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%'e study diffusion in systems with static disorder, characterized by random transition rates
I w„), which may be assigned to the bonds [random-barrier model (RBM)] or to the sites [random-
jump-rate model (RIM)]. We make an expansion in powers of the fluctuations 5„=(to„'—(w ') )/
(w ') around the exact diffusion coefficient D=1/(to ') in the low frequency regime, using di-
agrammatic methods. For the one-dimensional models we obtain a systematic expansion in powers
of Vz of the response function (transport properties) and Green's function (spectral properties}.
The frequency-dependent diffusion coefficient in the RBM is found as Uo(z)=D —, a2V—Dz

+cxoz+a)z + ' ', where K2= (5 ),cxo mcludes lip to fourth-order flllctuatlons and cx) lip to sixth
order. In the RJM, Uo(z) =B. Similarly, we obtain results (very different in RBM and RJM) for
the frequency-dependent Burnett coefficient Uq(z} and the single-site Green s function Go(z) [which
determines the density of eigenstates M(e} and the inverse locaHzation length y(e} of relaxational
modes of tlM system]. The spectral properties of both models are ideIltlcal Slid agree with exact re-
sults at low frequencies for the spectral properties of random harmonic chains. The long-time
behauior of the velocity autocorrelation function in RBM is q& (t)=( )t 'r~+( . )t '~' and for
the Burnett correlation function p4(t)=(. ~ ~ )t ', with coefficients that vanish on a uniform lat-
tice. For the RJM, g2(t)=&6+(t) and y4(t)=( )t '~ . The long-time behavior of the moments
of displacement (n ), and (n4), and the staying probability Po(t) are calculated up to relative or-
der t ~ . A comparison of our exact results with those of the effective-medium (or hypernetted-
chain) approximation (EMA) shows that the coefficient ao in Uo(z) as given by EMA is incorrect,
contlary to suggestions made ln the literature. For the RJM all results can be tlivially extended to
higher-dimensional systems.

I. INTRODUCTION

Diffusion or hopping conductivity in systems with stat-
ic dlsordcr sho%'s lntcrcstlng non-Markovian behavior,
which recently received much attention. ' ' A review of
hopping models was given by Alexander et al. ' and more
recent results can be found in Refs. 2—16. One can assign
the static disorder to the bonds, as is done in random-
barrlcr n1odels ' ' ' ' oI' to thc sltcs as ls done ln
random-jump-rate models. ' Another class of models
are exactly solvable one-dimensional stochastic Lorentz
models, discussel by van Beijeren, ' ' in which the lattice
distances SI'c random variaMcs.

Here we restrict ourselves to hopping models of the
random-barrier or random-jump-rate type, described by
a master equation. It is known from approxi-
mate ' ' ' ' ' ' and exact theories that the frequency-
dependent diffusion coefficient Uo(z) at low frequencies
(z —+0) behaves as Uo(z) =D —,' tt2v'Dz + . , where-
D= 1/& w ' ) is the exact diffusion coefficient and
tr2=&(w ' —&to '&) &/&w '& . The inverse Laplace
transform of Uo(z) corresponds to the velocity autocorre-
lation function {VACF}, y2(t), which shows the well-
known long-time tail y2(t)-t '"+ '/ of diffusion in sta-
tionary randoln Q1cdla, such as ln thc d-dlmcnslonal
Lorentz gas. ' For higher-order terms, only approximate
results based on an effective-medium approxlmatlon
(EMA) have been obtained by Webman and Klafter' with

terms of order up to z included and by Haus et a/. with
terms of order up to z included. It has been suggest-
ed ' that the EMA gives exact results to terms of order z
included.

In this paper we present new results for the asymptotic
(low-frequency and long-time) properties of hopping
models of random-barrier or random-jump-rate type,
which are based on an expansion in powers of the fluctua-
tions 5„=(w ' —&w '&)/&w '& around the exact dif-
fusion coefficient (see Sec. III). The terms in this expan-
sion are calculated using a diagrammatic method (see Ap-
pendix A) and it is shown that this fluctuation expansion
is a systematic expansion in powers of V z (see Appendix
8). In Sec. IV we give explicit results for the frequency-
dependent diffusion coefficient in the form Uo(z)=D
—

2 &2v Dz +ctoz+ct~z + ' ' ', and for many related
functions of interest. Our calculations show that the
EMA is in fact the hypernetted-chain approximation
for the present diagrammatic method and that the EMA
results for Uo(z) are already incorrect in terms of order z,
in disagreement with the suggestions of Webman and Kla-
fter and Haus et al. (see Sec. IV). We have also calculated
in Sec. IV the staying probabihty, Po(t), and the single-site
Green's function Go(z), which determines the spectral
properties of the eigenmodes of the system. The resulting
eigenvalue problem is identical to that for the harmonic
chain with random masses or random force constants.
Our results appear to be in con1plete agreen1ent arith re-

1984 The American Physical Society



1756 P. J. H. DENTENEER AND M. H. ERNST 29

cent exact results of Nieuwenhuizen for the density of
states and inverse localization length of eigenfunctions in
a harmonic chain with random masses.

For a random-jump-rate model, discussed in Refs. 7
and 25, all results can be trivially extended to higher-
dimensional systems, as shown in Sec. V, where some of
the d-dimensional lattice functions are analyzed. In Sec.
VI we present a brief discussion of our results.

The hopping models of interest are described by a mas-
ter equation of the general form

where p„(t) represents the probability of finding the ran-
dom walker (hopping particle) at time t on site n

(n =0,1,2, . . . , N —1) of a regular one-dimensional lattice
with periodic boundary conditions (p»+~ ——p„) and lattice
distance equal to unity (an overdot denotes a derivative
with respect to time). The transition matrix L„allows
only transitions between nearest neighbors and the transi-
tion rates w„(n=0, 1, . . . , N —1) occurring in L„~ are
positive time-dependent random variables, with a site-
independent distribution vr(w). The first few inverse mo-
ments (w ') = w m(w)dw are assumed to exist

0
(I= 1,2, . . . , 6). In this paper angular brackets ( ) always
denote an average over random variables [w„ I.

We consider two types of hopping models, a bond prob-
lexn and a site problem, in which the random variables are
assigned to the bonds [random-barrier model (RBM)] and
to the sites [random-jump-rate model (RJM)], respectively.
The master equation for the RBM has the explicit form

exact relation in the RJM for all times and for general
dimensionality, implying that the VACF gran(t)=D5+(t)
[with f 5+(t)dt=1], without any long-time tail. How-
ever, long-time tails show up in the Burnett correlation
function, related to the fourth moment of the displace-
ment.

II. PROBABILITIES OF DISPLACEMENT, RESPONSE
AND GREEN'S FUNCTIONS

From a macroscopic point of view one is interested in
P„(t), the probabilities ofdisplacements n at time t in a sta
tionary initial ensemble, averaged over the random vari-
ables [w„ I [the analog of the Van Hove function G(r, t)],
which determines most quantities of physical interest,
such as the transport properties. Of particular interest are
the lower moments

N —1

(n'), = g n'P„(t).
n=0

(2.1)

For instance the diffusion coefficient follows from the
long-time behavior of the mean-square displacement,
(n'), =2Dt.

