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Effect of charge renormalization on the electric and thermoelectric transport
along the vortex lattice of a Weyl superconductor
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Building on the discovery that a Weyl superconductor in a magnetic field supports chiral Landau-level
motion along the vortex lines, we investigate its transport properties out of equilibrium. We show that the
vortex lattice carries an electric current I = 1

2 (Q2
eff/h)(�/�0)V between two normal-metal contacts at voltage

difference V , with � the magnetic flux through the system, �0 the superconducting flux quantum, and
Qeff < e the renormalized charge of the Weyl fermions in the superconducting Landau level. Because the
charge renormalization is energy dependent, a nonzero thermoelectric coefficient appears even in the absence
of energy-dependent scattering processes.
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I. INTRODUCTION

Weyl superconductors are nodal superconductors with
topological protection [1,2]: they have nodal points of van-
ishing excitation gap, just like d-wave superconductors [3],
but in contrast to those the gapless states are not restricted to
high-symmetry points in the Brillouin zone and can appear
for conventional s-wave pairing. The nodal points (Weyl
points) at ±K in a Weyl superconductor are protected by the
conservation of a topological invariant: the Berry flux of ±2π

at Weyl points of opposite chirality [4,5].
The distinction between symmetry and topology has a

major consequence for the stability of Landau levels in a
magnetic field. While in a d-wave superconductor the strong
scattering of nodal fermions by vortices in the order param-
eter prevents the formation of Landau levels [6], in a Weyl
superconductor an index theorem for chiral fermions protects
the zeroth Landau level from broadening [7]. The appearance
of chiral Landau levels in a superconducting vortex lattice
produces a quantized thermal conductance parallel to the
magnetic field, in units of 1/2 times the thermal quantum
per h/2e vortex [7]. The factor of 1/2 reminds us that Bo-
goliubov quasiparticles are Majorana fermions, “half a Dirac
fermion” [8,9].

In this paper we turn from thermal transport to electrical
transport, by studying the geometry of Fig. 1 and addressing
the question “What is the charge transported along the vortices
in a chiral Landau level?” It is known [10] that the charge
of Weyl fermions in a superconductor (pair potential �0) is
reduced by a factor κ = K (�0)/K (0). We find a direct man-
ifestation of this charge renormalization in the electrical con-
ductance, which is quantized at 1

2 (eκ )2/h per vortex. Because
the charge renormalization is energy dependent, a coupling
between thermal and electrical transport appears even without
any energy-dependent scattering mechanism—resulting in a
nonzero thermoelectric effect in a chiral Landau level.

In the next section, Sec. II, we summarize the effective
low-energy theory of the superconducting vortex lattice [7],

on which we base our scattering theory in Sec. III, followed
by a calculation of electrical and thermoelectric transport
properties in Sec. IV. These analytical results are compared
with numerical simulations of a tight-binding model in Sec. V.
We conclude in Sec. VI.

II. LANDAU-LEVEL HAMILTONIAN
IN THE VORTEX LATTICE

We summarize the findings of Ref. [7] for the Landau-level
Hamiltonian of Weyl fermions in a superconducting vortex
lattice, for which we will need to calculate the transport
properties.

A. Dispersion relation

A Landau level is a dispersionless flat band in the plane
perpendicular to the magnetic field. The lowest (zeroth) Lan-
dau level is protected by chiral symmetry from scattering by
the vortices; see Fig. 2. This is the Landau level on which
we focus our analysis. It is a celebrated result of Nielsen
and Ninomiya [4] that Weyl fermions in the zeroth Landau
level have a definite chirality χ = ±1, defined as the sign
of the velocity vz = ∂E/∂kz, parallel or antiparallel to B. To
account for the electron-hole degree of freedom the number of
bands is doubled for each chirality, so that we have four bands
in total. Electronlike and holelike bands are related by the
charge-conjugation symmetry relation Eχ (kz ) = −Eχ (−kz ).

