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Abstract
Bell’s theorem renders quantum correlations distinct from those of any local-realisticmodel.
Although being stronger than classical correlations, quantum correlations are limited by the Tsirelson
bound. This bound, however, applies forHermitian, commutative operators corresponding to non-
signaling observables in Alice’s and Bob’s spacelike-separated labs. As an attempt to explore theories
beyond quantummechanics and analyze the uniqueness of the latter, we examine in this work the
extent of non-local correlations when relaxing these fundamental assumptions, which allows for
theories with non-local signaling.We prove that, somewhat surprisingly, the Tsirelson bound in the
Bell–Clauser–Horne–Shimony–Holt scenario, and similarly other related bounds on non-local
correlations, remain effective as long aswemaintain theHilbert space structure of the theory.
Furthermore, in the case ofHermitian observables we find novel relations between non-locality, local
correlations, and signaling.We demonstrate that such non-local signaling theories are naturally
simulated by quantum systems of parafermionic zeromodes.Wenumerically study the derived
bounds in parafermionic systems, confirming the bounds’ validity yet finding a drastic difference
between correlations of ‘signaling’ and ‘non-signaling’ sets of observables.We also propose an
experimental procedure formeasuring the relevant correlations.

1. Introduction

In a Bell test [1, 2], Alice and Bobmeasure pairs of particles (possibly having a common source in their past) and
then communicate in order to calculate the correlations between thesemeasurements. The strength of empirical
correlations enables one to characterize the underlying theory. In quantummechanics, the above procedure
corresponds to localmeasurements ofHermitian operatorsA0/A1 onAlice’s side and B B0 1 onBob’s side. The
correlators are defined using the quantum expectation value = á ñc A Bij i j and, when the operators have
eigenvalues±1, it can be shown that theClauser–Horne–Shimony–Holt (CHSH)parameter obeys

 º + + -∣ ∣ ∣ ∣ ( )c c c c 2 2 , 100 10 01 11

which is known as the Tsirelson bound [3]. Stronger bounds on the correlators (i.e. bounds fromwhich the
Tsirelson bound can be derived)were proposed, e.g. byUffink [4] and independently by Tsirelson, Landau and
Masanes (TLM) [5–7]. The latter implies that

 å- - -
=

∣ ∣ ( )( ) ( )c c c c c c1 1 . 2
j

j j00 10 01 11
0,1
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2

TheTLM inequality is known to be necessary and sufficient for the correlators cij to be realizable in quantum
mechanics [5–7] (implying, in particular, that if a set of correlators satisfies equation (2), it necessarily satisfies
equation (1); the converse is not true). Importantly, when calculating  in any local-realisticmodel it turns out
that  ∣ ∣ 2, which is a famous variant of Bell’s theorem known as theCHSH inequality [8], which provides a
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measurable distinction between correlations achievable in local-realisticmodels and in quantum theory. These
bounds, however, are not enough for fully characterizing the Alice–Bob quantum correlations. For the latter
task, theNavascues–Pironio–Acin hierarchical scheme of semidefinite programswas proposed [9].

All the aboveworks plausibly assuming that Alice’s and Bob’smeasurements are described by spatially local
andHermitian operators, implying that =[ ]A B, 0i j for all i j, . As such, they cannot lead to superluminal
signaling betweenAlice and Bob.

Trying, on the one hand, to generalize some of the above results, and on the other hand to pin-point the core
reason theywork sowell, we relax below these two assumptions and examine the consequences of complex-
valued correlations emerging fromnon-Hermitian non-commuting Alice/Bob operators.We thus allow a
restricted formof signaling between the parties (similar to the one in [10]), but wemaintain theHilbert space
structure, as well as other core ingredients of quantummechanics. Surprisingly, the Tsirelson bound andTLM
inequality remain valid in this generalized setting. Apart from that, we find intriguing relations between
nonlocality, local correlations of Alice (or Bob), and signaling in the case ofHermitian yet non-commuting
observables.

Considering non-Hermitian non-commuting observablesmay seem far from any sensiblemodel. To
alleviate this impression, we study an explicit example of a parafermionic system,which is a proper quantum
system that provides a natural setting for comparing commuting andnon-commuting sets of observables. The
natural observables in the parafermionic systemhappen to be non-Hermitian. Parafermions (or rather
parafermionic zeromodes) are topological zeromodes that generalize the better-knownMajorana zeromodes
[11–13]. Parafermions can be realized in various quasi-one-dimensional systems [14–20], see [21] for a
comprehensive review. Similarly to the case ofMajoranas, observables in a systemof parafermions are
inherently non-local as they comprise at least two parafermionic operators hosted at different spatial locations.
In the case ofMajoranas, this nonlocality is known to havemanifestations through the standardCHSH
inequality [22].We do not follow the investigation line of [22], but rather investigate a different aspect of
nonlocality, which is absent forMajoranas yet present for parafermions.

Specifically, we construct two examples. In thefirst, the systemof parafermions is split into two spatially
separated parts,A andB, with commuting observables =[ ]A B, 0i j . In the second example, Alice’s and Bob’s
parts are still spatially separated; the local permutation properties of A A,0 1, as well as those of B B,0 1 are exactly
the same as in the first example, yet ¹[ ]A B, 0i j . This property alone has the potential to contradict relativistic
causality sincewe have spatially separated observables which do not commute and thus allow for superluminal
signaling (thus these systems can indeed simulate the case of non-Hermitian signaling operators). However, as
we explain in section 3.2, in order tomeasure their respective observables, Alice and Bob in our systemmust
share a common region of space, which resolves the paradox. In this sense, Alice andBob can be thought of as
two experimenters acting on the same system. Therefore, the systemof parafermions does not constitute a
system inwhich the spatial and quantummechanical notions of locality disagree. However, it simulates such a
system (with spatial locality interpreted in a very naiveway). Using these examples we investigate the theoretical
bounds on correlations.Wefind that both systems obey the derived bounds.However, themaximal achievable
correlations in the truly local system (first example) are significantly weaker than those of the non-local one.