The Fourier transform of P„(t) (the so-called intermedi-
ate scattering function) is the generating function for these
moments. In our analysis we actually calculate the
response function W(q, z), which is the Fourier-Laplace
transform of P„(t):

N —1

W(q, z)= g e't"P„(z) .

p» w» —1(p» —1 p» )+»(p»+1 p» )

(E„—1)w„—(E„—1)p„, (1.2)

where E„f„=f„+~ and w„denotes the random transition
rate for jumps across the nearest-neighbor bond between
the pair (n, n+ 1). The stationary solution of (1.2) is a
site-independent constant:

Laplace transforms are in general denoted as F(z)
= I e "F(t)dt and the reciprocal lattice vector
q=2~l/N with l = ——,'X+ 1, . . . , —,'X lies in the first
Brillouin zone (1BZ). It is further convenient to use the
orthogonality relations

N —1

N g e'"'t 't '=$,, N —' ~ ~'e~» —~&

n=0
q G1BZ

(2.3)

normalized such that g„o' g„=N.
The master equation for the (isotropic) RJM reads

0

I n wn —1pn —] 2wnpn+wn+1J n+]

= —(2 —E„—E„')w„p„. (1.4)

Henceforward the limits on the summation signs will be
dropped and every sum over sites runs from n=0 until
n =i% —1 and all q sums run over the 1HZ.

In generalized hydrodynamics it is often convenient to
express the response function, ~ (q,z) in terms of a gen-
eralized diffusion coefficient U(q, z) as

Here a random jump rate v„(or waiting time 1/v„) is as-
signed to the nth site and the particle jumps with equal
probability to one of it» nearest-neighbor sites. Hence the
transition rate for a jump to any nearest neighbor of the
nth site is w„= —,

' v„. The stationary solution of (1.4) is

g„=C/w„, where C is determined from the normalization
condition g„g„=N, yielding C ' = g„(Nw„)
=(w ). Using the exact diffusion coefficient for this
model D=1/(w '), as given by Haus et al. , one finds
the stationary solution of (1.4) as

.x (q,z) = [z +q'U(q, z) ]

The ordinary diffusion coefficient D follows from

D = lim lim U(q, z) .
z~Oq~O

(2.4)

(2.5)

W(q, z)= ———
q (n )(z)+ —

q (n )(z)+2 2 ~ 4 4

2 2 4l
(2.6)

The Laplace transforms of the moments of displacement,
(n )(z), generated by (2.2), i.e.,

P„=D/w„. (1.5) can be expressed in terms of U(q, z). To do so we expand

Haus et al. further showed that ,' (d/dt)(n ),=D is an—U(q, z)= Up(z) —q U2(z)+ (2.7)
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(n—')(z)=z 'U, (z)+z 'U', (z) .

Here Uo(z) is the "frequency-dependent" diffusion coeffi-
cient [Uo(0)=D] and U2(z) is the frequency-dependent
modified Burnett coefficient. The inverse Laplace
transforms of Uo(z) and U2(z) will be referred to as the
velocity autocorrelation function (VACF) q)2(t) and the
Burnett correlation function q)q(t), respectively. ' '

In order to relate the macroscopic probability of dis-

placements to the solution of the master equation (1.1), we
observe that the conditional probability or Green's-
function solution I „(t)of (1.1) with I „(0)=5„equals
the probability of a displacement (n —m) in a frozen con-
figuration {u)„j, given that the walker starts at site m.
Let P~ be the stationary initial distribution (with normali-
zation g f~=N) for a frozen configuration {w„j, as
given in (1.3) and (1.5); then

~„(t)= g r„, (t)q rN (2.9)

and use it to obtain a similar expression for W(q, z). Com-
parison with (2.6) then yields

—,
' (n')(z) =z-'U, (z),

(2.8)

Lqq =N ge q (E& 1—)io (E —1)e

=f*(q)~qq f(q') =(f*~f),q,

and in the RJM from (1.4):

Lqq =f'(q)f (q) ~qq =(f'f~)qq

where

Wq« N——' g w„e'"'q

f (q)=e '» —1 .

The Laplace transformation of (2.12) reads

pq(z) = g Pqq (z)%q q
——[P(z)%]qq

q'

where the Green's function is defined as

I'qq(z)=[(z+L) ']qq

The response function can finally be put in the form

P (q,z)=(P (z)) = y (I (z)(P ~ )
q'

=((z+L)-'q )„.

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

is the probability of a displacement n in a frozen configu-
ration I u)„j averaged over all possible starting positions of
the random walker. The macroscopic probability of dis-
placements is then

Note that the response function differs in general from the
auerage Green's function (which is the diagonal element of
the average of the Green's function I q» ):

P„(t)=(~„(t))=N 'g (I'„(t)g ), (2.10) (2.21)

p, (t)= ge""~„(t) . (2.11)

With the help of (2.9) and the orthogonality relation (2.3)
it can be written in the form

where the angular brackets denote an average over the
random variables {w„j.

The probabilities rr„(t) for a frozen set of {io„jvalues
do not have the translational symmetry of the lattice;
however, averages ( ) do have this symmetry. We there-
fore introduce the Fourier transform

However, in the RBM P (q,z) and S(q,z) coincide since
=1 is the uniform stationary distribution (1.3) or

equivalently %qq~ 5qq .
A quantity of interest is the density of eigenstates. If

one represents pq(t) by p»(t) =e»'»"pq then (2.12) reduces
to an eigenvalue problem, Lp=ep with solutions {e,p» 'j
(a = 1,2, . . . , N). Using the well known identity
(x i 0) '=—P(1/x)+mi5(x), w.here P denotes the princi-
pal value and 5(x) the Dirac 5 function, we can write the
average density of eigenstates per lattice site as

M(e)=N 'g (5(e e))—
p (t)= QI (t)% =[I (t)%]

q'

where we have introduced

e'q"p e 'q™
qq' ~ pm

n, m

(q —q')

(2.12)

(2.13)

=(mN) 'Im g ((e e i 0) ')— —

= —~-'tm N-' g (( e+L + i 0) ')—
q

'Im[Gp( —e+i 0)] . (2.22)

Here p»(t) satisfies the transformed master equation:

p»= —XL»» p» = (Lp)» . — (2.14)
Here Go(z) is the auerage single site Green's fu-nction de-
fined in terms of (2.21) through

q'
G„(z)=N ' g e '«"9'(q, z) . (2.23)

The transition matrix in the RBM can be obtained directly
from (1.2), (2.11), and its inverse: Another quantity of interest related to the single-site
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Green's function is the exponential growth rate (inverse
localization length) y(c) of eigenfunctions. In one-
dimensional cases this concept ' can be explained by
considering our eigenvalue problem in configuration space
by putting pn(t) =e "pn in (1.2) and (1.4). The transfor-
mations u„=—,w„(p„+I—p„) for RBM and u„=w„p„ for
RJM map these eigenvalue equations onto

—Eun =w„(un + I +u„ I
—2u„) .

In this case we do Qot use periodic boundary conditions
but consider eigenfunctions vanishing at both ends of the
chain. The solution uz(c) of this recursion relation with
Q ] =0 and Qo = 1 1s a polynoIMa1 of degI'ee X 1Q 6» &here
the coefficient of {—e) is given by +„0(1/w„). Let e„
with n=0, 1,2, . . . , Ã —1 be the (unknown) zeros of this
polynomial, theQ

X —I

uiq{e)= g [(c„—c)/w„] .

An eigenfunction must vanish at both ends of the chain.
Since uiv(en ) =0, the zeros c'n of uiq(e) are the eigenvalues.
If the solutions of (2.24) grow exponentially fast, then the
large-N behavior of y(c)=N '(ln

~
uiq(c)

~
) with e+e„

measures the exponential growth rate provided y(e) is
positive. In the thermodynamic limit, where the spectrum
becomes dense, y(e) can be defined by taking c just above
or below the real-c axis, so that

equally well to the isotropic RJM even for general dimen-
sionahty.

