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Strong-coupling expansion for the Hubbard model in arbitrary dimension using slave bosons

P. J. H. Denteneér
Instituut-Lorentz, University of Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
(Received 20 November 1995

A strong-coupling expansion for the antiferromagnetic phase of the Hubbard model is derived in the frame-
work of the slave-boson mean-field approximation. The expansion can be obtained in terms of moments of the
density of states of freely hopping electrons on a lattice, which in turn are obtained for hypercubic lattices in
arbitrary dimension. The expansion is given for the case of half-filling and for the energy up to fifth order in
the ratio of hopping integral over on-site interactiotJ, but can straightforwardly be generalized to the
non-half-filled case and be extended to higher ordetsln For the energy the expansion is found to have an
accuracy of better than 1% fat/t=8. A comparison is given with an earlier perturbation expansion based on
the linear-spin-wave approximation and with a similar expansion based on the Hartree-Fock approximation.
The case of an infinite number of spatial dimensions is discussed.

[. INTRODUCTION for the antiferromagnetic phase is given. A latdeexpan-
sion is derived in Sec. Il in terms of moments of the density
If the physics of strongly correlated fermions is to be of states for freely hopping electrons on a lattice, and com-
described by the Hubbard modeglectronic structure calcu- pared to earlier numerical and analytical work in the litera-
lations for the cuprates indicate that the relevant parametdtre. In Sec. IV, the expansion is made explicit for hypercu-
regime is Where the on_site interactibhis Comparab|e to or b|C Iattices Of arbitrary dimension. -Fina”y, | (}”SCUSS the
|arger than the bandw|dml Of free|y hopp|ng e|ectron%A ConVQrgence -Of the series and pOSSIble extensions. The Ap'
natural strategy to try to describe this regime is to approacReéndix contains useful formulas for the moments of the
it from the two limiting cases of weak couplingyW) and ~ above-mentioned density of states.
strong coupling U>W). The simplest mean-field approxi-
mation for the Hubbard model, the Hartree-Fock approxima- Il. SLAVE-BOSON MEAN-FIELD APPROXIMATION
tion (HFA), is at first sight a weak-coupling approximation,
although, with some care, a reasonable description of the
strong-coupling regime can also be givefi. Strong-
coupling approaches have mainly been devoted to the one- Ty=—t 2 c}+5(,cj(,+uz NN, 1
dimensional casésee, e.g., Ref.)7and often take the limit oo ' i
U_’,°°'8 A somewhat more sophisticated mean-field approXlyyherec; , is the annihilation operator for an electron at gite
mation, namely, that based on the slave-boson formulatiog,;s, spin . Neighboring sites of sitg are denoted by+ &.
due to L<otliar and RuckT_nste?risfin principle ”r?t restrri]ctedh_ t is the hopping integral the on-site interaction between
1o ek o Ston CoupING. I fact 1 e shown 1t 1 eectons of pposie pin, a,—c.,c, i the ocupatin
. X L > number operator. The slave-boson approach of Kotliar and
equivalent 'to tge Gutzwiller approx_lmatlon to the Gutzwiller Ruckenstein consists of introducing bosons for each of the
wave funct_lorﬁ t_he Iatter_of which IMproves upon the HFA (four) possible electron occupancies of a site. The electron
espec'?‘"y In theintermediate-couplingegime. Th'S.SBMF. creation and annihilation operators are then modified such
approximation the_n aHOWS us to approach the Interestingy, ¢ the(one boson corresponding to the electron occupancy
mtermedlate—coqplmg regime from _the strong-coupling s'deis always present at each site. In a functional-integral de-
Such an approximate strong-coupling approach can be pa§.’cripti0n of the Hamiltonian the slave-boson mean-field

tIC:J|a|I’|){. heIpLuI since more rllgorlous qut?ntum M(];Jnte tCarIo SBMF) approximation is when the Bose fields are indepen-
calculations become increasingly cumbersome for Strongege of(imaginary time. Different phases can be considered

coupling®! b B )
. 2 y assuming different forms of the position dependence of

In a previous worl%,_we cc_)mpared the HFA and SBMF e Bose fields. For more details see Refs. 9 and 12. The
approximations for various S|mple magnet|_c phases, as Wegp\p approximation is an improvement over the Hartree-
?S cg.mpute'd the effett):tlve Sogg'n% anddsglz)lr: s:;‘ﬁness for Ith?fock approximation since it takes some local correlations
wo- imensionalone- 6!”9’ ubbard model. In thiS paper, T . account; in particular, the density of doubly occupied
derive a largdd expansion within the SBMF approximation sites is an independent parameter to be optimized.
for the Hubbard model iarbitrary dimension. Here | restrict The set of equations describing the antiferromagnetic