Beforewe present our results in the next sections, one comment is due.Onemay think that investigating
Bell–CHSHcorrelations with ¹[ ]A B, 0i j is an abuse of notation.Originally introduced for distinguishing
local-realistic theories from the standard quantum theory, the Bell–CHSH inequalities imply the use of
conditional probabilities ( ∣ )P a b i j, , that are defined in both.With ¹[ ]A B, 0i j , the correlators that have the
same operator form are expressed not through probability distributions ( ∣ )P a b i j, , but rather through
quasiprobability distributions ( ∣ )W a b i j, , , see appendix C. Therefore, a formal replacement of commuting
operators with non-commuting onesmay seem an illegitimate operation in this context.Wewould like to
emphasize that the key to comparing properties of different theories is considering objects that are defined in
these theories in an operationally identical way. This is the reason that local-realistic theories are compared to
quantummechanics not in terms of the joint probability distribution ( )P a a b b, , ,0 1 0 1 (that does not exist in
quantum theorywhen ¹[ ]A A, 0i j and/or ¹[ ]B B, 0i j ) but in terms of ( ∣ )P a b i j, , conditioned on the choice
of observables: ( ∣ )P a b i j, , are defined in both theories and can bemeasured by the samemeasurement
procedure. Since our aimhere is to compare the standard quantum theorywith that allowing for ¹[ ]A B, 0i j ,
working in the language of correlators that are defined and can bemeasured (even if they are complex) bymeans
of weakmeasurements in both theories [23] is a natural decision.We thus compare nonlocal theories having a
Hilbert space structure, rather than a probabilistic structure (common, e.g. to local hidden variables theories and
quantummechanics, but not to the post-quantum theories discussed here). However, in the case of the standard
quantum theory, the correlation functions (and thus our newbounds) can be expressed in terms of ( ∣ )P a b i j, , ,
making themnewbounds on the possible probability distributions in the standard quantum theory.

Inwhat follows, we start in section 2 by defining an operator-based (rather than probability-based)notion of
complex correlations arising in nonlocal, non-Hermitian systems admitting signaling and then find the
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generalized inequalities bounding them. Importantly, this notion has an operational sense in terms of weak
measurements, as discussed in the appendix C.2. In section 3, we review parafermionic systems and show they
can simulate such non-Hermitian signaing systems.We then numerically prove they are indeed bounded by the
proposed bounds. Section 4 concludes the paper. Some technical details appear in the appendices.

2. Analytic results for correlations of general non-Hermitian non-commuting operators

Belowwe prove a number of bounds on quantum correlations of non-Hermitian non-commuting operators.
We generalize the Tsirelson and the TLMbounds (theorems 1 and 2, which have been previously derived for
Hermitian commuting operators, see [24]) and derive previously unknown bounds (theorems 3 and 4, which are
applicable to theHermitian, non-signaling case aswell). Herewe introduce the bounds and discuss them,while
their proofs are deferred to section 2.1. The bounds are expressed in terms of Pearson correlation functions of
operatorsX andY defined as

=
á ñ - á ñá ñ

D D
( ) ( )

† †
C X Y

XY X Y
, , 3

X Y

whereD = á ñ - á ñ∣ ∣†XX XX
2 is the variance ofX (which is assumed to be non-zero), and averaging is

performedwith respect to some state yñ∣ in theHilbert space. This definition is a straightforward generalization
of the usual Pearson correlation between commutingHermitian operators. The Pearson correlations reduce to
the standard = á ñc XYXY forHermitianX andY on states yñ∣ such that á ñ = á ñ =X Y 0 andD = D = 1X Y .We
note that ( )C X Y, is ill-definedwhenD = 0X orD = 0;Y yet, as we show in section 2.1, ∣ ( )∣C X Y, 1
everywhere, including the vicinity of such special points.

For the case of commuting operatorsX,Y, the definition of ( )C X Y, can be expressed in terms of the joint
probability distributions, and our belowbounds can be thought of as restricting the possible probability
distributions in quantum theory.WhenX andY do not commute, this is not the case, which defies the notions
that conventionally underlie Bell inequalities. However, our aimhere is not to analyze complex local hidden
variablesmodels but rather to examine generalmodels which aremanifestly nonlocal. In particular, wewish to
analyze whether knownbounds on quantum correlations remain effective when generalized to cases of non-
Hermitian signaling operators.We argue that these complex correlations are physicallymeaningful because
there is an empirical protocol formeasuring them. That operationalmeaning of the above correlations in terms
of weakmeasurements is given in appendix C.2. Alternatively, for the case of non-commuting observables,

( )C X Y, can be expressed in terms of quasiprobability distibutions, and thus our bounds restrict possible
quasiprobability distributions in that case.We discuss this in detail in appendix A.

Wenowdiscuss the bounds onAlice–Bob correlations.

Theorem1 (Generalized Tsirelson bound).Define  = + + -( ) ( ) ( ) ( )C A B C A B C A B C A B, , , ,
def

0 0 1 0 0 1 1 1 as
the complex-valued Bell–CHSHparameter of any operators Ai and Bj. The following holds

    h h= + + + -∣ ∣ ( ) ( ) [ ( ) ( ) ] ( )Re Im 2 1 Re 1 Re 2 2 , 42 2

where η is either ( )C A A,0 1 or ( )C B B,0 1 (the one having the larger h∣ ( )∣Re among themwill give rise to a tighter
inequality).

Despite the fact that ¹( )C X Y c, XY , the Bell–CHSHparameter defined through ( )C X Y, obeys the same
Tsirelson bound as for cXY in equation (1).Moreover, the proof of the Tsirelson bound for ( )C X Y, is valid
independently of whether =[ ]A B, 0i j . A somewhat tighter bound (themiddle rowof equation (4)) is obtained
in terms of η that expresses on-site correlations onAlice’s or Bob’s side. This is also insensitive to
whether =[ ]A B, 0i j .

Theorem2 (Generalized TLMbound).The following holds for any operators Ai, Bj, Î { }i j, 0, 1 ,

 å- - -
=

∣ ( ) ( ) ( ) ( )∣ ( ∣ ( )∣ )( ∣ ( )∣ ) ( )† †C B A C B A C B A C B A C B A C B A, , , , 1 , 1 , . 5
j

j j0 0 0 1 1 0 1 1
0,1

0
2

1
2

Similarly to the previous theorem, this bound is insensitive towhether =[ ]A B, 0i j and has the same form as the
standard TLMbound, equation (2), modulo replacing ( )C X Y, with real-valued cXY.

We note in passing that our bounds apply to both operators with bounded and unbounded spectrum.
Implementing Bell tests inmesoscopic systems often requires dealingwith operators having an unbounded
spectrum, see [25]. Our theorems 1 and 2may thus be useful for studies in such systems.
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Theorem3 (Relation between nonlocality, local correlations, and signaling). Let  be the complex-valued Bell–
CHSHparameter defined in theorem 1. Then,

  h
+ +⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( ) ( )Re

2

Re

2 2

Im

2 2
1. 6

2 2 2

This bound is also valid independently of =[ ]A B, 0i j . In the case ofHermitianAi,Bj that obey =[ ]A B, 0i j ,
( )C A B,i j is real, implying  =( )Im 0. IfAi andBj areHermitian but do notmutually commute, there can

appear imaginary components to ( )C A B,i j and  . Therefore, this relationmay be interpreted as a constraint on

non-local correlations (represented by ( ) ( )Re 2 2 ), local on-site correlations ( h( )Re 2), and signaling
(represented by  ¹( ) ( )Im 2 2 0). These three quantities are thus confined to the unit ball, see figure 1.

