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Helicity modulus in the two-dimensional Hubbard model
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Instituut-Lorentz, University of Ieiden, P.O. Box 9506, 8800 RA Leiden, The Netherlands

(Received 11 June 1992; revised manuscript received 7 October 1992)

The helicity modulus, which is the stiffness associated with a twisted order parameter, for the
two-dimensional Hubbard model is calculated for the equivalent cases of (i) attractive on-site in-
teraction (negative U) with arbitrary strength, arbitrary electron density, and zero magnetic field
and (ii) repulsive on-site interaction (positive U) with arbitrary strength, at half-filling and in an
arbitrary magnetic field. An explicit formula for the helicity modulus is derived using the Bogoliubov-
Hartree-Fock approximation. An improved value for the helicity modulus is obtained by performing
variational Monte Carlo calculations using a Gutzwiller projected trial wave function. To within a
small correction term the helicity modulus is found to be given by —

8 of the average kinetic energy.
The variational Monte Carlo calculation is found to increase the value of the helicity modulus by a
small amount (about 5% for intermediate values of the interaction strength) compared to the results
from the Bogoliubov-Hartree-Fock approximation. In the case of attractive interaction, from a com-
parison with the Kosterlitz-Thouless relation between critical temperature and helicity modulus,
the critical temperature for a Kosterlitz-Thouless transition is calculated and a phase diagram is
obtained. An optimal critical temperature is found for an intermediate value of U. We discuss con-
nections of our results with results in the literature on the Hubbard model using the random-phase
approximation and quantum Monte Carlo calculations.

I. INTRODUCTION

The Hubbard model is the simplest model to de-
scribe correlated electron behavior in a solid, incorporat-
ing both the effects due to localized and itinerant (band)
electrons. In the past few years, the Hubbard model has
attracted much attention because it might play a role in
understanding high-temperature superconductivity. ~ Be-
cause the materials exhibiting this type of superconduc-
tivity are built up out of layers which can be thought of
as independent, the relevant physics may be found in the
Hubbard model in two spatial dimensions.

The concept of the helicity modulus was introduced
by Fisher, Barber, and Jasnow as a measure of the re-
sponse of a system in an ordered phase to a "twist" of the
order parameter. For spin systems, the helicity modulus
is also called spin-stiffness constant, whereas for a Bose
fluid, the helicity modulus is essentially equivalent to the
superfluid density. It is common usage to denote all of
these response functions by p„a practice we will follow in
this paper. 4 s Since the symmetry of the order parameter
is important for the character of possible phase transi-
tions, knowledge of the response function corresponding
to distorting the order parameter may prove beneficial for
understanding the phase diagram of the Hubbard model.
For instance, in two spatial dimensions and having a two-
component order parameter a Kosterlitz- Thouless phase
transition is known to occur. In such a topological phase
transition, which entails the binding/unbinding transi-
tion of vortex-antivortex pairs, a definite relation exists
between p, and the critical temperature T, at which
the transition occurs. The purpose of this paper is to
calculate p, for the two-dimensional Hubbard model us-

ing both mean-Beld and variational Monte Carlo methods
and study the consequences for the phase diagram.

The Hamiltonian for the Hubbard model is given by

R = —) t,,c,' c, +U) n;tn, t —p) n,
tg C7 'ECT

h
&i~) (1)

$0

where ct is the operator which creates an electron at
site i with spin o (o = +1 for spin-up and o = —1 for

spin-down electrons), n; = c, c;, tU is the one-electron
transfer integral between sites j and i (t;~ equals t if i and

j are nearest neighbors and 0 otherwise), U is the on-site
interaction strength, p, is the chemical potential which
controls the total electron density n, and h is a Zeeman
magnetic field, which only couples to the difference in
densities of the two spin species; P, = p —U/2 = 0
corresponds to a half-filled lattice, having (on average)
one electron per lattice site (n = 1). We will study the
model on a square lattice, which is bipartite, meaning
that the lattice can be split up in two sublattices such
that for all lattice sites all neighboring lattice sites are
on the other sublattice.

A well-known canonical transformation exists that for
bipartite lattices maps the repulsive (positive-U) Hub-
bard model onto the attractive (negative-U) model. 7 This
"spin-down particle-hole" transformation is given by

c'] = c'T, c't = (—1) c t. (2)

The eKect of this transformation is that the roles of mag-
netic Beld and chemical potential are interchanged, be-
cause the operator m, = n, —1/2 is unaffected for spin
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up and changes sign for spin down. More precisely, the
parameter combinations h/2 and p —U/2 map onto each
other. In other words, the negative-U Hubbard model at
half-filing in a field is equivalent to the positive-U Hub-
bard model in zero field off half-filling. Also, the positive-
U Hubbard model at half-filling in a field is equivalent to
the negative-U Hubbard model of half-filing in zero Geld.
Although a lot of work has been devoted to doped (i.e. ,

off half-filling) repulsive Hubbard models and doping of
simplified versions like the t-J model and S =

z Heisen-
berg antiferromagnet, not much is known for sure about
this part of the phase diagram. In this paper, we will re-
strict ourselves mostly to an undoped repulsive Hubbard
model in a magnetic field. As a consequence of the above,
all results can be applied immediately to the doped at-
tractive Hubbard model (in zero field). In the following,
we will discuss the approximations and methods in terms
of the repulsive Hubbard model. However, the results we
obtain for the helicity modulus have the most interesting
consequences when discussed in terms of the attractive
Hubbard model.

The remainder of this paper is organized as follows.
In Sec. II, we derive the Bogoliubov-Hartree-Fock ap-
proximation for the repulsive Hubbard model and cal-
culate p, in this approximation at half-filling for arbi-
trary magnetic Geld h and arbitrary values of the inter-
action strength U. In this approximation and for the
case just mentioned, an expression in closed form for p,
is obtained containing an integral over the first Brillouin
zone of the square lattice. In Sec. III, we give a detailed
description of variational Monte Carlo calculations of p,
using a Gutzwiller-type trial wave function, which con-
tains the Hartree-Fock wave function as a special case. In
Sec. IV, the results for p, from the Hartree-Fock calcu-
lation are combined with the Kosterlitz-Thouless theory
of XY magnetism to Gnd the critical temperature for
superconductivity T, for arbitrary electron density and
interaction strength in the attractive Hubbard model. In
Sec. V, we compare our results for p, and T, to previous
work in the literature using other methods, including the
random-phase approximation and quantum Monte Carlo
calculations.

A. Zero temperature

The Hartree-Fock wave function is

E S I

k6iocc}
v'(k)l0)

as the original Hamiltonian. The approach is also known
as the Bogoliubov-Hartree-Fock approximation, express-
ing the generalization due to Bogoliubov of the original
Hartree-Pock approximation, in which only the particle
density is taken as self-consistent field. We carry out
the above program for the repulsive (positive-U) Hub-
bard model using the averages of spin densities n, ~ and
spin-raising and spin-lowering operators, 8, = c,&c;g and+

8, = c,.&c,t, as fields. There is some arbitrariness in
this choice, e.g. , one could also consider fields associated
with operators that do not conserve particle number like
the pair-annihilation operator P, = c;gc,t. Our choice
anticipates the relevant ordering, which is antiferromag-
netic. In case of attractive interactions (negative U), one
would consider averages of P,. and its Hermitian con-
jugate instead of averages of S+ and 8, . In the latter
case the HFA becomes equivalent to the Bardeen-Cooper-
Schrieffer (BCS) approximation to the pairing Hamil-
tonian in the theory of conventional superconductivity.
The attractive feature of the HFA is that its formula-
tion as a variational approach can be extended to finite
temperatures. In the following, we refer to all general-
ized procedures also as HFA. First, we present the zero-
temperature HFA in some detail, also for better compar-
ison with the Gutzwiller wave function to be employed in
Sec. III. Next, we use the extension to finite temperature
(details of which are given in Appendix A) to evaluate
the free energy. Finally, the helicity modulus is obtained
from the difference in free energy between situations with
a twisted order parameter and a constant order parame-
ter.