myself to the antiferromagnetic phase at half-filling, but the o s R,
extension to doping the antiferromagnet with electrons orﬁAF) phase within the SBMF is given &

holes is straightforwardthough tedious o
. . . . * S (8)
In Sec. Il, the slave-boson mean-field approximation is mg= 2)\, de ————, )
briefly introduced, and the resulting set of integral equations B (8242312

The Hubbard Hamiltonian 1s
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_ 2 w N (e)e? 12. Now | will derive solutions ta2)—(5) for n=1 in the
A=—1[0slm f_ de ———, (3)  form of a systematic series expansion ibJ 1This expansion
Qs RN CED O is derived in two steps(i) From the explicit form of the
equations abovéor from numerical solutionst can be seen
[Qslg [ N (e)e? that largeU corresponds to largke. Therefore, | first make a
U= d L de (82+)T2)1/2’ 4 largeA expansion for all quantities of interest. Subsequently,
(i) the N expansion forU [following from Eq. (4)] is in-
o verted and substituted in the largeexpansion for all rel-
n=2f_ de ./ (e), (5)  evant quantities obtained before. In this way, one obtains the
o © desired largdd expansion.
where\ is an internal(renormalized gapparameter;u an By expanding the square root in the denominator of

effective chemical potential; and the band renormalization the integrals in(2)—(5) for A>¢, one obtains a large-ex-
is a function of density, sublattice magnetizatioms, andd ~ pansion in terms omoments N of the DOS:
(d? is the density of doubly occupied silesnd is given by

I n
as(n,mg d)=2(n,m,d)z(n,~my.d), (6 Mn= fd Ale)e’ @y
where After some work one arrives at the following expansions in
_ .13
—1_1 2,3 4__ 5 6 35 8 1
Va-n+d)(ntm—2d?) +dyn-me—2d” Ms=1-2Moq"+gMaq"~ 15Md” + 125Maq"+ O(q ?1’2)
- R L n+ms) 172 . ( )
(n+my) > . AMZ+3M, o Mo [ oM;
. . . . .. dziVMZq_ q + 16 M2+7M4_—2
[q], is the derivative ofgg with respect toa (explicit ex- 16VM, 16M3
pressions can be found in Ref.)12nd./ (¢) is the density
of states(DOS) of freely hopping electrons. The dimension i SMs q°- 1 [192M 5+ 368M M
dependence resides solely.if(e), and, since this DOS ap- 2M, 204am5"° 2 274
plies to a noninteracting system, | will be able to derive - 3 3
results for arbitrary dimension in Sec. ligee also the Ap- +364M5M 3+ 27M 3+ 738M5M 6 — 120M,M Mg

pendiX. Note that the above set of equations reduces to the
familiar antiferromagnetic or spin-density-way8DW) so-
lution in the HFA if =12 In that case, one has one self-
consistency equatiof2), which is the gap equation with as g=1—
the gap parameterA(=Um,), instead of three self- s

+280M2Mglq’+0(q°), (13

M, 2_[M§—7M4}q4

4 16

consistency equation®)—(4). 3 2
The energy of the AF stai@er site and the spin stiffness _ [9'\/'2_ 10M,M4+12M5/ Mo+ 26M6 96+ 0(q®)
ps are given by 64 '
- _ (14
epr= —ZqSJ: de ./ (e)Ve?+A2+Ud?+Agsms, (8)
m 2 . 1IM3-21M,
U= +3Moq+| —5——|a*+0(a°), (19
S (g, 110" 2z [Fae L0 9
ps=— | _de = - e ———=—%5-
T alp (e20NH)W2 qs Jr  (2+\P)¥? . 3MZ+M,] , [M3—22M,M,—2M¢]
(9) ear=—32Myq+ —a |1 + 30 q
A (e) is the weighted DOS, which, as well as the combina- o(d’ 16
tion z,z_, is specified in Ref. 12. | will not repeat the ex- +0(a") (16)
pressions here, since | will now restrict to half-filligg =0, 2 3
n=1), for which casez, z_ equals zero. For half-filling, the :& _ M2+2M, qe+ —M3+9MoM,+6Mg q°
band renormalization reduces to Ps=7g 32 128
2d% J1— 202+ mg+ V1—2d2—m,]? OM3—12M3M 4+ 26Mj+32M Mg+ 20Mg]
ds(1,ms,d)= i . (10 - 512 q
S
+0(q°). 17)