The effect of a superconducting vortex lattice on this four-
band dispersion is given by [7]

Eχ (kz ) = −(sgn kz )χM(kz ) − χμκ (kz ),

M(kz ) = β −
√

�2
0 + k2

z , κ (kz ) = d

dkz
M(kz ), (2.1)

plotted in Fig. 3. (We have set h̄ and the Fermi velocity vF

equal to unity, so κ is dimensionless.) The magnitude of the
superconducting pair potential outside of the vortex cores is
denoted by �0 and β is an internal magnetization along the
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(a) (b)

FIG. 1. (a) Vortex lattice in a Weyl superconductor sandwiched
between metal electrodes; (b) circuit to measure the electrical trans-
port along the vortex lines. The nonlocal conductance G12 = dI2/dV1

gives the current carried through the vortex lattice by nonequilibrium
Weyl fermions in a chiral Landau level.

z direction that breaks time-reversal symmetry even in the
absence of any external magnetic field. In Eq. (2.1) we have
assumed that β is parallel to B, but we will later relax this
assumption (see Sec. V C).

Provided that �0 < β there is a pair of Landau levels for
each chirality, located in the magnetic Brillouin zone near the
Weyl points at kz = K and kz = −K , with [1]

K (�0) =
√

β2 − �2
0. (2.2)

The charge expectation value

Qχ = −e
∂Eχ

∂μ
= eχκ (kz ) = − eχkz√

�2
0 + k2

z

(2.3)

for a given chirality has the opposite sign at the two Weyl
points. (We say that the chiral Landau levels near kz = ±K
are charge conjugate.) When kz = ±K is at the Weyl point,
the charge renormalization factor equals ∓κ0, with

κ0 = K (�0)/K (0) =
√

1 − �2
0/β

2, (2.4)

-

FIG. 3. Dispersion relation of the zeroth Landau level in a super-
conducting vortex lattice, plotted from Eq. (2.1) for μ=0, �0 =0.5,
β = 1. Only the dependence on the momentum kz along the magnetic
field B is shown; the dispersion is flat in the x-y plane (see Fig. 2).
The four branches are distinguished by the sign of the chirality (solid
or dashed) and by the sign of the electric charge (red or blue). The
zero-field Weyl points at kz = ±K are indicated by arrows. Each
branch has a degeneracy NLandau = e�/h set by the enclosed flux
� = BW 2.

while κ (kz ) varies linearly with energy away from the Weyl
point [10].

B. Effective Hamiltonian

The dispersion (2.1) follows from the effective low-energy
Hamiltonian [7],

H = U

⎛
⎜⎝

H+ 0 0 0
0 · · 0
0 · · 0
0 0 0 H−

⎞
⎟⎠U †, (2.5a)

FIG. 2. Left: The red solid curves show the dispersion of Landau levels in the kx-ky plane perpendicular to the magnetic field (energy E
normalized by the energy E1 of the first Landau level). The black dotted curves show the dispersion in zero magnetic field, with a Weyl cone
at the 	 point of the magnetic Brillouin zone. Right: Particle density profile in the zeroth Landau level, in the x-y plane perpendicular to the
magnetic field, for a wave vector at the Weyl point (k = Kẑ). The magnetic unit cell is indicated by a white dashed rectangle. Both panels
are calculated numerically for a Weyl superconductor with a triangular vortex lattice. The vortex cores are located at the bright points in the
density profile. Similar plots for a square vortex lattice are in Ref. [7].
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Hχ = (kx + eAχ,x )σx + (ky + eAχ,y)σy + Mσz − χμκσ0,

(2.5b)

U = exp

(
1

2
iθνyτzσz

)
, θ = arccos κ. (2.5c)

The 2×2 Pauli matrices να , τα , and σα (with α = 0 the cor-
responding unit matrix) act on, respectively, the electron-hole,
orbital, and spin degrees of freedom. The full Hamiltonian H
is an 8×8 matrix and the 2×2 matrices H± act on the σ index
in the ν = τ = ±1 sector.

The central block in Eq. (2.5a) indicated by dots refers to
higher-lying bands that are approximately decoupled from the
low-energy bands. Virtual transitions to these higher bands
contribute order μ2 terms that remove the discontinuity in the
derivative ∂E/∂kz at kz = 0 for μ �= 0. No such decoupling
approximations are made in the numerics of Sec. V.

