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Variational quantum eigensolvers offer a small-scale testbed to demonstrate the performance of error
mitigation techniques with low experimental overhead. We present successful error mitigation by applying
the recently proposed symmetry verification technique to the experimental estimation of the ground-state
energy and ground state of the hydrogen molecule. A finely adjustable exchange interaction between two
qubits in a circuit QED processor efficiently prepares variational ansatz states in the single-excitation subspace
respecting the parity symmetry of the qubit-mapped Hamiltonian. Symmetry verification improves the energy
and state estimates by mitigating the effects of qubit relaxation and residual qubit excitation, which violate
the symmetry. A full-density-matrix simulation matching the experiment dissects the contribution of these
mechanisms from other calibrated error sources. Enforcing positivity of the measured density matrix via scalable
convex optimization correlates the energy and state estimate improvements when using symmetry verification,
with interesting implications for determining system properties beyond the ground-state energy.

DOI: 10.1103/PhysRevA.100.010302

Noisy intermediate-scale quantum (NISQ) devices [1],
despite lacking layers of quantum error correction (QEC),
may already be able to demonstrate quantum advantage over
classical computers for select problems [2,3]. In particular,
the hybrid quantum-classical variational quantum eigensolver
(VQE) [4,5] may have sufficiently low experimental require-
ments to allow estimation of ground-state energies of quantum
systems that are difficult to simulate purely classically [6–9].
To date, VQEs have been used to study small examples of
the electronic structure problem, such as H2 [10–15], HeH+

[4,16], LiH [13–15], and BeH2 [14], as well as exciton
systems [17], strongly correlated magnetic models [15], and
the Schwinger model [18]. Although these experimental ef-
forts have achieved impressive coherent control of up to 20
qubits, the error in the resulting estimations has remained
relatively high due to performance limitations in the NISQ
hardware. Consequently, much focus has recently been placed
on developing error mitigation techniques that offer order-of-
magnitude accuracy improvement without the costly overhead
of full QEC. This may be achieved by using known properties
of the target state, e.g., by checking known symmetries in
a manner inspired by QEC stabilizer measurements [19,20],
or by expanding around the experimentally obtained state
via a linear (or higher-order) response framework [21]. The
former, termed symmetry verification (SV), is of particular
interest because it is comparatively low-cost in terms of
required hardware and additional measurements. Other mit-
igation techniques require understanding the underlying error
models of the quantum device, allowing for an extrapolation
of the calculation to the zero-error limit [22–24], or the

summing of multiple calculations to probabilistically cancel
errors [23,25,26].

In this Rapid Communication, we experimentally demon-
strate the use of SV to reduce the error of a VQE esti-
mating the ground-state energy and the ground state of the
H2 molecule by one order of magnitude on average across
the bond-dissociation curve. Using two qubits in a circuit
QED processor, we prepare a variational ansatz state via an
exchange gate that finely controls the transfer of population
within the single-excitation subspace while respecting the
underlying symmetry of the problem (odd two-qubit parity).
We show that SV improves the energy and state estimates by
mitigating the effect of processes changing total excitation
number, specifically qubit relaxation and residual qubit ex-
citation. We do this through a full density-matrix simulation
that matches the experimental energy and state errors with
and without SV, and then using this simulation to dissect the
contribution of each error source. Finally, we explore the lim-
itations of SV arising from statistical measurement noise, and
find that enforcing the positivity of the fermionic 2-reduced
density matrix ties the improvement in energy estimation from
SV to the improvement in ground-state fidelity (which was
previously not the case).

A VQE algorithm [4,5] approximates the ground state ρ (0)

of a Hamiltonian Ĥ by a variational state ρ (raw)(�θ ), with �θ a set
of parameters that control the operation of a quantum device.
These parameters are tuned by a classical optimization routine
to minimize the variational energy E (�θ ) = Tr[ρ (raw)(�θ )Ĥ]. In
practice, this is calculated by expanding ρ (raw)(�θ ) and Ĥ over
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the N-qubit Pauli basis PN := {I, X,Y, Z}⊗N ,

ρ (raw)(�θ ) = 1

2N

∑

P̂∈PN

ρ
(raw)
P̂

(�θ )P̂, Ĥ =
∑

P̂∈PN

hP̂P̂, (1)

where the Pauli coefficients are given by ρ
(raw)
P̂

(�θ ) =
Tr[P̂ρ (raw)]. The variational energy may then be calculated as

E (raw)(�θ ) =
∑

P̂∈PN

ρ
(raw)
P̂

(�θ )hP̂. (2)