Ill. LARGE- U EXPANSION IN TERMS OF MOMENTS . . . . .
For notational convenience the hopping integras taken

The above set of equatioi®)—(5) can be solved numeri- equal to 1 in this section. Fang, d, andqgs, | have listed
cally if the DOS for freely hopping electrons is given. For precisely the number of terms that is needed in order to ob-
instance, in two dimensions/ (e) is known analytically, tain the number of term@hreg that is listed forU. For e,e
and numerical solutions t¢2)—(5) were obtained in Ref. andps, terms are given that can be found using the listed
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terms formg, d, qs, andU. Note that this implies that, to ps=—x(exr—Ud?). (25)
obtain the leading order ig for U, one already needs three

terms formg and two terms fod.
Inverting the expansion fdd gives

Combining the latter formula witli24), it immediately fol-

lows that the expansion fgs, follows directly from the ex-

pansion fore,e, as is also seen in the way the expansions are
q=2p+10M,p3+(122M5—42M,)p°+O(p’), (18  Wwritten above.

) ) o It is of some interest to compare the present result with
where | have introduced the notatiqr=1/U. Substituting  yegyits from the HFA and other expressions in the literature.
this mtq theq expansions, one obtains the following lalde- |1 is far easier to derive the corresponding expressiof22
expansions. in the HFA since there is only one consistency equattbe

_ 2 2 4 3 gap equatiop instead of three, and there is no band-
M=1-2M3p"—[20M5~6M,]p"~[294M3~ 204M M, renormalization functiorys which requires perturbative ex-
+20M¢]p®+0(p?), (19 panding. Following the same procedures as for the SBMF,

for the HFA | find

d?=M,p?+[6M3—3M,]p*+[75M3— 70M,M,
+10M¢g]p8+0(p®), (20)

ear=—M2p—[M3—M4]p°~[4M3—6M,M,+2M¢]p°
+0(p). (20

— 2 3

Os=1—Mop?~[1IM3—7M,]p*~[176M3—19M,M, Comparing with(22), one sees that the HFA and SBMF give
n 2 n 6 8 the same coeff|_C|ent for the Ieadmg-order contr|but_|on,_ but
12M3/M2+26Me]p”+ O(p7), 2Y) that there are differences for the higher-order contributions.
__ _ 2 3 3 Note also that for higher-order contributions the term in the
Car=~M2P—[2M5—M,Jp"~[15M3~14M .M, coefficient involving the highest moment agrees between the
+2Mg]p°+0O(p7), (220 HFAand SBMF. Since the moments are always positive, it is

also clear that for large) the energy in the SBMF approxi-

M, . ) - 3 mation is always lower than in the HFA.
ps=— P+2[2M3—My]p°+3[15M3—14M,M, In dimensionsD =2 and 3(square and simple cubic lat-
ticeg, the results can also be compared with a lddgex-
+2Mg]p°+O(p’). (23 pansion by Takahashf. He derived a rigorous expansion

A consistency check on the above results is that the foIIow—("e" without making approximationtor the half-filled Hub-

ing general identity still holds for the expansions above: bard model in terms of spin-correlation functions of the
99 y P 1 Heisenberg model. These correlation functions are then

P evaluated using the linear-spin-watleSW) approximation.
Wzdz. (24 Below, the results of the latter approach are compared to
those of the HFA and SBMF fdb =2 and 3(the necessary
Because in the SBMF at half-filling the spin stiffness is givenmoments are easily evaluated and may for instance be found

by —% times the average kinetic enertfywve also have in the Appendix:
D=2 D=3
HFA —4p+20p—192p°+---, —6p+54p3—1344°+--- )
SBMF —4p-+4p°+ 25605+,  —6p-+18p°+600p5+- - @7
LSW —4.6+34.0%+:-- , —6.58+65.60%+:-- .
|
It is clear that for large enougt the LSW expansion will To end this section a quantitative discussion of the

