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Abstract

Bell’s theorem renders quantum correlations distinct from those of any local-realistic model.
Although being stronger than classical correlations, quantum correlations are limited by the Tsirelson
bound. This bound, however, applies for Hermitian, commutative operators corresponding to rnon-
signaling observables in Alice’s and Bob’s spacelike-separated labs. As an attempt to explore theories
beyond quantum mechanics and analyze the uniqueness of the latter, we examine in this work the
extent of non-local correlations when relaxing these fundamental assumptions, which allows for
theories with non-local signaling. We prove that, somewhat surprisingly, the Tsirelson bound in the
Bell-Clauser—Horne—Shimony—Holt scenario, and similarly other related bounds on non-local
correlations, remain effective as long as we maintain the Hilbert space structure of the theory.
Furthermore, in the case of Hermitian observables we find novel relations between non-locality, local
correlations, and signaling. We demonstrate that such non-local signaling theories are naturally
simulated by quantum systems of parafermionic zero modes. We numerically study the derived
bounds in parafermionic systems, confirming the bounds’ validity yet finding a drastic difference
between correlations of ‘signaling’ and ‘non-signaling’ sets of observables. We also propose an
experimental procedure for measuring the relevant correlations.

1. Introduction

InaBelltest[1, 2], Alice and Bob measure pairs of particles (possibly having a common source in their past) and
then communicate in order to calculate the correlations between these measurements. The strength of empirical
correlations enables one to characterize the underlying theory. In quantum mechanics, the above procedure
corresponds to local measurements of Hermitian operators A;/A; on Alice’s side and By /B, on Bob’s side. The
correlators are defined using the quantum expectation value c; = (A;B;) and, when the operators have
eigenvalues +1, it can be shown that the Clauser—-Horne—Shimony-Holt (CHSH) parameter obeys

1Bl = |coo + 0 + co1 — anl < 2V2, (D

which is known as the Tsirelson bound [3]. Stronger bounds on the correlators (i.e. bounds from which the
Tsirelson bound can be derived) were proposed, e.g. by Uffink [4] and independently by Tsirelson, Landau and
Masanes (TLM) [5-7]. The latter implies that

lcoocio — corarn| < Z \/(1 - Cozj)(l - Cé)- (2)
j=0,1

The TLM inequality is known to be necessary and sufficient for the correlators c;; to be realizable in quantum
mechanics [5-7] (implying, in particular, that if a set of correlators satisfies equation (2), it necessarily satisfies
equation (1); the converse is not true). Importantly, when calculating B in any local-realistic model it turns out
that|B| < 2, whichis a famous variant of Bell’s theorem known as the CHSH inequality [8], which provides a
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measurable distinction between correlations achievable in local-realistic models and in quantum theory. These
bounds, however, are not enough for fully characterizing the Alice—Bob quantum correlations. For the latter
task, the Navascues—Pironio—Acin hierarchical scheme of semidefinite programs was proposed [9].

All the above works plausibly assuming that Alice’s and Bob’s measurements are described by spatially local
and Hermitian operators, implying that [A;, B]=0 forall 4, j. As such, they cannot lead to superluminal
signaling between Alice and Bob.

Trying, on the one hand, to generalize some of the above results, and on the other hand to pin-point the core
reason they work so well, we relax below these two assumptions and examine the consequences of complex-
valued correlations emerging from non-Hermitian non-commuting Alice/Bob operators. We thus allow a
restricted form of signaling between the parties (similar to the one in [10]), but we maintain the Hilbert space
structure, as well as other core ingredients of quantum mechanics. Surprisingly, the Tsirelson bound and TLM
inequality remain valid in this generalized setting. Apart from that, we find intriguing relations between
nonlocality, local correlations of Alice (or Bob), and signaling in the case of Hermitian yet non-commuting
observables.

Considering non-Hermitian non-commuting observables may seem far from any sensible model. To
alleviate this impression, we study an explicit example of a parafermionic system, which is a proper quantum
system that provides a natural setting for comparing commuting and non-commuting sets of observables. The
natural observables in the parafermionic system happen to be non-Hermitian. Parafermions (or rather
parafermionic zero modes) are topological zero modes that generalize the better-known Majorana zero modes
[11-13]. Parafermions can be realized in various quasi-one-dimensional systems [14—20], see [21] for a
comprehensive review. Similarly to the case of Majoranas, observables in a system of parafermions are
inherently non-local as they comprise at least two parafermionic operators hosted at different spatial locations.
In the case of Majoranas, this nonlocality is known to have manifestations through the standard CHSH
inequality [22]. We do not follow the investigation line of [22], but rather investigate a different aspect of
nonlocality, which is absent for Majoranas yet present for parafermions.

Specifically, we construct two examples. In the first, the system of parafermions is split into two spatially
separated parts, A and B, with commuting observables [A;, B;] = 0. In the second example, Alice’sand Bob’s
parts are still spatially separated; the local permutation properties of Ay, Aj, as well as those of By, B are exactly
the same as in the first example, yet [A;, B;] = 0. This property alone has the potential to contradict relativistic
causality since we have spatially separated observables which do not commute and thus allow for superluminal
signaling (thus these systems can indeed simulate the case of non-Hermitian signaling operators). However, as
we explain in section 3.2, in order to measure their respective observables, Alice and Bob in our system must
share a common region of space, which resolves the paradox. In this sense, Alice and Bob can be thought of as
two experimenters acting on the same system. Therefore, the system of parafermions does not constitute a
system in which the spatial and quantum mechanical notions of locality disagree. However, it simulates such a
system (with spatial locality interpreted in a very naive way). Using these examples we investigate the theoretical
bounds on correlations. We find that both systems obey the derived bounds. However, the maximal achievable
correlations in the truly local system (first example) are significantly weaker than those of the non-local one.

