the square and simple cubic lat-
tices. For both lattices, we find a surface of Curie tem-
peratures in the nh —

U
—T diagram. In Figs. 5 and 6 we

display these results in various ways.
In Figs. 5(a) and 6(a), contours of fixed Curie tem-

perature are plotted in the np, —
& plane. In the range of

temperatures up to about "z ——0.20 we find a curve en-

closing a region of ferromagnetism. For "~ & 0.07 these
curves are closed and lie away &om the &

——0 axis. Thus,
at given density nh and temperature T~, one has to go
to finite U to find a transition. In other words, allowing
for excitations in the spin background enhances the fer-
romagnetic behavior. Furthermore, curves are generally
not enclosed by all contours at lower temperatures. This
would imply that, at given nh, and &, one would find
a paramagnetic-ferromagnetic transition when lowering
the temperature &om a region of hjgh temperature, but
also when letting it increase &om zero. This reentering of
a paramagnetic phase at low temperatures does not seem
to be physical. It is in fact an artifact of this method, due
to convergence problems at very low temperatures. One
can understand this by looking at the expression (69). If
the highest-order term becomes of order 1, the series is

0.03

0
0

0.2

0.1 ~ 0.2
h

0. 15
kTc
t

o. 1

0.05
10

0.1 0.2 0.3

FIG. 5. Magnetic phase diagram for the square lattice. (a)
Contours of fixed Curie temperature, with kTo/t = 0.03, 0.04,
. . . , 0.19 (increment 0.01). (b) Curie temperature at fixed
t/U = 0, 0.005, . . . , 0.055 (increment 0.005).
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atures we assume that the actual curve at
T& = 0 (for which we can only perform a calculation a
infinite U) should enclose all curves shown.

In Figs. 5(b) and 6(b), we show Curie temperatures
in contours o xef fi d — Again we see the nonphysical
b h

' r of curves being closed at the low-temperaturee avzor o c
d f almost all values of &. Figure 7 shows

t fixed n = 0.09, for the simple cubic

and 6(b). The dotted line in Fig. 7 indicates the region
liable accordingwhere the series expansion becomes unreliab e,

to the arguments presented above.
There is one other point we want to mention here.

constructed the staggered susceptibility by replacing t e
6 ld h b a staggered field h, . Althoug

e the hi h-it is much more complicated to calculate t e g-
temperature expansions for thah t case as the number

0.15—

0.1

0.05—

I I I I I I I I II I I I I

0.01 t/U 0.02 0.03

IG. 7. Curie temperature for the simple cu sc lattice, atF . . uric e
ng ——0.09. The dashed part of the curve is unrelia e, ue o
lack of convergence (indicated by the dotted line).

0.03

0.01

0
0 0.05 0.1

0.03

0.15~ 0.2 0,25
h

of terms involved increases signi ca y,ntl it is not diK-
cult to obtain expressions for the staggere su p

' ' '
y,e susce tibility,

both at half filling and in the one-hole approximation, for

similar results for the transition between a paramagnetic
and an antiferromagnetic state, and conclude w c tran-
sition occurs first. When putting the inverse staggered
susceptibility at half filling [the equivalent of (69) for the
antiferromagnetic system] to zero, one fie finds solutions for

staggered susceptibility of the half-filled system diverges
at a finite temperature. Apparently, the paramagnetic-
an i errot'f rromagnetic transition is driven y e ac gro
itself, and may be disturbed by a Bnite hole densi y.'t. In
our formulation, however, it is the holes that drive the

0.15—
0.3

N

0.1

0.2

0.05
0.1

0.05 0. 1 0.15 0.2
Il~

.002
I

0.25
0

0 0.02 0.04 0.06 0.08
t/U

Contours of Swed Curie temperature, wit~ c~
. . . , 0.14 increment 0.01). (b) Curie temperature at fixed
/U = 0, 0.002, . . . , 0.022 (increment 0.002).

FIG. 8. Neel temperature for the simple cue cubic lattice at
half Slling. Approximations to different orders in Pt, as indi-
cated.
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system into an ordered state, and the background only
indirectly contributes to the transition via its interaction
with the holes. This formulation is clearly not suitable
to describe the transition to an antiferromagnetic state.
Therefore we only briefIy indicate what we expect for the
paramagnetic-anti ferromagnetic transition.