give the lower energy. The leading-order coefficient is prodargeU expansion is also given. In Table I, the ground-state
portional to the ground-state energy of the3 Heisenberg energy of the AF phase at half-filling, as obtained from the
antiferromagnet, which is known to be very well approxi- largeU expansion within the SBMFeﬁ,SXF’), is compared to
mated by the LSW* % The HFA and SBMF just reproduce the “exact SBMF” result[eiEMF, found by solving(2)—(5)

the mean-field result for the leading-order coefficient. Innumerically and to variational Monte Carl/MC) results
view of the fact that the SBMF is an improvement over theusing an (antiferromagnetic Gutzwiller wave function
HFA, it is somewhat remarkable that the HFA results for the(e$¥YMC  from Ref. 17 for D=2. ForD =3, only ezlgxp and
next-to-leading order resemble the LSW results more thagSWVMC gre compared. Note that the largeexpansion ap-
the SBMF results do. Also, the different sign of the coeffi- proximates the “exact SBMF” result very well fdd/t=7; it
cient of p> between the HFA and SBMF is notable. Furtheris expected that similar agreement is found Bbe:3, where
discussion of the range of validity of the expansion is giverit is more involved to computes2“" since./ (¢) is not a
below. known analytical function as it is fob =2.18 This is consis-
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TABLE I. Numerical results aD=2 and 3 for the ground-state energy of the antiferromagnetic phase at half-ﬁﬁp@is evaluated
using the larged expansion22), andezE"F is obtained from(8) after solving(2)—(5). The GWVMC results are taken from Ref. 17, and
were obtained on 2020 and 6<6X6 lattices forD=2 and 3, respectively. Between brackets the statistical error in the last digit is given.

D=2 D=3
! e e —ege e —ege
6 0.623 639 0.615 226 0.6 0.8395 0.886b)
8 0.485 104 0.484 375 0.4 0.6965 0.7047)
10 0.393 528 0.393 440 0.461 0.5760 0.57®)
12 0.330 002 0.329 990 0.3 0.4872 0.49()
16 0.248 782 0.248 779 0.3700
20 0.199 420 0.199 420 0.2976

tent with the fact that from the coefficients in the explicit to scrutinize the approximation explicitly for lower dimen-
expansions fob =2 and 3, formulg27), one would estimate sion. In order for the limitD —~ to be meaningful, one has
the series to converge well fdJ/t=8 andU/t=6 for two  to introduce a scaled hopping paramet&r=ty2D.%° In
and three dimensions, respectively. The SBMF is equivalenerms of this scaled parameter the above SBMF |&igex-
function? and this approximation becomes exact in the limit
of an infinite number of spatial dimensioh&®* From the . 13
comparison with the GWVMC results it can be seen that the ~ SAF _ _ v + ( 1— i) (t_) +( -3+ 24 Q)
t* U 2D/\ U D D?
facts that forD=3 a very small lattice was used in the
GWVMC calculations, and a larger lattice will even raise the %
energy somewhdthe effect will be larger for smalldd), the
clear advantage of the largé-expansion is that it can give In Table Il, | evaluat€30) for D=2, 3, 4, ande. From Table
results that are, fod/t=8, within 1% of the “exact SBMF” |l, one sees that for scaled interactibif =4 (which corre-
and GWVMC calculationgwhich especially forD=3 are  sponds toU/t=8 for D=2) the result forD=2 and the
means of the simple formulg2). The simultaneous largg largeD expansion shows in de-
tail how well the Gutzwiller approximation, and therefore the
SBMF, reproduces the Gutzwiller wave function for the vari-

to the Gutzwiller approximationto the Gutzwiller wave pansion assumes the form
approximation is already quite good fDr=2. In view of the
+eee (30
agreement folD =3 can even be called excellent. Thus the
much more involved and computationally demandimy  infinite-dimensional result already coincide remarkably well.
ous dimensions. It would have been interesting to compare

IV. LARGE- U EXPANSION FOR ARBITRARY DIMENSION

In the Appendix, it is shown that the momeilis, can be
obtained as a function of dimensi@n[formula(A9)]. If one
substitutes these expressions if®8) and(26), one obtains a
simultaneous U and 1D expansion for the energy of the

the coefficients in the present results with those obtained by
Gebhard in his D expansiorf® Unfortunately, a direct com-

parison is not meaningful, since Gebhard only considers the
paramagentic Gutzwiller wave function and does not treat

AF phase: the antiferromagnetic phase at half-filling in aDlexpan-
sion.
SBME 2Dt? 1 3\ 4D%*
CAF=T Ty 2D) U3
V. DISCUSSION AND CONCLUSIONS