II. THE HARTREE-POCK APPROXIMATION

In dealing with a complicated Hamiltonian like the
Hubbard Hamiltonian (1), one of the first approximate
approaches that already gives a great deal of insight is
a mean-field approach. In quantum mechanics such an
approach is called the self-consistent-Geld method or the
Hartree-Fock approximation (HFA). This approximation
can be formulated as the search for the many-particle
wave function that can be written as a product of one-
particle wave functions and minimizes the expectation
value of 'R. The method is exact in the case of nonin-
teracting particles. The minimization condition together
with the constraint that the one-particle states be or-
thonormal leads to equations for the one-particle wave
functions. A Hartree-Fock approximated Hamiltonian
'RHF is obtained by the condition that in the many-
particle state just found it has the same expectation value

where pi'(k) creates a one-electron state with label A:,

(occ) represents a set of labels corresponding to occu-
pied states, and l0) represents the vacuum state. Since
our fields are averages of particle-number conserving op-
erators, the electron creation and annihilation operators
can be written as linear combinations of pt(k) and p(k),
respectively:

Note that in the case of Fields which do not conserve par-
ticle number, one has to allow for linear combinations of
both yt(k) and p(k). In order for the transformation (4)
to be canonical, orthonormality of the P, (k) is required,
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) gP~(k)gaia(k') = 6g g~. {pt(k)p(k')) = 6i, i, n(k), (6)

If we denote the expectation value of an operator A in
the Hartree-Fock ground state by {A), we have

where n(k) equals 1 for an occupied state k and 0 for an
unoccupied state k.

The ground-state energy in the HFA is

{&)= —).4C.(k) &a (k)n(k) + U ) n(k)n(k') [l0'~(k) I'I&'i(k') I' —0'll (k)&'i(k)&'T(k')4'ig(k')]

-~ ) I&'-(k) I'n(k) ——) .ol&'-(k) I'n(k)
i,o,k i,o,k

Requiring this energy to be minimal under the constraint
of normalized P; (k) [for which we introduce the Ia-
grange multiplier e(k)] for all k independently, we arrive
at the following Hartree-Fock equations for P,~(k):

where we have defined the parameter I', :

r, = U(s;)
and Eo is a constant equal to

(14)

—) t;,P, (k)+ U{n, )— —
V 4' (k) E' = ) (lr'I'/U —U&n'T) {n'~&)

—U(S, )4', --(k) = e(k)4' (k) (8)

We have used the following equations for the fields in
deriving (8):

{n' ) =).I&' (k)I'n(k)

{S;)=) y,*.(k)y, .(k)n(k),

(9)

(10)

which justify the notation of the fields as averages. Using
the equations for the fields (9) and (10) in the interac-
tion term in {'H) and the HF equations (8) in the three
remaining terms, we arrive at

{'H) = ) e(k)n(k) —U) {{n;g)(n,g) —{S+){S,. )).

The Hartree-Fock approximation 'M» to the original
Hamiltonian (1) is now given by

&» = ).e(k)V'(k)V(k) —U) .({n't){n'i)—{S,+){S, )).

The Hamiltonian (13) is simplified considerably by the
Hartree-Fock approximation in that the product of four
creation and annihilation operators in the interaction
term is replaced by a product of only two such opera-
tors. Yet the approximated Hamiltonian is sufficiently
general to still allow for spin and charge configurations
which vary over the lattice. s

In the following, we will restrict ourselves to the case
of homogeneous average spin densities:

(n, ) = Zi(n+ Crm),

where n is the average density, n = {n;y + n;g), and m
is the average magnetization density, m = (n;T —n, ~),
neither of which depend on the site i anymore. The av-
erages of spin-raising and spin-lowering operators remain
site dependent. In this ease, the Hamiltonian further re-
duces to

'HHF = ) H~ ct e —) (I',S++ I';S, )
ija 2

+) Ir, l'/U- ' (n' —m'),

where we have defined

Because of (6) obviously 'RHF and 'R have the same ex-
pectation value in the Hartree-Fock ground state. By
substituting the inverse of (4) in (12) one obtains 'HHF

expressed in the creation and annihilation operators for
electrons:

H,, = t,, —(P+ crh/2)—6...
h/2 = h/2 + mU/2,

p = p —nU/2,

(18)
(19)
(20)

and N, is the number of lattice sites. In this notation,
the Hartree-Fock equations (8) are written as

xHF = —) t,,e,'..c,.—) (r,s++I;s;)
ija

—) (p —U(n, , ))n, ——) on, + Eo,

e(k)$ T(k) = ) H~jy'gg] (Ic) —I Q t (k),

e(k)p, 1(k) = —r,*p,y(k) + ) H,~gp~g(k).

(21)

(22)

(18) Note that we have written the equations in a form
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that clearly shows the similarity with the Bogoliubov-
deGennes (BdG) equations in the BCS theory of
superconductivity. g If we restrict ourselves further to the
case of half-filling, i.e. , p = U/2 and n = 1, and perform
the transformation P;T(k) = u, (k), P,g(k) = (—1)'v, (k),
and I', = (—1)'6,, we exactly recover the BdG equations:

e(k)u, (k) =) H, ,u, (k) —A, v, (k),

e(k)v, (k) = —A,*u;(k) —) H,,v, (k), (24)

where H,~
= t,~

——(h/2)b, ~. Equations (23) and (24)
have the property that if (u, v) is a solution with energy
e, then (—v*, u') is a solution with energy —e. So the 2N,
solutions come in pairs of opposite energy. In the ground
state only the negative-energy states are occupied, i.e. ,

n(k) = 1 for negative-energy states and n(k) = 0 for
positive-energy states. The ground-state energy at half-
filling is given by

Eg ——) ~(k)n(k) + ) ~A,
~

/U — '
(1 —m ). (25)

k 'C

The ground-state energy can be found by solving Eqs.
(23) and (24) under the consistency conditions (9) and
(10), which may be rewritten for the case of homogeneous
spin densities as equations relating m and U to h/2 and

FHF = ——) ln(2 cosh[Pe(k)/2])

+) ~A, ~'/U — '
(1 —m'). (31)

The prime on the sum over k denotes that it is only over
negative-energy states (we have taken together the two
terms with opposite energies). Substituting n(k) into the
consistency conditions (26) and (27) and again rewriting
to a sum involving only negative-energy states gives

m = ).'[[v*(k)[' —lu'(k) I'] tanh[&~(k)/2]

6, = —U ) 'v,'(k)u, (k) tanh[Pe(k)/2].

(32)

(33)

C. Calculation of the helicity modulus

In order to calculate the helicity modulus p, we have
to obtain, by definition, the incremental free energy re-
sulting from twisting the order parameter b„. First, we
present the solution of the Bdc equations for the case
that 6, = E is constant over the lattice. Then it is
seen that if 4; fiuctuates over the lattice only through
its phase the solutions are very similar to the case of con-
stant 4, . Finally, we give the solutions for the specific
phase Huctuation corresponding to a twist of the order
parameter:

m = ) .[Iu'(k) I' —Iv'(k) I' ]n(k) (26) [g]e2ig I'~
(34)

4, = U ) v,'(k)u, (k)n(k). (27) For constant 6, , if periodic boundary conditions are
imposed, the solutions are of the form

B. Finite temperatures
QN,

'
QN,

(35)

The generalization of the HFA as presented above to
finite temperature can be made. Details are given in

Appendix A. Here we use the principal results: the role
of the energy is taken over by the free energy, which in
the HFA is given by

1
FHp = ——ln (Tre ~+"~), (28)

where 1/P = k~T. For the free energy we have using
(12)

~, =E' ) I 1+ -~—'~"—l (3o)

Using the property that the complete set of states k can
be split into two equally large sets having opposite ener-
gies and substituting (15) for Eo, we arrive for half-filling
at

and the occupation of levels, n(k), is for finite T given
by the Fermi-Dirac distribution:

1
n(k) p

e(k) =- +QH2(k) + ~d ~~,

H(k)=) H,, '"&"-"i
2

= —2t [cos(k ) + cos(k„)] —h/2.

(36)

(37)

Note that H(k) is not site dependent. From the equa-
tions for ui, and vk one easily derives [using ~uk

~
+

~
vk

~

1, which follows from (5)]

where the labels A: have been replaced by the set of vectors
k in reciprocal space [k = (7r/L)(n~, n„) with n, n„=
—I, , I —1 and I the number of lattice sites along one
side of the square lattice]. In the case of half-filling that
we are considering, we have one electron per lattice site
(on average; n = 1), N, = N„and all of the k vectors
specified above correspond to exactly one term in the
(primed) sums over k in (31)—(33). Therefore, in the limit
of infinitely large lattices, sums over k become integrals
over the full first Brillouin zone (BZ) of the square lattice
(k~, k„c [

—x, x]). The BdG equations reduce to a set of
two equations for uk and vg for each k separately. The
resulting energy levels are
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H(k)
e(k)

' p, = ——) cos(k ) tanh[Peo(k)/2]
t H(k)

N 2eo k

2E(k)

The consistency conditions are

rn = — ) tanh [Pre (k)/2],
1 .H(k)

N, „epk

) tanh [Pro (k) /2].
1 1 - 1

U 2NB „eo k (41)

u, (k) = u, (k)e '~'~, 6, (k) = u, (k)e'~~~ (43)

leaves the BdG equations invariant except for a phase in
the nondiagonal matrix elements H,&.