Theorem4. Let  be the complex-valued Bell–CHSHparameter defined in theorem 1. In the case of isotropic
correlations, = -( ) ( )C A B, 1i j

ij (such that  = 4 ) for some complex-valued ñ,

  h + +
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∣ ∣ ( ) ( ) ( )Re

2 2

Im

2 2
1. 72

2 2

Note that equation (7)provides a tighter bound than equation (6). However, equation (7) is proved under the
rather restrictive assumption of = -( ) ( )C A B, 1i j

ij . This is a valid assumptionwithin non-signaling theories
in the following sense. Reference[26] argued that the standard Bell–CHSHparameter
 = + + -c c c c00 10 01 11 for±1-valued observables in a non-signaling theory (not necessarily classical or
quantum) can always bemaximized on a state satisfying r= -( )c 1ij

ij with a real ρ.While the statement of [26]
was proved for the standard correlations cXY (and not our ( )C X Y, ) andmaximizing the lhs of equation (7) is not
equivalent tomaximizing ∣ ∣, onemight hope that the possibility of arranging = -( ) ( )C A B, 1i j

ij is related to
non-signaling, and the bound of equation (7)would discriminate the cases of =[ ]A B, 0i j and ¹[ ]A B, 0i j .We
provide some numerical evidence for the last statement in section 3.

2.1. Proofs of analytic bounds

Lemma1 (Generalized uncertainty relations, see [27] for elaboration on the term).Denote by ¼X X, , n1 , a
number of operators. Let C be an ´n n Hermitianmatrix whose ijth entry is

=
á ñ - á ñá ñ

D D
( ) ( )

† †

C X X
X X X X

, , 8i j
i j i j

X Xi j

Figure 1. Local correlations h( )Re 2, nonlocality ( ) ( )Re 2 2 , and quantum signaling ( ) ( )Im 2 2 are confined to the unit ball
as implied by theorem3. The relation between the nonlocality and local correlations in anordinary quantum theorywith commutative
Hermitian observables, where the signaling parameter  =( )Im 0, is represented by the purple sectionwithin the ball.
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whereD = á ñ - á ñ∣ ∣†XX XX
2 is the uncertainty in X (which is assumed to be non-zero). Then C 0, i.e. it is

positive semidefinite.

Proof.Denote yñ∣ , the underlying quantum state. For any n-dimensional vector, = ¼[ ]v v v, ,T
n1 , it follows that

f f= á ñ∣ ( )v DCD v 0, 9T T

whereD is a (positive semidefinite) diagonalmatrix whose entries are = DDii Xi
, and

f yñ = å - á ñ ñ=∣ ( )∣v X Xi
n

i i i1 . Therefore, DCD 0T and so is C 0. ,

Applying this lemma to two operators, X X,1 2, one obtains that ∣ ( )∣C X X, 11 2 , implying that the correlation
functions are bounded even nearD = 0X1,2

.

Theorem1.Proof. Construct thematrix C for the operators A0, A1, and Bj,

h

h
=

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )
( )

( )†

† †

†

† †

C B B C B A C B A

C B A C A A C A A

C B A C A A C A A

C B A C B A

C B A

C B A

, , ,

, , ,

, , ,

1 , ,

, 1

, 1

0, 10

j j j j

j

j

j j

j

j

1 0

1 1 1 0 1

0 0 1 0 0

1 0

1

0

where h = ( )C A A,
def

0 1 . By the Schur complement condition for positive semidefiniteness this is equivalent to


h

h
=

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡⎣ ⎤⎦( )
( )

( ) ( ) ( )†

†

†C
C B A

C B A
C B A C B A

1

1

,

,
, , . 11A j

j
j j

def 1

0
1 0

Let = -[( ) ]v 1 , 1j
T j . The above inequality implies

h+ - = + -( ( ) ( )) ∣ ( ) ( ) ( )∣ ( )v C v C B A C B A2 1 1 Re , 1 , . 12j
j
T A

j j
j

j0 1
2

This together with the triangle inequality yield

  å å h+ - + -
= =

∣ ∣ ∣ ( ) ( ) ( )∣ ( ) ( ) ( )C B A C B A, 1 , 2 1 1 Re , 13
j

j
j

j
j

j

0,1
0 1

0,1

which completes the proof. Note that by swapping the roles of A and B, a similar inequality is obtainedwhere
h = ( )C B B,0 1 . ,

Theorem2.Proof. The inequality (11) implies

h- - - -( ∣ ( )∣ )( ∣ ( )∣ ) ∣ ( ) ( )∣ ( )†C B A C B A C B A C B A1 , 1 , , , 0, 14j j j j0
2

1
2

0 1
2

which follows from the non-negativity of the determinant of thematrix obtained by subtracting the right hand side
from the left hand side in (11). Therefore,

h - - -∣ ( ) ( )∣ ( ∣ ( )∣ )( ∣ ( )∣ ) ( )†C B A C B A C B A C B A, , 1 , 1 , . 15j j j j0 1 0
2

1
2

This and the triangle inequality give rise to the theorem,





å

å

h- -

- -

=

=

∣ ( ) ( ) ( ) ( )∣ ∣ ( ) ( )∣

( ∣ ( )∣ )( ∣ ( )∣ ) ( )

† † †C B A C B A C B A C B A C B A C B A

C B A C B A

, , , , , ,

1 , 1 , . 16

j
j j

j
j j

0 0 0 1 1 0 1 1
0,1

0 1

0,1
0

2
1

2

,

Theorem3.Proof.We have seen that

  h h+ + -∣ ∣ ( ( ) ( ) ) ( )2 1 Re 1 Re . 17

Therefore,

    h= + + -∣ ∣ ( ) ( ) ( ( ) ) ( )Re Im 4 1 1 Re . 182 2 2 2

Because, - -a a1 1 2 for Î [ ]a 0, 1 , it follows that

   h+ -( ) ( ) ( ) ( )Re Im 8 2 Re , 192 2 2

fromwhich the theorem follows. ,

Theorem4.Proof. In case the isotropy holds, i.e. * = = -( ) ( ) ( )C A B C B A, , 1i j j i
ij , (14) reads

 h - - -∣ ( ) ∣ ∣ ∣ ( ∣ ∣ ) ( )1 1 , 20j 2 2 2 2
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and thus

 h h- - -∣ ∣ ( ) ∣ ∣ ( ) ∣ ∣ ( )2 1 Re 1 2 . 21j2 2 2

Averaging both sides in this inequality over j= 0, 1, and rearranging give

 h +∣ ∣ ∣ ∣ ( )2 1. 222 2

Finally, substituting  = 4 into (22) yields the theorem. ,

3. Investigating the bounds in the systemof parafermions

Parafermions provide a unique test system for the bounds proven in the previous section. First, the natural
observables in a systemof parafermions are non-Hermitian. Second, in this system the non-commutativity
betweenAlice’s and Bob’s operators can be switched on and off without changing anything else about the algebra
of operators, enabling a clean investigation of the effect of Alice–Bob non-commutativity. Finally, there have
been a number of proposals for experimental implementations of parafermions [14–20], which opens theway
for experimental verification of our predictions.