We start with the RBM, where the average Green's
function (2.21) and the response function (2.20) are identi-
cal as explained below (2.21):

~—I ~ g i (qn—q')
qq'= ~ ne

5„=D(1/w„—(1/w ) ), (3.2c)

where W ' is the matrix inverse of W as can be verified
from (2.17) and (2.3). Using a matrix identity we write

I (z)={z+f 8'f) '=f 'W '(zW '+ff ) 'f

where we have used (2.13). For z~O the above functions
reduce to

~(qO)=[f(q)l '(~ '& [f'(q)] '

=[2D (1—cosq)]

We want to expand the resolvent in the proper fluctua-
tions aI'ound their value at z=O,

y(c)=Re'I X '(In[uiq(c+i 0)]) I

Pf —1

=Re N ' g (In[(e„e+iO)—/w„]) . (2.25)

=f '(1+6,)(z+zA+a)) 'f,
where wc 11Rvc used (2.17) to wrltc

co(q) =Df*(q)f(q) =2D(1 —cosq) .

(3.3)

The positivity of this function is related to the exponential
locallzRtloll of Rll clgcllfllIlctlolls.

For our purpose it is moxe convenient to consider
dy /de Rs lt ls directly related to tllc slllglc-sltc Grccll s
function (2.23):

The function for the RBM follows from these equations

W(q, z)=((1+6)(z+ro+zh) ')qq .

If we neglect the fluctuations in (3.5) we find the Green's
function go(q, z) for a uniform lattice with a constant tran-
sition rate D= 1/( w ' ):

go(q, z) =[z +co{q)] (3.6)

(2.26)

In the following we use the abbreviated notation go(q) for
go(q, z). In our systematic approach we expand the
response function in powers of 6, which yields for the
RHM,

Here y(0) =0 since the eigenfunctions with c—+0, i.e., the
long-wavelength modes with q~O, are essentially the
same as in the uniform lattice and are therefore not local-
1zed.

a (q,z) =go(q) zc0(q)g 0(q)A (q,z—) (3.7)

Our method is a generalization of Zwanzig's calcula-
tion' for the response function M(q, z) in the RBM,
which leads to a systematic expansion in powers of Wz as
z~O with q =avz and a fixed. The essential point in
this calculation is the proper choice of fluctuations: Auc-
tuations 1/w„—(1/w ) around the exact inverse diffusion
cocfflclcnt D =(1/w). Thc nlctllod call bc Rppllcd

Xgo(ql ) . go(qi)go(q) . (3.9)

Similarly we obtain the fluctuation expansion of the gen-
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q'U(q, z) =~(q)+r(q, z) (3.10)

I'(q, z)=[~(q z)l ' —[gp(q, z)] '

eralized diffusion coefficient U(q, z) defined in (2.4) with is identical to the response function (3.5) in the RBM.
The response function P (q,z) and the generalized dif-
fusion coefficient U(q, z) or 1(q,z) defined in (3.10) can
again be expanded in powers of b, :

=zto(q)A (q,z)[1—zoo(q)gp(q)A (q,z)] (3.11)
W(q, z) =gp(q)+co (q)gp(q)A (q,z),

(3.14)

~(q,z) = ((z+f"f~) '( I+&))«
= ((1+6, )(z+zA+co) '(1+6, ) )« . (3.12)

Note that the average Green's function (2.21) for the RJM

S(q,z)=((z+f fW) ')«
= ((1+b, )(z +zh+co) —' )« (3.13)

For the RJM the response function (2.20) contains the sta-
tionary initial distribution (1.5), g„=D/w„ through the
matrix V. It satisfies 4=1+ b, on account of (3.2a).
Combination of (2.20) and (2.16) gives the response func
tion for the RJM in the form

I (q,z) = —co (q)A (q,z)[1+to (q)gp(q)A (q,z)]

where A (q,z) is given in (3.8).
In order to calculate the terms in the fluctuation expan-

sion of A (q,z) we have developed a diagrammatic expan-
sion. As the method is rather involved it is presented in a
separate appendix, Appendix A. The result of these calcu-
lations, with sixth-order fluctuations included [i.e., terms
with l =0, . . . , 4 included in the definition (3.8) of
A(q, z)], is given by the following formula, which is ap-
plied to one-dimensional hopping models in Sec. IV and to
higher-dimensional ones in Sec. V:

A(q, z)=a2hi —z~3hi+z [~4hi+a~2(gphi+gi+hih2)] —z'~2~i(2gphi+3h ~h2+4gihi+hi)

+z K'z(gph i +2gph igi +2gph ih 2+& ih3 +h &h 2 +h2+ 3g2h & +4g3)+ ' ' ' (3.15)

The functions g„(n =1,2,3, . . . ) defined in (85) of Appen-
dix 8 depend on q and z whereas h„(z) and h„(z), defined
in (Bl) and (89), depend only on z. The cumulants
at=((5 )) are given in terms of moments pt=(5') with
5=D(w ' —(w '))=D/w —1. The first few of them
are given by

K2=P2~ K3=P3 ~

2
K4 ——p4 —3p2, K5 ——p5 —10p3p2,

K6 ——p6 —15p~2 —10p3+ 30p2 .2 3

(3.16)

%e have assumed that the p~ with / (6 exist.
The main goal of this paper is to present a systematic

calculation of the small-z and -q behavior of the response
function, in particular for the range of q values with q of
order a V z (with a fixed) or smaller. For the one-
dimensional case we have made a systematic analysis of
the small-q and -z behavior of all terms in the fluctuation
expansion, which is presented in Appendix B. There it is
shown that ((zhgp) )« is of order z~'" with
a(l) = —,

'
[—,

' (i + 1)] to leading order for small z with
q=ttVz. The function [x] is the largest integer smaller
than or equal to x. Hence the perturbation expansion
(3.15) starts with a term of order z '~ in the one-
dimensional case and is exact to order z' terms included.
The contributions to (3.15) from ((bgp) ), proportional to
K3 K4K2, and K6, should be neglected as they are at least of
order z [see (814)].

diffusion coefficient Up(z) and modified Burnett coeffi-
cient U2(z), defined in (2.7), at low frequencies, as well as
the long-time behavior of the moments of displacement.
We further calculate the long-time behavior of the staying
probability Pp(t) and the small-z behavior of the single-

site Green s function Gp(z), which describes the density of
eigenstates M(e) and the inverse localization length y(e)
at the lower end of the eigenvalue spectrum.

To calculate Up(z) and U2(z) we need the q expansion
(2.7) of q U(q, z)=to(q)+I'(q, z). As I (q,z) has been ex-
pressed in (3.11) and (3.14) in terms of A (q,z), we also in-
troduce its q expansion:

A(q, z)=Ap(z) —q Az(z)+ (4.1)

By collecting the results of Appendix 8 to the relevant or-
der in z one finds from (3.15)

DAp(z) = —,tt2(D/z)'~ +ap+ai(z/D)'~ +0(z),
DA, (z) =b,D/z+b, (D/z)'"+ O(z'),

(4.2)

where the coefficients at and bt, listed in Table I, have
been expressed in the cumulants ai. Coefficients with i=0
involve at most fourth-order fluctuations, those with i= 1
sixth-order fluctuations.

For the RBM the coefficients Up(z) and U2(z), occur-
ring in the q expansion (2.7) of the generalized diffusion
coefficient, can be expressed in Ap and A z with the help of
(3.10) and (3.11):

IV. RESULTS FOR ONE-DIMENSIONAL
HOPPING MODELS

Up(z) =D +zDA p(z), .