The gauge field Aχ (r), dependent on the position r = (x, y)
in the x-y plane, defines the effective magnetic field Bχ =
∇×Aχ in the z direction felt by the Weyl fermions in the
lattice of vortices at positions Rn,

Bχ = (1 + χκ )�0

∑
n

δ(r − Rn) − χκB. (2.6)

There are Nvortex = BW 2/�0 vortices of flux �0 = h/2e in
an area W 2 perpendicular to the applied magnetic field B,
so the spatial average

∫
Bχdr = � equals the total enclosed

flux � = BW 2 independent of κ or of the lattice of vortices.
(In the numerics that follows we will use a square lattice for
definiteness.)

C. Zeroth Landau-level wave functions

As shown in Ref. [7], the Aharonov-Casher index theorem
[11–13], together with the requirement that the wave functions
are square-integrable at a vortex core, implies that the zeroth
Landau-level eigenstates ψχ of Hχ , which are rank-2 spinors,
are also eigenstates |±〉σ of σz,

σzψχ = (sgn Qχ )ψχ. (2.7)

The eigenvalue is determined by the sign of the effective
quasiparticle charge (2.3).

It follows that the eigenstates �χ of the full Hamiltonian
H, which are rank-8 spinors, have the form

�χ = eikzz fχ (x, y)e(1/2)iθνyτzσz |sgn χ〉ν |sgn χ〉τ |sgn Qχ 〉σ
= eikzz fχ (x, y)[cos(θ/2)|sgn χ〉ν |sgn χ〉τ |sgn Qχ 〉σ

− sin(θ/2)(sgn Qχ )|−sgn χ〉ν |sgn χ〉τ |sgn Qχ 〉σ ].

(2.8)

The spatial density profile fχ (x, y) is peaked at the vor-
tex cores, with a power-law decay | fχ |2 ∝ δr−1+|Qχ |/e at a
distance δr from the core [7]. The renormalization of the
quasiparticle charge does not affect the degeneracy of the
zeroth Landau level: each of the four chiral modes in Fig. 3
has a degeneracy

NLandau = e�/h (2.9)

set by the bare charge e.

Although the spatial density profile of these chiral modes
is nonuniform, the wave functions extend over the entire x-y
plane—they are not exponentially confined to the vortex cores
(see Fig. 2). This is a qualitative difference between the zeroth
Landau level of a Weyl superconductor and zero modes bound
to vortices in topological superconductors [14,15].

III. TRANSMISSION THROUGH THE NSN JUNCTION

Referring to the geometry of Fig. 1, we seek the transmis-
sion matrix tNSN for propagating modes of electrons and holes
transmitted from the first metal contact N1 in the region z < 0,
through the Weyl superconductor in the region 0 < z < L,
into the second metal contact N2 in the region z > L.

A. Renormalized charge transfer

We start by examining a single NS interface, to study how
a chiral mode in the superconductor injects a renormalized
charge into the normal metal.

On the superconducting side z < L of the NS interface
at z = L the incident modes have positive chirality χ = +1.
There is a mode �S with perpendicular momentum kz near
K and a mode � ′

S with k′
z near −K . We do not specify the

transverse momentum k‖ = (kx, ky ), which gives each mode a
degeneracy of NLandau = e�/h; see Eq. (2.9).

According to Eq. (2.8), the spinor structure of the chiral
modes is

�S ∝ cos(θ/2)|++-〉ντσ + sin(θ/2)|-+-〉ντσ ,

� ′
S ∝ cos(θ ′/2)|+++〉ντσ − sin(θ ′/2)|-++〉ντσ . (3.1)

We have abbreviated | ± ±±〉ντσ = |±〉ν |±〉τ |±〉σ and denote
θ = θ (kz ), θ ′ = θ (k′

z ).
For the normal metal we take the free-electron Hamiltonian

HN = 1

2m

(
k2 − k2

F

)
νzτ0σ0, (3.2)

isotropic in the spin and valley degrees of freedom, in
the high Fermi-momentum limit kFlm → ∞ when the effect
of the magnetic field on the spectrum may be neglected
(lm = √

h̄/eB is the magnetic length).
Because of the large potential step experienced upon

traversing the NS interface, the perpendicular momentum kz

is boosted to +kF for the electron component of the state and
to −kF for the hole component. A state in N moving away
from the NS interface of the form