The structure of the section is as follows. In section 3.1, we give a brief introduction to the physics of
parafermions and the algebra of their operators. In section 3.2, we construct the observables of Alice and Bob.
Those not interested in the physics of parafermionsmay skip directly to equations (30)–(32) detailing the
permutation relations of the observables and equations (33)–(38) introducing their explicitmatrix
representation. In section 3.3, we provide the results of the numerical investigation of bounds (4)–(7).

3.1. Parafermion physics and algebra
Parafermionic zeromodes can be created in a variety of settings [14–20]. In different settings, they have subtly
different properties.We focus on parafermions implementedwith the help of fractional quantumHall (FQH)
edges proximitized by a superconductor [14, 17, 18]. The setup employs two FQHpuddles of the samefilling
factor ν (grey regions infigure 2(a)) separated by vacuum. This gives rise to two counter-propagating chiral FQH
edges. The edges can be gapped either by electron tunneling between them (Tdomains) or by proximity-induced
superconducting pairing of electrons at the edges (SCdomains). Domainwalls between the domains of two

Figure 2.Aphysical setup for creating andmeasuring parafermions. (a)—Setup for implementing parafermions (represented in cyan)
with two fractional quantumHall (FQH) edges (arrows) supporting a series of electron-tunneling-gapped (T) and superconductivity-
gapped (SC) domains. (b)—Setup formeasuring parafermionic observables with the help of two additional FQHedges (curved
arrows) as in [28] (see appendix B).
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types host parafermionic zeromodes as j, with = = s R L 1denotingwhether a parafermion belongs to the
right- or left-propagating edge respectively, and j denoting the domainwall number.

Parafermion operators have the following properties:

a a a a a= = =n ( )† † 1, 23s j s j s j s j s j,
2

, , , ,

a a a a= pn - ( )( )e , 24s j s k s k s j
s k j

, , , ,
i sgn

a a a a=
¹
=

=

pn

pn

⎧
⎨⎪

⎩⎪
( )

k j

k j

k j

e , ,

1, are even,

e , are odd,

25R j L k L k R j, , , ,

i

2i

where sgn is the sign function. These properties are valid for n = +( )m1 2 1 , Î +m considered in [14, 17]
and for n = 2 3 considered in [18]. In the case of n = 1, parafermions reduce toMajorana operators
and a a=R j L j, , .

The physics of parafermions is associatedwith degenerate ground states of the system.Namely, beyond
hostingCooper pairs, each superconducting domain SCj can host a certain chargeQj ( emod 2 ) quantized in the
units of charge of FQHquasiparticles ne. Thus eachQj has n=d 2 distinct values, and the ground state
degeneracy of a system as infigure 2(a) is therefore d NSC, where NSC is the number of SC domains. Parafermionic
operators as j, act in this degenerate space of ground states and represent the effect of adding a FQHquasiparticle
to the system from a FQHpuddle corresponding to s at domainwall j. Various observables in the systemof
parafemions can be expressed through unitary operators a a†

s j s k, , . In particular,Qj themselves can be expressed

through a a= -p n n-
-( )( ) †e 1s Q e

s j s j
i 2 2

,2 1 ,2
j . One can show that a a = - p n( )† es j s k

d
, ,

2i , which implies that

a a†
s j s k, , has d distinct eigenvalues, all having the form- pn +( )e ri 1 2 with Îr .

Unitary operators a a†
s j s k, , are thus natural ‘observables’ in the systemdespite being non-Hermitian. The

permutation relations of such operators immediately follow from equations (23)–(25). Despite being spatially
disconnected, such operators composed of different pairs of parafermionsmay not commute, e.g.

a a a a a a a a= pn ( )† † † † e . 26R R R R R R R R,2 ,4 ,3 ,5 ,3 ,5 ,2 ,4
2i

It is interesting to note that in the case ofMajoranas (n = 1), none of these twounique properties would hold:
the operators a a†i s j s k, , would beHermitian, while two such operators having no commonMajoranas would
commute.

3.2. Alice’s andBob’s observables
For a parfermionic systemwith three SC domains (as infigure 2)with afixed total charge, the ground state is
d2-degenerate, which allows to split it into two distinct subsystems: SC1 and SC3 domains, each having
degeneracy d as each can have d distinct values of chargeQj. The charge of SC2 domain is determined by the state
of SC1 and SC3 in order for the total charge to befixed. This system is thus a natural candidate for studying
quantum correlations between two subsystems. To this end, we introduce observables accessible to Alice,

a a a a= = ( )† †A A, , 27R R R R0 ,2 ,4 1 ,1 ,4

and twodifferent sets of observables accessible to Bob:

a a a a= = ( )† †B B, , 28L L L L0 ,3 ,5 1 ,3 ,6

and

a a a a¢ = ¢ = ( )† †B B, . 29R R i R R0 ,3 ,6 ,3 ,5

They have identical local algebra, yet different commutation properties of Alice’s and Bob’s observables:

= pn- ( )A A A A e , 300 1 1 0
i

= ¢ ¢ = ¢ ¢pn pn- - ( )B B B B B B B Be , e , 310 1 1 0
i

0 i i 0
i

= ¢ = ¢ pn[ ] ( )A B A B B A, 0, e . 32j k j k k j
2i

The non-commutation ofA and ¢B observables would imply the possiblity of superluminal signaling had the
observables been truly spatially separate (which is not the case, as we explain below). Therefore, we call the set of
A andB a non-signaling set, and the set ofA and ¢B a signaling set of observables.

Naively, Alice’s observables are local with respect to either set of Bob’s observables, seefigure 3(a). Indeed,A
and either theB or ¢B set use different parafermions, which can bemade arbitrarily distant from each other,
seefigure 3(b). However, the locality issue in this system is subtler as in order to probe an observable of the form
a a†

s j s k, , , one needs to enable FQHquasiparticle tunneling to both parafermions simultaneously (see appendix B).
At the same time, quasiparticles can tunnel to a parafermion only from the FQHpuddle corresponding to the
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parafermion index s, not through vacuum and not from the other puddle. Therefore, as can be seen from
figure 3(b), theA andB sets are indeedmutually local, whileA and ¢B are not. The ability of Alice tomeasure
observables inA and of Bob tomeasure observables in ¢B , requires them to have access to a common region of
the upper FQHpuddle. Thus, the systemdoes not violate the laws of quantummechanics, nor exhibits
superluminal signaling. Nevertheless, it presents a unique opportunity for comparing correlations of
commuting and non-commuting (but otherwise equivalent) sets of observables.