Before we present our results in the next sections, one comment is due. One may think that investigating
Bell-CHSH correlations with [A;, B;] = 0 is an abuse of notation. Originally introduced for distinguishing
local-realistic theories from the standard quantum theory, the Bell-CHSH inequalities imply the use of
conditional probabilities P (a, bli, j) thatare defined in both. With [A;, B;] = 0, the correlators that have the
same operator form are expressed not through probability distributions P (a, b|i, j) but rather through
quasiprobability distributions W (a, bi, j), see appendix C. Therefore, a formal replacement of commuting
operators with non-commuting ones may seem an illegitimate operation in this context. We would like to
emphasize that the key to comparing properties of different theories is considering objects that are defined in
these theories in an operationally identical way. This is the reason that local-realistic theories are compared to
quantum mechanics not in terms of the joint probability distribution P (ag, a1, by, b1) (that does not exist in
quantum theory when [A;, A;] = 0and/or [B;, Bj] = 0)butin terms of P(a, bli, j) conditioned on the choice
of observables: P (a, b|i, j) are defined in both theories and can be measured by the same measurement
procedure. Since our aim here is to compare the standard quantum theory with that allowing for [A;, B;] = 0,
working in the language of correlators that are defined and can be measured (even if they are complex) by means
of weak measurements in both theories [23] is a natural decision. We thus compare nonlocal theories having a
Hilbert space structure, rather than a probabilistic structure (common, e.g. to local hidden variables theories and
quantum mechanics, but not to the post-quantum theories discussed here). However, in the case of the standard
quantum theory, the correlation functions (and thus our new bounds) can be expressed in terms of P (a, bli, j),
making them new bounds on the possible probability distributions in the standard quantum theory.

In what follows, we start in section 2 by defining an operator-based (rather than probability-based) notion of
complex correlations arising in nonlocal, non-Hermitian systems admitting signaling and then find the

2



10P Publishing

NewJ. Phys. 21 (2019) 073032 A Carmietal

generalized inequalities bounding them. Importantly, this notion has an operational sense in terms of weak
measurements, as discussed in the appendix C.2. In section 3, we review parafermionic systems and show they
can simulate such non-Hermitian signaing systems. We then numerically prove they are indeed bounded by the
proposed bounds. Section 4 concludes the paper. Some technical details appear in the appendices.

2. Analytic results for correlations of general non-Hermitian non-commuting operators

Below we prove a number of bounds on quantum correlations of non-Hermitian non-commuting operators.
We generalize the Tsirelson and the TLM bounds (theorems 1 and 2, which have been previously derived for
Hermitian commuting operators, see [24]) and derive previously unknown bounds (theorems 3 and 4, which are
applicable to the Hermitian, non-signaling case as well). Here we introduce the bounds and discuss them, while
their proofs are deferred to section 2.1. The bounds are expressed in terms of Pearson correlation functions of
operators X and Y defined as

_xyh = Oy
CX, ) = - o 3)

where Ay = J(XXT) — |(X) | is the variance of X (which is assumed to be non-zero), and averaging is
performed with respect to some state |¢)) in the Hilbert space. This definition is a straightforward generalization
of the usual Pearson correlation between commuting Hermitian operators. The Pearson correlations reduce to
the standard cyy = (XY) for Hermitian X and Y on states |)) such that (X) = (Y) = 0and Ay = Ay = 1. We
note that C (X, Y)isill-defined when Ay = 0 or Ay = 0; yet, as we show in section 2.1, |C(X, Y)| < 1
everywhere, including the vicinity of such special points.

For the case of commuting operators X, Y, the definition of C (X, Y) can be expressed in terms of the joint
probability distributions, and our below bounds can be thought of as restricting the possible probability
distributions in quantum theory. When X and Y do not commute, this is not the case, which defies the notions
that conventionally underlie Bell inequalities. However, our aim here is not to analyze complex local hidden
variables models but rather to examine general models which are manifestly nonlocal. In particular, we wish to
analyze whether known bounds on quantum correlations remain effective when generalized to cases of non-
Hermitian signaling operators. We argue that these complex correlations are physically meaningful because
there is an empirical protocol for measuring them. That operational meaning of the above correlations in terms
of weak measurements is given in appendix C.2. Alternatively, for the case of non-commuting observables,
C(X, Y) can be expressed in terms of quasiprobability distibutions, and thus our bounds restrict possible
quasiprobability distributions in that case. We discuss this in detail in appendix A.

We now discuss the bounds on Alice-Bob correlations.

Theorem 1 (Generalized Tsirelson bound). Define B & C (Ao, By) + C(A;, By) + C(Ag, B)) — C(A;, By as
the complex-valued Bell-CHSH parameter of any operators A; and B;. The following holds
IB] = yRe(B)? + Im(B)> < V2[{T + Re(n) + J1 — Re(m)] < 2V2, )

wherenis either C (Ao, Ay) or C(By, By) (the one having the larger | Re(n)| among them will give rise to a tighter
inequality).

Despite the fact that C(X, Y) = cyy, the Bell-CHSH parameter defined through C(X, Y) obeys the same
Tsirelson bound as for cxyin equation (1). Moreover, the proof of the Tsirelson bound for C (X, Y)isvalid
independently of whether [A;, B;j] = 0. A somewhat tighter bound (the middle row of equation (4)) is obtained
in terms of 7) that expresses on-site correlations on Alice’s or Bob’s side. This is also insensitive to
whether [A;, Bj] = 0.