�N ∝ eikF (z−L) cos(θ/2)|++-〉ντσ

+ e−ikF (z−L) sin(θ/2)|-+-〉ντσ (3.3a)

can be matched to the incident state �S in S, while the state

� ′
N ∝ eikF (z−L) cos(θ ′/2)|+++〉ντσ

− e−ikF (z−L) sin(θ ′/2)|-++〉ντσ (3.3b)

can be matched to � ′
S.

The charge transferred through the interface when
�S �→ �N equals the renormalized charge from Eq. (2.3),

QN = 〈�N|eνz|�N〉 = e cos θ = eκ = −ekz√
�2

0 + k2
z

, (3.4)
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dependent on the perpendicular momentum kz in S, before the
boost to kF in N . When kz = K , this gives

QN = −e
√

1 − �2
0/β

2 = −κ0e ≡ −Qeff . (3.5)

This is for the transmission �S �→ �N. The other transmission
� ′

S �→ � ′
N transfers for k′

z = −K a charge Q′
N = +Qeff .

Similarly, at the opposite NS interface z = 0 the chiral
Landau level modes in S moving away from the interface are
matched to incoming states in N of the form

�N ∝ eikFz cos(θ/2)|++-〉ντσ + e−ikFz sin(θ/2)|-+-〉ντσ ,

(3.6a)

�′
N ∝ eikFz cos(θ ′/2)|+++〉ντσ − e−ikFz sin(θ ′/2)|-++〉ντσ .

(3.6b)

B. Transmission matrix

At a given energy E relative to the Fermi level the perpen-
dicular momenta kz and k′

z of the chiral Landau levels in S
moving in the +z direction are determined by the dispersion
relation (2.1) with χ = +1. For μ = 0 the expressions are

simple,

kz = K + (β/K )E , k′
z = −K + (β/K )E . (3.7)

For any μ, particle-hole symmetry ensures that

kz(E ) = −k′
z(−E ). (3.8)

The Landau level �S propagating from z = 0 to z = L
accumulates a phase kzL, and similarly � ′

S accumulates a
phase k′

zL. The full transmission matrix of the NSN junction at
energy E can thus be written as

tNSN(E ) = eikzL|�N〉〈�N| + eik′
zL|� ′

N〉〈�′
N|, (3.9)

with kz and k′
z determined by Eq. (3.7).

We can rewrite Eq. (3.9) in the basis of propagating elec-
tron modes in the normal metal. In the region z < 0 one has
the basis states

|�↑〉 =
(|e ↑〉

|h ↑〉
)

, |�↓〉 =
(|e ↓〉

|h ↓〉
)

, (3.10a)

|e ↑〉 = eikFz|+++〉ντσ , |h ↑〉 = e−ikFz|-++〉ντσ ,

|e ↓〉 = eikFz|++-〉ντσ , |h ↓〉 = e−ikFz|-+-〉ντσ , (3.10b)

and similarly for z > L with kFz replaced by kF(z − L).
The transmission matrix is block diagonal in the spin

degree of freedom,

tNSN(E ) =
(

t↑(E ) 0
0 t↓(E )

)
, (3.11a)

t↑ = eik′
zL

(
cos2(θ ′/2) − cos(θ ′/2) sin(θ ′/2)

− cos(θ ′/2) sin(θ ′/2) sin2(θ ′/2)

)
,

t↓ = eikzL

(
cos2(θ/2) cos(θ/2) sin(θ/2)

cos(θ/2) sin(θ/2) sin2(θ/2)

)
. (3.11b)

The 2×2 matrix t↑ acts on the electron-hole spinor |�↑〉
and t↓ acts on |�↓〉. We may write this more compactly as

t↑ = 1
2 eik′

zL(ν0 + νze
−iθ ′νy ),

t↓ = 1
2 eikzL(ν0 + νze

iθνy ). (3.12)

These are each rank-1 matrices; one eigenvalue equals 0 and
the other equals 1 in absolute value. The unit transmission
eigenvalue is NLandau-fold degenerate in the transverse mo-
mentum k‖.