The standard tool for studying quantum correlations is given by Bell inequalities. However, since the
observables considered here havemore than two eigenvalues, we require CHSH-like inequalities suitable for
multi-outcomemeasurements.We study the inequalities introduced in theorems 1–4, as well as an inequality
from [29]. These inequalities involve correlators of the form á ñ†A Bj k and á ¢ ñ( )†A Bj k . Since =[ ]A B, 0j k , á ñ†A Bj k
can be experimentally obtained by performing strongmeasurements ofAj andBk separately according to the
protocol of appendix B and then calculating the correlations. Alternatively, these correlations can bemeasured
withweakmeasurements [30, 31]. The non-commutativity ofAj and ¢Bk does not allow for a strong-
measurement-based approach in the case of á ¢ ñ( )†A Bj k . However, this correlator can bemeasuredwith the help
of weakmeasurements as described in appendix C.

Fromnowonwe focus on parafermions implemented using n = 2 3 FQHpuddles. Using permutation
relations (30)–(32) supplemented by the permutation relations ofBj and ¢Bk , as well as a a =( )† 1s j s k, ,

3 , one can
derive an explicitmatrix representation for observables (27)–(29):

= Äp

p-

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )A

1 0 0
0 e 0
0 0 e

1 0 0
0 1 0
0 0 1

, 330
2 i 3

2 i 3

= Ä
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )A

0 1 0
0 0 1
1 0 0

1 0 0
0 1 0
0 0 1

, 341

= Ä p

p-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )B

1 0 0
0 1 0
0 0 1

1 0 0
0 e 0
0 0 e

, 350
2 i 3

2 i 3

Figure 3.Parafermionic observables and theirmutual locality. (a)—Grouping parafermions into groups belonging to Alice (A) and
Bob (B/ ¢B ). (b)—A andB donot have commonparafermions, aremutually local, and can bemade arbitrarily distant in space.While
A and ¢B do not have commonparafermions, they are notmutually local: for Alice tomeasureAwhile Bob canmeasure ¢B , there
should be a region of the upper FQHpuddle accessible both to Alice and Bob.
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= Ä
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )B

1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
1 0 0

, 361

¢ = Ä
p

p

-⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )B

0 e 0
0 0 e
1 0 0

0 1 0
0 0 1
1 0 0

, 370

2 i 3

2 i 3

¢ = Ä
p

p p

p

-

-

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )B

0 e 0
0 0 e
1 0 0

0 0 1
e 0 0

0 e 0

. 38i

2 i 3

2 i 3 2 i 3

2 i 3

This is used in the numerical investigation in the next section.

3.3. Numerical results for correlations of parafermions
Herewe numerically investigate the bounds on correlations presented above (4)–(7) and theCHSH-like
inequality derived in [29]. The inequality of [29] states that for a local-realistic system

= + - + ( )I Q Q Q Q 2, 393 00 01 10 11

where = á ñ + á ñ[ ] [ ]Q A B A BRe Imjk j k j k
1

3
for i j, and = á ñ - á ñ[ ] [ ]Q A B A BRe Im01 0 1

1

3 0 1 . The observa-

bles are assumed to have possible values (for the quantum case that we are interested in, eigenvalues) pe r2 i 3,
Îr , which is the case for the observables defined in equations (33)–(38). In the standard quantum theory, i.e.

for quantumobservables such that =[ ]A B, 0j k , themaximumattainable value is known to be»2.91 [32].
For all the inequalities investigated, we calculated the corresponding correlations ( )C A B,i j or á ñA Bj k , and

maximized the relevant expressions numerically over all possible states yñ∣ . The expressionsmaximizedwere the
left-hand side of bounds (39), (4), (6), (7) and the ratio of the left-hand side to the right-hand side of inequality
(5). The numericalmaximizationwas performed independently viaWolframMathematica (functions
NMaximize forfinding the globalmaximumandFindMaximum for investigating localmaxima) and Python
(packagescipy.optimize, functionsbasinhopping forfinding the globalmaximumwithSLSQP
method for investigating localmaxima). One aspect deservesmentioning. Correlation functions ( )C A B,i j

defined in equation (8) are notwell-defined in all of theHilbert space as the denominator can turn out to be zero.
However, the points where it does, constitute a set ofmeasure zero among all the states.Moreover, in the vicinity
of these special points, ( )C A B,i j does not diverge but stays bounded as ∣ ( )∣C A B, 1;i j however, the limiting
value as one approaches the special point depends on the direction of approach. Therefore, with careful
treatment, these special points do not constitute a problem for investigation. Namely, we replaced

D  D +A A
2

i i
, D  D +B B

2
j j

with a small cutoff ò, and checked that our results do not change as   0.

Furthermore, the states yñ∣ onwhich themaximumvalues in table 1 are achieved are such thatD D ¹, 0A Bi j
for

allAi,Bj.
The results of our investigation are presented in table 1. First, we note that the lhs of equation (39) does not

distinguish the signaling and non-signaling sets of observables. Second, our bounds (4)–(6) are obeyed by both
sets. However, the signaling set saturates the boundsmuch better than the non-signaling one. Finally, the bound
of theorem4, (7), is saturated by the non-signaling set and violated by the signaling one. This does not contradict
the proof, which assumes = -( ) ( )C A B, 1i j

ij . In fact, this property is not satisfied by the states yñ∣ maximizing
the lhs of (7) for either of the sets. However, this numerical evidence togetherwith the fact that

= -( ) ( )C A B, 1i j
ij correlationsmight be special for non-signaling theories (see the discussion after theorem

4) imply that equation (7)may be a good bound for distinguishing signaling and non-signaling quantum
theories.We provide further evidence for the last statement in appendixD.

Table 1.Characterization of various bounds on non-local correlations for the signaling and non-signaling sets of parafermionic observables.