U2(z) =—„D+z[DA2(z)+ —,~ DAp(z) —D2A p(z)],
(4.3)

From the results of the preceding section and of Appen-
dixes A and B one can calculate the frequency-dependent

where also the q expansion of co(q) in (3.4) has been used.
Substitution of (4.2) in (4.3) gives
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TABLE 1. Coefficients in terms of cumu1ants.

Qp

Cp

C1

Sp

1 11—
4 K3+ 24 K2

1345
TK 16 K2 96 K2K3+ 2304 K2

7 2
27 K2

29 107
108 K2K3+ 216 K2

1 1

12 + 108

1 3
24 K2 —54 K2K3+ 27

1 1 127
12 2K3+ 108 K2

1 665 5747
12 K2+ 4 K4 432 K2K3+ 3456 K2

1
( I, +K3 16 K2}

15

15
(K2 —

2 K4+ 2 K2K3 16 K2 }
1 1 2—4K2 —4K3+ 8K2

1 3 2 7 25 3
16 ( —K2+ 2K3+ 2K4+ 2 K2 —2 K2K3+ 16 K2)

EMA

1 3—4K3+ 8K2
21 3

8 K4 16 "2 16 K2K3+ ~ K2

1

4 K2

1 3 3—4K2K3+ 8K2
1

12

1

24 K2

1 1 '2
12

—
2 K3+K2

33
12 K2+ 4 K4 —8 K2K3+ 32 K2

16 ( —~+K3—
4 K2}
3 2

1 3
(K2 2 K4+ K2K3 2 K2 }

exact

16 ( —K2 +2K3 +2K4 —3K2K3 + 4 K2 }
5 3

Up(z)=D[1+ ,'III(z/—D)' +ap(z/D)

+~I(z/D)' '+O(z )],
UI(z) =D[cp+ci(z/D)' +O(z)],

1 L 1
CP =

12 +bP —
4 K2

1

C) =6)—aPKP+ 24 K2 .
(4.5)

walks on uniform lattices, since &z=D ((Ip
(Ip '))I) vanishes. Also the higher corrections, ap

and a 1, are vanishing on a uniform lattice. The long-time
behavior of the VACF g &(t) is given by the second deriva-

of (4.'7). It has the well-known long-time

t —'~+ '~ (d is the dimensionahty), typic» «dif«»o»n
stationary random media, such as the Lorentz gas.

The long-time behavior of the fourth moment follows

similarly from (2.8), (4.4) and (4.5):

ExpressiolIS for cp aIld ci 1II terms Of cllIIllllalltS ICI a1'e

given in Tab1e I.
For the RJM we obtain similarly from (3.10) and (3.14)

—(n4), = ,'D t +(4/—3Vm)» (Dt) /

+d,Dt+2d i(DI /It)I~'+0 (tP) (4.8)

Up(z)=D,

Uz(z) = —,', D +D A p(z)

(4.6) with the coefficients dt defined as

dp =cp+ 20p+ ~ K2,

d I ——c 1 +2a I +apiiz,
=D[ 2 Iiz(D/z)'~ +—„+ap+ai(z/D)'~ +O(z)] . (4.9)

In the last line of (4.6) we have used (4.2). The most strik-
ing difference between (4.4) and (4.6) regarding Up(z) is
the occurrence of a I/z singularity in the RBM and the
absence of any singular terms in the RJM, and regarding
Uz(z) the weaker ~z singularity in the RBM and the
stronger 1/V z singularity in the RJM.

Next, we consider the moments of displacement (n )„
which have been expressed in Up and UI in (2.8). For the
RBM the long-time behavior of the mean-square displace-
ment follows from (2.8) and (4A) as

,' (n2)t, =Dt+~&(Dt—/Ir)I~I+ap+ai(~Dt)

(4.7)

To dominant order the average mean-square displacement
is described in terms of an effective diffusion coefficient
D= 1/(Ic ') for a corresponding uniform lattice, around
which we expand in fluctuations. The second term
represents a long-time tail, vrhich is absent in random

and 11sted ITable I.
The above results are also sufficient to calculate the

fourth cumulant (&n')), =&n'), —3((n'), )', where the
leading term behaves as aIt+ ~ for t +a&. The long-ti—me
behavior of (d/dt)((n )),=8 (t) increases proportional to
IIzv t as t mao. In a unifor—m lattice this term vanishes
and 8(t) approaches a finite limit 8( 00 ) =D/12, which is
called the super-Burnett transport coefficient.

One sometimes considers' ' a modified Burnett coeffi-
cient Uz(0), which is, according to (4.4), given by
U2(0) =cpD in the RBM. The Burnett correlation func-
tion y4(t), which is the inverse Laplace transform of
U2(z)„has a long-time tail y4 t~ with -a coefficient
that vanishes on a uniform lattice.

In the RIM the mean-square displacement, deduced
from (2.8) and (4.6), satisfies the remarkably simple form
(n ),=2Dt, valid for all times, as was first shown by
Haus et al. The VACF for this model (pz(t) =D8+(t) has



no long-time tail. However, long-time effects caused by
the randomness in the medium, occur in (n }, .Its long-
time behavior can be deduced from (2.8) and (4.6) and is
given by

—(n },= —,'D tz+ ~2(Dt)'~z

+( —,', +a )Dt+2a, (Dt/m)'~ +O(t ) . (4.10)

The cumulant &&n "}}is again proportional to azts~z,

which represents a long-time tail, vanishing on a uniform
lattice. In the IUM the quantities &(ao) and UI(0) are
divergent due to the effects of long-time tails and the Bur-
nett corrdation function y&(t) has a long-time tail

, to bc coIIlpalcd wltll +4(t) t 1I1 tllc RBM.
The probabilities of displacement P„(t) can also be ob-

tained from the small-z, -q behavior of the response func-
tion P (q,z) through Fourier inversion of (2.2). We are
specially interested in the probability of zero displacement
or staying probability Po(t) in case of a stationary initial
distribution [see (2.10) and (2.11)]. Its Laplace transform
is given by

Po(z)=N 'gP (q,z) . (4.11)

Furthermore we are interested in the average single-site
Green's function Go(z), corresponding to the staying prob-
ability in case of a uniform initial distribution [see (2.23)]:

Go(z) =N ' g 9'(q, z} .

Go(z) =h i(z) —zN ' g to(q)go(q)A (q,z) . (4 13)

By substituting (3.15) for A (q,z) and introducing the func-
tions k„(z), f„(z), and f„(z), defined in (B4) and (Bll) of
Appendix B, we find by including fluctuations up to sixth
older

The latter function determines the spectral properties of
the eigenmodes of the system [see Eqs. (2.22)—(2.26)]. In
the RBM both functions coincide; in the RJM they do
not. Starting with the RBM, where P =9 and Po Go-—
according to (3.1), it follows from (3.7) and (Bl) in Appen-
dix 8 that

(4.14)

Go(z}=h, —zazhlhz+zzaphzihz —zi[gc4h ik2+az(hlkI+ fI+hihlkz)]+z alas(2hiki+3h Ihzkl+4h if i+hlkz)

—z5aI[h lk4+2hi fi+2h Ihzkl +(h Ihs+hihz+h2)kl+3hl fl+4fI ]+ '

+rl(z/D)+O(z'~ )], (4.15)

wllcrc thc cocfflcfcnts ro and r 1
al'c listed ill Table I. Tllis

result is in complete agreement with the low-frequency
behavior of the characteristic function Q(z) in a harmonic
chain with random masses as determined by
Nieuwenhuizen, ~ where Go(z)=dQ(z)/dz. The a.t in this
case are cutnulants of the mass distribution. In this paper
the small-z behavior is determined explicitly up to terms
of order z ~ included. It is used to calculate the specific
heat for harmomc chains with random masses. The long-
time behavior of the staying probability also follows from
(4.14) with Go(z) =Pa(z) in the RBM:

P,(t)=(4~Dt)-'" —(r, /2v ~)(Dt)-'"+O(t "). -
(4.16)

This function is given in full detail as it is also needed in
Sec. V for higher-dimensional systems. From the small-z
behavior of these functions as obtained in Appendix B we
fllld

G (z}=D '[ , (D/z)'/ , K +—r (z/D—) /—

y(e) = ,' aze/D + —,
'—rI (C/D)2+ 0(C3) .