Theorem 2 (Generalized TLM bound). The following holds for any operators A; B, i, j € {0, 1},

|C(Bo, A0)'C(Bo, A1) — C(By, Ag)'C(Bi, ANl < > /(1 — [C(Bj, A)P)(1 — [C(B}, ADIP). )

j=0,1

Similarly to the previous theorem, this bound is insensitive to whether [A;, B;] = 0and has the same form as the
standard TLM bound, equation (2), modulo replacing C (X, Y) with real-valued cxy-

We note in passing that our bounds apply to both operators with bounded and unbounded spectrum.
Implementing Bell tests in mesoscopic systems often requires dealing with operators having an unbounded
spectrum, see [25]. Our theorems 1 and 2 may thus be useful for studies in such systems.
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Figure 1. Local correlations Re(7) /2, nonlocality Re(B) /(2+/2 ), and quantum signaling Im(83) /(2+/2 ) are confined to the unit ball
as implied by theorem 3. The relation between the nonlocality and local correlations in an ordinary quantum theory with commutative
Hermitian observables, where the signaling parameter Im(/3) = 0, is represented by the purple section within the ball.

Theorem 3 (Relation between nonlocality, local correlations, and signaling). Let B be the complex-valued Bell-
CHSH parameter defined in theorem 1. Then,

2 2
(Re(n))z N (Re(B)) N (Im(B)) <l ©)

2 242 22

This bound is also valid independently of [A;, B;] = 0.In the case of Hermitian A;, B; that obey [A;, B;] = 0,
C(Aj, By)isreal, implying Im(B) = 0.If A;and B;are Hermitian but do not mutually commute, there can
appear imaginary components to C(A;, B;) and B. Therefore, this relation may be interpreted as a constraint on
non-local correlations (represented by Re(13) /(2+/2 )), local on-site correlations (Re(7) /2), and signaling
(represented by Im(B) /(2+/2) = 0). These three quantities are thus confined to the unit ball, see figure 1.

Theorem 4. Let BB be the complex-valued Bell-CHSH parameter defined in theorem 1. In the case of isotropic
correlations, C(A;, Bj)) = (—=1)7 ¢ (suchthat B = 4p) for some complex-valued o,

) Re(B))z (Im(B))2
'”|+(2ﬁ 55 ) st @)

Note that equation (7) provides a tighter bound than equation (6). However, equation (7) is proved under the
rather restrictive assumption of C(A;, B)) = (— 1)¥ 0. This is a valid assumption within non-signaling theories
in the following sense. Reference [26] argued that the standard Bell-CHSH parameter

B = coo + ao + co1 — ) for 1-valued observables in a non-signaling theory (not necessarily classical or
quantum) can always be maximized on a state satisfying c;; = (—1)’p with areal p. While the statement of [26]
was proved for the standard correlations cxy (and not our C (X, Y)) and maximizing the lhs of equation (7) is not
equivalent to maximizing | B|, one might hope that the possibility of arranging C(4;, Bj) = (—1)7¢ isrelated to
non-signaling, and the bound of equation (7) would discriminate the cases of [A;, B;] = 0and [A;, Bj] = 0. We
provide some numerical evidence for the last statement in section 3.

2.1. Proofs of analytic bounds

Lemma 1 (Generalized uncertainty relations, see [27] for elaboration on the term). Denote by Xi, ..., X,,, a
number of operators. Let Cbean n X n Hermitian matrix whose ijth entry is
(XiX]) — (X)) (X;)
C (X i> X]) = ! > (8)
Ax,Ax
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where Ay = J(XXT) — |(X) ? is the uncertainty in X (which is assumed to be non-zero). Then C = 0, i.e. itis
positive semidefinite.

T = [v, ..., v, it follows that

Proof. Denote |1)), the underlying quantum state. For any n-dimensional vector, v
vIDCD™v = (¢|¢) > 0, 9

where D is a (positive semidefinite) diagonal matrix whose entries are D; = Ay, and

l¢) = >F  vi(X; — (Xi))|¢). Therefore, DCDT = 0 andsois C = 0. 0

Applying this lemma to two operators, Xj, X;, one obtains that |C(X;, X;)| < 1, implying that the correlation
functions are bounded even near Ay, , = 0.

Theorem 1. Proof. Construct the matrix C for the operators Ao, Ay, and Bj,

C(Bj, Bj) C(Bj, A1) C(Bj, Ag) 1 C(Bj, A1) C(Bj, Ag)
C(Bj, A)' C(A, A)) C(Ag, A) | = | C(Bj, A 1 n =0, (10)
C(Bj, Ag)' C(Ag, A))' C(Ag, Ag) C(Bj, Ao)f Ui 1

where n “e (Ao, Ay). By the Schur complement condition for positive semidefiniteness this is equivalent to
|1 C(B;, A
et [ L N CPA rog 4y e, a0] (11)
n 1 C(Bj, Ao)f
Let va = [(=1)/, 1]. The above inequality implies
2(1 + (=1 Re(n)) = v; Clv; > |C(B), Ag) + (—1)IC(B), A (12)

This together with the triangle inequality yield

1Bl < > 1C(Bj, Ag) + (=1)C(Bj, A)| < V2 D° 1 + (=) Re(n), (13)

j=0,1 j=0.1

which completes the proof. Note that by swapping the roles of A and B, a similar inequality is obtained where
n = C(Bo, B). O