Bound:

I3
(39),
lhs

Generalized Tsir-

elson (4), lhs
Generalized TLM

(5), lhs/rhs
Relation

(6), lhs Relation (7), lhs

Theoreticalmaximum

2.91

[32] 2 2 (≈2.83) 1 1

1 (if assump-

tions hold)

Maximum for paraf-

ermionic observables

Non-signal-

ing (A + B)
2.60 2.44 0.71 0.74 1.00

Signaling

(A + B′)
2.60 2.82 1.00 1.00 1.56
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4.Discussion

Our analytic results have important implications for understanding quantum correlations. It is known that the
standardCHSHparameter has distinct bounds for classical local ( ∣ ∣ 2) and non-local ( ∣ ∣ 4) hidden
variable theories, while the standard quantum theory obeys the Tsirelson bound (1). Our variation of the
Tsirelson bound (4) is closely related to the original Tsirelson bound. In particular, forHermitian observables

=X A B,i j such that =†XX 1and states yñ∣ such that y yá ñ =∣ ∣X 0, our Bell–CHSHparameter ∣ ∣ (4)
coincides with the original one. At the same time, our proof shows that the Tsirelson bound (4), as well as the
TLMbound (5), do not distinguish between the standard and non-local signaling quantum theories. This
implies that theHilbert space structure ismuchmore restrictive than it was previously thought (see, e.g.
equation (10)which underlies our proofs). Naively, one could expect that the possibility of signalingwould allow
nonlocal correlations to be stronger than quantum, because one party can directly affect from a distance the
others’ outcomes and in particularmake themmore correlatedwith hers. However, the limited kind of signaling
we have introduced here, still within a quantum-like structure, is insufficient for this purpose.

At the same time, understanding the bounds on correlations in the standard quantum theory, that explicitly
takes into account the absence of signaling,may be beneficial both for deepening its understanding, further
testing its validity, and deriving bounds on protocols for quantum information processing. Our numerical
results with parafermions provide a candidate for such a bound, equation (7). Indeed, the ‘non-signaling’
parafermionic set stayedwithin the bound, while the ‘signaling’ one violated it.Moreover, [26] argued that the
assumptionswe used to prove theorem4 hold generally for the statesmaximizing the standard Bell–CHSH
parameter in non-signaling theories (not in the sense that anymaximizing state satisfies the assumptions, but in
the sense that it is always possible tofind a state thatmaximizes the standard Bell–CHSHparameter and satisfies
the assumptions). Therefore, we believe that inequality (7) deserves further investigation.
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AppendixA. Relation between the correlation functions ( )C X Y, and joint probability
distributions

For the standard case of commuting operatorsX andY, it is possible to express correlators ( )C X Y, defined in
equation (3) through the joint probability distribution ( )P x y, of outcomes ofX andYmeasurements. Indeed,
for commutingX andY, it is possible tofind their common eigenbasis lñ∣xy , where l lñ = ñ∣ ∣X xy x xy and
similarly forY;λ represents possible additional quantumnumbers. Then any state allows for a decomposition

åy a lñ = ñ
l

l∣ ∣ ( )xy . 40
x y

xy
, ,

The probability of one observer obtaining x in ameasurement ofX, while the other obtains y in ameasurement
ofY is given by

  åy y a= ñá =
l

l( ) ∣ ∣ ∣ ∣ ( )( ) ( )P x y, Tr , 41x
X

y
Y

ab
2

where  ( )
x
X and  ( )

y
Y are the projectors onto the corresponding eigenspaces ofX andY respectively. Then

*á ñ = å ( )†XY xy P x y,x y, , á ñ = å ( )X xP x y,x etc. This allows for expressing ( )C X Y, as a nonlinear functional
of the probability distribution ( )P x y, . Therefore, for the case of commuting Alice–Bob observables,

=[ ]A B, 0i j our bounds (4), (5) can be considered restrictions on the possible joint probability distributions
( ∣ )P a b i j, , in the quantum theory, defined exactly as in equation (41)modulo a replacement X Ai

and Y Bj.
For the case of non-commutingX andY, one cannot define a joint eigenbasis, but rather eigenbases lñ∣x ofX

and lñ∣ ˜y ofY. One can still expand any state

åy a lñ = ñl∣ ∣ ( )x 42
x

x
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and define

*  åy y a a l l l l= ñá = á ñá ¢ ¢ñ
l l l

l l
¢ ¢

¢ ¢( ) ∣ ∣ ∣ ˜ ˜∣ ( )( ) ( )

˜
W x y x y y x, Tr . 43x

X
y
Y

x
x x

, , ,

Moreover, *á ñ = å ( )†XY xy W x y,x y, , á ñ = å ( )X xW x y,x etc. leading to exactly the same expression of
( )C X Y, in terms of ( )W x y, as previously in terms of ( )P x y, . However, ( )W x y, is not a probability

distribution as the rhs of equation (43) can acquire complex values. ( )W x y, is a quasiprobability distribution
(somewhat similar to theWigner function) in the case of non-commutingX andY. Therefore, when

¹[ ]A B, 0i j can be considered as restrictions on the possible joint quasiprobability distributions ( ∣ )W a b i j, , .

Appendix B.Measuring parafermionic observables

A system combining parafermions with charging energy was introduced in [28]. In such a system there is a
charging energy associatedwith the total system charge = å +Q Q Qj jtot 0, where =Q en2 C0 is the charge of
the proximitizing superconductor, and nC is the number of Cooper pairs in it. However, no energy cost is
associatedwith different distributions of a given total charge over different SCdomains. Therefore, the ground
state of such a systemhas degeneracy -d N 1SC , where the reduction by a factor of d corresponds tofixing the
system’s total charge. The properties of operators a a†

s j s k, , acting in this reduced subspace are identical to those in
the original systemof parafermions with unrestricted total charge.

Introducing charging energy allows for designing a relatively simple protocol formeasuring a a†
s j s k, , (both

parafermions have the same s!) [28]. A sketch of themeasurement setup is shown infigure 2(b). Two additional
FQHedges (belonging to one of the puddles) are required in this setup. Tunneling of FQHquasiparticles is
allowed directly between the two edges with tunneling amplitude href or between each edge and the
corresponding parafermion as j k, with amplitude hj k . As changing the charge of the parafermionic system is
energetically costly, the leading non-trivial process resulting from coupling of the edges to the parafermions is
co-tunneling of quasiparticles: a quasiparticle is transferred between the edges, while the parafermion state is
changed via a a†

s j s k, , and the effective tunneling amplitude is *h h h- Ek j Ccot , where EC is the charging energy.

The twoprocesses, direct and parafermion-mediated tunneling of a quasiparticle between the edges, interfere
quantum-mechanically.When a voltage biasV is applied between the edges, the tunneling current between the
edges is sensitive to this interference:

*h h k h h a aµ ´ + +n-∣ ∣ (∣ ∣ ∣ ∣ [ ]) ( )†I V Vsgn 2 Re , 44T s j s k
2 1

ref
2

cot
2

ref cot , ,

whereκ is the interference suppression factor due tofinite temperature and other effects, = +[ ] ( )†A A ARe 2,
and ∣ ∣V is assumed to bemuch larger than the temperatureT of the probing edges. As a result, bymeasuring IT ,
one canmeasure the operator a aj[ ]†Re e s j s k

i
, , with phasej depending on the phases of href and hcot. Thus, one

canmeasure the system in the eigenstates of a a†
s j s k, , employing the fact that the eigenvalues of the a a†

s j s k, , are

discrete: for a genericj, distinct eigenvalues of a a†
s j s k, , correspond to distinct eigenvalues of a aj[ ]†Re e s j s k

i
, , .

