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Strong-coupling expansion for the Hubbard model in arbitrary dimension using slave bosons

P. J. H. Denteneer*
Instituut-Lorentz, University of Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

~Received 20 November 1995!

A strong-coupling expansion for the antiferromagnetic phase of the Hubbard model is derived in the frame-
work of the slave-boson mean-field approximation. The expansion can be obtained in terms of moments of the
density of states of freely hopping electrons on a lattice, which in turn are obtained for hypercubic lattices in
arbitrary dimension. The expansion is given for the case of half-filling and for the energy up to fifth order in
the ratio of hopping integralt over on-site interactionU, but can straightforwardly be generalized to the
non-half-filled case and be extended to higher orders int/U. For the energy the expansion is found to have an
accuracy of better than 1% forU/t>8. A comparison is given with an earlier perturbation expansion based on
the linear-spin-wave approximation and with a similar expansion based on the Hartree-Fock approximation.
The case of an infinite number of spatial dimensions is discussed.

I. INTRODUCTION

If the physics of strongly correlated fermions is to be
described by the Hubbard model,1 electronic structure calcu-
lations for the cuprates indicate that the relevant parameter
regime is where the on-site interactionU is comparable to or
larger than the bandwidthW of freely hopping electrons.2 A
natural strategy to try to describe this regime is to approach
it from the two limiting cases of weak coupling (U!W) and
strong coupling (U@W). The simplest mean-field approxi-
mation for the Hubbard model, the Hartree-Fock approxima-
tion ~HFA!, is at first sight a weak-coupling approximation,
although, with some care, a reasonable description of the
strong-coupling regime can also be given.3–6 Strong-
coupling approaches have mainly been devoted to the one-
dimensional case~see, e.g., Ref. 7! and often take the limit
U→`.8 A somewhat more sophisticated mean-field approxi-
mation, namely, that based on the slave-boson formulation
due to Kotliar and Ruckenstein,9 is in principle not restricted
to weak or strong coupling. In fact, it was shown that this
so-called slave-boson mean-field~SBMF! approximation is
equivalent to the Gutzwiller approximation to the Gutzwiller
wave function,10 the latter of which improves upon the HFA
especially in theintermediate-couplingregime. This SBMF
approximation then allows us to approach the interesting
intermediate-coupling regime from the strong-coupling side.
Such an approximate strong-coupling approach can be par-
ticularly helpful since more rigorous quantum Monte Carlo
calculations become increasingly cumbersome for stronger
coupling.11

In a previous work,12 we compared the HFA and SBMF
approximations for various simple magnetic phases, as well
as computed the effective hopping and spin stiffness for the
two-dimensional~one-band! Hubbard model. In this paper, I
derive a large-U expansion within the SBMF approximation
for the Hubbard model inarbitrary dimension. Here I restrict
myself to the antiferromagnetic phase at half-filling, but the
extension to doping the antiferromagnet with electrons or
holes is straightforward~though tedious!.

In Sec. II, the slave-boson mean-field approximation is
briefly introduced, and the resulting set of integral equations

for the antiferromagnetic phase is given. A large-U expan-
sion is derived in Sec. III in terms of moments of the density
of states for freely hopping electrons on a lattice, and com-
pared to earlier numerical and analytical work in the litera-
ture. In Sec. IV, the expansion is made explicit for hypercu-
bic lattices of arbitrary dimension. Finally, I discuss the
convergence of the series and possible extensions. The Ap-
pendix contains useful formulas for the moments of the
above-mentioned density of states.

II. SLAVE-BOSON MEAN-FIELD APPROXIMATION

The Hubbard Hamiltonian is1

Hh52t (
j ,d,s

cj1d,s
† cjs1U(

j
nj↑nj↓ , ~1!

wherecjs is the annihilation operator for an electron at sitej
with spins. Neighboring sites of sitej are denoted byj1d.
t is the hopping integral,U the on-site interaction between
electrons of opposite spin, andnjs5cjs

† cjs is the occupation
number operator. The slave-boson approach of Kotliar and
Ruckenstein consists of introducing bosons for each of the
~four! possible electron occupancies of a site. The electron
creation and annihilation operators are then modified such
that the~one! boson corresponding to the electron occupancy
is always present at each site. In a functional-integral de-
scription of the Hamiltonian the slave-boson mean-field
~SBMF! approximation is when the Bose fields are indepen-
dent of~imaginary! time. Different phases can be considered
by assuming different forms of the position dependence of
the Bose fields. For more details see Refs. 9 and 12. The
SBMF approximation is an improvement over the Hartree-
Fock approximation since it takes some local correlations
into account; in particular, the density of doubly occupied
sites is an independent parameter to be optimized.