(44)

For the special choice P~ = 2q r~, corresponding to a
twisted order parameter 4 [see (34)), the problem be-
comes translationally invariant again, since the hopping
matrix elements t,~ will only depend on the direction of
hopping, not on the sites involved. The BdG equations
again reduce to two equations for uk and ek for each k
separately. The resulting energy levels now are

e+(k) = y~(k) + P (k) + lAl (45)

where

yq(k) = 2[H(k+ q) —H(k —q)],
(46)

Pq(k) = ~i[H(k+ q) + H(k —q)].

Note that for q = 0 the energies e~+(k) reduce to the en-
ergies e(k) in (36). We require the negative-energy solu-
tions, which for small lql will be e~ (k); the corresponding
uk and vk are

(uk, uk) = [ —,'(1 —~k), —,'(1+ c k)]

Pq(k)

P'(k) + I&l'

(47)

Substituting the solution (45) in the expression for the
free energy (31) and making an expansion for small q,

io

we obtain F(q) = F(0) + 2p, Nq + O(q ) with

By eo(k) we (arbitrarily) denote the positive square root
in (36). The consistency equations allow for direct trans-
formation between the parameters U/t and h [via m and
(19)] occurring in the original Hamiltonian and the pa-
rameters 4 and h/2 occurring in the Hartree-Fock solu-
tion.

If 4, only differs from site to site by a phase factor,

(42)

the transformation

+ tP sin (k )
2 cosh [Pro(k)/2]

(48)

Using (48), p, can be calculated for every combination of
U/t and h as a function of temperature T. In practice,
this is slightly complicated because U and h are deter-
mined by the BZ summations (40) and (41). As a result,
for a chosen combination of U and h one has to adjust h
and 6 for every P to obtain the same U and h. For 6 = 0
one always has m = 0, because contributions from k and
(vr, x) —k cancel. If 6 (and therefore U) becomes very
small, a very Bne mesh in the BZ has to be used to con-
verge the summations in (40) and (41). This corresponds
to a very large lattice in real space and is consistent with
large coherence lengths for small A.

In Fig. 1, we show the typical behavior of p, . As a
function of T [for fixed U/t and h; Fig. 1(a)], p, starts
from some finite value at T = 0 and vanishes at T,(HF),
which is the temperature for which (40) and (41) hold
with 6 = 0. For small values of U/t, T, (HF) decreases
exponentially with increasing t/U, whereas for large val-
ues of U/t (and therefore 6) T,(HF) increases linearly
with U. If U = 0, 6 = 0 and therefore p, = 0 for all
T, as is seen by noting that the summand in (48) is a
derivative with respect to p of a periodic function of
p~. As a function of U/t, for finite T (T and h fixed),
p, decreases (as t /U) with increasing U and with de-
creasing U drops to zero at the point where 6 goes to
zero because the finite value of T equals T,(HF) for the
value of U concerned. For T = 0 and h = 0, this value
of U is zero; in the limit of U going to zero, p, then goes
to the finite value of 2t/vr2, while being strictly zero for
U = 0 [Fig. 1(b)]. The fact that p, approaches a finite
value in the limit U —+ 0 can be understood by realizing
that although 4 becomes very small in this limit, the
coherence length becomes very large and a finite value
for the stifFness results. Finally, p, decreases monotoni-
cally as a function of h and vanishes at some critical Geld
[Fig. 1(c)].

By the mapping between positive- and negative-U
Hubbard models given in the Introduction, the above
properties of p, can be translated immediately into prop-
erties of p, in a negative-U Hubbard model with arbi-
trary density and zero field. For instance, in this case
p, vanishes at some critical value of the chemical poten-
tial, which corresponds to zero density (without electrons
there is no gap parameter and therefore no stiffness).

In Sec. IV, p, as calculated in the HFA will be used to
obtain the critical temperature for superconductivity for
a Kosterlitz-Thouless transition in the negative-U Hub-
bard model for arbitrary interaction strength and density.
In Sec. V, we will compare our result for p, with results
on the Hubbard model using difFerent approaches. As we
will show, p, as given in (48) can be obtained in a specific
limit of the dynamic transverse susceptibility y+ (q, u)
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0.20 as calculated in the random-phase approximation by sev-
eral authors. ~ '

0.1 5—

0.1 0—
III. CUTZWILLER VARIATIONAL

MONTE CARLO METHOD

Q.05—

0 0I
0.0

0.25

0.20

ps
0.15

0.10

0.05

0.2 0.4 0.6 0.8

(b)

If the ground-state wave function for the many-electron
system is approximated by an antisymmetrized product
of one-electron wave functions, as is done in the Hartree-
Fock approximation (HFA) of Sec. II [see (3)], the av-
erage of the double occupancy operator n, yn, g is simply
n /4 for a paramagnetic state. For large U, the potential
energy of Un2/4 will be large and the system is forced
to build up magnetic correlations to avoid large positive
energies. Therefore, the HFA favors magnetic correla-
tions. Gutzwiller has pointed outis that double occu-
pancy may also be avoided by introducing paramagnetic
correlations into the wave function. In the wave function
Gutzwiller proposed, this was accomplished by multiply-
ing the noninterccting wave function by a factor g, with
0 ( g ( 1 and D the number of doubly occupied sites.
The Gutzwiller factor g is seen as a variational parame-
ter in the search for the ground-state wave function for
the interacting system. In this spirit and slightly gen-
eralizing the approach of Yokoyama and Shiba (which
already is a generalization of the Gutzwiller approach),
we use the following wave function:

Ppi I I I I I I I I I I I I I I I I I I I

0 5 10 15 20

~@GW) = [1 (1 g)&'T&'j, ]~@HF)~ (49)

0.20

0.15

U/t

(c)

In this way, the extra Gutzwiller correlations are built in
directly into the Hartree-Fock (HF) wave function. The
Gutzwiller-type wave function (49) (to be called simply
Gutzwiller wave function in the following) is now a vari-
ational wave function containing three parameters g, 4,
and h:

(50)

0.10

0.05

0.0
0.0 0.5 1.0

hi2

1.5 2.0 2.5

FIG. 1. The helicity modulus p, (in units of t) for the re-
pulsive half-filled Hubbard model in the Hartree-Fock approx-
imation as a function of temperature T, interaction strength
U/t, and Zeeman magnetic field h: (a) As a function of T for
fixed U/t = 4 and fixed h = 0 [p, vanishes at the Hartree-
Fock critical temperature T (HF)], (b) as a function of U/t for
fixed T = 0 and fixed h = 0 (for U/t = 0, p, is zero by defini-
tion, however in the limit of vanishing U/t, p, approaches the
finite value of 2t/vr ), (c) as a function of h for fixed T = 0
and fixed U/t = 4 (p, vanishes at a critical field h, ).

4HF is a Slater determinant made up out of the one-
electron wave functions (t, which, via the u, and v; func-
tions, depend on 6 and h. As in the preceding section,
calculations are restricted to half-filling; therefore no pa-
rameter P appears. In the HFA, 6 and h are fixed by
the choice of U and h via the consistency conditions. In
the variational approach, they are parameters to be opti-
mized so as to minimize the energy; also the relation (19)
between h and h need no longer be fulfilled. The exten-
sion with respect to the approach of Yokoyama and Shiba
lies in the fact that we allow for nonzero magnetic fields
and consequently have one more variational parameter.
Since through the mapping onto a negative-U Hubbard
model nonzero field amounts to going off half-filling in
that model, this freedom may well be of interest.

It is clear that setting g = j. reduces our Gutzwiller
wave function to the Hartree-Fock wave function of
Sec. II. This fact serves as a nontrivial test for both the
variational and Monte Carlo (MC) part of our calcula-
tion. In the variational part of the calculation, fixing g
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at 1 should result in values for L and 6 consistent with
the chosen values of U and h via the HF consistency con-
ditions (40) and (41). In the Monte Carlo part of the
calculation, using g = 1 and the HF values for 4 and h
should result in a ground-state energy that equals the HF
energy calculated through (25) to within the statistical
error bar. Both tests were successfully performed.

Since the Gutzwiller wave function is an improvement
over the HF wave function (the larger variational free-
dom will result in a lower energy), one may hope that a
calculation of p, using the improved wave function will
result in a p, more closely resembling the exact p, . Be-
low we describe variational Monte Carlo calculations of
p, using the Gutzwiller wave function (50).

where we have introduced the composite index (~ indi-
cating both the position r~ and the spin o~ of electron j.
The index i denotes the one-electron energy labeled k, .
In order to compute p(R')/p(R), we need to compute

@(R ) gD{R') D{—R) d(R )
@(R) d(R)

' (54)

In performing the random walk through configuration
space, we allow for two types of MC moves: (i) Pip, a
change of the spin of one electron, and (ii) hop, a jump
of one electron to a neighboring site. For both moves it
holds that the determinants d(R') and d(R) differ only in
the one column j corresponding to the electron of which
either the spin or position was changed. In that case, the
ratio of determinants is simply given by

A. Variational Monte Carlo method
with determinantal wave function d(R') = ) Di„(R)D, i, (R'), (55)

Although the variational Monte Carlo (VMC) method
we use is very similar to the one of Refs. 14 and 15,
in this section we will give a concise description which
at the same time provides the framework in which the
calculation of the helicity modulus takes place.