Po(z)

=hi�

(z)+X ' g co (q)go(q)A (q,z)

=Go(z)+E(z), (4.18)

where Go(z) is the single-site Green's function (4.14),

winch also applies to the RJM and whele

Using the replica method Stephen and Kariotis ob-
tained the same result for the density of states. For the
inverse localization length they only obtained the first
term on the right-hand side of (4.17). The Green's func-
tion Go(z) for the RJM is identical to the one in the IBM
by virtue of (3.13) and so are the spectral properties. We
restrict ourselves to the staying probabihty Po(t), which
can be obtained from (4.11) and (3.14) in the form

and (4.17}

Furthermore, the single-site Green's function Go(z) deter-
mines the density of eigenstates ~(e) through (2.22) and
the inverse localization length y(e) through (2.26). Since
Go(z) is known through (4.15) for small z, we have for the
lower end of the spectrum (a~0):

M(c) =(2Ir) '(De) '~ (ro/Ir)D ~ e'~ +—O(e ~ )

«z) =& ' g ~(q)go(q)A (q,z) . (4.19)

In deriving (4.18) we used the relation t0(q)go(q)
= 1 —zgo(q). By inserting the fluctuation expansion (3.15)
into (4.19) and by introducing the functions f„(z) defined
in (B11)of Appendix B we obtain
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E(z) = ~2h) k) —ZK3h )k) +z [Kgh, k) +K2(h lk2+ f) +h) h2k) )]

—z K2K3(3h)h2+h))k)+z )(2(h)h3+h)h2+h2)kl+ (4.20)

With the help of (B12) it results in the following small-z
behavior:

E(z)=D '[ , a2(D—/z)'i +so+s)(z/D)'i +O(z)],

(4.21)

d
o)(q)=D g f*(q, )f(q )

a=1

=2D g (1—cosq~)
a=1

(5.3)

where the coefficients so and s) are listed in Table I. The
long-time behavior of the staying probability follows by
adding (4.21) and (4.15) and yields after Laplace inversion

P,(t)= (1+)(.,)(4~Dt) —'"
-,=DN g 1/w —— exp[in (.q —q ')] .

q q n W

—[(s,+r o)/2M~](Dt) '~'+O(t '~'} . (4.22)
Its fluctuation expansion is given by

(5.4)

It is of interest to compare the properties of both hopping
models. The response function M (q,z) to lowest order in z
(with q =)(v z and z fixed) is the same as in the uniform
chain with an effective diffusion coefficient
D = 1/( w ' ). The same holds for the dominant, long-
time behavior of (n ), and (n ), [see (4.7)—(4.10)].
Here, the effects of randomness show up in correction
terms of order V z or 1/V t . The same dominant
behavior can again be seen in the staying probability Po(t)
[see (4.16)] of the RBM. However, in the RJM the fluc-
tuations in the random medium increase the dominant,
long-time behavior of Po(t) in (4.22) by a factor (1+)(2),
when compared to the staying probability on a uniform
chain with effective diffusion coefficien D =1/(w ').

V. RJM IN d DIMENSIONS

The results of the previous sections can be trivially gen-
eralized to d-dimensional systems for the isotropic RJM.
Consider a hypercubic lattice with N sites, labeled n,
with unit lattice distance and periodic boundary condi-
tions. A random jurnp rate v is assigned to the site n,
from where the hopping particle jumps to a nearest-
neighbor site with a transition rate w =v /2d. The

master equation for this model reads

Ena E-.a)w-&-
a=1

(5.1)

where E n = n+ e with e a unit vector in the a direc-na
tion. Haus et al. have shown that the relation
(n~), =2Dt with D '=(w ') is valid for all times if
one starts with the stationary initial distribution. This im-
plies the absence of long-time tails in the VACF q)2(t).
Nevertheless long-time tails do occur in the fourth mo-
ment, as we will see below. After introduction of Fourier
transforms most steps of Secs. II and III can be reiterated
and one obtains for the response function [cf. (3.12}]

W(q, z) =go(q)+o)'(q)go(q)a (q,z), (5.5)

with A (q,z) defined by (3.8) and calculated up to sixth-
order fluctuation contributions included in (3.15). The
lattice functions h„'"'(z), g„' '( q, z), etc. , are the d-
dimensional analogs of the corresponding one-dimensional
expressions h„(z), g„(q,z), etc. The same applies to the

Laplace transform of the staying probability, Po(z), given
in (4.18)—(4.20). The problem is therefore reduced to an
analysis of the d-dimensional lattice functions. Here we
restrict ourselves to the contributions from second-order
fluctuations and obtain by virtue of (3.15) and (4.1)

A ( q, z)~()(z)=~2h ')
' (z),

with

h', '(z) =(2') J I dq, dqd [z +co( q)]

(5.6)

(5.7)

The function h') '(z) is the single-site Green's function for
a uniform d-dimensional hypercubic lattice with diffusion
constant D = (1/w ) '. For two-dimensional square lat-
tices it yields

h(P)( )
2 ~ 4D

~(z+4D) z y4D
(5.8a)

where E(u} is the complete elliptic integral of the first
kind. Its dominant small-z behavior is

h) '(z)= —(1/8vrD)ln(z/4D) . (5.8b)

2

For a three-dimensional simple cubic lattice h') '(z) is an
integral over an elliptic function K(u) (Ref. 34) and its
small-z behavior is h) '(z)=h) '(0) (4' ~ ) 'Vz-
+ . - . . The long-time tail in the fourth moment follows
from (4.6) and (2.8) as

~(q, )=(( + W'/D) '(1+5.))

=((1+~)(z+o)+«) '(I+&))--, (5.2)

(n„),=4!D [1+)(2H(d)(t)],
dt

(5.9a)

where H (t) is the inverse Laplace transform of h)(z) (Ref.
1)where
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H' '(t) =[H"'(t)]"=e 'dD'[I, (2Dt)]d

=(4m.Dt) d~' as t~~ . (5.9b)

Here Io(x) is a modified Bessel function. For the long-
time behavior of the staying probability we find an expres-
sion analogous to (4.22):

P, (t)=(1+~,)(4irDt) d~' . (5.10)

Analogous results can be derived for the low-frequency
behavior of the single-site Green's function G (z), which

determines the spectral properties of relaxational modes in
d-dimensional systems.