The set of equations describing the antiferromagnetic
~AF! phase within the SBMF is given by12

ms52l̄E
m̄

`

d«
N ~«!

~«21l̄2!1/2
, ~2!
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l̄5
2

qs
@qs#ms

E
m̄

`

d«
N ~«!«2

~«21l̄2!1/2
, ~3!

U5
@qs#d

d
E

m̄

`

d«
N ~«!«2

~«21l̄2!1/2
, ~4!

n52E
m̄

`

d« N ~«!, ~5!

where l̄ is an internal~renormalized gap! parameter;m̄ an
effective chemical potential; and the band renormalizationqs
is a function of densityn, sublattice magnetizationms , andd
~d2 is the density of doubly occupied sites!, and is given by

qs~n,ms ,d!5z~n,ms ,d!z~n,2ms ,d!, ~6!

where

z~n,ms ,d!

5
A~12n1d2!~n1ms22d2!1dAn2ms22d2

F ~n1ms!S 12
n1ms

2 D G1/2 . ~7!

@qs#a is the derivative ofqs with respect toa ~explicit ex-
pressions can be found in Ref. 12!, andN ~«! is the density
of states~DOS! of freely hopping electrons. The dimension
dependence resides solely inN ~«!, and, since this DOS ap-
plies to a noninteracting system, I will be able to derive
results for arbitrary dimension in Sec. IV~see also the Ap-
pendix!. Note that the above set of equations reduces to the
familiar antiferromagnetic or spin-density-wave~SDW! so-
lution in the HFA if qs51.3 In that case, one has one self-
consistency equation~2!, which is the gap equation withl̄ as
the gap parameterD~[Ums!, instead of three self-
consistency equations~2!–~4!.

The energy of the AF state~per site! and the spin stiffness
rs are given by

eAF522qsE
m̄

`

d« N ~«!A«21l̄21Ud21l̄qsms , ~8!

rs5
qs

4
E

m̄

`

d«
N ~«!«2

~«21l̄2!1/2
2

z1
2 z2

2

qs
E

m̄

`

d«
N v~«!«2

~«21l̄2!3/2
.

~9!

N v~«! is the weighted DOS, which, as well as the combina-
tion z1z2 , is specified in Ref. 12. I will not repeat the ex-
pressions here, since I will now restrict to half-filling~m̄50,
n51!, for which casez1z2 equals zero. For half-filling, the
band renormalization reduces to

qs~1,ms ,d!5
2d2@A122d21ms1A122d22ms#

2

12ms
2 . ~10!

III. LARGE- U EXPANSION IN TERMS OF MOMENTS

The above set of equations~2!–~5! can be solved numeri-
cally if the DOS for freely hopping electrons is given. For
instance, in two dimensionsN ~«! is known analytically,
and numerical solutions to~2!–~5! were obtained in Ref.

12. Now I will derive solutions to~2!–~5! for n51 in the
form of a systematic series expansion in 1/U. This expansion
is derived in two steps:~i! From the explicit form of the
equations above~or from numerical solutions! it can be seen
that largeU corresponds to largel̄. Therefore, I first make a
large-l̄ expansion for all quantities of interest. Subsequently,
~ii ! the l̄ expansion forU @following from Eq. ~4!# is in-
verted and substituted in the large-l̄ expansion for all rel-
evant quantities obtained before. In this way, one obtains the
desired large-U expansion.

By expanding the square root in the denominator of
the integrals in~2!–~5! for l̄@«, one obtains a large-l̄ ex-
pansion in terms ofmoments Mn of the DOS:

Mn5E
2`

`

d« N ~«!«n. ~11!