Theorem 2. Proof. The inequality (11) implies
(1 = |C(Bj, A )1 — |C(B;j, ADP) — |n — C(Bj, A))'C(Bj, ADI* > 0, (14)

which follows from the non-negativity of the determinant of the matrix obtained by subtracting the right hand side
from the left hand side in (11). Therefore,

In — C(Bj, A C(B;, AD| < /(1 — [C(B;, A)P)(1 — |C(B;, ADP). 15)
This and the triangle inequality give rise to the theorem,

|C(Bo, Ag)'C(Bo, A1) — C(By, AgY C(By, A)| < ) | — C(Bj, Ap)' C(Bj, A

j=0,1
< Z';l Ja = 1CBj, A1 — |C(Bj, ADP). (16)
=0,
O
Theorem 3. Proof. We have seen that
1Bl < V2(J1 + Re() + T — Re(n)). (17)
Therefore,
|BI> = Re(B)? + Im(B)? < 4(1 + /1 — Re(n)?). (18)
Because, /1 — a < 1 — a/2fora € [0, 1, it follows that
Re(B)* + Im (B)* < 8 — 2Re(n)%, (19)
from which the theorem follows. O
Theorem 4. Proof. In case the isotropy holds, i.e. C(A;, Bj)) = C(Bj, Aj)* = (=1 o, (14) reads
In — (=DilePP <1~ ol (20)
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Figure 2. A physical setup for creating and measuring parafermions. (a)—Setup for implementing parafermions (represented in cyan)
with two fractional quantum Hall (FQH) edges (arrows) supporting a series of electron-tunneling-gapped (T) and superconductivity-
gapped (SC) domains. (b)—Setup for measuring parafermionic observables with the help of two additional FQH edges (curved
arrows) as in [28] (see appendix B).

and thus
Il = 2(=D/|oPRe(n) <1 — 2ol 1)
Averaging both sides in this inequality overj = 0, 1, and rearranging give
InP + 2o < 1. (22)

Finally, substituting o = B/4 into (22) yields the theorem. O

3. Investigating the bounds in the system of parafermions

Parafermions provide a unique test system for the bounds proven in the previous section. First, the natural
observables in a system of parafermions are non-Hermitian. Second, in this system the non-commutativity
between Alice’s and Bob’s operators can be switched on and off without changing anything else about the algebra
of operators, enabling a clean investigation of the effect of Alice—Bob non-commutativity. Finally, there have
been a number of proposals for experimental implementations of parafermions [ 14-20], which opens the way
for experimental verification of our predictions.

The structure of the section is as follows. In section 3.1, we give a brief introduction to the physics of
parafermions and the algebra of their operators. In section 3.2, we construct the observables of Alice and Bob.
Those not interested in the physics of parafermions may skip directly to equations (30)—(32) detailing the
permutation relations of the observables and equations (33)—(38) introducing their explicit matrix
representation. In section 3.3, we provide the results of the numerical investigation of bounds (4)—(7).

3.1. Parafermion physics and algebra

Parafermionic zero modes can be created in a variety of settings [ 14-20]. In different settings, they have subtly
different properties. We focus on parafermions implemented with the help of fractional quantum Hall (FQH)
edges proximitized by a superconductor [14, 17, 18]. The setup employs two FQH puddles of the same filling
factor v (grey regions in figure 2(a)) separated by vacuum. This gives rise to two counter-propagating chiral FQH
edges. The edges can be gapped either by electron tunneling between them (T domains) or by proximity-induced
superconducting pairing of electrons at the edges (SC domains). Domain walls between the domains of two

6
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types host parafermionic zero modes a; ; with s = R/L = +1 denoting whether a parafermion belongs to the
right- or left-propagating edge respectively, and j denoting the domain wall number.
Parafermion operators have the following properties:

2/v __ o 7 _
o) = Qg = agon; = 1, (23)
Qs 0k = Qi jelms 8k =), (24)
e, k=7,
apjark = arrogjy 1 k = j are even, (25)

e?™, k = j are odd,

where sgn is the sign function. These properties are valid for v = 1/(2m + 1), m € Z, consideredin[14, 17]
and for v = 2/3 considered in [18]. In the case of v = 1, parafermions reduce to Majorana operators
and QR,j = QL.

The physics of parafermions is associated with degenerate ground states of the system. Namely, beyond
hosting Cooper pairs, each superconducting domain SC; can host a certain charge Q; (mod 2e) quantized in the
units of charge of FQH quasiparticles ve. Thus each Q;has d = 2/v distinct values, and the ground state
degeneracy of a system as in figure 2(a) is therefore d™c, where N is the number of SC domains. Parafermionic
operators « j act in this degenerate space of ground states and represent the effect of adding a FQH quasiparticle
to the system from a FQH puddle corresponding to s at domain wall j. Various observables in the system of
parafemions can be expressed through unitary operators o jaj) ¢ In particular, Q; themselves can be expressed
through el™(Q/e=7/2) = (— 1)2/”041)2]-7 10, 5;- One can show that (a; jo  )? = —e?™/¥, which implies that
a; jof  has d distinct eigenvalues, all having the form —ei™ 1/ with r € Z.

Unitary operators as,jaj, « are thus natural ‘observables’ in the system despite being non-Hermitian. The
permutation relations of such operators immediately follow from equations (23)—(25). Despite being spatially
disconnected, such operators composed of different pairs of parafermions may not commute, e.g.