24 20\ 8D3%® .
+| =8+ == =5 5+, (29 There is no fundamental reason why the lat§jexpan-
b D U sion given here cannot be extended to higher ordetsUn

2 2,4
HFA e.c=— 2Dt +l2— i 4D TABLE Il. Scaled ground-state energy of the AF phase at half-
AF U 2D) U3 filling eX-=er/t* within the SBMF as a function of scaled inter-
actionU* =U/t* for various dimension® (with t*=t/2D).
+| —16+ 36 20) 8Dt° + (29 : )

D D? U ’ U* —eir (D=2) —ei (D=3) —ek (D=4) —e}r (D=2)
where | have again included the hopping parametérhe 2 034375 0.350 69 0.367 19 0.468 75
above formulas are well suited to discuss the limit of an 4 0.242 19 0.239 47 0.238 53 0.237 30
infinite number of dimensions. This is of interest since, as 8 0.124 39 0.123 94 0.12373 0.123 14
noted above, the SBMF is equivalent to the Gutzwiller ap-12  0.083 17 0.083 03 0.082 96 0.082 77
proximation to the Gutzwiller wave function, an approxima- 16 0.062 44 0.062 38 0.062 35 0.062 26
tion which becomes exact in the limit of an infinite number 20 0.049 97 0.049 94 0.049 92 0.049 88

of spatial dimensions. Thus the present expansion allows us
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With a_little more effort[especially the coefficients in the % .
largeA expansion ofd in formula (13) require some cale M”:f de /' (e)e"
more terms can be obtained. However, as already remarked o

in Sec. lll, the present series reproduces well the “exact 2t)" (= w

SBMF” result for U/t=7 in two dimensions, and this agree- = 2m)P ﬁw'“fﬁwdkl---de[COSKﬁ"‘+005ko]n-
ment is expected to be even better in three dimensions. Also,

for smaller values olU/t the contribution from thet(U)® (Al)

term becomes larger than that from thél()® term, which is  Aithough such moments are frequently used and calculated
an indication that the intrinsic radius of convergence of thep, the literature, | have never encountered the general ana-
series is close tb/t=7. Therefore, eXtending the series Can'|ytic expressions and simp]e formulas to be given below.
not be considered very useful. First | will derive simple expressions fail moments in the
A more interesting extension of the present series igower dimensionsD =1, 2, and 3. Then | will derive expres-
to go off half-filling, i.e.,n#1. Again there is no fundamen- sions for thelower moments inarbitrary dimensionD.
tal reason preventing this, but now the task is quite a bit By employing the multinomial generalization of the bino-
more laborious for a number of reasons. Not only are wanial, it is possible to further work ouiAl):
dealing with the casg.#0, and, consequentlypartial mo- N
ments are requirefsee(11)], which can only be computed . n / n!
numerically, b i - Ma=(20" >, A,
y, but also the expression for the band renormal np..mp=0 Nil..np! ™M1
ization qs, formulas(6) and (7), needs to be expanded for
n+1, which implies that nonrational coefficients in the ex-
pansion in terms ofpartia) moments appear. Furthermore,
in formula (9) for ps the term with the combinatiom, z_ , (m—1)N
also needs _to_be taken into acgount and per.turbatwely ex- m:i j dk cog(k) = il (A3)
panded. If similar largéJ expansions are possible for more 27 Jo
: . X ! : 0 m odd.
complicated phases, like spirals or domain walls, this would
allow for a study of aspects of the phase diagram off half-From this general form it is clear that all moments with
filling. odd are zero for any dimension. All formulas below will be
In conclusion, a largé} expansion is derived for the an- for moments withn even. FoiD =1 the restriction allows for
tiferromagnetic phase of the Hubbard model within theonly one term in the sum, and the result is trivial:
framework of the slave-boson mean-field approximation. (n—1)!
Even though such an expansion constitutes in a sense an M,=(2t)" ——, D=1. (A4)
approximation of an approximation, the resulting analytic n!!

expression is capable of reproducing very well results ofa more remarkable result is that the moments Bor2 are
elaborate Monte Carlo calculations. Furthermore, the exparexactly the squares of the moments b1 (if t is put equal
sion allows for an explicit study of the limit of a large num- to 1):

ber of spatial dimensions, since the occurring moments of
the noninteracting density of states are obtained for arbitrary
dimension.