VI. DISCUSSION

In order to study diffusion properties of one-
dimensional hopping models we have developed an
expansion in powers of the fluctuation
5„=(w„—(w ') )/(w ') around the exact diffusion
coefficient D =1/(w ), using a diagrammatic method.
This has been done for two types of hopping models: the
RBM, in which the random variables are assigned to the
bonds, and the RJM, in which they are assigned to the
sites. For small frequencies (z~O) this fluctuation expan-
sion is shown to yield a systematic expansion of the
response function P (q,z), and the average Green's func-
tion $(q,z) in powers of v z for small z with q-vV z and
v kept fixed. This expansion does not cover the full (q, z)
dependence of W(q, z) for small q and z. The region where

q tends to zero first is not covered by our results, as can be
illustrated by calculating U(0,z) and U(q, O), defined in
(2.4), for the RJM. From (2.7) and (4.6) one sees that

+ 'a, (~D) ' 't—' '+0(t ' ') (6.4)

1x -' '- ' ' - ' &~g2ph311X

3 22x +2gp1x

lim U(0,z) =D
z~O 1X

r 32X .— -'
~ '= = -' +2g Og lhlX2go 1,

Next we obtain from (3.12), (3.2), and (A3)
1X X'2hlh2 lx ' ' ' '' '= ''= ~~h1h2

A (q, O) = (1+a&)/to(q) (6.2)
3

X2g2h1
21x - - ' - ~2g1 2xso that

3
Xgg2hl

&2h1h3

(6.3)lim U(q, 0) =D/( I+@2) .
q~O

1 X -' '& '~ '~ X4h3

32X -' -' -' ~ =' XP 3gph1
r

/ '~The transport properties can be obtained from P (q,z) [see
(2.1)—(2.8)] and the spectral properties from S(q,z) [see
(2.22)—(2.26)].

The difference between P and 9' is the following: In
the definition (2.20) of P (q,z) occurs an average over all
starting positions of the hopping particle with a weight
function g„, that is the stationary solution of the master
equation (1.1) for a frozen set of random variables Iw„).
This equilibrium weight P„may depend on the site label
n, as is the case in the RJM. In the definition (2.21) of
9(q,z) the possible starting positions of the hopping par-
ticle are given an equal weight.

The frequency-dependent transport coefficient Uo(z} for
the RBM is given in (4.4). The leading contributions
Uo(z)=D+ —,a2(Dz)'~ + have been obtained before

by exact calculations, ' by the effective-medium approxi-
mation (EMA), ' by renormalization-group methods,
and by mode-coupling theories. The higher-order terms

2x 3
X2g31xK2X3g, h,

X2g3
3

/
2X X2X3g 1 h1 2x

1X 3X.2g3/
1x

X~h2~2+3hlh2 1x2x

'~
2 4

X3gPh1

X2X4gPh1

X2X3h1 1x1X
etc. (9 more)

1 X -' '~ &' " -' X5h1 1 x
etc.(14 more)

X6h1
5

FIG. 1. Diagrams representing the terms ((Ago}'b, )« in the
fluctuation expansion (l =1,2, . . . , 5).

in (44) of order z and of order z are new results.
There exist approximate calculations based on the EMA

by Webman and Klafter' to order z and by Haus et al.
to order z ~, which differ already in terms of order z
from the exact results (4.4), contrary to the suggestion
made in Refs. 8 and 10. For our comparison with the
terms of order z / we have used the results of Ref. 8, 'in

which clusters containing three sites have been used in-

stead of the lower approximation of two-site clusters. It
appears that the approximate EMA results are completely
accounted for by the contributions from diagrams in Fig.
1, that are built as series-parallel circuits of the first dia-

gram element (the so-called hypernetted-chain diagrams),
their analytical contributions can be simply expressed in
the contribution hi(z) of the first diagram (see Appendix
A). The diagrams in Fig. 1, whose contribution contain

g„(q,z) (n ) 1) or h„(z) (n ) 1), do not have a series-parallel
structure. The EMA is therefore the hypernetted-chain
(HNC) approximation ' i of our diagrammatic method.
Table I gives the EMA values together with the exact ones
of all coefficients appearing in Sec. IV.

For the VACF qrz(t) in the RBM, which is the inverse

Laplace transform of Uo(z} in (4.4), we also obtain
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The first term represents the well-known long-time tail
qtz-t ' + '/ of diffusion in stationary random media,
such as the d-dimensional Lorentz gas. ' Note that the
long-time tails are absent in random walks on uniform lat-
tices, where a11 cumulants xI are vanishing.

The corresponding mean-square displacement for the
RBM is given in (4.7). For the RJM we recover the exact
results (n ),=2Dt and qt2(t) =D5+(t) of Haus et al.

The results (4.4) for the frequency-dependent (modified)
Burnett coefficient Uz(z) in the RBM are new. The lead-
111g loilg-tin1c tail 111 1ts iilvcl'sc Laplace tiailsfor111, whicll
is the Burnett correlation function y&(t), behaves as t
with a coefficient depending on sixth-order fluctuations.
The closely related moment (n ), is given in (4.8). The
HNC diagrams reproduce again the EMA results of Ref.
10 for (n )„and the EMA values of the coefficients to-
gether with the exact ones can be found in Table I.

For a discussion of the EMA results it is more instruc-
tive to make the following observation. If we denote
Uo(z} as calculated from the EMA by W(z), then inspec-
tion of the structure of the diagrams in Fig. 1 shows that
U(q, z) in the EMA is given by co(q)8'(z)/D, so that the
response function W(q, z) = [z+co{q)W(z)/D] '. In the
EMA all quantities derived from the response function
(transport coefficients, correlation functions, and mo-
ments of displacement) are completely determined by the
frequency-dependent diffusion coefficient W(z). A simi-
lar approximation for the Lorentz gas has been proposed
by Alder and Alley, and Ernst and van Beijeren" have
shown, using a diagrammatic analysis, that the contribu-
tions neglected in Alder and Alley's approximation are of
the same type as in the EMA.

The Burnett functions for the RJM behave again very
differently from those of the RBM, as can be seen by
comparing Uz(z) in (4.4) and (4.6). The same result for
the dominant contribution to Uz(z) in the RJM has also
been obtained from the mode-coupling theory, and from
renormalization-group methods. Also the probability of
zero displacement or staying probability Po(t) behaves
quite different in RBM and RJM [cf. (4.16) and (4.22)].

The average Green's function determines the spectral
properties, which are the same in both models [cf. (3.1)
and (3.13)], and also identical to the spectral properties of
harmonic chains with random masses or random spring
constants. '1 This can be seen by replacing the eigenvalue
c in (2.24) by cu . In fact, the master equation {1.2) for the
RBM describes, after replacement of p„by p„, the lattice
dynamics of a harmonic chain with random spring con-
stants Iui„I. The eigenvalue problem in lattice dynamics
is obtained by the rePlaceinent Pn(t) =e'"'Pn. Our results
(4.17} for the low-frequency behavior of the density of
states ~{@)and for the inverse localization length y(c)
(see Sec. Il) are the same as the recent exact result of
Nieuwenhuizen, obtained by entirely different methods.

In a separate publication we have also considered a
fluctuation expansion in bare fluctuations 5„=(urn
—(ui) )/(ui ) for the RBM, which provides a systematic
method to describe the large-z behavior of response and
Green's functions. Comparison of the exact results of
Uo(z) with the corresponding EMA result shows again

that the EMA accounts only for the hypernetted-chain di-
agrams.

The bare fluctuation expansion for the average Green's
function gives also a simple method to determine the mo-
tnents of the areratts spectral density, f dee"M(ei in

hopping models or in random harmonic chains, in com-
plete agreement with the results of Domb et al. 7 For the
IUM the results have been extended to higher-dimensional
systems.
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APPENDIX A

X ff go(q;),

whcl'c +»» rcplesciits thc fillctllatioii

~—i g 5 ein(» —»')
W (A2)

and the random variables 5„=D(1/ui„—( I /ui ) )

=D/w„—1 with n =0, 1, . . . , N —1 are distributed in-
dependently. It can be represented by diagrams consisting
of (l+2) /inc segments, ', labeled with a wave
number q; E Iq, qi, . . . , qi, q'I, and (l+1) vertices,

, labeled with a site label n;&In&, . . . , nt+ij
and separating the line segments, and of dashed lines

"' of connecting vertices with equal site labels.