After some work one arrives at the following expansions in
q[1/l̄:13

ms512 1
2M2q

21 3
8M4q

42 5
16M6q

61 35
128M8q

81O~q10!,
~12!

d5 1
2AM2q2

4M2
213M4

16AM2

q31
AM2

16 FM2
21 13

2 M42
9M4

2

16M2
2

1
5M6

2M2
Gq52 1

2048M2
5/2 @192M2

61368M2
4M4

1364M2
2M4

2127M4
31736M2

3M62120M2M4M6

1280M2
2M8#q

71O~q9!, ~13!

qs512
M2

4
q22FM2

227M4

16 Gq4
2F9M2

3210M2M4112M4
2/M2126M6

64 Gq61O~q8!,

~14!

U5
2

q
1 5

2M2q1F11M2
2221M4

8 Gq31O~q5!, ~15!

eAF52 1
2M2q1F3M2

21M4

8 Gq31FM2
3222M2M422M6

32 Gq5
1O~q7! ~16!

rs5
M2

8
q2FM2

212M4

32 Gq31F2M2
319M2M416M6

128 Gq5
2F9M2

4212M2
2M4126M4

2132M2M6120M8

512 Gq7
1O~q9!. ~17!

For notational convenience the hopping integralt is taken
equal to 1 in this section. Forms , d, andqs , I have listed
precisely the number of terms that is needed in order to ob-
tain the number of terms~three! that is listed forU. For eAF
and rs , terms are given that can be found using the listed
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terms forms , d, qs , andU. Note that this implies that, to
obtain the leading order inq for U, one already needs three
terms forms and two terms ford.

Inverting the expansion forU gives

q52p110M2p
31~122M2

2242M4!p
51O~p7!, ~18!

where I have introduced the notationp[1/U. Substituting
this into theq expansions, one obtains the following large-U
expansions:

ms5122M2p
22@20M2

226M4#p
42@294M2

32204M2M4

120M6#p
61O~p8!, ~19!

d25M2p
21@6M2

223M4#p
41@75M2

3270M2M4

110M6#p
61O~p8!, ~20!

qs512M2p
22@11M2

227M4#p
42@176M2

32192M2M4

112M4
2/M2126M6#p

61O~p8!, ~21!

eAF52M2p2@2M2
22M4#p

32@15M2
3214M2M4

12M6#p
51O~p7!, ~22!

rs5
M2

4
p1 1

2 @2M2
22M4#p

31 3
4 @15M2

3214M2M4

12M6#p
51O~p7!. ~23!

A consistency check on the above results is that the follow-
ing general identity still holds for the expansions above:

]eAF
]U

5d2. ~24!

Because in the SBMF at half-filling the spin stiffness is given
by 2 1

8 times the average kinetic energy,12 we also have

rs52 1
8 ~eAF2Ud2!. ~25!

Combining the latter formula with~24!, it immediately fol-
lows that the expansion forrs follows directly from the ex-
pansion foreAF , as is also seen in the way the expansions are
written above.

It is of some interest to compare the present result with
results from the HFA and other expressions in the literature.
It is far easier to derive the corresponding expression to~22!
in the HFA since there is only one consistency equation~the
gap equation! instead of three, and there is no band-
renormalization functionqs which requires perturbative ex-
panding. Following the same procedures as for the SBMF,
for the HFA I find

eAF52M2p2@M2
22M4#p

32@4M2
326M2M412M6#p

5

1O~p7!. ~26!

Comparing with~22!, one sees that the HFA and SBMF give
the same coefficient for the leading-order contribution, but
that there are differences for the higher-order contributions.
Note also that for higher-order contributions the term in the
coefficient involving the highest moment agrees between the
HFA and SBMF. Since the moments are always positive, it is
also clear that for largeU the energy in the SBMF approxi-
mation is always lower than in the HFA.