For example, consider the H2 molecule studied in this work.
Mapping the Hamiltonian of this system (in the STO-3G
basis) onto four qubits via the Bravyi-Kitaev transformation
[27] and then further reducing dimensions by projecting out
two noninteracting qubits [10] gives

ĤH2 = hII II + hZI ZI + hIZ IZ

+ hXX XX + hYY YY + hZZZZ, (3)

where coefficients hP̂ depend on the interatomic distance
R. These coefficients may be determined classically using
the OPENFERMION [28] and PSI4 [29] packages. The Pauli
coefficients ρ

(raw)
P̂

of the density matrix ρ (raw) are extracted by
repeated preparation and (partial) tomographic measurements
of the ansatz state. As one only needs those Pauli coefficients
ρ

(raw)
P̂

with nonzero corresponding Hamiltonian coefficients
hP̂, one need not perform full tomography of ρ (raw). However,
in a small-scale experiment, full state tomography of ρ (raw)

may still be feasible, and may provide useful information for
the purposes of benchmarking. In particular, the fidelity of
ρ (raw) to ρ (0),

F (raw) = Tr[ρ (raw)ρ (0)], (4)

is a more rigorous measure of the ability to prepare the ground
state than the energy error,

�E (raw) = Tr[(ρ (raw) − ρ (0) )Ĥ ]. (5)

Error mechanisms such as decoherence pull ρ (raw) away from
ρ (0), decreasing F and increasing �E .

These errors may be mitigated by using internal symme-
tries Ŝ ∈ PN [30] of the target problem, such as parity checks
[19,20]. These checks project ρ (raw) to a symmetry-verified
matrix ρ (SV) that lies in the 〈Ŝ〉 = s subspace of the symmetry.
This projection could be performed via direct measurement
of Ŝ on the quantum device, but one may instead extract the
relevant terms of the density matrix ρ (SV) in postprocessing:

ρ
(SV)
P̂

= ρ
(raw)
P̂

+ sρ (raw)
ŜP̂

1 + sρ (raw)
Ŝ

. (6)

The right-hand side may be obtained by partial tomographic
measurement of the ansatz state, with at most twice the num-
ber of Pauli coefficients that need to be measured. This upper
bound is not always achieved. For example, the ĤH2 Hamil-
tonian has a Ŝ = ZZ symmetry, which maps the nonzero
Pauli terms in ĤH2 to other nonzero Pauli terms in ĤH2.
Symmetry verification in this problem then does not require
any additional measurements to estimate E (SV) beyond those
already required to estimate E (raw). Even when it does require
additional measurements, SV remains attractive because it

does not require additional quantum hardware or knowledge
of the underlying error model. One can show that the SV
state ρ (SV) may be equivalently obtained via a variant of
the quantum subspace expansion (QSE) [21], suggesting an
alternative name of S-QSE [19].

One may further minimize the error in a quantum algorithm
by tailoring the quantum circuit or the gates within. In a
VQE, one wishes to choose a variational ansatz motivated
by the problem itself [10,31] while minimizing the required
quantum hardware [14]. To balance these considerations, we
suggest constructing an ansatz from an initial gate set that is
relevant to the problem at hand. For example, in the electronic
structure problem, the quantum state is generally an eigenstate
of the fermion number. When mapped onto qubits, this often
corresponds to a conservation of the total qubit excitation
number. Gates such as single-qubit Z rotations, two-qubit
C-phase [32], and two-qubit iSWAP [33] gates preserve this
number, making these gates a good universal gate set (within
the target subspace [34]) for quantum simulation of electronic
structure. In the example of H2, the total two-qubit parity (ZZ)
is indeed conserved and the ground state at any R may be
generated by applying to |01〉 or |10〉 an exchange gate

Uθ =

⎛
⎜⎝

1 0 0 0
0 cos θ i sin θ 0
0 i sin θ cos θ 0
0 0 0 1

⎞
⎟⎠ (7)

with R-dependent optimal exchange angle θ and a follow-up
phase correction on one qubit.