The contribution of a diagram is determined by the fol-
lowing diagram rules:

J'

(1) a factor% '5„e'"'»»'for each

(2) a factor go(q) for each

(3}a 5„„ for each

(4) sum over all internal q;;
(5) sum over all n;, excluding those terms where uncon-

nected n; are equal;
(6) average over all random variables 5„.
An important stat1st1cal concept ln the cRlculat1on 1s

that 5„'s are independent random variables. This implies
that averages of the form (5„,5„5„, . ) are only non-

vanishing if each label occurs at least twice, since
(5„)=0. Therefore, each vertex must be connected with
at least one other vertex through a dashed line. If the site
1Rbel Pl 1s connected to I other vertices, lt contributes a
factor (5„)=p, independent of site n

In this appendix we develop a diagrammatic method for
calculating the fluctuation expansion A(q, z) defined in
(3.8). The (l —1)th term in the expansion of go(q)A (q,z)
is apart from a factor ( —z) equal to [cf. (3.7) and (3.8)]

(go(~go)'")»» = go{q)go{q')

«»», ~»..." ~»,')
g Ip ~ a ~ p



As an example consider the term of second order in the fluctuation,

&go(~go) )qq' ',
q,

=le g g e ' 'e ' ' 5„,„,&5„,5„,)go(q)go(ql)go(q')

=go(q)go(q')5„pzhi(z»

Tllc fourtll-order tcrnl,

& go(~go }"
&qq

Lg 4 /

r
f

7
/

(A4)

Ill tile fll'sf, teITll n I
——nz n3 —n——4 or symbolically (1234),

in the next term n I ——nz+n3 n4 or (12——)(34) and similarly
we have (14}(23)»d (13)(24). The first term is simply
glveIl by

(1234)=go(q)go(q')5qq p~h I (z) . (A6)

Next consider as an example the last term in (A5).

(13)(24)=- go(q)go(q')pz& '

g go(qi)go(qz)go(q3)e"
Pl ) Qtl2

(A7a)

q =n i(q —qi+qz —q3)+nz(ql qz+q3 q)—. —

The restricted double sum (ni&nz) in (A7a) is split into
an unrestricted double sum minus a single sum (ni ——nz)
yielding (E 5q q q +q E)5qq'. Usillg dc—flnltloll (85)
this term yields

(13)(24)=go(q)go(q')5„v zlgi(q z}—h i(z}1.
Similarly we find

(AS)

(12)(34)=go(q)go(q')5„p'[go(q}h'( )—h'( )1
(A9)

( 14)(23)=go(q)go(q'}5qq pzfh i(z}hz(» —h i(»1 .

Using the cumulants (3.16) the terms (A6), (AS), and (A9)

cRQ be combined 1Gto

where (2.3) and (81) of Appendix 8 have been used. . Ob-
serve that matrix elements & )qq are diagonal on account
of translational invariance.

The third-order term, becomes similarly

&go ~go)')qq ------- =g, (q)g, (q }5„.p,h', (z).

We may therefore modify the diagram rules and assign a
value «4h I to the first diagram in (A5) with four connect-
ed vertices, and values «zgohi, «zh, hz, and Kzgi to the
second, third, and fourth diagrams, respectively, with two
pairs of connected vertices. In general we assign to each
set of j connected vertices a weight, given by the jth cu-
Illulallt Kl .

The number of independent q; variables in the modified
diagrams can be determined by observing that the total
wave number is conserved at each vertex, i.e., if we assign
wave numbers to solid lines and dashed lines, the sum of
incoming q's equals that of outgoing q's. Consequently,
each term ill & )qq ls P10Portlollal 'to 5qq .

The diRgrRrrl coIltributloIls RIC Ilow cRIIcU1Rtcd Record-
ing to the modified diagram rules:

(1) label external lines with wave vector q; label internal
lines such that the sum of incoming wave numbers equals
the sum of outgoing wave numbers;

(2) a factor go(q) for line segment q;
(3) sum over all independent internal q's with a weight

(4) a factor g".
z (KJ ) ' for a diagram with mI.

(j =2,3, . . . ) sets ofj connected vertices.
Next we consider fifth- and sixth-order fluctuations.

The fifth-order terms are symbolically denoted as (12345)
(one such term) and (12)(345), (13)(245), (14)(235),
(15)(234), (123)(45), (124)(35), (125)(34), (134)(25),
(135)(24), (145)(23) (ten such terms), or by corresponding
diagrams (see Fig. 1), where all diagrams are listed as well
Rs the correspoIldiIlg R11Rlytic cxpressioIls RIld the molti-
plicity of each diagram. The subtracted terms in the 10
terms of type ( )(") contain factors p3pzhi(z}, that
can be combined with the contribution p5h, (z) from
(12345) to yield the modified diagram, containing cumu-
lants instead of moments p.k, represented by

go(q)«5h I .
The remaining contribution of ( )(")can be calculated
directly from the modified diagram rules. As an example
consider (135)(24),

& go(~go }'&qq = go(q)g'o(q'}5qq

X [«gh I +Kz(goh I +h I h 3 +g I )] . (A10)

r
/

qq i'

q& ~82

Ego(qi) X go(qz)go(q3)go(qi —qz+q3}=«z«3go(q)& I@go(qi)gl{ql,z)=«z«~oz(q)hl(z), (A12)

q1 g2) g3

Appendix 8 have been used In a si~ilar way we calculate the remaining terms.

The result is
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(go(Ago) } =go(q) I~511,(z)+Ii21~2[2go(q)hi(z)+3h i(z)h2(z)+4III(z)gl(q, z)+hi(z)]} .

The function II 2(z) is defined in (Bl).
The calculation of the sixth-order term is much more involved. We shall only illustrate how the subtracted terms re-

sulting from the restricted n; summations may be combined with other terms to yield the modified diagrams. Consider
the following terms calculated according to the original diagram rules:

(123456)=p6goh i,
( 12)(3456)=p2iu4go(go& i

—h i )

(123)(456)=Plgo(gob i
—II i ), (A14)

(12)(34)(56)=P2g0(ggh i
—2giih i

—h iII2+2II i ) .
With the use of the definition (3.16) of the cumulant a.6 the last terms on each line, proportional to h I, can be combined
into a modified diagram (123456) with a value I~6hohi, as there are 15 terms of type (")( .), 10 of type (

. )( - ),
and 15 of type (")(.*)("). A more detailed comparison of terms enables us to combine ~M~~oh I with those of type
(")(")(")to obtain the modified diagram (12)(3456) with a value Ii2&4goh i. In this way one finds that the first term on
each line of (A14) represents the contribution according to the modified diagram rules, provided all moments

HAMI
are re-

placed by cumulants xi. As an example we give the modified diagram contribution from (15)(23)(46),

X go(qi)go(q2)go(q —qi+q2) +go(q2)=a2g2(q, z)h, (z),

where (85) has been used. The total contribution of the sixth-order fluctuation terins gives finally (see also Fig. 1):

&gO(~gO)'& = gO&Z(gOh i+2gohlgi+2gO~ iI 2+3II Ig2+4g2+~ ihl+I ih2+h2)

+go+3(goh I +4h Igi +2~ 1~2+2h l~ 1 +g4)+go+2+4(2go~ I +6 I lg 1 +4~ ih2+ 3h 1 I 1 )+go+6II 1 (A16)

All functions have been defined in (Bl), (85), and (89), ex-
cept

gO(ql)gO(q2)gO(ql)go(q4)
g)p e + ~ p)4

&&go(q —qi+q2 —q&+q4) . (A17)

The notation is systematic in the sense that all functions
g;(q, z) with i =1,2, . . . , represent contributions from
"self-energy" diagrams that depend on the external wave
IluIllbcl q, wllcl'cas tllc lclllailllllg contributions h (z) alld
h;(z) (i =1,2, . . . , ) are independent of q. The simplest q-
dependent self-energy diagram is the fourth one in (A5)
with a contribution ~2gi (q,z). Also note that the diagrams
whose contribution does not contain the function g„
(n ) 1) or h„(h ) 1) are built as series-parallel circuits of
the very first diagram. These diagrams will be referred to
as hypernetted-chain diagrams. Their contributions can
be expressed as products (of powers) of III,II2, h3, . . . ,
where II„~i

——( —1)"h i" /n! (n )0) [see (81) and (82)] and
the superscript on hi denotes the nth derivative with
respect to z.