Alternatively, through tuning the phasej, one canmeasure independently a a[ ]†Re s j s k, , and

a a a a= p-[ ] [ ]† †Im Re es j s k s j s k, ,
i 2

, , , and combine themeasurement results for calculating the expectation

value a aá ñ†
s j s k, , .

AppendixC.How tomeasure correlations of non-commuting observables

C.1.Measuring correlations of non-commuting parafermionic observables
Herewe discuss howone canmeasure the correlators á ¢ ñ( )†A Bj k for non-commuting parafermionic observables.

The procedure outlined in appendix C.2 enables one tomeasure á ¢ ñ{ ( ) }†A B,j k , where { }X Y, denotes the anti-
commutator of operatorsX andY, usingweakmeasurements [30, 31]. For the observables defined in section 3.2,
the following permutation relation holds: ¢ = ¢ pn-( ) ( )† †A B B A ej k k j

2i . Therefore,

pná ¢ ñ = á ¢ + ñ = á ¢ ñpn pn{ ( ) } ( ) ( ) ( )† † †A B A B A B, 1 e 2 e cosj k j k j k
2i i ,andmeasuring á ¢ ñ{ ( ) }†A B,j k is sufficient for

measuring á ¢ ñ( )†A Bj k .
The rest of this appendix is dedicated to designingweakmeasurements of the required type and adapting the

protocol of appendix C.2 tomeasuring parafermionic observables. Note that thismeasurementmethod is
specific to the particular implementation of parafermions.We start with themeasurement protocol discussed in
appendix B. Suppose one of the additional FQHedges involved in the protocol has voltageV applied to it, while
the other edge is grounded. The current injected to the first edge is n=I e V hin

2 , while the tunneling current
between the edges is IT , see equation (44). Suppose onemeasures the current for time t, so that the number of
quasiparticles injected into the system is n= ( )N I t ein . The number of quasiparticles q tunnelingwithin the
timewindowwill befluctuating around the average ná ñ = = ( )q pN I t eT with =p I IT in. The expression for
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IT in equation (44) is valid as long as ∣ ∣ ∣ ∣I IT in . In this regime, tunneling of different quasiparticles can be
considered independent, and thus the probability of observing tunneling of q quasiparticles should be
approximatedwell by the binomial distribution

= - =
-

-( ) ( ) !
!( )!

( )P q C p p C
N

q N q
1 , . 45N

q q N q
N
q

If onemeasures for a sufficiently long time, i.e. N 1, the binomial distribution is well-approximated by the
Gaussian distribution

p
»

-
-

-
-

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

( )
( )P q

Np p

q pN

Np p

1

2 1
exp

2 1
. 46

2

Depending on the eigenvalue- pn +( )e ri 1 2 of themeasured observable a a†
s j s k, , , the tunneling probability

d= +p p pr0 , with

h hµ +∣ ∣ ∣ ∣ ( )p , 470 ref
2

cot
2

d k h h pn pn jµ - + +∣ ∣∣ ∣ ( ) ( )p r2 cos 2 , 48r ref cot

where *j h h= ( )arg ref cot , seeequation (44). Fromnowonwe assume h h∣ ∣ ∣ ∣cot ref , p 10 and p N 10 .
Then the average number of tunneled quasiparticles is dá ñ = +q p N p Nr r0 , while the size offluctuations in the

measured values of q is of the order s h h= - = +( ) ( (∣ ∣ ))Np p Np O p2 1 2 1 ,0 cot ref 0 . The parameter

determining the distinguishability of different r, and thus themeasurement strength, is d s µ h
h

p N Nr
cot

ref

.

For sufficiently large
h
h

Ncot

ref

, the scheme thus implements a strongmeasurement, while
h
h

N 1cot

ref

implies aweakmeasurement.
Denoting the initial state of parafermions as yå ñ∣rr r and using some approximations, one can derive the

state of the system after switching on the tunnel couplings for time t,

å y
h h
h h

lFñ =
-
-

ñ ñ
l

l

pn

pn

+

+

⎛
⎝⎜

⎞
⎠⎟∣ ˜ ( )

∣ ∣
∣ ∣ ( )

( )

( )f q r r q,
e

e
, , 49

r q
r

r

r

q

, ,

ref cot
i 1 2

ref cot
i 1 2

whereλ represents additional quantumnumbers of the edges. It follows from equation (46) that

* å = - +l l l
h
h

- á ñ ⎜ ⎟⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( ) ( )

f q r f q r O p, , exp 1 ,
q q

Np
2

2 0
r

2

0

cot

ref

with normalization factor  p= -( )Np2 0
1 4.

Having not performed the calculation, wemake a plausible assumption that also

* å

h
h

¢ = ´ - -
á ñ + á ñ

´ -
á ñ - á ñ

´ +

l
l l

¢ ¢
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣
⎢⎢

⎛
⎝
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q q

Np
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2

1
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1 , . 50

r r r r2
2

0

2

0

cot

ref
0

Further assuming
h
h

p N 10
cot

ref

, we can neglect h pn +( )e r
cot

i 1 2 in equation (49) and obtain that for our

purposes one can replace Fñ∣ ˜ with

å y
h
h

h
h

Fñ = -
- á ñ

´ + ñ ñ
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥∣ ( ) ∣ ∣ ( )q q

Np
O p N p r qexp

4
1 , , , 51

r q
r

r

,

2

0

cot

ref
0

cot

ref
0

which brings us toweakmeasurements of the type considered in appendix C.2.
Consider now twoweakmeasurements accessingAj and ¢( )†Bk performed one after the other, with the

number of quasiparticles tunneled in each of themeasurements being q1 and q2. Repeating the calculation of
appendix C.2, we obtain

h
h

h
h

á - - ñ µ á ¢ ñ ´ +j j¢
⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥( )( ) [ ] [ ( ) ] ( )†q p N q p N A B O p N pRe e Re e 1 , , . 52j k1 0 2 0

i i cot

ref
0

cot

ref
0

Using equation (60), one sees that by choosing different phasesj,j¢, one canmea-
sure pná ¢ ñ = á ¢ ñ pn{ ( ) } ( )† †A B A B, 2 e cosj k j k

i .