The Monte Carlo method is an eKcient method to
compute expectation values given some wave function for
the ground state. For instance, one is interested in the
ground-state energy Eg (T = 0) for some Hamiltonian

(@~'R~@) 1,'H@(R)

(@~4) W „- 4(R) ' (51)

@(R) = g d(R) = g det(D, , ), (52)

where D(R) is the number of doubly occupied states in
configuration Band the matrix elements D,~ in the Slater
determinant d(R) are related to the one-electron wave
functions P„ in (4) by

DU = pg,. (k, ),

with W = g& ~4(R)
~

and R denoting a specific config-
uration of the electrons in position and spin space. Ez
is written as the average of 'R4'(R)/4(R) over configura-
tions R with probability distribution function p(R)
~@(R)~ /W. The average is taken over a finite num-
ber of configurations B selected from a random walk
through configuration space according to the Metropolis
algorithm: a MC move from B„~ to R„ is always ac-
cepted if p(R„)/p(R„ i) & 1; if p(R„)/p(R„ i) ( 1 such
a move is only accepted if p(~)/p(R„ i) & r, where r is
a random number taken from a set uniformly distributed
between 0 and 1. In this way, only the more important
configurations for the average are sampled, whereas at
the same time getting stuck in a locally favorable config-
uration is avoided. As a matter of course, also expecta-
tion values of other operators than the Hamiltonian may
be evaluated in this way.

If the wave function 4(R) can be written as a deter-
minant, as is the case for the Gutzwiller wave function
(50), a particularly efficient method to compute the ra-
tios p(R')/p(R) exists. In our case, @(R) is of the form

where j denotes the column that changed by the MC
move and D denotes the inverse of the transpose of D:

) D, i, (R)D~i, (R) = 6,~ for all R. (56)

B. Calculation of the helicity modulus

In the preceding section, we discussed how to evalu-
ate the ground-state energy using a Gutzwiller trial wave
function with optimized parameters. In order to do this
the expectation value of the Hamilton operator is com-
puted by MC integration over configuratio space. It is
not immediately obvious of which operator one should
evaluate the expectation value in order to obtain the he-
licity modulus p, . In this section, we show that p, equals

The efFieiency of the method lies in the fact that the
matrix D only has to be inverted at the beginning of the
random walk in order to obtain D; D can be updated by
matrix multiplication (instead of inversion) after every
accepted move using the formula given in Ref. 16.

In principle, the optimal variational parameters are to
be found by performing a MC calculation of the energy
for a large set of parameter combinations (g, 4, h). We
have used an alternative optimization method proposed
by Umrigar, Wilson, and Wilkins 7 for wave functions
with a large number of parameters. In the spirit of this
method, we minimize the energy averaged over a fixed
set of configurations. This procedure has the advantage
of requiring less computing time and of using correlated
samples to arrive at the optimal parameters. We typi-
cally use 500 configurations, whereas a MC run samples
of the order of 105 configurations to arrive at energies
with sufBciently small statistical errors to distinguish be-
tween different parameter combinations. To avoid get-
ting stuck in local minima as much as possible the above
optimization is repeated a number of times using differ-
ent sets of fixed configurations. As another check on the
result of the optimization full MC calculations are per-
formed not only with the set of optimal parameters, but
also using slight deviations from this optimal set.
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—
8 of the kinetic energy plus a correction term.
To calculate p, in the ground state, i.e. , for T = 0, by

definition one must compute the energy difference E(q)—
E(0), where E(q) and E(0) are the ground-state energies
for the situations where a twist of the order parameter
(34) is present or absent, respectively. In the language
of Monte Carlo calculations, E(q) is the minimum over
a set of wave functions g~, which depend on q because
of the constraint that the ground-state average of the
operator A~ = (—l)~c &c~y has a wavelike'fiuctuation
over the lattice:

(OqlAgl@q) = I&le

,.„(4al&IM. )

(57)

(58)

Note that 'H is q independent and the q dependence of
E(q) comes solely from the wave function. One way to
proceed is to take for gq the wave function for the "un-
twisted" problem (g times Slater determinant) and re-
place in the Slater determinant the functions uk and vk
by their q-dependent counterparts in the twisted prob-
lem, given by (47). Although this approach is feasible, it
is not very convenient for two reasons: the first is that in
order to compute p„results for two separate MC calcula-
tions each having a statistical error have to be subtracted,
leading to large uncertainties in the resulting difference.
The other reason is that the energy di6'erence has to be
found in the limit of small q. Since these calculations are
performed on finite lattices and we have to impose peri-
odic (or antiperiodic) boundary conditions, it is question-
able whether q can be chosen small enough to extract a
reliable value of p, . We now present an alternative proce-
dure, which is akin to a procedure by Kohn and which
allows one to extract the small-q limit of the energy dif-
ference directly from a single MC calculation. In this
way, we arrive at the MC equivalent (T = 0 only) of the
Hartree-Fock formula for p, (48), which came directly
from the small-q limit of the difference of free energies.

Suppose a unitary transformation M can be found that
"gauges away" the wavelike constraint (57): i.e. ,

(59)

invariant under the unitary transformation (63), since M
commutes with n, T and n, ~ for all i. The hopping matrix
element acquires a phase which only depends on the di-
rection of the hop but not on the sites to or from which
the electron hops:

io.q (r, —r, ),ze (64)

Because the Hamiltonian 7t"(q) is translationally invari-
ant in the sense just described and furthermore the con-
straint (61) is translationally invariant, we can use for
lg') the Gutzwiller wave function for the "untwisted"
problem (gD times Slater determinant) and replace in
the Slater determinant the functions uk and vp by their
q-dependent counterparts in the twisted problem [given
by (47)]. The difFerence with the original problem is that
we have traded the position-dependent constraint and q-
independent Hamiltonian for a position-independent con-
straint and a q-dependent Hamiltonian. The q depen-
dence of the Hamiltonian, however, is a very simple one
[see (64)].

We can formally expand the wave function and Hamil-
tonian for small q:

Q,'(R) = @p(R) + q'@&(R) + O(q'), (65)

g,'(R) N'(q)q, '(R') = Hp(R, R') + qH, (R, R')

+q H2(R, R') + Q(qs), (66)

E(q) = Ep + 2p, N, q + O(q ). (67)

2N, p, = ) iIr;(R)H2(R, R')@p(R')
0 R

The odd powers of q do not appear in the wave function
because the Hartree-Fock and Gutzwiller wave functions
are even in q, as can be seen from (47). The operator 'Ri
is a spin-current operator; its expectation value in the
HF and GW ground states is zero. Therefore, the term
proportional to q in the energy vanishes. The formula for

p, now follows readily:

such that

A,'=MAM =Ae'
Then the problem (57) and (58) transforms to

(60)

+ ) [4 2(R)(Hp(R, R')
0

Ep6'(R, R ))@p—(R ) + c.c.], (68)

(62)

where c.c. denotes the complex conjugate of the preced-
ing term,

where '8'(q) = O'RL(t is q dependent because of the q
dependence of M. Indeed, such a transformation exists:

Ep = ) @;(R)Hp(R, R')@p(R')
0 RRr

(69)

exflg cJq' Fj
2

(63) ~p = ) .I@p(R)I' (70)

where n~ is the operator that counts the number of elec-
trons at site j. One easily verifies that only the kinetic-
energy (or hopping) term in the Hamilton operator is not

By choosing q at an angle of vr/4 with an arbitrary bond
of the square lattice, we find from (64) the small-q ex-
pansion of t
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t', = t,~[1+iog (r, —r~) —q /4]+ O(qs). (71) 6 o(k) = [t(k) —h/2] + )Zh, ]2. (78)
Therefore, we have

Hz(R, R') = —4iT(R, R'). (72)

((&(R))) = ~ ) .I@o(R)l'F(R)
0 R

(73)

the following formula for p, emerges:

Defining the average of F over configurations R with
probability distribution ~@o(R)

~

as

We note here that in actual calculations the correction
term in the formula for p, always turns out to be almost
zero. Therefore, for the HF and GW wave function, p, is
practically given by —

8 of the kinetic energy per site. For
the exact wave function, p, would contain a contribution
from the spin-current operator as well.