In Fig. 8 we plot Neel temperatures for the simple cu-
bic lattice at half Glling, in approximations to difFerent
orders in the parameter Pt W.e see that the convergence
of the series expansion is very good for large U. A transi-
tion from a paramagnetic to an antiferromagnetic phase
is expected for all values of U. It is at T~ ——0 for in-
Gnite U, and at increasing temperatures with decreas-
ing U. For Gnite hole densities we expect the transition
to occur at lower temperatures, and at some point cross
the paramagnetic- ferromagnetic transition.

VIII. DISCUSSION AND CONCI USIONS

We have calculated Curie temperatures for the large-U
Hubbard model on the square and simple cubic lattices,
by means of an extrapolation method to extract informa-
tion on low-temperature behavior &om high-temperature
series expansions. We Gnd a region of ferromagnetic be-
havior in the magnetic phase diagram, near half Glling.

Comparing previous results for the simple cubic lat-
tice, as depicted in Fig. 2, to our current results, shown in
Fig. 6, we see that we now 6nd a Curie temperature that
is an order of magnitude smaller than before. Further-
more, as we have checked in the case of infinite U, subse-
quent approximations in the current method do give con-
sistent results, instead of alternatingly producing Curie
temperatures or not. These convergence problems in the
primitive series expansions are likely due to the Fermi de-
generacy of the electron gas. At /3t = 1, the wavelength of
the electrons becomes equal to the lattice distance, caus-
ing this degeneracy and divergences to be present. When
applying a straightforward extrapolation technique, one
cannot account for this degeneracy, leading to results
that are erroneous for Pt & 1. In our approximation,
using a density of states for holes, we take the Fermi de-
generacy into account, and therefore we are able to pro-
ceed to lower temperatures. We are confident that our
present results do not suffer &om the above-mentioned
convergence problems.

As we show in Fig. 4, the difFerence between approxi-
mations to difFerent orders in the paraxneter Pt is rather
small, and adding the interaction also does not change
the result considerably. Thus we believe the eighth-order
noninteracting-hole approximation to be sufIicient to de-
scribe the qualitative behavior, and to obtain a good in-
dication for numerical values. We may add that, as a
check, we have compared the &ee energy &om calcula-
tions by this method to results following directly &om
the series expansions, at Pt + 0.5, where the expansions
are almost exact, and that these results agree very well.

Our method works only for large U, low hole density
(ng + 0.2), and, depending on the value of U, sufficiently
high temperature. This is clear from Figs. 5—7, where we
see that the results are unreliable for &

&
4 . We be-

lieve, however, that our method gives a correct descrip-
tion for the tendencies in the half-6lled system at inG-
nite U, and for the qualitative behavior up to nh 0.2.

There are, however, some important limitations to this
method, due to which we are not able to predict a ferro-
magnetic state with certainty.

As we know &om a theorem by Ghosh, similar to
the Mermin-Wagner theorem for the Heisenberg model,
the Hubbard model does not have long-range ordering in
two dimensions for 6nite temperatures. Thus, we must
expect a ferromagnetic phase in the two-dimensional case
to be of the Kosterlitz-Thouless type. Our method is es-
sentially based on short-range information &om the high-
temperature expansion (which is obtained via calcula-
tions on small systexns). It gives similar results for the
square and the simple cubic lattices, as can be seen in
Figs. 5 and 6, and we cannot distinguish between differ-
ent kinds of phases occurring.

Also, the method currently fails to describe the case of
a paramagnetic-antiferromagnetic transition, due to the
fact that a divergent background is not treated correctly.
We can therefore calculate only possible second-order
phase transitions between a paramagnetic and a ferro-
magnetic phase, for the case of finite hole density. At half
6lling, we do 6nd a Gnite Neel temperature for any finite
value of the parameter PU (see Fig. 8). This implies that,
near half filling, there is a transition &om a paramagnetic
to an antiferromagnetic state at a higher temperature
than the calculated paramagnetic-ferromagnetic transi-
tion. Thus, the paramagnetic-ferromagnetic transition
cannot occur, and one must study the antiferromagnetic-
ferromagnetic transition to determine the ground-state
behavior.

Finally, due to the thermodynamic approach in which
all possible states are taken into account, our method
cannot distinguish special states that may start to domi-
nate the system at low temperatures. Such states, if any,
are not recognized by the high-temperature expansion.
An example of this is the fact that it fails to reflect the
infIuence of m = 1 states in an m = 0 system.