We now experimentally investigate the benefits of SV in
the VQE of H2 using two of three transmon qubits in a
circuit QED quantum processor (see details in [35]). The
two qubits (Q0 and Q1) are coupled by a common bus
resonator, and have dedicated microwave lines for single-
qubit gating, flux bias lines for local and nanosecond-scale
control of their frequency, and dedicated readout resonators
coupling to a common feedline for independent readout by
frequency multiplexing. We prepare the ansatz state with an
efficient circuit [Fig. 1(a)] that first excites Q1 with a π

pulse to produce the state |10〉, and then applies a square
flux pulse of fixed duration and amplitude to Q0, bringing
it into or near resonance with Q1 to coherently exchange
the excitation population. A plot of population exchange as
a function of flux-pulse amplitude and duration [Fig. 1(b)]
reveals the expected chevron pattern that is the hallmark of
coherent population exchange between the two qubits, albeit
with some asymmetry arising from the bandwidth limitation
of the flux-control line. We make use of the square-pulse
duration (1 ns resolution) and amplitude (0.5 mV resolution)
as coarse and fine knobs, respectively, to control population
exchange. We choose 1500 combinations of pulse duration
and amplitude settings to parametrize an experimental knob θ̃

[Fig. 1(d)] capable of finely controlling population exchange
like θ in Eq. (7) over the range [0, π/4] [Fig. 1(c)]. The
circuit concludes with simultaneous prerotation gates on both
qubits followed by simultaneous measurement of both qubits,
in order to perform tomography of the prepared ansatz state.
To fully reconstruct the state, we use an overcomplete set
of 36 prerotation pairs and extract estimates of the average
measurement for each qubit as well as their shot-to-shot
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FIG. 1. Quantum circuit and energy landscape of the variational
eigensolver. (a) Quantum circuit for generating and measuring the
variational ansatz state. (b) Coherent excitation exchange, produced
as Q0 is fluxed into resonance with Q1 by a square flux pulse of fixed
amplitude (x axis) and duration (y axis). The amplitude controls the
frequency to which Q0 is pulsed (∼1.428 V bringing it on resonance
with Q1). (c) Zoom-in of (b) into the region used in the experiment
to control the exchange of population between Q0 and Q1. Colored
lines illustrate the combinations of square-pulse amplitudes and
duration used to achieve fine adjustment of θ̃ . (d) Excitation of Q0

for the combinations of pulse amplitudes and duration marked by
colored lines in (c), showing the matching of the experimentally
defined θ̃ to the target θ defined in Eq. (7) (black dashed curve).
Colors [matching (c)] correspond to pulse duration. (e) Landscape
of energies E (raw)(θ̃ , R) as a function of the experimentally defined θ̃

angle and the interatomic distance R.

correlation using Nmeas measurements per prerotation. Note
that while the flux pulse implements the exchange gate of
Eq. (7) with additional single-qubit phase rotations, the cor-
rection for these phase rotations can be performed virtually
from the fully reconstructed state.

We now optimize the VQE to approximate the ground-
state energy and ground state of H2. At each chosen R, we
employ the covariance matrix adaptation evolution strategy
(CMA-ES) optimization algorithm [36], using E (raw) as cost
function and θ̃ as single variational parameter. The evolu-
tionary strategy optimizes θ̃ over repeated generations of
Npop = 10 samples of E (raw)(θ̃ ), each calculated from a raw
density matrix ρ (raw) using linear inversion of Nmeas = 103

[37]. Optimizations have a hard-stop criterion of [Fig. 2(a)
inset] 20 generations (∼2 h). The converged state is finally
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FIG. 2. Convergence of the VQE algorithm. (a) Experimental
VQE estimate of H2 ground-state energy as a function of interatomic
distance R. At each chosen R, we minimize the raw energy E (raw)

(blue data points) over the variational parameter θ̃ using the CMA-
ES evolutionary algorithm [36]. Applying SV to the converged
solution (orange data points) lowers the energy estimate toward the
exact solution (dashed curve). Inset: A typical optimization trace for
the convergence of the energy estimate. (b)–(d) The reconstructed
density matrices of the converged states at (b) R = 0.25 Å, (c) R =
0.80 Å, and (d) R = 2.00 Å, showing that the converged states
lie mostly in the single-excitation subspace, and that entanglement
increases with the interatomic distance R.

reconstructed with greater precision, using Nmeas = 105.
Figure 2 shows the resulting energy estimate for 12 values
of R and the reconstructed optimized state at three such
distances. These tomographs show that the optimal solutions
are concentrated in the single-excitation subspace of the two
qubits, with two-qubit entanglement increasing as a function
of R.