C. Results of VMC calculations
for the helicity modulus

R E 74

where local (i.e. , referring to one configuration) kinetic
and total energies in the untwisted state are defined:

~
.T(R, R')Cl, (R')

C, (R)

and (75)

~
.H&(R, R')4o(R')

@&(R)

t(k)
16ug(q = 0) eos(k)

'

where

t(k)
16vk(q = 0) eos(k)

'

t(k) = —2t[cos(k~) + cos(k„)],

Note that Eo = ((Zl. (R))) . Therefore, p, has been writ-
ten as —

8 of the average of the kinetic energy per site in
the untwisted state plus a correction term. In order to
calculate the correction term, one needs E0, which can
be obtained from a MC calculation using the Gutzwiller
wave function without q dependence, as well as the sum of
ratios of determinants 4'z(R)/@0(R). @z(R) is a sum of
N, determinants (N, is the number of electrons) in which
in each determinant another single column is changed
with respect to @0(R). The change entails replacing the
q term of ug or vk (depending on the spin of the cor-
responding electron) by the q term. The procedure to
calculate a ratio of determinants which only differ in one
column was discussed above for the case in which the
change corresponded to a new configuration (hop or spin

flip of an electron). The q terms of uk and vk, u& and2 (2)

, respectively, can be found from (47):(2)

All of our calculations presented here have been per-
formed on an 8 x 8 lattice at half-filling, i.e. , with 64 elec-
trons. Below we argue that for the values of U/t consid-
ered the results do not change in going to larger lattices.
Because of the small size of the lattice one does have to
be careful in the choice of boundary conditions. 4 Our
choice of periodic boundary condition in the x direction
and antiperiodic boundary condition in the y direction
conveniently removes the degeneracy for the HF wave
function. After having found optimal values of g, 4, and
li, as described in Sec. III A, we perform a few long MC
runs of 1.2x10s steps (a few hundred MC steps are done
for thermalization purposes, i.e. , to remove dependence
on the start configuration). The quantities we are inter-
ested in, like total energy, sublattice magnetization, ki-
netic energy, and magnetization in the z direction, are
"measured" with a frequency of once every 10 steps.
These values are gathered in groups of 3000 members.
For each group, the averages and standard deviations of
all quantities of interest are computed. The group av-
erages (40 in total) can be considered as independent
measurements of which we compute the "grand" average
and corresponding standard deviation. Using this proce-
dure and the numbers mentioned, the statistical errors
become sufBciently small. We have typically performed
eight independent MC runs as described above for every
combination of U/t and h, with slightly difFering param-
eter sets (g, A, h). We have found that values for the
total energy per site E/N, and helicity modulus p, are
insensitive to slightly perturbing the parameter set, but
that the sublattice magnetization (S+) and the magneti-
zation in the z direction S, —:m/2 are very sensitive to
the parameters 4 and h, , respectively.

In Tables I and II, we compile results of VMC calcula-
tions for both the ground-state energy per site Z/N, and
the helicity modulus p, for a set of values of the interac-
tion strength U/t in zero field (Table I) and in a small
field h/t = 0.34 (Table II). We also compare with the cor-
responding results from the Hartree-Fock calculation,
which for meaningful comparison have also been calcu-
lated on 8 x 8 lattices and with periodic (antiperiodic)
boundary conditions in the x direction (y direction). In
the Hartree-Fock calculation, it is easy to investigate the
finite-size effect. We find that for the values of U in the
tables the effect of going to larger lattices occurs in deci-
mals not displayed in the tables. For U & 3 the size effect
becomes significant. We expect the finite-size efFect to be
roughly the same in the VMC calculation as in the HF
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TABLE I. Variational Monte Carlo (VMC) results for to-
tal energy per site E/N„helicity modulus p„and sublat-
tice magnetization (8+) for the repulsive Hubbard model at
half-filling in zero magnetic field (h = 0) compared to corre-
sponding Hartree-Fock (HF) results (below VMC results be-
tween brackets). Both VMC and HF results are obtained on
8 x 8 lattices with periodic boundary conditions in the x direc-
tion and antiperiodic boundary conditions in the y direction.
The optimal parameters g and 4 used in the Gutzwiller wave
function (see text) are also given. For the HF wave function

g = 1. All quantities except g are in units of the hopping
integral t.

E/N, —

U E/N—, h/2

1.000
(0.958)

0.183 0.26
(0.181) (0.28)

0.67 0.35(4) 0.28(3)
(0.828) (0.356)

TABLE II. As Table I, but for magnetic field h = 0.34.
In this case, the Gutzwiller and Hartree-Fock wave functions
contain an extra parameter h/2 (see text). Indicated in brack-
ets after the VMC results for K and h/2 are the statistical
errors in the last displayed digit for these quantities. All other
VMC quantities have a statistical error smaller than 1 in the
last displayed digit.

0.993
(0.948)

0.842
(0.797)

0.188
(0.183)

0.172
(0.165)

0.24
(0.28)

0.30
(0.34)

0.69

0.64

0.32
(0.84)

0.48
(1.38)

0.854
(0.809)

0.736
(0.695)

0.569
(0.538)

0.169 0.31
(0.163) (0.34)

0.154 0.35
(0.146) (0.38)

0.122 0.41
(0.117) (0.42)

0.63 0.50(7) 0.38(3)
(1.357) (0.456)

0.62 0.76(2) 0.38(1)
(1.898) (0.561)

0.51 1.02(6) 0.50(5)
(2.970) (0.822)

0.724
(0.682)

0.554
(0.522)

0.493
(0.466)

0.156
(0.148)

0.127
(0.120)

0.117
(0.109)

0.36
(0.39)

0.42
(0.43)

0.43
(0.45)

0.61

0.53

0.49

0.78
(1.93)

1.10
(3.o3)

1.16
(3.57)

10

0.509
(0.483)

0.419
(o.4o2)

0.112
(0.105)

0.094
(0.087)

0.42
(0.44)

0.44
(0.45)

0.47 1.14(6) 0.58(5)
(3.491) (0.983)

0.45 1.44(8) 0.54(8)
(4.500) (1.365)

10 0.400
(O.382)

0.098
(0.091)

0.45
(o.46)

0.41 1.34
(4.64)

calculation. Our results in Table I (h = 0) are in agree-
ment with those in Ref. 14, where it was also shown that
finite-size efFects are minor for U & 3 on 8 x 8 lattices
(note that the sublattice magnetization M, in Ref. 14 is
twice (8+)). From the tables one sees that for smaller
values of U, g approaches 1, indicating correctly that HF
becomes a better approximation. Also, for U -+ 0, both
the HF and the Gutzwiller wave function approach the
exact wave function so that the energy difFerence becomes
smaller. If U becomes large, the HF wave function is not
a good approximation anymore, but the distinction be-
tween HF and Gutzwiller approximation becomes small
in terms of the energy because HF already avoids double
occupation and the reduction of the wave function that
Gutzwiller adds becomes irrelevant. Therefore, also for
large U the energy difFerence between HF and Gutzwiller
becomes small. The same reasoning applies to the sub-
lattice magnetization (8+). Although the VMC result
for the energy is always lower than the HF result, the
gain is not very substantial. We remark that in going ofF
half-filling much larger gains in energy can be obtained in
going from the HF to the Gutzwiller wave function. For
instance, two of us calculated before that for a homoge-
neous system with 112 sites and 104 electrons the energy
per site decreases from —0.558 to —0.655 for U/t = 7 and

from —0.410 to —0.504 for U/t = 10.z
The new feature with respect to previous VMC calcu-

lations, apart from the generalization to nonzero mag-
netic field h, is the calculation of p, . We find that the
value of p, is increased by a small amount (of the order
of 5'Fo for 4 ( U/t ( 8) in the VMC calculation using the
Gutzwiller wave function as compared to the Hartree-
Fock result. Depending on taste one can draw two con-
clusions: the HF approximation already gives a fairly
accurate value for p„or the Gutzwiller wave function
does not improve very much on the HF wave function.
In other words, it is still possible that introducing other
types of correlations in the wave function will change p,
more drastically, but we have shown that the HF value
for p, is fairly insensitive to the Gutzwiller-type of cor-
relations.

IV. OPTIMAL SVPERCONDUCTING CRITICAL
TEMPERATURE IN. THE ATTRACTIVE

HUBBARD MODEL

The helicity modulus p„ for instance, as calculated in
Sec. EI, may be used to obtain an estimate of the critical
temperature T, for superconductivity in the attractive
Hubbard model for arbitrary values of the interaction
strength U/t and arbitrary electron density n Abrief.
account of this procedure was given before. ~

In this section on the attractive Hubbard model we
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can use the formulas derived in Sec. II for the repulsive
Hubbard model if some "translations" are made. Ac-
cording to the "spin-down particle-hole" transformation
one must replace in (37), (40), (41), and (48) the mag-
netization m by the deviation from half-filling n —1 and
the effective Zeeman field h/2 by the effective chemical
potential p [see (19) and (20)].