Note added in proof Recently, | was informed that a
strong-coupling expansion at and near half-filling for two
dimensions is discussed in B. Ner, K. Doll, and R.
Fresard, J. Phys. Condens. Mat®r4847(1993; K. Doll, N
Diploma thesis, Karlsruhe, 1992, nZO

Un,:  (A2)

where the prime on the sum denotes the restriction
n;+---+np=n and

m even

(n—1)!!

2
i }, D=2. (A5)

The proof of(A5) follows directly from (A2) by some ma-
nipulations with the factorials, and employing the iderffity

2

N
n

N (A6)

ZN).

For D=3 | have not been able to obtain an explicit expres-
ACKNOWLEDGMENTS sion forM,, but the triple sum ifA2) can be reduced to one
simple, unrestricted sum. Using the relations

_ Jp——
| acknowledge useful discussions with P. G. J. van Don{M—1)!//m!=1/m!l =274/ (m/2)! (m even), one can re-

gen, F. Gebhard, and J. M. J. van Leeuwen on the worl/rite (A2) (for n even as

reported here, as well as comments by D. P. Aalberts on an ni2 1

earlier version of the paper. M.=nl 1
"m0 (U2 AW

where the prime indicates the constraint v +w=n/2. This
APPENDIX expression was already given by Brinkman and Rice for the
moments of the density of states of one hole in a ferromag-
In this appendix some general expressions are derived fatetic background? It can, however, be simply reduced to a
the momentsM, of the density of states/(e) of freely  single sum by incorporating the constraint and a subsequent
hopping electrons on hypercubic lattices: application of(A6). The result is

(A7)
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n/2 (n—2u)! lower moments the number of possibilities is not large and

, D=3. A8 can be expressed in terms Df using combinatorial argu-
Z W (- (A8) P 9 9

ments. | have found the following results:
Formulas(A5) and (A8) make for a much easier evaluation
of the moments than is usually found in the literature: e.g., in
Ref. 23 moments up to=22 and 16 are computed fér=2
and 3, respectively, using the method of counting the number

M,=n!

M,=2D,

M,=6D(2D—1),

qf p_aths that return to the qrigin aftarsteps. | note th_at also Mg=20D(6D2—9D +4), (A9)
finding an explicit expression fdd =3 may be possible on
account of the fact that the moments fo=3 always contain Mg=70D(24D3— 72D2+ 82D — 33),
the moments foD=1 as a factor.

The general expressiqi2) shows that finding the terms M 1o= 252D (14 40M*— 143 403+ 501 052
contributing toM, amounts to finding all the combinations
of D even numbergéincluding zerg that add up ta. For the —71522D + 343 176.
*Electronic address: pjhdent@rulkol.leidenuniv.ni and most quantum Monte Carlo work is for two dimensions
IM. C. Gutzwiller, Phys. Rev. Lettl0, 159 (1963; J. Hubbard, (WhereWw=8t) andU/t=4.

Proc. R. Soc. London Ser. 276, 238(1963; J. Kanamori, Prog. 12p_J. H. Denteneer and M. Blaauboer, J. Phys. Condens. Matter

Theor. Phys(Kyoto) 30, 275(1963; P. W. Anderson, Phys. Rev. 151 (1995; 7, 2377E) (1995.

115 2 (1959. 13The expansion fom, follows directly from(2), and the expan-
2M. S. Hybertsen, M. Schiter, and N. E. Christensen, Phys. Rev.  sion ford is first written with general coefficients which are then

B 39, 9028(1989; G. A. Sawatzky, irHigh-Temperature Super- determined by the fact th&B) must be satisfieghis requires an

conductivity edited by D. P. Tunstall and W. Barford\dam expansion 01[qs]ms). The expansions fod, exr, and pg then

Hilger, Bristol, 199). follow from those formg and d (they require expansions of
3J. R. Schrieffer, X. G. Wen, and S. C. Zhang, Phys. Re@9%B [gs]d andqy).

11 663(1989. 14M. Takahashi, J. Phys. @0, 1289(1977.

4P. Noziges and S. Schmitt-Rink, J. Low Temp. Ph{$, 195  °P. W. Anderson, Phys. Re86, 697 (1952.
(1985; A. J. Legget, inModern Trends in the Theory of Con- ®D. C. Mattis, The Theory of MagnetisifHarper and Row, New
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