A.PPENDIX 8

Thc cRlculRtlon of fhc scparafc terms in thc fluctuation
expansion presented 111 AppcIldix A is in facf, independent
of flic nulllbcl' of dimensions. The behavior of these terms
for small z and small q will strongly depend on the dimen
sionality of the system.

In this appendix we define the functions appearing in

II, ( )=& '+go(q), n =1,2, . . . ,

with go(q) =[z +~(q) ] and ~(q) =2D (1—cosq). From
(81) we have

(81)

II, (z)=(i —II) 'Il„' l(z), n =2,3, . . . .

The prime denotes dlffclclltlatloll wltll rcspcct to z. On
account of (82) all these functions can be derived from
&I(z). In the thermodynamic limit (X~oo) the sums

with qc18Z may be replaced by inte-

grals (2ir) I f dq . , and the function &I(z) reduces
to an elementary integral:

II I(z) =(2ir) ' J dq[z+2D(1 —cosq)]

=[.(.+4D)]-'" . (83)

A related set of functions is

I

Appendix A and in the results quoted in Sec. III, and we
will calculate them for the one-dimensional case. When
possible we give exact expressions, otherwise we determine
tllc doIIllllallt slllRll-z bcllRvlol wlfh q =Icv z alld Ic kept
fixed, which is sufficient for our applications.

In the remaining part of this appendix we present a
power counting argument to estimate the leading small-z
behavior of all terms in the diagrammatic expansion.
These arguments are given for the one-dimensional case,
but can be extended to general dimensions in a straightfor-
%vald manner.

We define



k„(z)=N 'go)(q)go(q), n =1,2, . . . .

Because (82) is also valid for k„and k)(z) = I —zh) (z) all
k functions can be derived from h ) (z).

The next set of functions to be defined is g„(q,z)
(n =1,2, 3), with

g)(q, z) =N ' g go(q) )go(qz)go(q —q)+q»

gz(q»)=N ' g go(q))go(q2)go(q —q)+q2)

g3(q z) N y go(q))go(q2)go(q 3)

Xgo(q —q)+q3)go(q —q2+q3) .

The function g, (q,z) can be evaluated exactly by
transforming the integration variables according to
wk =exp(iqk) (k =1,2) and w =exp(iq) T.hen g, (q„z) is a
double integral over the unit circles c, in the complex w)
and Lop plane:

w w) wz[(ww) w2 e—)(ww) w2 e—)]
g)(q, z)=( —D) (2~i) dw, dw2

1 1 (w) —e )(w) —e )(w2 —e )(w& —e )

where we have defined e +e =2cosha= 2+z/—D
The integration can be performed using complex con-

tour integration, yielding

g)(q, z)=(gD ) 'cosh(3a)(sinha) [cosh(3a) —cosq]

g) (q,z)=3(4Dz)-'(9z+Dq')-',

g2(q z)=(4Dz ) '(1gz+Dq )(9z+Dq2)
(87)

In our calculation ~e only need the small-z and -q
behavior (with q =~v z and a. fixed). The dominant con-
tribution for q, z~0 is

g (q,z)=(2'D3~ z'~ ) '(45z+Dq )(9z+Dq2)

We further need h„(z) (n = 1,2):

(88)

h„(z)=N ' g go(q)g) (q,z), (89)

which can be evaluated in the same way as sketched for
g)(q, z) and gives

This dominant behavior can also be obtained directly by
substituting qk =xk(z!D)' in the original q integral and
letting the integration boundaries +n.(D/z))~ tend to in-

finity. The remaining integrals can be performed using
complex contour integration. This method gives for
g3(q, z) (q,z~O)

h)(z) =(25D ) 'smh(4a)(sinha) [sinh(2a)] =2 5D ~ z ~ as z —+0,

h2(z)=(2 D ) 'I(sinha) +[sinh(3a)] I(sinha) [sinh(2a)] =5)&2 D 3~zz 7/z as z —+0 .

Again the dominant contribution for z~0 can be obtained more easily by the method described below (87).
The last set of functions needed is defined as

(810)

(811)

f)(z) =(2 D3) '[sinh(3a) —sinh(2a) —sinha](sinha) [sinh(2a)] '=3&2 5D 3~zz 3/z as z~O,
f)(z)=h)(z) —zh2(z)=3X2 'D '~'z '~2 asz~O,

f„(z)=N ' g o)(q)go(q)g„(q, z), n =1,

f„(z)=N ' g o)(q)g(~)(q)g„(q, z), n =1,2, 3,

f„(z)=N ' g o)(q)go(q)g„(q, z), n =1 .

Only for f) and f) we have an exact expression; for the others the dominant behavior for z +0 is eva—luated as before:

f,(z)=7X2 "D '"z '" as z 0, --- (812)

f (z)=2 D z asz 0,
f)(z)=9X2 "D ~ z ~ as z~O.

In the remaining part of this appendix we shall demonstrate that the fluctuation expansion [(3.7) and (3.8)j is a sys-
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tematic one for small z with q

=Knez

and K fixed. The small-z, -q behavior of the functions g„(q,z), h„(z), and h„(z)
with n =1,2, 3 has already been determined above. However, this behavior can also be obtained from simple power
counting arguments that can be applied to arbitrary diagrams. As an illustration consider g3(q, z) in (B5) where

q =K(z/D)'~ . In the thermodynamic limit N 'g E&nz can be replaced by (2') ' f dq . The most dom-
inant contribution to this integral comes from q values of order V z. Thus we change variables q; =x;(z/D)'~ so that
g3(q, z) yields to dominant order for small z

g (q, )=( /D) (2n) f f f dxdydz I 1+ K—x+z) ][1+(K—y+z) ]I
(1+x')(1+y')(1+z') (B13)

In general, the power counting argument to estimate the
small-z behavior of diagrams gives a factor Vz for each
independent internal q summation and a factor z ' for
each go. One readily verifies that this method applied to
integrals of Appendix B, which are divergent for Z~O,
predicts the correct leading z dependence. Thus we have
the following small-z estimates:

((zygo) )=K20(z'~ ),
((zhgp) ) K30(z)

((zygo) )=K&0(z)+KqO(z ),

((zkgp) )~K2K30(z )+KsO(z ),
((zbgo) )=K20(z )+(K4Kp+K3)0(z )+K60(z ),
((zb,go) ' ')=K3K2 0(z'r ),
((zag, )")=K',0 (z'") .

(B14)

These estimates show that the fluctuation expansion (3.8)
for go(q)A (q,z) has a dominant behavior for small z with

q =K@z of order z ~ . In order to calculate this term ex-
actly to order z '~ included fifth- and sixth-order fiuc-
tuation formulas have to be included.
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