A T ¥ T J2inmv
QR 20R 4OR 30 5 = QR 30 5OR HOlp 4 €77, (26)

Itis interesting to note that in the case of Majoranas (¥ = 1), none of these two unique properties would hold:
the operators ic, jaz « would be Hermitian, while two such operators having no common Majoranas would
commute.

3.2. Alice’s and Bob’s observables

For a parfermionic system with three SC domains (as in figure 2) with a fixed total charge, the ground state is
d*-degenerate, which allows to split it into two distinct subsystems: SC; and SC; domains, each having
degeneracy d as each can have d distinct values of charge Q;. The charge of SC, domain is determined by the state
of SC; and SCj3 in order for the total charge to be fixed. This system is thus a natural candidate for studying
quantum correlations between two subsystems. To this end, we introduce observables accessible to Alice,

Ay = aR,zoz;A, A = 04R,1041-2,4’ 27)
and two different sets of observables accessible to Bob:

By =305 Bi=ap;f, (28)
and

By = agshe Bl = agsafs. (29

They have identical local algebra, yet different commutation properties of Alice’s and Bob’s observables:

A()Al = Alee_i””, (30)
BoB, = BiBye ™, ByB/ = B/Bje ™, (31)
[Aj, Bl =0, A;B; = BjAje?™. (32)

The non-commutation of A and B observables would imply the possiblity of superluminal signaling had the
observables been truly spatially separate (which is not the case, as we explain below). Therefore, we call the set of
Aand Banon-signaling set, and the set of A and B’ a signaling set of observables.

Naively, Alice’s observables are local with respect to either set of Bob’s observables, see figure 3(a). Indeed, A
and either the Bor B’ set use different parafermions, which can be made arbitrarily distant from each other,
see figure 3(b). However, the locality issue in this system is subtler as in order to probe an observable of the form
asyjal > one needs to enable FQH quasiparticle tunneling to both parafermions simultaneously (see appendix B).
At the same time, quasiparticles can tunnel to a parafermion only from the FQH puddle corresponding to the

7
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Figure 3. Parafermionic observables and their mutual locality. (a}—Grouping parafermions into groups belonging to Alice (A) and
Bob (B/ B'). (b)—A and B do not have common parafermions, are mutually local, and can be made arbitrarily distant in space. While
Aand B’ do nothave common parafermions, they are not mutually local: for Alice to measure A while Bob can measure B/, there
should be a region of the upper FQH puddle accessible both to Alice and Bob.

parafermion index s, not through vacuum and not from the other puddle. Therefore, as can be seen from
figure 3(b), the A and B sets are indeed mutually local, while A and B’ are not. The ability of Alice to measure
observables in A and of Bob to measure observables in B’, requires them to have access to a common region of
the upper FQH puddle. Thus, the system does not violate the laws of quantum mechanics, nor exhibits
superluminal signaling. Nevertheless, it presents a unique opportunity for comparing correlations of
commuting and non-commuting (but otherwise equivalent) sets of observables.

The standard tool for studying quantum correlations is given by Bell inequalities. However, since the
observables considered here have more than two eigenvalues, we require CHSH-like inequalities suitable for
multi-outcome measurements. We study the inequalities introduced in theorems 1-4, as well as an inequality
from [29]. These inequalities involve correlators of the form (A; B/') and (A;(B{)'). Since [4;, Bi] = 0, (A;B;)
can be experimentally obtained by performing strong measurements of Ajand By separately according to the
protocol of appendix B and then calculating the correlations. Alternatively, these correlations can be measured
with weak measurements [30, 31]. The non-commutativity of A;and By does not allow for a strong-
measurement-based approach in the case of (A;(B{)). However, this correlator can be measured with the help
of weak measurements as described in appendix C.

From now on we focus on parafermions implemented using v = 2/3 FQH puddles. Using permutation
relations (30)—(32) supplemented by the permutation relations of B;and By, as well as (o jaz’ )> = 1,0necan
derive an explicit matrix representation for observables (27)—(29):

1 0 0 100
Ay =10 e2m/3 ¢ ®lo 1 0} (33)
0 0 e—27ri/3 001

010 100
A=l0oo01|®]0 1 of (34)
100 001

100 1 0 0
Bo=]0 1 0|®]0 /3 0o |, (35)
001 0 0 e2m/3
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Table 1. Characterization of various bounds on non-local correlations for the signaling and non-signaling sets of parafermionic observables.

I
Bound: (39), Generalized Tsir- Generalized TLM Relation
lhs elson (4), lhs (5),1hs/rhs (6),1hs Relation (7), lhs
291 1 (ifassump-
Theoretical maximum [32] 22 (~2.83) 1 1 tions hold)
Maximum for paraf- Non-signal- 2.60 2.44 0.71 0.74 1.00
ermionic observables ing(A + B)
Signaling 2.60 2.82 1.00 1.00 1.56
(A+B)
1 00 010
Bi=|010|®|0 0 1} (36)
001 1 00
0 e 2m/3 0 010
By=1o 0 2mi3l®@|o 0 1| (37)
1 o0 0 100
0 e—27i/3 0 0 0 1
B! =1o 0 e2ri/3| @ e 2m/3 o of (38)
1 0 0 0 e¥/3 0

This is used in the numerical investigation in the next section.

3.3. Numerical results for correlations of parafermions
Here we numerically investigate the bounds on correlations presented above (4)—(7) and the CHSH-like
inequality derived in [29]. The inequality of [29] states that for a local-realistic system

L= Qo+ Qo1 — Qo+ Qi < 2, (39

where Qj = Re[(A;By)] + %Im[(AjB;J]fori > j,and Qy; = Re[(A¢B))] — %Im[(AOBD].The observa-

bles are assumed to have possible values (for the quantum case that we are interested in, eigenvalues) e2mir/3,

r € Z,whichis the case for the observables defined in equations (33)—(38). In the standard quantum theory, i.e.
for quantum observables such that [A;, B;] = 0, the maximum attainable value is known to be ~2.91 [32].