C.2.Measuring correlations of non-commuting observables withweakmeasurements
Herewe discuss how tomeasure the averages á ñ{ }A B, of non-Hermitian non-commutingA andB, where

= +{ }A B AB BA, , with the help of weakmeasurements. Our protocol uses essentially the samemeasurement
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procedure as in [33–35], and is similar in spirit (yet has important differences) to [36, 37].We note in passing
that bymore elaboratemethods, one canmeasure also the expectation value of a commutator [23]. However,
measuring the anti-commutator will suffice for our purposes.Wefirst discuss how tomeasure correlations of
Hermitian non-commuting observables, and then generalize the scheme to non-Hermitian observables.

Suppose onewants tomeasure the average y yá ñ = á ñ{ } ∣{ }∣A B A B, , , whereA andB areHermitian non-
commuting operators, and yñ∣ is some quantum state. Introduce the eigenbases ofA andB: ñ = ñ∣ ∣A a a a ,

ñ = ñ∣ ∣B b b b . Any system state yñ∣ can then bewritten as y y yñ = å ñ = å ñá ñ∣ ∣ ∣ ∣a b b aa a a b a, with some
coefficients ya.We assumed that there is no degeneracy in the spectra ofA andB; generalization of the below
consideration for the case with degeneracy is straightforward.

Consider two detectors,D1 andD2 each having coordinateQj andmomentumPj operators,
d= -[ ]P Q, ij k jk, with j and k having values 1 and 2. Prepare the system and detectors in initial state

yF ñ = ñ ñ ñ∣ ∣ ∣ ∣ ( )D D , 53in 1,in 2,in

 ò s
ñ = - ñ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ∣ ( )D q

q
qd exp

2
, 54j j

j
j,in

2

2

where ñ∣qj is an eigenstate ofQjwith eigenvalue qj, and  ps= -( )2 1 4.

TheHamiltonian describing the system and the detectors is

l l= +( ) ( ) ( ) ( )H t t H t H , 551 1 2 2

= = ( )H P A H P B, , 561 1 2 2

where the coupling constants l =( )t 0j except for l =( )t g T1 for Î ( )t T0; and l =( )t g T2 for
Î ( )t T T; 2 . Then after the systemhas interactedwith the detectors, their state is

 òå y
s s

Fñ = F ñ = á ñ ñ ñ ñ ´ -
-

-
-- -

⎛
⎝⎜

⎞
⎠⎟∣ ∣ ∣ ∣ ∣ ∣

( ) ( )
( )q q b a b q q

q ga q gb
e e d d exp

2 2
. 57gH gH

a b
a

i i
in

2

,
1 2 1 2

1
2

2
2

2

2
2 1

MeasuringQ1 andQ2 of the detectors and calculating their correlations then yields the desired quantity. Indeed,

*

*

 å

å

ò

ò

y y
s

s s

a a
s

áF Fñ= á ñá ¢ñ ´ -
-

´ -
- + ¢

-
- ¢

= á ñá ¢ñ + ¢ -
- ¢

¢
¢

¢
¢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∣ ∣ ∣ ∣
( )

( ( ) ) ( )

∣ ∣ ( ) ( ) ( )

Q Q a b b a q q
q gb

q q
q g a a g a a

a b b a
g

b a a
g a a

d exp

d exp
2

4

2
exp

4
. 58

a a b
a a

a a b
a a

1 2
4

, ,
2 2

2
2

2

1 1
1

2

2

2 2

2

, ,

2 2 2

2

Provided that s- ¢ ∣ ∣g a a 2 for all a, ¢a (which is the condition forweakness of themeasurement), one
obtains

*å y y y yáF Fñ = á ñ á + ñ á ¢ ¢ñ = á ñ
¢

¢∣ ∣ ∣( ∣ ∣ ∣ ∣ ) ∣ ∣{ }∣ ( )Q Q
g

a a b b b b b b a a
g

A B
2 2

, . 59
a a b

a a1 2

2

, ,

2

Suppose nowonewants tomeasure y yá ñ = á ñ{ } ∣{ }∣A B A B, , for non-Hermitian A andB. Define the real
and imaginary part of each operator: = +( )†R A AA , = -( )†I A Ai 2A , and similarly forB. It is easy to see
that = - + +{ } { } { } { } { }A B R R I I I R R I, , , i , i ,A B A B A B A B . Then

á ñ = á ñ - á ñ + á ñ + á ñ{ } { } { } { } { } ( )A B R R I I I R R I, , , i , i , . 60A B A B A B A B

Each of the averages in the rhs can bemeasured using the protocol forHermitian observables outlined above.
Then combining them according to equation (60) yields the desired correlation of non-Hermitian non-
commuting observables.

AppendixD. Extra numerical data on the bounds for correlations in the systemof
parafermions

In themain text, table 1, we provided the results of testing the bounds on correlations for two sets of observables,
non-signaling (A0,A1,B0,B1) and signaling (A0,A1, ¢B0, ¢Bi ). Here, in tableD1, we present the results for several
more sets of observables. Namely, we checkedwhat happenswhen the roles of Alice’s operatorsA0 andA1 are
exchanged, and similarly for Bob. Apart from that, we also tested the sets involving a a= =† †B B B L L2 0 1 ,5 ,6 and

a a¢ = ¢ ¢ =† †B B B ;i R R2 0 ,6 ,5 = ¢ =[ ] [ ]B A B A, , 0j j2 2 , withAj,Bj, ¢Bj defined in equations (33)–(38). In all the sets we
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tested, all Alice’s andBob’s operators commutewhenBob uses unprimed observables; some of Alice’s operators
do not commutewith some of the Bob’s observables whenBob uses primed observables, ¢Bj .

Note that all the sets we have tested obey all bounds except for relation (7). The latter is obeyed by all the non-
signaling sets (whenBob usesBj observables) and violated by all the signaling sets (whenBob uses ¢Bj

observables). This strengthens the numerical evidence that relation (7) is a good candidate for quantifying the
effect of signaling on quantum correlations.

In principle, the systemof parafermions hasmanymore possible sets of observables. First, assigning
different parafermions to Alice and Bob, one can have different local algebras at Alice’s andBob’s sites, as well as
different Alice–Bob commutation relations.We investigate them in part by switching the order ofA0 andA1 etc
or replacingB1 withB2 in tableD1.While this does not exhaust all the possibilities, the numerical results we do
have, indicate that our conclusions are likely to hold in the cases we did not check. An even richer set of algebras
can be accessed by using operators beyond quadratic in parafermions, e.g. a a( )†

s j s k
n

, , or a a a† †
s j s k s l,
2

, , , as well as

arbitrary linear combinations of quadratic operators, e.g. a a a a+† †x ys j s k s j s l, , , , .While investigating our bounds
with thesewould be an interesting non-trivial check, we believe that themore important task is understanding
and proving the role of theorem 4 and bound (7) in the general context.
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