For weak attraction, the Hartree-Fock approximation
is a good approximation and for the Hubbard model on a
square lattice gives results that are qualitatively similar
to the results of the BCS theory for superconductivity
(see, e.g. , Ref. 23). For instance, for small ~U~/t the
gap parameter at zero temperature 4(0) decreases expo-
nentially for decreasing ~U~/t. From (40) and (41) one
obtains

0) 32ge
— g/I I for n=1, (79)

a(O) = 9~e (80)

The critical temperature for superconductivity T, (HF)
follows from (40) and (41) with the additional condition
E(T,) = 0. We find A(0)/k~T, = 1.80 in the small-U
limit, whereas standard BCS theory gives 1.764 for this
ratio. The temperature dependence of the gap near T, is
given by

for n = 0.5.

(81)

where in the small-U limit n = 1.74, exactly as in the
BCS theory. It is somewhat remarkable that this be-
havior near T, is very robust for all values of ~U~/t: in
the limit of ~U~/t —+ oo, n is minimal: n = ~3 = 1.73,
whereas o. reaches a maximum for ~U~/t 5.6 of only
1.75. Also, the ratio 6(0)/k~T, never exceeds the value
2, which is the limiting value for ~U~/t —+ oo.

It has been argued and illustrated by several
researchers 47 s that the BCS (or HF) approximation
to the wave function remains an appropriate form for
the wave function for all values of ~U~/t. In the large-
U regime, the wave function would then describe a gas
of tightly bound electron pairs which will exhibit local
pair (LP) or bipolaronic superconductivity. The super-
conducting transition then corresponds to the superfluid
transition of a hard-core Bose gas of such pairs (no two
pairs may occupy the same site because of the Pauli ex-
clusion principle). Since in the limit of strong attrac-
tion the model can be mapped onto a pseudo-spin-model
with efFective interaction constant J = 4t /~U~, T, (pro-
portional to J) (Ref. 7) will decrease for increasing ~U~/t'

and can no longer correspond to T, (HF) (which increases
linearly with ~U~/t). For larger ~U~/t, low-energy excita-
tions will destroy the order for a much lower temper-
ature than T,(HF), which is the temperature at which
the now tightly bound pairs break up. The evolution
from Cooper-pair superconductivity for small U to LP
superconductivity for large U is thought to be smooth.
Since both in the small- and large-U limit T, vanishes,
evidently there must be an optimal T, for an intermedi-
ate value of ~U~/t. In this section, we present a scheme
from which for the Cooper-pair superconductor, the LP
superconductor, and everything in between the critical

temperature can be extracted. This scheme makes use of
the helicity modulus.

The low-energy excitations that destroy the order for
a lower temperature than T,(HF) can be thought of as
fluctuations of the order parameter which have been ne-
glected in the HFA. Here, we consider fluctuations in the
phase of the order parameter. Then we have a model
similar to that of XY ferromagnetism, where the com-
plex gap field A~ is the equivalent of an X'Y spin. For
low enough T, the system is in a ferromagnetically or-
dered state (i.e. , constant Az), whereas for higher tem-
perature in two dimensions a Kosterlitz-Thouless (KT)
phase transition arises. s The KT transition corresponds
to the binding/unbinding of certain spin configurations
called vortex-antivortex pairs, which correspond in the
negative-U model to certain configurations of the L~ in-
volving only phase fluctuations. Thus, in this view, the
superconducting state of the attractive Hubbard model
is a KT phase, with corresponding algebraically decaying
correlations. Exactly at the transiton temperature T,
the following relation with the spin-stiffness or helicity
modulus holds:

(82)

Here, p, is the value just below the critical temperature.
Since p, vanishes above T, and (82) is independent of
other system parameters, this relation describes a uni-
versal jump in the superfluid density at T, in the theory
of thin superfluid helium films. 2s Although the helicity
modulus in (82) is a renormalized quantity and the he-
licity modulus p, discussed in the preceding sections is
unrenormalized, we consider p, as calculated by us in the
HFA as a good approximation to the renormalized p, .
Thus we can extract an approximate T, . The critical
temperature T, for a KT transition in the negative-U
Hubbard model is then defined as the temperature where
the relation (82) for p, and the computed p, (T) coincide
(see Fig. 2). We can carry out this procedure relatively

Ps

Tc Tc(HF) T

FIG. 2. Schematic representation of the procedure to ex-
tract the Kosterlitz-Thouless critical temperature T, from
the computed helicity modulus p, (T) for a wavelike distortion
of the homogeneous ground state. p, (T) vanishes at the criti-
cal temperature T,(HF) of the Hartree-Fock theory. T, fol-
lows from the intersection of p, (T) with the "universal-jump"
relation p, (T,) = (2/vr)k&T, from KT theory
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easily for arbitrary combinations of the parameters ~U~/t
and density n. As in the case of positive U (for which the
formulas were given in Sec. II), there is a slight compli-
cation in that in calculating p, (T) for fixed ~U~/t and n
(which are the physical parameters), for every new T the
parameters 6 and P have to be adjusted according to (40)
and (41). In this way, the critical temperature for super-
conductivity T, is indeed always smaller than T,(HF);
the reduction is very small for small ]U~ [p, (T = 0) is
sizable but drops off to zero rapidly] and very large for
large ~U~ [p, (T = 0) is small but practically constant up
to the intersection point].

In Fig. 3(a), T, /t as a function of ]U~/t is shown
for three values of the filling (n = 1, n = 0.5, and
n = 0.1, respectively). For small ~U~, T, is only reduced
by a small amount compared to standard BCS theory,
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FIG. 3. Phase diagram of the 2D negative-U Hubbard
model on a square lattice. (a) T, /t as a functioii of ~U~/t

for three difFerent fillings (n = 1, n = 0.5, and n = 0.1, respec-
tively). For comparison are shown T, (HF)/t [or equivalently
T (BCS)/t; dashed line] and the functional form mt/2~ U~ (dot-
ted line) to which T /t approaches (for half-filling) for small

~U] and large ~U~, respectively. (b) T, /t as a function of
electron density n for U/t = —2, —4, and —7.5. The quantum
Monte Carlo results of Ref. 31 for U/t = —4 are denoted by
triangles (sea the discussion in Sec. V).

@B+c = 0 898JNN (83)

Again this procedure to extract T, is not rigorous, since
in our system of phase-fI. uctuating 4, the interaction is
not restricted entirely to nearest neighbors. We have ver-
ified, by also computing the energy of a "Neel configura-
tion" of 4, , that for ]U~/t ) 3 the next-nearest-neighbor
coupling JNNN is always smaller than JNN by a factor of

whereas for very large [U~ a T, proportional to t /~U~ is
indeed found, as expected because of the connection with
a pseudo-spin-model with J = 4t /~U~. In Fig. 3(b), T,/t
is shown as a function of n for ]U~/t equals 2, 4, and 7.5.
Figure 3(b) can be extended to 1 ( n ( 2 since, be-
cause of particle-hole symmetry, T,(n —1) = T, (1 —n).
Therefore, within the approximations that were made,
we obtain the phase diagram of the 2D negative-U Hub-
bard model for the whole range of interaction strengths
~U~/t and electron densities n. The maximum T, of 0.25t
occurs for ~U~/t = 4 and n = 1. For large ~U~, the ratio
6(0)/k~T, is of course much enhanced as compared to
the BCS (or HF) result; e.g. , in case of the optimal T,
(~U~/t = 4) A(0)/k~T, = 11.1, whereas for ~U~/t = 3
this ratio equals 7.3.

A deficiency of our result is that T, does not vanish at
half-filling, where one would expect that the Heisenberg
symmetry, which the system possesses at half-filling, does
not allow for the KT phase and therefore gives T, = 0.
The vanishing T, is a result of the delicate symmetry
between charge density and pairing correlations at half-
61ling. It is not surprising that we do not recover this fea-
ture since our procedure cannot easily accommodate the
additional symmetry which arises at half-611ing, where
the XY symmetry we use for all n is extended to the
higher Heisenberg symmetry. A small amount of doping
already destroys the Heisenberg symmetry and results in
a finite T~; also a small deviation from ideal two dimen-
sionality results in a finite T, . Therefore our results are
expected to be good already for a small deviation from
half-Ailing, which in our calculation does not alter T, very
much [see Fig. 3(b)], but we miss the logarithmic drop to
zero when approaching half-filling.