In dimensionsD52 and 3~square and simple cubic lat-
tices!, the results can also be compared with a large-U ex-
pansion by Takahashi.14 He derived a rigorous expansion
~i.e., without making approximations! for the half-filled Hub-
bard model in terms of spin-correlation functions of thes5
1
2 Heisenberg model. These correlation functions are then
evaluated using the linear-spin-wave~LSW! approximation.
Below, the results of the latter approach are compared to
those of the HFA and SBMF forD52 and 3~the necessary
moments are easily evaluated and may for instance be found
in the Appendix!:

HFA
SBMF
LSW

D52
24p120p32192p51••• ,
24p14p31256p51••• ,

24.63p134.6p31••• ,

D53
26p154p321344p51••• ,

26p118p31600p51•••
26.58p165.6p31••• .

~27!

It is clear that for large enoughU the LSW expansion will
give the lower energy. The leading-order coefficient is pro-
portional to the ground-state energy of thes5 1

2 Heisenberg
antiferromagnet, which is known to be very well approxi-
mated by the LSW.15,16 The HFA and SBMF just reproduce
the mean-field result for the leading-order coefficient. In
view of the fact that the SBMF is an improvement over the
HFA, it is somewhat remarkable that the HFA results for the
next-to-leading order resemble the LSW results more than
the SBMF results do. Also, the different sign of the coeffi-
cient of p5 between the HFA and SBMF is notable. Further
discussion of the range of validity of the expansion is given
below.

To end this section a quantitative discussion of the
large-U expansion is also given. In Table I, the ground-state
energy of the AF phase at half-filling, as obtained from the
large-U expansion within the SBMF (eAF

Uexp), is compared to
the ‘‘exact SBMF’’ result@eAF

SBMF, found by solving~2!–~5!
numerically# and to variational Monte Carlo~VMC! results
using an ~antiferromagnetic! Gutzwiller wave function
~eAF

GWVMC , from Ref. 17! for D52. ForD53, onlyeAF
Uexp and

eAF
GWVMC are compared. Note that the large-U expansion ap-
proximates the ‘‘exact SBMF’’ result very well forU/t>7; it
is expected that similar agreement is found forD53, where
it is more involved to computeeAF

SBMF sinceN ~«! is not a
known analytical function as it is forD52.18 This is consis-

9766 53P. J. H. DENTENEER



tent with the fact that from the coefficients in the explicit
expansions forD52 and 3, formula~27!, one would estimate
the series to converge well forU/t>8 andU/t>6 for two
and three dimensions, respectively. The SBMF is equivalent
to the Gutzwiller approximation to the Gutzwiller wave
function,9 and this approximation becomes exact in the limit
of an infinite number of spatial dimensions.19,20 From the
comparison with the GWVMC results it can be seen that the
approximation is already quite good forD52. In view of the
facts that forD53 a very small lattice was used in the
GWVMC calculations, and a larger lattice will even raise the
energy somewhat~the effect will be larger for smallerU!, the
agreement forD53 can even be called excellent. Thus the
clear advantage of the large-U expansion is that it can give
results that are, forU/t>8, within 1% of the ‘‘exact SBMF’’
and GWVMC calculations~which especially forD53 are
much more involved and computationally demanding! by
means of the simple formula~22!.

IV. LARGE- U EXPANSION FOR ARBITRARY DIMENSION

In the Appendix, it is shown that the momentsMn can be
obtained as a function of dimensionD @formula~A9!#. If one
substitutes these expressions into~22! and~26!, one obtains a
simultaneous 1/U and 1/D expansion for the energy of the
AF phase:

SBMF eAF52
2Dt2

U
1S 12

3

2D D 4D2t4

U3

1S 231
24

D
2
20

D2D 8D3t6

U5 1••• , ~28!

HFA eAF52
2Dt2

U
1S 22

3

2D D 4D2t4

U3

1S 2161
36

D
2
20

D2D 8D3t6

U5 1••• , ~29!

where I have again included the hopping parametert. The
above formulas are well suited to discuss the limit of an
infinite number of dimensions. This is of interest since, as
noted above, the SBMF is equivalent to the Gutzwiller ap-
proximation to the Gutzwiller wave function, an approxima-
tion which becomes exact in the limit of an infinite number
of spatial dimensions. Thus the present expansion allows us

to scrutinize the approximation explicitly for lower dimen-
sion. In order for the limitD→` to be meaningful, one has
to introduce a scaled hopping parametert*5tA2D.19 In
terms of this scaled parameter the above SBMF large-U ex-
pansion assumes the form

eAF
t*

52
t*

U
1S 12

3

2D D S t*U D 31S 231
24

D
2
20

D2D
3S t*U D 51••• . ~30!