Performing the described symmetry verification procedure
on the converged states shows improvement across the entire
bond-dissociation curve. To quantify the improvement, we fo-
cus on the energy error �E and the infidelity 1 − F to the true
ground state, with and without SV (Fig. 3). SV reduces the en-
ergy error by an average factor ∼10 and reduces the infidelity
by an average factor ∼9. In order to quantitatively understand
the limits of the VQE optimization, and to clearly pinpoint the
origin of the SV improvement, we simulate the experiment
via the density-matrix simulator quantumsim [38], using an
error model built from independently measured experimental
parameters [35]. We build the error model incrementally,
progressively adding optimization inaccuracy (the difference
between the state ideally produced by the converged θ and
the true ground state); dephasing on both qubits (quantified
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FIG. 3. Impact of SV in ground-state energy and state fidelity,
and dissected error budget. (a) Experimental (solid circles) energy
error �E without and with SV compared to the result (empty circles
and dashed line) of a full density-matrix simulation using the full
error model. The contributions from optimizer inaccuracy, qubit
dephasing, qubit relaxation, residual qubit excitations, and increased
Q0 dephasing during the exchange gate are shown as shaded regions
for the case of no SV applied. Without SV, �E is clearly dominated
by residual qubit excitation. (b) Zoom-in on experimental and sim-
ulated �E with SV and corresponding error budget. With SV, the
effects of residual excitation and qubit relaxation are successfully
mitigated, as predicted in Ref. [19]. The remaining energy error
is dominated by optimizer inaccuracy. Simulation error bars are
obtained by modeling measured fluctuations of T1, T ∗

2 , and residual
excitation. (c) Experimental (solid circles with error bars) infidelity
to the true ground state without and with SV compared to simulation
using the full error model (empty circles and dashed line). Error bars
are propagated through the linear inversion procedure for experiment
and calculated from sampling noise for simulations. For simulations,
error bars are smaller than the markers.

by the measured Ramsey dephasing times T ∗
2 ); relaxation

on both qubits (quantified by the measured relaxation times
T1); residual qubit excitations (measured from single-shot
histograms with each qubit prepared in |0〉); and increased
dephasing of Q0 during the exchange gate (quantified by its
reduced T ∗

2 when tuned into the exchange interaction zone).
By plotting the errors from each increment of the model, we
are able to dissect the observed experimental error into its
separate components without [Fig. 3(c)] and with [Fig. 3(b)]
SV. Measured temporal fluctuations of dephasing, relax-
ation, and residual excitation are used to obtain simulation
error bars.

The simulation using the full error model shows fairly good
matching with experiment for both the ground-state energy
error [Figs. 3(a) and 3(b)] and the state infidelity [Fig. 3(c)],
without and with SV. The error model dissection shows that

the energy error when not using SV is dominated by residual
qubit excitations. This is remarkable as the calibrated residual
excitations are only 0.25% for Q0 and 1.34% for Q1 [35].
The improvement from SV results from the mitigation of
errors arising from these residual excitations and from qubit
relaxation. This is precisely as expected: These error mech-
anisms change total qubit excitation number and violate the
underlying ZZ symmetry. Using SV changes the dominant er-
ror mechanism from residual qubit excitation to optimization
inaccuracy, which is bounded by the sampling noise during the
optimization itself (where Nmeas = 103), rather than the sam-
pling noise from the final step (where Nmeas = 105). This error
could be reduced experimentally by increasing Nmeas during
the optimization, at the cost of increased convergence time.
The improvement in state infidelity by SV can be explained
along similar lines. We observe some increased deviations
between the observed and simulated state infidelity at large R.
We attribute these to limitations in our modeling of error
during the exchange gate (whose duration increases with R).