Another point of concern regarding our procedure is
that we have borrowed the relation k~T, = (vr/2) p, from
the exact, renormalized KT theory, whereas our calcu-
lated p, is unrenormalized. The fact that p, is unrenor-
malized will decrease the estimate for T, ; the results
we give are upper bounds in this respect. 6'26 We have
investigated this effect by studying another, inhomoge-
neous, excitation of the ground state with constant 4, .
We compute by exact diagonalization of the Bogoliubov-
deGennes equations (23) and (24) on small lattices (8x 8)
the excitation energy AE of turning one A; to —4, as a
function of ~U~/t (for half-filling and T = 0). This raise
in energy we relate to a nearest-neighbor interaction con-
stant JNN between (ferromagnetic) A Y spins by equating
AE to 8JNN. Subsequently, we use the relation between
the interaction constant JNN and the critical tempera-
ture T, for the phase transition in the two-dimensional
XY ferromagnet (with nearest-neighbor coupling only)
as found in recent Monte Carlo calculations: 7
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TABLE III. Critical temperature T, for a Koster-
litz-Thouiess (KT) type of phase transition for a system of
phase-Buctuating gap parameters 4 as a function of U at
half-filling and zero magnetic field. If the system is taken to
be identical to a nearest-neighbor ferromagnetic XY model,
i"sT, = 0.898JNN (taken from Ref. 27), with JNN the cou-
pling constant. The calculation of JNN is explained in the
text. If the system is taken to obey the universal-jump rela-
tion of KT theory, k&T, is obtained using a Hartree-Pock
calculation of the helicity modulus p, (T) by an intersection
procedure (see Fig. 2). For comparison p, (T = 0) is listed
in the last column; p, (T = 0) and JNN become equal in the
limit of large U. All results in the table are obtained on 8 x 8
lattices and are in units of the hopping integral t. 2

lim — yRpz(q, ~) = p, q + O(q ).4
4J ~OO

(84)

for the doped negative-U model obtained in this paper.
First, we discuss results to be compared with p, and later
on results to be compared with T, .

We have found that p,—as calculated in the HFA in
Sec. II for the repulsive case for half-filling and arbitrary
U/t, T, and h—for the special case of T = 0 and h = 0
coincides exactly (for all values of U/t) with a particu-
lar long-wavelength large-frequency limit of the dynamic
transverse susceptibility y+ (q, w) as calculated in the
random-phase approximation (RPA):

JNN

WAXY

p, (T = 0)

0.8
1.0
1.2
1.4
1.6
2.0
2.4
3.0
3.3
3.6
4.0
5.0
6.0

2.87
3.27
3.65
4.02
4.40
5.12
5.85
6.95
7.50
8.05
8.80

10.68
12.59

0.0750
0.1020
0.1310
0.1376
0.13?4
0.1334
0.1270
0.1160
0.1106
0.1056
0.0990
0.0852
0.0742

0.067
0.092
0.118
0.124
0.123
0,120
0.114
0.104
0,099
0.095
0.089
0,077
0.067

0.224
0.244
0.251
0.251
0.245
0.230
0.213
0.190
0.180
0.170
0.159
0.136
0.118

0.183
0.177
0.171
0.164
0.158
0.146
0.135
0.121
0.114
0.108
0.101
0.086
0.075

at least about 2 (JNNN can have either sign). In Table
III, we compare T, + with TK obtained by the inter-
section procedure using p, from the HFA We al. so list

p, (T = 0) as calculated in the HFA. For better compar-
ison, both T, and p, (T = 0) have been calculated on
sxs lattices. For the range of values of U considered the
finite-size efr'ect is negligible. From the table it is clear
that T, is smaller than T, by a factor of about 2 for
most of the U values considered. Note that like T,
T, + goes through a maximum, which furthermore oc-
curs for about the same value of ~U~/t. However, Tx+
drops off much more rapidly for decreasing ~U~/t. We
also note that p, (T = 0) does not go through a maxi-
mum; the nonmonotonous behavior of T, is due to our
intersection procedure. The fact that both critical tem-
peratures show the same qualitative behavior can be seen
as a sign of the consistency of our arguments. Finally,
we note that in the large-U limit p, (T = 0) and JNN
coincide.

V. CONNECTION WITH PREVIOUS
APPROACHES AND DISCUSSION

Several results obtained in the literature on the two-
dimensional Hubbard model can be related to results for
the helicity modulus p, and the critical temperature T,

This specific limit can be shown to be equal to the first
moment (a) of the dynamic structure factor S~(q, w)
associated with spin-spin correlations, a relation known
as the f-sum rule. 2 Equation (84) is derived in detail
in Appendix B, starting from the RPA calculations as
published before by several groups. i In Ref. 12, the
large-U limit of the f-sum rule was found to be (~) =
q2t2/U, in agreement with (84) (see Appendix B). Our
results for p, generalize the f-sum rule for the positive-U
Hubbard model at half-filling to arbitrary U/t.

Our result for the optimal critical temperature for su-
perconductivity in the attractive Hubbard model can
also be brought in connection with results in the lit-
erature. A large number of papers has been devoted
to the question of a smooth transition from a BCS-like
superconducting-normal transition for small U to a Bose-
Einstein-like superfluid-normal transition (or local-pair
superconductor-normal transition) for large U. 7

In some of these papers even a qualitative phase diagram
like Fig. 3 is drawn. " We have given a quantita-
tive scheme from which T, can be found for arbitrary
~U~/t and arbitrary density. This scheme is based on
the helicity modulus, which we have calculated using two
well-defined approximations. We also compared the ap-
proximated p, with more exact calculations (see above),
showing that the HFA results for p, are fairly accurate.
The weakness of our approach to extract T, lies in the
fact that we invoke exact theories like that of Kosterlitz
and Thouless or results from accurate Monte Carlo cal-
culations on the ferromagnetic XY model which are not
exactly applicable to our model. For instance, the "uni-
versal jump" relation (82) from KT theory holds exactly
only for the case that the core energy E, associated with
a vortex is infinitely large. If not, T, will be lower. For
instance, the ferromagnetic XY model on a square lattice
has a finite E,. It would be interesting to see what would
be the core energy for vortices in a system of gap param-
eters which are phase fIuctuating over the lattice. That
indeed the actual T, for the Hubbard model can be much
lower than extracted from p, HFA we already sho~ed in
Sec. IV, by finding T, from an effective nearest-neighbor
coupling constant for a ferromagnetic XY model. There-
fore, although we cannot claim any degree of exactness of
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our result for T„we speculate that the HFA results for
p, lead to an approximation for T, , which will not have
to be adjusted downward by a factor of more than about
3 (for densities 1n —11 ) 0.1 and arbitrary U). Further-
more, our approximation to T, can be evaluated readily
for the whole parameter space (U/t, n). In view of the
above, the rather large difference between our result for
T, and that of quantum Monte Carlo (QMC) calculations
[Ref. 31 and Fig. 3(b)] is not distressing. Furthermore,
although QMC calculations are arbitrarily accurate in
principle, T, does not follow from them directly; T, was
extracted from the behavior of pairing correlations fitted
to expected Kosterlitz-Thouless behavior. However, it is
not obvious that the correlation function will follow KT
behavior on the small lattices of maximally 8 x 8 that
were used and therefore the exact T, may differ from the
QMC result. An additional drawback of QMC calcula-
tions is that it is very time consuming to compute T, for
more than a few points in the parameter space (U/t, n).

For completeness we note that recently an optimal T,
for superconductivity was found in the Gorkov model of
fermions with an attractive short-range interaction in two
dimensions. This model can be seen as an analog of the
Hubbard model for the case that the fermions are not re-
stricted to a lattice. The optimal T, is obtained using a
procedure similar to ours; first a Ginzburg-Landau theory
is constructed describing the crossover from BCS super-
conductivity to Bose superfluidity and then the Monte
Carlo result of Ref. 27 for the nearest-neighbor 2D XY
model [see (83)] is used to extract T, . An important dif-
ference with our approach is that in Ref. 32 the superfluid
density p, is identified directly with the interaction con-
stant JNN in the XY model. As can be seen from Table
III, we find this identification to be correct only for large
values of 1U1/t.

In conclusion, we have presented detailed calculations
using a variety of approximations of the helicity modulus
in both repulsive (at half-filling) and attractive (in mag-
netic field zero) Hubbard models. We furthermore use
the helicity modulus to extract a critical temperature
for superconductivity in the attractive Hubbard model
for arbitrary density and arbitrary interaction strength
which correctly interpolates between weak- and strong-
coupling limits. Using the Hartree-Fock approximation
for p„which we have shown to coincide with the re-
sult in the random-phase approximation for p„and the
universal-jump relation from Kosterlitz-Thouless theory,
an optimal T, of 0.25t is found for U/t = —4. We have
given estimates of the deviation of this result from the
(unknown) exact result. Finally, we have extensively
compared our results for p, and T, with results in the
literature on the Hubbard model.