At the Fermi level E = 0 the particle-hole symmetry rela-
tion (3.8) implies k′

z = −kz, θ ′ = π − θ , hence

tNSN(0) = 1
2 e−ikzLσz (ν0 − νzσze

iθνy ). (3.13)

One verifies that

tNSN(0) = νyσyt
∗
NSN(0)νyσy, (3.14)

as required by particle-hole symmetry.

IV. TRANSPORT PROPERTIES

The transmission matrix allows us to calculate the transport
properties of the NSN junction, under the assumption that
there is no backscattering of the chiral modes in the Weyl

superconductor. To simplify the notation, we write t for the
Fermi-level transmission matrix tNSN(0). The submatrices of
electron and hole components are denoted by tee, thh, the, and
teh. We define the combinations

T± = t†
eetee ± t†

hethe, (4.1a)

T+ = 1
2 (ν0 + νz )t†t, T− = 1

2 (ν0 + νz )t†νzt . (4.1b)

A. Thermal conductance

As a check, we first recover the result of Ref. [7] for the
quantization of the thermal conductance.

The thermal conductance Gthermal = J12/δT gives the heat
current J12 transported at temperature T0 from contact N1 to
N2 via the superconductor, in response to a small temperature
difference δT between the contacts. It follows from the total
transmitted quasiparticle current that

Gthermal = 1

2
g0NLandau Tr t†t = g0

e�

h
, (4.2)

with NLandau = e�/h the Landau-level degeneracy and g0 =
1
3 (πkB)2(T0/h) the thermal conductance quantum. The factor
1/2 in the first equation appears because the quasiparticles
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in the Weyl superconductor are Majorana fermions. It is can-
celed by the factor of 2 from Tr tt† = 2, in view of Eq. (3.13).

B. Electrical conductance

Referring to the electrical circuit of Fig. 1(b), we consider
the electrical conductance G12 = dI2/dV1, given by

G12 = e2

h
NLandau Tr T−

= e2

h
NLandau

1

2
Tr (ν0 + νz )t†νzt . (4.3)

In the linear response limit V1 → 0 we substitute t from
Eq. (3.13), which gives

G12(0) = cos2 θ
e2

h
NLandau = (eκ )2

h

e�

h
. (4.4)

The conductance quantum e2/h is renormalized by the effec-
tive charge e �→ eκ . At μ = 0, when kz = K , the renormal-
ization factor is κ2

0 = (Qeff/e)2 = 1 − �2
0/β

2 from Eq. (3.5).
Note that the conductance per h/2e vortex is 1

2 (eκ0)2/h, with
an additional factor 1/2 to signal the Majorana nature of the
quasiparticles.

At finite E = eV1 we must use the energy-dependent trans-
mission matrix (3.11), which gives

G12(E ) = 1

2

e2

h
NLandau(cos θ + cos θ ′ + cos2 θ + cos2 θ ′).

(4.5)
Substituting Eq. (3.4) for cos θ and cos θ ′ at kz and k′

z, given
as a function of E by Eq. (3.7), we find

G12(E ) = G12(0)

(
1 − �2

0E(
β2 − �2

0

)3/2 + O(E2)

)
. (4.6)

The energy dependence of the differential conductance
comes entirely from the energy dependence of the effective
charge: At E = 0 the electronlike and holelike chiral Landau
levels have precisely opposite effective charge ±Qeff , but for
E �= 0 the effective charges differ in absolute value by an
amount ∝dkz/dE .

C. Shot noise

At temperatures small compared to the applied voltage V2,
the time-dependent fluctuations in the current I2 are due to
shot noise. The formula for the shot-noise power is [16]

P12 = e3V1

h
Tr (T+ − T 2

− ). (4.7)

This can again be written in terms of the Pauli matrix τz and
evaluated using Eq. (3.13),

P12 = e3V1

h

(
1 − 1

2
κ2 − 1

2
κ4

)
. (4.8)

The shot noise vanishes when κ → 1; it is fully due to the
charge renormalization.