For all the inequalities investigated, we calculated the corresponding correlations C(A;, B;)or (A;By),and
maximized the relevant expressions numerically over all possible states |1)). The expressions maximized were the
left-hand side of bounds (39), (4), (6), (7) and the ratio of the left-hand side to the right-hand side of inequality
(5). The numerical maximization was performed independently via Wolfram Mathematica (functions
NMaximi ze for finding the global maximum and F i ndMax imum for investigating local maxima) and Python
(package scipy.optimize,functions basinhopping for finding the global maximum with SLSQP
method for investigating local maxima). One aspect deserves mentioning. Correlation functions C(A;, B;)
defined in equation (8) are not well-defined in all of the Hilbert space as the denominator can turn out to be zero.
However, the points where it does, constitute a set of measure zero among all the states. Moreover, in the vicinity
of these special points, C(A;, B;) does not diverge but stays bounded as |C(A;, B;)| < 1;however, the limiting
value as one approaches the special point depends on the direction of approach. Therefore, with careful
treatment, these special points do not constitute a problem for investigation. Namely, we replaced
Ay — Ap + €4 ABj — ABj + €2 with asmall cutoff ¢, and checked that our results do not change as ¢ — 0.
Furthermore, the states 1)) on which the maximum values in table 1 are achieved are such that A 4, A B =0 for
all Ai) B]

The results of our investigation are presented in table 1. First, we note that the lhs of equation (39) does not
distinguish the signaling and non-signaling sets of observables. Second, our bounds (4)—(6) are obeyed by both
sets. However, the signaling set saturates the bounds much better than the non-signaling one. Finally, the bound
of theorem 4, (7), is saturated by the non-signaling set and violated by the signaling one. This does not contradict
the proof, which assumes C(A;, Bj) = (—1)7¢. In fact, this property is not satisfied by the states |1/) maximizing
the lhs of (7) for either of the sets. However, this numerical evidence together with the fact that
C(Ai, B) = (— 1)¥ ¢ correlations might be special for non-signaling theories (see the discussion after theorem
4) imply that equation (7) may be a good bound for distinguishing signaling and non-signaling quantum
theories. We provide further evidence for the last statement in appendix D.
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4. Discussion

Our analytic results have important implications for understanding quantum correlations. It is known that the
standard CHSH parameter has distinct bounds for classical local (B| < 2)and non-local (B| < 4) hidden
variable theories, while the standard quantum theory obeys the Tsirelson bound (1). Our variation of the
Tsirelson bound (4) is closely related to the original Tsirelson bound. In particular, for Hermitian observables
X = A, Bjsuchthat XX* = 1andstates |¢)) such that (1| X|1)) = 0, our Bel-CHSH parameter | B| (4)
coincides with the original one. At the same time, our proof shows that the Tsirelson bound (4), as well as the
TLM bound (5), do not distinguish between the standard and non-local signaling quantum theories. This
implies that the Hilbert space structure is much more restrictive than it was previously thought (see, e.g.
equation (10) which underlies our proofs). Naively, one could expect that the possibility of signaling would allow
nonlocal correlations to be stronger than quantum, because one party can directly affect from a distance the
others’ outcomes and in particular make them more correlated with hers. However, the limited kind of signaling
we have introduced here, still within a quantum-like structure, is insufficient for this purpose.

At the same time, understanding the bounds on correlations in the standard quantum theory, that explicitly
takes into account the absence of signaling, may be beneficial both for deepening its understanding, further
testing its validity, and deriving bounds on protocols for quantum information processing. Our numerical
results with parafermions provide a candidate for such abound, equation (7). Indeed, the ‘non-signaling’
parafermionic set stayed within the bound, while the ‘signaling’ one violated it. Moreover, [26] argued that the
assumptions we used to prove theorem 4 hold generally for the states maximizing the standard Bell-CHSH
parameter in non-signaling theories (not in the sense that any maximizing state satisfies the assumptions, but in
the sense that it is always possible to find a state that maximizes the standard Bell-CHSH parameter and satisfies
the assumptions). Therefore, we believe that inequality (7) deserves further investigation.
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Appendix A. Relation between the correlation functions C (X, Y) and joint probability
distributions

For the standard case of commuting operators X and Y, it is possible to express correlators C(X, Y) defined in

equation (3) through the joint probability distribution P (x, y) of outcomes of X and Y measurements. Indeed,

for commuting X and Y, it is possible to find their common eigenbasis |xy\), where X|xyA) = x|xyA) and

similarly for Y; A represents possible additional quantum numbers. Then any state allows for a decomposition
|1/J> = Z ley)\lx)’)\> . (40)

PN
The probability of one observer obtaining x in a measurement of X, while the other obtains y in a measurement
of Yis given by

P(x, y) = Tr|o) (YIPEOPY =37 v % (41)
A

where P and P(yy) are the projectors onto the corresponding eigenspaces of X and Y respectively. Then
(XYT) = 3, *P(x, y), (X) = X, xP(x, y)etc. This allows for expressing C(X, Y) as a nonlinear functional
of the probability distribution P (x, y). Therefore, for the case of commuting Alice-Bob observables,
[Ai, Bj] = 0ourbounds (4), (5) can be considered restrictions on the possible joint probability distributions
P(a, bli, j)in the quantum theory, defined exactly as in equation (41) modulo a replacement X — A;
andY — B;.