VQEs rely on variational bounding to ensure that the
obtained approximation to the ground-state energy is accurate,
but this is only guaranteed when the experimental results
correspond to a physical state. Our method for calculating the
ground-state energy [Eq. (1)] independently estimates each
Pauli coefficient of the density matrix with error ∝N−1/2

meas .
Such estimation cannot guarantee a set of Pauli coefficients
that could have come from a positive density matrix. This
in turn breaks the variational lower bound on the energy
estimate, and increases the error in estimates of other prop-
erties of the true ground state [39,40]. As experimental error
is reduced, ρ (raw) tends toward a rank-1 density matrix, in-
creasing its chance of being unphysical [40]. Moreover, ρ (SV)

is a lower-rank density matrix than ρ (raw) (being projected
onto a subspace of the Hilbert space), which implies that
unphysicality may be enhanced by SV. The variance in a given
term ρP̂ post-SV can be calculated as

Var
[
ρ

(SV)
P̂

] ≈ 3Nmeas

Nmeas(1 + Tr[ρ (raw)Ŝ])
. (8)

SV has maximal impact on the quantum state precisely when
this denominator is small, so this represents a natural bound
for the power of SV as an error mitigation strategy.

The effect of sampling noise may be mitigated somewhat
by restricting the fermionic 2-reduced density matrix to be
positive (which may be completed in polynomial time) [39].
To investigate the effect of such mitigation, we bin the data
used for final tomography of converged states to construct 100
density matrices with Nmeas = 103 at each R, thus increasing
the sampling noise by a factor of 10. We wish to study the
relative improvement of SV in the two figures of merit, which
we quantify as

ηE = |�E (raw)|
|�E (SV)| and ηF = |1 − F (raw)|

|1 − F (SV)| , (9)

when physicality of the raw density matrices is enforced and
not. To enforce physicality, we employ a convex optimization
routine to find the closest positive semidefinite matrix to the
experimentally measured ρ (raw) (closest in the L2 norm sense
on the space induced by the the Pauli basis). We then apply
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FIG. 4. Constraining positivity with symmetry verification to
mitigate the effect of sampling noise. The experimental data from
Fig. 3 is split into 100 sample simulations for each R, increasing the
sampling noise by a factor of 10 and making it comparable to other
sources of experimental error. For each sample, we plot (red) the
relative energy error and infidelity [Eq. (9)]. Values below 1 (dashed
lines) indicate that SV has not provided an improvement, as may
be the case when the density matrix has negative eigenvalues. We
restore the improvement from SV by constraining the positivity of
the 2-reduced density matrix [39] (green). Histograms on the top and
right axes show the marginal distribution of the two scatter plots.
When the density matrices are constrained to be positive, we observe
the points fall along the line y = x (blue dashed line), indicating that
SV improves both metrics by the same amount.

symmetry verification to the postprocessed density matrix.
Figure 4 shows a scatter plot of ηE and ηF, and relative
histograms of each. Without enforcing physicality, SV makes
no significant improvement to the state fidelity, although it
almost always improves the energy error. However, when
positivity is enforced, SV greatly improves the overlap with
the true ground state. We also find that the improvement in the
energy from SV is equal to the improvement in fidelity when
the starting state is physical, but is relatively uncorrelated
when the starting state is not. This makes sense, as the energy
gain from SV given a physical matrix comes directly from
substituting higher energy states with density on the ground
state. It is unclear whether such a strong trend will continue

in larger systems without requiring too stringent a positivity
constraint. As this is a four-orbital two-electron system, en-
forcing the positivity of the 2-reduced density matrix enforces
positivity on the entire density matrix (which is exponentially
difficult in the system size [41]). Testing this scalability is a
clear direction for future research [42].

In summary, we have experimentally demonstrated the use
of SV to mitigate errors in the VQE of H2 with two transmon
qubits. We implemented an efficient variational ansatz based
on an exchange gate producing finely adjustable population
transfer in the single-excitation subspace, respecting the ZZ
symmetry of the H2 Hamiltonian. Verification of this sym-
metry reduced the error of the estimated ground-state energy
and the ground state by one order of magnitude on average
over the full dissociation curve. A full density-matrix simu-
lation of our system allowed us to budget the contributions
from known experimental error mechanisms. We observe that
SV mitigates the effect of processes that affect total qubit
excitation number, specifically qubit relaxation and residual
excitation. Finally, we have investigated the effect of recon-
structing density matrices via linear tomographic inversion
in the presence of sampling, which voids the guarantee of
positivity and in turn the guarantee that SV improves es-
timation of the ground state. Intriguingly, we observe that
when physicality is enforced, the reduction in energy error
from SV is directly linked to the increase in fidelity to the
ground state. If this observation extends to larger systems,
a user can be confident that symmetry-verified Pauli coeffi-
cients are accurate for calculations beyond the ground-state
energy.
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