The Fano factor F , the dimensionless ratio of shot-noise
power and average current, results as

F = P12

eV1G12
= 1

κ2
− 1

2
(1 + κ2). (4.9)

D. Thermoelectricity

Because of the energy dependence of the effective charge,
a temperature difference δT between contacts 1 and 2 will
produce an electrical current I12 = α12δT in addition to a heat
current. The thermoelectric coefficient α12 is given by [17]

α12 = π2

3e
k2

BT0 lim
E→0

d

dE
G12(E ). (4.10)

Substitution of Eq. (4.6) gives

α12 = −π2

3e
k2

BT0G12(0)
�2

0(
β2 − �2

0

)3/2

= −g0eκ2
0 NLandau

�2
0(

β2 − �2
0

)3/2

= −g0eNLandau
(�0/β )2(

β2 − �2
0

)1/2 . (4.11)

V. NUMERICAL SIMULATIONS

To test these analytical results, we have carried out nu-
merical calculations in a tight-binding model of the Weyl
superconductor with a vortex lattice.

A. Tight-binding Hamiltonian

The Bogoliubov–de Gennes Hamiltonian HS in the super-
conducting region 0 < z < L is

HS =
(

H0(k + eA) �

�∗ −σyH∗
0 (−k + eA)σy

)
, (5.1a)

H0(k) = t0
∑

α=x,y,z

[τzσα sin kαa0 + τxσ0(1 − cos kαa0)]

+βτ0σz − μτ0σ0. (5.1b)

The cubic lattice constant of the tight-binding model is a0

and t0 is the nearest-neighbor hopping energy. In what follows
we will set a0 and t0 both equal to unity.

In the strong-type-II limit the magnetic field B = B0ẑ
penetrates the superconductor uniformly, with vector potential
A = (−B0y, 0, 0). The absolute value �0 of the pair potential
� = �0eiφ can also be taken uniform, assuming that the size
ξ0 = h̄vF/�0 of the vortex core is small compared to the
magnetic length lm = √

h̄/eB0. For the analytical calculations
this is the only requirement. For the numerics we also take ξ0

small compared to the tight-binding discretization length a0,
and then ensure that a vortex core (where the phase field is
undefined) does not coincide with a lattice point. This implies
that a0 is large compared to the atomic lattice constant (which
itself must be much smaller than ξ0).

The vortices are arranged on a square lattice in the x-y
plane, lattice constant d0 = N0a0, with two h/2e vortices in
a unit cell. The number

N0 = (
a2

0eB0/h
)−1/2

(5.2)
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FIG. 4. Data points: Electrical conductance (top) and Fano factor
(bottom) in the superconducting vortex lattice (lattice constant d0),
as a function of the pair potential �0 at fixed magnetization β =1,
calculated from the tight-binding model (lattice constant a0) for
different lattice constant ratios N0 = d0/a0. The black curves are the
analytical predictions from the charge renormalization factor κ , both
in the approximation of a linearized dispersion (black dashed curve,
κ = κ0 = √

1 − �2
0/β

2) and for the full nonlinear dispersion (black
solid).

is set at an integer value. The phase φ(r) winds around the
vortex cores Rn according to

∇×∇φ = 2π ẑ
∑

n

δ(r − Rn). (5.3)

In the normal-metal leads z < 0, z > L we have �0 ≡ 0
and a large chemical potential μN, so only modes with a large
longitudinal momentum kz couple to the superconductor. We
effectuate the μN → ∞ limit by removing the transverse x, y
couplings in the leads, resulting in the Hamiltonian [18]

HN = νzτzσz sin kz + νzτxσ0(1 − cos kz ). (5.4)

The gauge-invariant discretization of the Hamiltonian (5.1)
in the magnetic Brillouin zone is detailed in Ref. [7]. The
scattering matrix is calculated using the KWANT code [19].