Note added. After completion of our work a paper by
Scalapino, White, and Zhang appeared33 which expresses
the belief that the Drude weight equals the superfluid
weight in the superconducting state (see also Ref. 28). If
this belief is borne out, the possibility is opened of com-
paring our calculations for p, with the extensive exact
diagonalization calculations of the Drude weight in the
negative-U Hubbard model of Ref. 34. This possibility is
presently being investigated by us.
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APPENDIX A

(A3)

where P = 1/k~T and Z is the partition function:

Z = Tr(e i'~). (A4)

The minimum value E[p] attains is exactly the free en-

ergy:
F = —kggTlnZ. A

Now we consider the Hartree-Fock approximation to
the Hubbard Hamiltonian (1) which allows for antiferro-
magnetic ordering, i.e. , allowing for nonvanishing aver-
ages (S, ) besides nonzero averages (n, ). The approx-
imated Hamiltonian is given by [as in Sec. II; see (13),
but now with temperature-dependent fields]

with the Hermitian matrix H,~ j given by

her
H, ~

= t ~+1 U(n, —)p— )
—U(S, )pbi~b (A7)

At this point the fields (S, )p and (n, )p are just pa-

We show that at finite temperatures the Hartree-Fock
approximation (HFA) can be formulated as a variational
search for self-consistent fields (n, )p and (S, )p, where
the subscript denotes the temperature dependence of the
fields. For finite temperatures, the quantity to be mim-
imized turns out to be the Hartree-Fock (HF) free energy
Fiick (to be defined below); moreover optimal fields (A) p
turn out to be given by HF averages:

(A) p = Tr(piipA).

In (Al), pili; is the density matrix associated with the
Hartree-Fock approximation to the Hamiltonian (to be
defined below). This variational principle thus general-
izes the T = 0 HFA of Sec. II A to finite temperatures.

Consider the functional X[p]:

P[p] = Tr(p'8 + kriTpln p), (A2)

working on the space of normalized N-body density oper-
ators p (Trp = 1). Using the normalization of the density
operator, it follows that P[p] is minimized by the Boltz-
mann operator
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rameters, which will be identified with averages below.
The one-electron HF energies e(k) follow from the HF
equations [cf. (8)]:

).~'-, ~ &~- (k) =~(k)4'-(k) (A8)

&[PHF] = +HF~ (A9)

which is a special property of the HFA and not true for
an arbitrary approximation to the Hamiltonian. Using
(A6) and evaluating the trace in the basis of the 2N,
eigenstates of H,~~ (N, is the number of sites of the
lattice), the HF free energy is

FHF = ——) ln I+e-i'~"l

—U).(( ' ) ( ') —(S,+) (S, ) ) (A10)

Considering the fields (S, )p and (n, )p as four inde-
pendent parameters one straightforwardly finds the fields
that optimize FHF. As an example we take (n, t )p. From
(A10) one finds

We now proceed to show that the fields (S, )p and
(n, ) p that optimize the HF free energy FHF [defined by
(A5) using 'MHF in (A4) to obtain ZHF] also optimize
E[p]. In other words, we show

explicit dependence of H, ~ on (n;y) p needs to be taken
into account:

Be(k) ) - . („)BHi, , („)B(~.T)i,...,
' B(~.t)p "

= U14"i(k) I'. (A13)

Applying similar considerations to the other fields, one
arrives at the following consistency equations for the
fields:

(&* )p = ).I&* (k) I'&(k)

(S, )p =) P; (k)P, (k)n(k).

(A14)

(A15)

(n,~)HF = Tr(pHFii, ~) = (ri,~)p

(s, )HF:—T (pHFS, ) = (S, )~.
(A16)
(A17)

Using the definition of the free-energy functional E[p]
(A2), one finds that

+[pHF] Tr [pHF(+ +HF)] + +HF. (A18)

Note that Eqs. (A14) and (A15) are straightforward
finite-temperature generalizations of Eqs. (9) and (10).
Working again in the basis of eigenstates of H, ~, one
easily verifies that the finite-temperature Hartree-Fock
averages of n; and S, are given precisely by the fields
in (A14) and (A15):

where n(k) is the Fermi-Dirac distribution:

(A11) The difference between the original and HF Hamiltonian
is found just in the on-site interaction term. Evaluating
the HF average of this difference, while invoking Wick's
theorem to show that

- —1
n(k) = I+.P ~"l (A12) (&']'&'t. )HF (&'1')HF(%J)HF (S' )HF(S' )HF (A19)

For the derivative of e(k) we use (A8), in which only the one obtains for arbitrary (S, )p and (n, )p

(+ +HF)HF = U) [((&'t')HF (ii'T)P)((&'J)HF (&'J)P) ((S )HF (S )P)((S' )HF (S )P)] ~ (A20)

Obviously the optimal fields, which obey (A16) and
(A17), make the HF average of the difference zero, but,
furthermore, adding (A20) to FHF will not change the
optimization equations (A14) and (A15) since the added
term is quadratic in the deviations. Therefore, the opti-
mized fields of the HFA optimize FHF and P[pHF] at the
same time.

APPENDIX B

random-phase approximation (RPA). More specifically,
we show

(d
lim — y+ (q, ~) = p, q +O(q ). (B1)

The RPA was applied to the positive-U Hubbard model
at half-filling in zero magnetic field by several groups.
Here we follow Ref. 12, in which the following expres-
sion for the dynamic transverse susceptibility is given (we
omit the so-called umklapp branch, since we will be in-
terested in the small-q limit):

We show that the helicity modulus as obtained in the
Hartree-Fock approximation in Sec. II, Eq. (48), is iden-
tical to a small-wave-vector, large-frequency limit of the
dynamic transverse susceptibility as calculated in the

gll —U(gllX22 —+12+21)x+ (q, ~) =
(1 —UXil) (1 —UX22) —(UXi2) 2'

where

(B2)
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xii(q~~) = 2~). I
1 —

E I (f +f+)
1

P
2N - ( E+

parameter A. This is not obvious from the sum on first
inspection; however, one may use the identity

Xi2(q, ~) =2~).' E E (f —-f+)
p

xzi(q, ~) = xi2(q, ~)
x22(q, ~) =xii(Q —q, ~)

(B5)
(B6)

(& —2e2~) sin p e cosy
E5 2E3 (B15)

[+(p)] =—~ ) +(&) (B16)

where we have taken t = 1 and introduced the notation

fy =—(E++ E +~)
E~ —— ez~+ ~a]',

p+q/2~

ep = —2t(cos pz + cos py).

(B8)

(B9)
(B10)

Note that e~ is the g = 0 expression for e~. Analogously,
the q = 0 expression for E~ is denoted by Ep:

The prime on the summation indicates the restriction to
the magnetic Brillouin zone (MBZ): pz +p„e [

—vr, vr] and
Q = (a, vr) Th.e following abbreviations are introduced:

The identity (B15) may be proved by noting that the
summand is a derivative with respect to pz of a function
that is periodic in p . Using (B12) and (B13),we obtain
the desired limit as

(d
lim — X+ (q, to) =26 yq +O(q ). (B17)

We now proceed to show that the prefactor of the q2

term in (B17), 26zy, is exactly p, as calculated in the
HFA, formula (48), for T = 0 and h = 0. Using the
notation introduced above, for this case p, is given by

Ep —— ez + ~K~2. (Bll) p, (T =O, h=0) = (B18)

First, we consider the large-u limit. The only frequency
dependence is in the functions fy. Because for large fre-
quencies Xii and X2z are proportional to w and Xiz is
proportional to cu, we can neglect the product yqqy22
in the numerator. Second, the leading term of the denom-
inator in the large-u, small-q limit is just 1. Therefore,
we require only the limiting behavior of xii and xi'. Af-
ter a straightforward, but tedious, calculation one finds
to leading order for large cu and small q

Note that in (48) a sum over the full Brillouin zone ap-
pears, whereas here we have a sum over the MBZ. For
summands which are (i) invariant under interchange of
pz and py and (ii) invariant under a simultaneous change
of sign of all sines and cosines the sum over the full BZ
is twice the sum over the MBZ. To derive (B18) we have
made use of this property. Finally, to prove (Bl) we use
an identity similar to (B15),which is proved analogously.
With the identity

462 (1Xii= z I U+W
2

+12 —+21 ~U'

sin pz e~ cos pz
E3 2Ep

(B13) it follows easily that

(B19)

where y is given by the following sum over the MBZ: p, (T = 0, h = 0) = 2b, zy, (B20)
2 ~ 2

&scn p~
E3

p p
(B14)

We remark that the q /u term in Xi2 is proportional to
a sum over the MBZ which vanishes for all values of the

which together with (B17) proves (Bl). Our result in-
cludes the large-U limit discussed in Ref. 12: (to)
(J/4)q2, where J = 4t2/U is the effective interaction
constant for large U. In that limit, one finds from the
above that p, = 262y = t /U = J/4.
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