We can compare our results to the work of Putikka
et al. , who calculate series expansions similar to those
used by us, for the related t-J model, and extrapolate to
low temperatures by means of Pade approximants. For
J ) 0, in the limit of small J, the t-J model is equivalent
to the large-U Hubbard model. They find a region of
weak ferromagnetism (i.e., the spins are not fully aligned)
for small positive J, at hole density np, ( 0.28 + 0.05,
which is in good agreement with our results.

It is also encouraging to note that some of our re-
sults are in reasonable quantitative agreement with re-
sults using an approximation of an entirely different na-
ture. By means of the slave-boson mean-Geld approach
(at T = 0), Denteneer and Blaauboer find a critical
hole density n& ——1/3 for ferromagnetism to occur at
U = oo, in agreement with the values 0.27—0.29 found
here (see Fig. 4). They also find that the value of U/t
above which ferroxnagnetism can occur is U/t = 20 (at
nh = 0.17), whereas one may extrapolate the results of
our Fig. 5(a) to T = 0 to find U/t = 15 (at nh = 0.15).

von der Linden and Edwards use a variational ap-
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proach to 6nd a ferromagnetic region in the T = 0 phase
diagram of the square-lattice Hubbard model. They rig-
orously conclude that the state of complete spin align-
ment is unstable when nh & 0.29, for all U, and when
U/t ( 42, for all nh, The latter value is significantly
higher than the value above which we find ferromag-
netism, but we assume that that is due to the fact that
they consider only strong ferromagnetism (full alignment
of the spins), whereas our method may also include weak
ferromagnetism.

Also the results of Barbieri et al. , who consider sys-
tems with a large (but finite) number of holes, support
the existence of ferromagnetic behavior.

A 6nal comparison that can be made is for the re-
lation between the Neel temperature and U/t in the
half-6lled system. Prom Fig. 8 one can calculate that
the paramagnetic-antiferromagnetic transition occurs for
kT~ = 3.85t/U. The large-U Hubbard model at half
6lling is known to be equivalent to an antiferromagnetic
Heisenberg spin model, for which estimates of the values
of the critical temperature are given in Ref. 17. Accord-
ing to the results mentioned there, the relation would be
kTxv = 3.80t/U, which is in very good agreement.

number of electrons with spin up, which depends on m,
and the factor N ( )

is the total number of possibleNt (~)
background configurations given the location of the hole,
which accounts for the spin degrees of &eedom. In the
thermodynamic limit, this factor is exactly equal to the
exponential factor in (A3), as one easily checks by apply-
ing Stirling s formula for the binoxnial, and with (13) for
eHF. The suxnmation over i gives a trivial (translational)
factor N, and we can expand the exponential in powers
of Pt to obtain

(A5)

where

X„(~(m))= (~(m)~
~

'"
~ ~~(m))

('Rg;„l"
(A6)

is the number of walks of length n in the con6guration
space that restore the spin background n(m) to its orig-
inal state. Comparing (Al) and (A5) we see that
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APPENDIX A: ENUMERATION OF PATHS

In this appendix we describe an efFicient way to cal-
culate the moments of the density of states, for the case
of in6nite U, by which we have calculated 22 of these
moments for the square lattice, and 16 for the simple cu-
bic lattice. We start from Eq. (20), which we expand in
terms of the parameter Pt:

(A1)

with the moments of the density of states de6ned as

t' N —1 iM(m)=~ N( )
~ ) A„(n(m)).

In(rn) )

(A7)

Thus M„(m)is precisely the sum over all possible closed
walks m of length n, summing the fraction of spin back-
grounds that is restored by m . Such a walk induces a
permutation P(m„)of the background spins, which can
be written as a product of disjunct cyclic permutations
P;(xU„) with length ~'P;(m„)~ ) l. In order to restore
the spin background u(m), the direction of the spin on
each site must remain unchanged, when applying P, (xU ).
Thus, all spins that are interchanged by this permutation
must point in the same direction. As the number of spins
involved is negligible compared to the total number of
spins, we may approximate that the probability to find
an individual spin pointing up or down is given by
and 2, respectively. Hence the fraction of backgrounds
in which the alignment of the spins remains unchanged
under the permutation P,'(tu ) is ( +2 ) +( 2 ), where
l = ~'P;(xU„)~ is the number of spins involved in the per-
mutation. Thus, we can calculate M as