For the case of non-commuting X and Y, one cannot define a joint eigenbasis, but rather eigenbases [x\) of X
and |y\) of Y. One can still expand any state

[V) = aalx)) (42)
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and define
W (x, y) = Tr|y) <w|P£CX)P(yY) = Z v YA (PAIX ). (43)

x NN

Moreover, (XY) =3 YW (x, ), (X) = 32, xW (x, y) etc. leading to exactly the same expression of
C(X, Y)interms of W (x, y) as previously in terms of P (x, y). However, W (x, y) is not a probability
distribution as the rhs of equation (43) can acquire complex values. W (x, y) is a quasiprobability distribution
(somewhat similar to the Wigner function) in the case of non-commuting X and Y. Therefore, when

[Ai, Bj] = 0 canbe considered as restrictions on the possible joint quasiprobability distributions W (a, bli, j).

Appendix B. Measuring parafermionic observables

A system combining parafermions with charging energy was introduced in [28]. In such a system there is a
charging energy associated with the total system charge Qo = > i Qi+ Qo where Qg = 2en( is the charge of
the proximitizing superconductor, and 7 is the number of Cooper pairs in it. However, no energy cost is
associated with different distributions of a given total charge over different SC domains. Therefore, the ground
state of such a system has degeneracy d™c~1, where the reduction by a factor of d corresponds to fixing the
system’s total charge. The properties of operators a ; a: . acting in this reduced subspace are identical to those in
the original system of parafermions with unrestricted total charge.

Introducing charging energy allows for designing a relatively simple protocol for measuring as)jal ; (both
parafermions have the same s!) [28]. A sketch of the measurement setup is shown in figure 2(b). Two additional
FQH edges (belonging to one of the puddles) are required in this setup. Tunneling of FQH quasiparticles is
allowed directly between the two edges with tunneling amplitude 7, ; or between each edge and the
corresponding parafermion o j/x withamplitude 7, . As changing the charge of the parafermionic system is
energetically costly, the leading non-trivial process resulting from coupling of the edges to the parafermions is
co-tunneling of quasiparticles: a quasiparticle is transferred between the edges, while the parafermion state is
changed via o ; oz'; « and the effective tunneling amplitudeis n_, ~ —, n;‘ / Ec, where Eis the charging energy.
The two processes, direct and parafermion-mediated tunneling of a quasiparticle between the edges, interfere
quantum-mechanically. When a voltage bias Vis applied between the edges, the tunneling current between the
edges is sensitive to this interference:

Ir o [Vl sgn V x (10 P + [0 P 4 26 Re 1751 v ol D) (44)

where x is the interference suppression factor due to finite temperature and other effects, Re [A] = (A + A") /2,
and | V' |is assumed to be much larger than the temperature T of the probing edges. As a result, by measuring Ir,
one can measure the operator Re [ewas,jaj, ] with phase ¢ depending on the phases of 7, and 7. Thus, one
can measure the system in the eigenstates of c; jaik employing the fact that the eigenvalues of the o, jaj’ i are
discrete: for a generic ¢, distinct eigenvalues of asyjal', « correspond to distinct eigenvalues of Re [ei*jasyjazk].
Alternatively, through tuning the phase o, one can measure independently Re [qy ]-041" Jand

Im [oy, ja;f, « = Re [e~in/ ‘a jaj’k], and combine the measurement results for calculating the expectation

value (o jaf ).

Appendix C. How to measure correlations of non-commuting observables

C.1. Measuring correlations of non-commuting parafermionic observables

Here we discuss how one can measure the correlators (A; (B))") for non-commuting parafermionic observables.
The procedure outlined in appendix C.2 enables one to measure ({A;, (B)'}), where {X, Y} denotes the anti-
commutator of operators X and Y, using weak measurements [30, 31]. For the observables defined in section 3.2,
the following permutation relation holds: A;(B{)" = (B;)'Aje 2™ . Therefore,

({4), B)'}) = (A;(BOI (A + ™)) = 2(A;(B}))ei™ cos Tv,and measuring ({A;, (B;)'}) is sufficient for
measuring (A; (B;)").

The rest of this appendix is dedicated to designing weak measurements of the required type and adapting the
protocol of appendix C.2 to measuring parafermionic observables. Note that this measurement method is
specific to the particular implementation of parafermions. We start with the measurement protocol discussed in
appendix B. Suppose one of the additional FQH edges involved in the protocol has voltage V applied to it, while
the other edge is grounded. The current injected to the firstedge is I, = ve*V /h, while the tunneling current
between the edges is Ir, see equation (44). Suppose one measures the current for time f, so that the number of
quasiparticles injected into the systemis N = [, ¢/ (ve). The number of quasiparticles g tunneling within the
time window will be fluctuating around the average (q) = pN = Irt/(ve) with p = Ir /I,,. The expression for
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I in equation (44) is valid aslong as |I7 | < | L, |. In this regime, tunneling of different quasiparticles can be
considered independent, and thus the probability of observing tunneling of g quasiparticles should be
approximated well by the binomial distribution

NI
q'(N — !
If one measures for a sufficiently long time, i.e. N > 1, the binomial distribution is well-approximated by the
Gaussian distribution

P(g) = Cip'(1 — p)V71, Y

(45)