B. Results

Results for the conductance and shot noise are shown in
Fig. 4, as a function of �0 for β = 1, μ = 0. The analytical
predictions (4.4) for the conductance and (4.9) for the Fano
factor are given by the black curves. As a check, for these
curves we have also calculated the charge renormalization
factor κ from the full sinusoidal dispersion, without making
the small-k expansion of Eq. (2.1)—the difference with κ0 =√

1 − �2
0/β

2 is small.
To assess finite-size effects in the numerics we show results

for different values of the ratio N0 = d0/a0 of magnetic unit
cell and tight-binding unit cell. As expected, the agreement
between numerics and analytics improves with increasing

FIG. 5. Dependence on �0 for β = 0.5 of the thermoelectric co-
efficient (4.10), calculated from the infinite-system analytics (black
solid curve) or obtained from finite-size numerics (colored data
points).

N0, for �0/β not close to unity. (At �0 = β the spectrum
becomes gapless and the low-energy analytics breaks down.)

These are results at the Fermi level, E = 0. The energy
dependence of the conductance determines the thermoelec-
tric coefficient (4.10). We show numerical results for α12 ∝
dG12/dE in Fig. 5, for a smaller β = 0.5 to reduce the
oscillations that disappear only slowly with increasing N0.

C. Test for isotropy of the charge renormalization

So far we assumed that the internal magnetization β is
parallel to the external magnetic field in the z direction. This
assumption is needed for our low-energy analytics, but numer-
ically we can take an arbitrary angle between the magnetiza-
tion β = (βx, βy, βz ) and the magnetic field, by replacing the
term βτ0σz in the Hamiltonian (5.1b) with τ0 β · σ. Results
for β = (β, 0, 0), so for a magnetization perpendicular to
the magnetic field, are shown in Fig. 6. There is no qual-
itative difference with Fig. 4 for the parallel configuration;
the quantitative difference is that the finite-size effects are
smaller.

FIG. 6. Same as Fig. 4, but for a magnetization β that is perpen-
dicular rather than parallel to the magnetic field B.
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VI. CONCLUSION

In summary, we have shown how the charge renormaliza-
tion e �→ κe of Weyl fermions in a superconducting vortex
lattice modifies the electrical and thermoelectrical transport
properties.

In the electrical conductance, the current per vortex is
reduced by a factor 1

2κ2—a prefactor 1/2 because of the Majo-
rana nature of the quasiparticles and a factor κ2 because of the
effective charge. At the Weyl point κ → κ0 =

√
1 − �2

0/β
2

depends on the ratio of the superconducting gap �0 and the
separation 2β of the Weyl points of opposite chirality.

The charge-squared renormalization of the electrical con-
ductance is a simple result, but perhaps not what one might
have guessed by analogy with the fractional quantum Hall
effect, where a 1/3 fractional charge reduces the conductance
by 1/3 rather than 1/9. The key difference is that here the
quasiparticles are not in an eigenstate of charge; the charge
renormalization is due to quantum fluctuations, which give
uncorrelated reductions by κ×κ at entrance and exit. These
quantum fluctuations of the charge are also responsible for the
large shot-noise power that we have found, with a diverging
Fano factor (4.9) in the limit κ → 0.

The energy dependence of the charge renormalization im-
plies that charge transport parallel to the magnetic field B
goes hand-in-hand with heat transport. As a result, a nonzero

thermoelectric coefficient α12 along the field lines appears in
a chiral Landau level—something that would not be possible
in the normal state: The Landau level contributes an energy-
independent number of propagating modes along B (one mode
per flux quantum) and the chirality suppresses backscattering,
so the energy derivative in Eq. (4.10) would vanish in the
normal state.

There is much recent interest in thermoelectricity of Weyl
fermions in a Landau level [20–23], but that refers to currents
perpendicular to B. Our findings show that charge renormal-
ization in a Weyl superconductor provides a mechanism for a
nonzero effect parallel to the field lines.

In our calculations we have assumed a clean system,
without impurity scattering. However, we expect the transport
properties to be robust against nonmagnetic disorder, which
in the effective low-energy Hamiltonian (2.5) would enter as
a term proportional to σz that does not couple Landau levels
of opposite chirality.
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