In Table II, I evaluate~30! for D52, 3, 4, and̀ . From Table
II, one sees that for scaled interactionU*>4 ~which corre-
sponds toU/t58 for D52! the result forD52 and the
infinite-dimensional result already coincide remarkably well.
The simultaneous large-U, large-D expansion shows in de-
tail how well the Gutzwiller approximation, and therefore the
SBMF, reproduces the Gutzwiller wave function for the vari-
ous dimensions. It would have been interesting to compare
the coefficients in the present results with those obtained by
Gebhard in his 1/D expansion.20 Unfortunately, a direct com-
parison is not meaningful, since Gebhard only considers the
paramagentic Gutzwiller wave function and does not treat
the antiferromagnetic phase at half-filling in a 1/D expan-
sion.

V. DISCUSSION AND CONCLUSIONS

There is no fundamental reason why the large-U expan-
sion given here cannot be extended to higher orders int/U.

TABLE I. Numerical results atD52 and 3 for the ground-state energy of the antiferromagnetic phase at half-filling.eAF
Uexp is evaluated

using the large-U expansion~22!, andeAF
SBMF is obtained from~8! after solving~2!–~5!. The GWVMC results are taken from Ref. 17, and

were obtained on 20320 and 63636 lattices forD52 and 3, respectively. Between brackets the statistical error in the last digit is given.

U

D52 D53

2eAF
SBMF

2eAF
Uexp 2eAF

GWVMC
2eAF

Uexp 2eAF
GWVMC

6 0.623 639 0.615 226 0.629~3! 0.8395 0.886~5!

8 0.485 104 0.484 375 0.493~3! 0.6965 0.704~7!

10 0.393 528 0.393 440 0.401~4! 0.5760 0.579~6!

12 0.330 002 0.329 990 0.336~5! 0.4872 0.491~7!

16 0.248 782 0.248 779 0.3700
20 0.199 420 0.199 420 0.2976

TABLE II. Scaled ground-state energy of the AF phase at half-
filling eAF* [eAF /t* within the SBMF as a function of scaled inter-
actionU*[U/t* for various dimensionsD ~with t*5tA2D!.

U* 2eAF* (D52) 2eAF* (D53) 2eAF* (D54) 2eAF* (D5`)

2 0.343 75 0.350 69 0.367 19 0.468 75
4 0.242 19 0.239 47 0.238 53 0.237 30
8 0.124 39 0.123 94 0.123 73 0.123 14
12 0.083 17 0.083 03 0.082 96 0.082 77
16 0.062 44 0.062 38 0.062 35 0.062 26
20 0.049 97 0.049 94 0.049 92 0.049 88
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With a little more effort @especially the coefficients in the
large-l̄ expansion ofd in formula ~13! require some care#
more terms can be obtained. However, as already remarked
in Sec. III, the present series reproduces well the ‘‘exact
SBMF’’ result forU/t>7 in two dimensions, and this agree-
ment is expected to be even better in three dimensions. Also,
for smaller values ofU/t the contribution from the (t/U)5

term becomes larger than that from the (t/U)3 term, which is
an indication that the intrinsic radius of convergence of the
series is close toU/t57. Therefore, extending the series can-
not be considered very useful.

A more interesting extension of the present series is
to go off half-filling, i.e.,nÞ1. Again there is no fundamen-
tal reason preventing this, but now the task is quite a bit
more laborious for a number of reasons. Not only are we
dealing with the casem̄Þ0, and, consequently,partial mo-
ments are required@see~11!#, which can only be computed
numerically, but also the expression for the band renormal-
ization qs, formulas ~6! and ~7!, needs to be expanded for
nÞ1, which implies that nonrational coefficients in the ex-
pansion in terms of~partial! moments appear. Furthermore,
in formula ~9! for rs the term with the combinationz1z2

also needs to be taken into account and perturbatively ex-
panded. If similar large-U expansions are possible for more
complicated phases, like spirals or domain walls, this would
allow for a study of aspects of the phase diagram off half-
filling.