M (m) = f dip(e, m)e (A2)

We can write the partition function for one hole according
to its definition [cf. (10)j also as

Zh (N —1)P ZN —1
—1

=
~ N ( ) ~ ) (i, n;(m)~e ~~"'"[i,cx;(m)), (A4)

Ii,n; (na))

where the summation is over all states ~i, n;(m)) with a
hole at site i and with a spin background n, (m) such that
the magnetization per spin is indeed rn. Ng denotes the

(A8)

For the actual evaluation of this expression we proved an
elegant theorem that enables us to significantly extend
earlier calculations of the moments to n = 22. De6ning
a retracing sequence as two subsequent steps of the hole
in opposite directioxis (thus after two steps the hole is
back in its previous position; note that the last and first
steps of a closed walk are considered to be subsequent
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as well), one can make a distinction between reducible
and irreducible closed walks: An irreducible walk does
not contain any retracing sequence, whereas a reducible
walk does. A reducible walk can be made irreducible by
repeatedly removing its retracing sequences; the result
is called the irreducible part of the walk. Note that a
retracing sequence does not permute spins, and so the
irreducible part of a walk induces the same permutation
of the spins as the walk itself. Thus, it is sufficient to
study only irreducible walks if one knows of how many

reducible walks of a given length it is the irreducible part.
We proved the following formula: The number of closed
walks of length L + 2n on a hypercubical lattice with co-
ordination number z that have a given irreducible part
of length L ) 0 is

(A9)

This greatly facilitates the calculation of (A8).

APPENDIX B: INVERSE SUSCEPTIBILITY IN THE INTERACTING-HOLE APPROXIMATION

In this appendix we give the formula for the inverse susceptibility in the interacting-hole approximation, using the
theory given in Sec. IV. We start from Eq. (56), which has to be differentiated with respect to m in order to get the
equivalent of (59), with (50) for ln Zs, :

Ph = PhHF + nh, — dk ln(1 + e ') + dkp(k)n(k)
BPPs BP(k) p; BPk
Ag m A, Om na m

—Pt f de de 'n(d)P(r')n(d')d(ee') —(),t de de P(e) 'p(e')n(d')d(zz'),
nd Om n, Om

dk dk'p(k) n(k) p(k') n(k')Pt , Op(k, k')
2 A, Om

where nh is given by

Ah = — dip E' A 8' + t dE; dE'p E' A E' p 6' 8', E'
OPk , On(k')

O Ph, O Ph,
(B2)

This may look awkward, but if we look at the derivatives of k [see Eq. (51)j we see that many of these terms cancel.
Let us first look at the expression (B2) for the hole density. As we are working at fixed hole density, derivatives of the
Fermi factor do not play a role in these equations, and they vanish. We need the derivative of k with respect to Ppg,

OPk = —1 + Pt dk'p(k') p(k, k'),
On(k')

O Ph O Ph

and so we see that indeed there is a cancellation of terms, leaving us with the relation

(B3)

Ah = dE'p E' A E' (B4)

Then, we rewrite the expression for the magnetic field with

OPk OP)(dh, + Pt ck' n(k')p(k, k') + Pt dk'p(k') p(k, k') + Pt dk'p(k')n(k') ' . (B5)
, OP(k') , On(k') , Op(k, k')

A8 A, Bm m em A, Om

Using this expression it is straightforward to check that (Bl) reduces to

Ph = PhHF — dk ln(1+ e ') + — dk ck'p(k)n(k) p(k')n(k')Op(k) p; Pt , OP(k, k')

A, Om 2 A, Bm
(B6)

In order to derive the inverse susceptibility &om this expression, we have to take the derivative with respect to n, m
again, and put m = 0. For reasons of symmetry it is easy to show that the first derivatives with respect to m of
all functions appearing in the integrals vanish at m = 0. Thus, in the terms in (B6) we only have to consider the
derivatives of the functions that have been difI'erentiated once already:

P&yFM —— — dk ln(l + e p') + — Ck Ck'p(k)n(k)p(k')n(k') ' . (B7)
OPhHF O p(k) Pt O2$(k, k')
A8m p m p 2

This can again be expressed in terms of p(k)

OPhHF

n.Om

(note that also P is being Legendre transformed):

OPhHF O p(k) p~(1+

dk ck'p(k) n(k) p(k') n(k')
h, =O)

(B8)

which is the modification of (62) for interacting holes.
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