In conclusion, a large-U expansion is derived for the an-
tiferromagnetic phase of the Hubbard model within the
framework of the slave-boson mean-field approximation.
Even though such an expansion constitutes in a sense an
approximation of an approximation, the resulting analytic
expression is capable of reproducing very well results of
elaborate Monte Carlo calculations. Furthermore, the expan-
sion allows for an explicit study of the limit of a large num-
ber of spatial dimensions, since the occurring moments of
the noninteracting density of states are obtained for arbitrary
dimension.

Note added in proof. Recently, I was informed that a
strong-coupling expansion at and near half-filling for two
dimensions is discussed in B. Mo¨ller, K. Doll, and R.
Frésard, J. Phys. Condens. Matter5, 4847 ~1993!; K. Doll,
Diploma thesis, Karlsruhe, 1992.
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APPENDIX

In this appendix some general expressions are derived for
the momentsMn of the density of statesN ~«! of freely
hopping electrons on hypercubic lattices:

Mn5E
2`

`

d« N ~«!«n

5
~2t !n

~2p!D
E

2p

p

•••E
2p

p

dk1 ...dkD@cosk11•••1coskD#n.

~A1!

Although such moments are frequently used and calculated
in the literature, I have never encountered the general ana-
lytic expressions and simple formulas to be given below.
First I will derive simple expressions forall moments in the
lower dimensionsD51, 2, and 3. Then I will derive expres-
sions for thelowermoments inarbitrary dimensionD.

By employing the multinomial generalization of the bino-
mial, it is possible to further work out~A1!:

Mn5~2t !n (
n1 ,...,nD50

n

8
n!

n1!...nD!
qn1...qnD, ~A2!

where the prime on the sum denotes the restriction
n11•••1nD5n and

qm5
1

2p E
0

2p

dk cosm~k!5H ~m21!!!

m!!
m even

0 m odd.
~A3!

From this general form it is clear that all moments withn
odd are zero for any dimension. All formulas below will be
for moments withn even. ForD51 the restriction allows for
only one term in the sum, and the result is trivial:

Mn5~2t !n
~n21!!!

n!!
, D51. ~A4!

A more remarkable result is that the moments forD52 are
exactly the squares of the moments forD51 ~if t is put equal
to 1!:

Mn5tnF2n ~n21!!!

n!! G2, D52. ~A5!

The proof of~A5! follows directly from ~A2! by some ma-
nipulations with the factorials, and employing the identity21

(
n50

N SNn D 25S 2NN D . ~A6!

For D53 I have not been able to obtain an explicit expres-
sion forMn , but the triple sum in~A2! can be reduced to one
simple, unrestricted sum. Using the relations
(m21)!!/m!51/m!!522m/2/(m/2)! ~m even!, one can re-
write ~A2! ~for n even! as

Mn5n! (
u,v,w50

n/2

8
1

~u! !2~v! !2~w! !2
, ~A7!

where the prime indicates the constraintu1v1w5n/2. This
expression was already given by Brinkman and Rice for the
moments of the density of states of one hole in a ferromag-
netic background.22 It can, however, be simply reduced to a
single sum by incorporating the constraint and a subsequent
application of~A6!. The result is
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Mn5n!(
u50

n/2
~n22u!!

~u! !2@~n/22u!! #4
, D53. ~A8!

Formulas~A5! and ~A8! make for a much easier evaluation
of the moments than is usually found in the literature: e.g., in
Ref. 23 moments up ton522 and 16 are computed forD52
and 3, respectively, using the method of counting the number
of paths that return to the origin aftern steps. I note that also
finding an explicit expression forD53 may be possible on
account of the fact that the moments forD53 always contain
the moments forD51 as a factor.

The general expression~A2! shows that finding the terms
contributing toMn amounts to finding all the combinations
of D even numbers~including zero! that add up ton. For the

lower moments the number of possibilities is not large and
can be expressed in terms ofD using combinatorial argu-
ments. I have found the following results:

M252D,

M456D~2D21!,

M6520D~6D229D14!, ~A9!

M8570D~24D3272D2182D233!,

M105252D~14 400D42143 400D31501 050D2

2715 225D1343 176!.
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