1 — pN)?
P  ——— exp(—w). (46)
J2mNp(1 — p) 2Np(1 — p)
Depending on the eigenvalue —e™ +1/2) of the measured observable a ]ozs 1> the tunneling probability
P = p, + op.,with
pO X |T’ref I2 + |77c0t |2 > (47)
0p, X =2K|Nee| [Meoy | cOS (mvr + Tv/2 4 ), (48)

where ¢ = arg(i]" 7).,,) see equation (44). From now on we assume |1, | < |7e¢l» py < 1and pyN > 1.
Then the average number of tunneled quasiparticlesis (q), = p,N + &p. N, while the size of fluctuations in the
measured values of g is of the order o = \/2Np(1 —p) = \/ZNpO (1 + Ot/ Mret I Po))- The parameter

JN.
Tret
JN <1

determining the distinguishability of different r, and thus the measurement strength, is o, N /o oc | =t

Neot Teot

For sufficiently large VN, the scheme thus implements a strong measurement, while

ref

implies a weak measurement.
Denoting the initial state of parafermions as 3, ¢|r) and using some approximations, one can derive the
state of the system after switching on the tunnel couplings for time ¢,

Mref — ncoteim/(ﬂrl/Z)
o) = > A N | T Ir)1g, A), (49)

[N ref — Tleot
where A represents additional quantum numbers of the edges. It follows from equation (46) that

S e = Ve <50 1+ of

Having not performed the calculation, we make a plausible assumption that also

S fi@ i@ ) =N? x expl—(q _ e + (@ )2 S S () <Q>r’)2:|
A

2 2Np, 8Np,
X [1 + O[

Jp()]:l' (50)

poN < 1, we can neglect 1., e™ "*+1/2) in equation (49) and obtain that for our

’POHITWI% (51)
which brings us to weak measurements of the type considered in appendix C.2.
Consider now two weak measurements accessing A;and (B} )’ performed one after the other, with the
number of quasiparticles tunneled in each of the measurements being q; and g,. Repeating the calculation of
appendix C.2, we obtain

Teot

et

, po)] with normalization factor N = (2mNp,)~!/4.

Mot
Mref

Further assuming | "<

Tref

purposes one can replace |®) with

NZwrexp[ 11208 <p> )2] x [1 + o(

0

Neot
Mref

Mot

PN

ref

Neot
Tref

Mot

- po]] (52)

ref

((q, — PoN)(g, — poN)) o (Re[el?A;]Re[e!¥'(B})']) x l1 + o( PN

Using equation (60), one sees that by choosing different phases ¢, ¢, one can mea-
sure ({A;, (BY)'}) = 2(A;(B])")e™ cos mv.

C.2. Measuring correlations of non-commuting observables with weak measurements
Here we discuss how to measure the averages ({A, B}) of non-Hermitian non-commuting A and B, where
{A, B} = AB + BA, with the help of weak measurements. Our protocol uses essentially the same measurement
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procedure as in [33-35], and is similar in spirit (yet has important differences) to [36, 37]. We note in passing
that by more elaborate methods, one can measure also the expectation value of a commutator [23]. However,
measuring the anti-commutator will suffice for our purposes. We first discuss how to measure correlations of
Hermitian non-commuting observables, and then generalize the scheme to non-Hermitian observables.
Suppose one wants to measure the average ({A, B}) = (¥|{A, B}|¢), where A and B are Hermitian non-
commuting operators, and |¢)) is some quantum state. Introduce the eigenbases of A and B: Ala) = ala),
B|b) = b|b). Any system state |1)) can then be written as [¢)) = 3=, ¥ula) = >, ;1ulb) (bla) with some
coefficients v,. We assumed that there is no degeneracy in the spectra of A and B; generalization of the below
consideration for the case with degeneracy is straightforward.
Consider two detectors, D; and D, each having coordinate Q;and momentum P; operators,
[P, Qx] = —ibjy, withjand k having values 1 and 2. Prepare the system and detectors in initial state

|®in> = |/(/}> |D1 in> |D2 in> (53)

Dyn) = ”[d%exp[ ]hL> (54)

where |q;) is an eigenstate of Q; with eigenvalue gj, and N = (mo?y /4,
The Hamiltonian describing the system and the detectors is

H(t) = MO H + M () H,, (55)
H,= P,A, H,=P,B, (56)

where the coupling constants \;(¢) = 0 exceptfor A (t) = g/T fort € (0; T)and A, (¢t) = g/T for
t € (T; 2T). Then after the system has interacted with the detectors, their state is

%—wrm—ﬂﬂ.@n

202 202

|(I)> = e7igIJIZf?71glLII|CI)in> = NZZ quld‘bwa <b|a>|b>|ql>|‘b> X eXP(
a,b

Measuring Q; and Q, of the detectors and calculating their correlations then yields the desired quantity. Indeed,

_ ob)?
(P|QIQP) = N* > Via (alb) (bla’) x fd%qz exp(—%)

a,a’,b

(q _ g(ﬂ + a/)/2)2 gZ(a _ [1/)2
X qulql eXP[_ 1 2 - 402
20, _ N2
Z oFay (alb) (bla’ > g b(a + a’)exp( %)‘ (58)
a,a’,b

Provided that gla — a’| < 20 forall a, a’ (which is the condition for weakness of the measurement), one
obtains

2
(B1QQ:IP) = ZZwaMbMHWMme:%MmMM- (59)
a,a’,b
Suppose now one wants to measure ({A, B}) = (¢|{A, B}|¢) for non-Hermitian A and B. Define the real
and imaginary part of each operator: Ry = (A + A"), I, = i(A" — A) /2, and similarly for B. Itis easy to see
that {A, B} = {Ra, R} — {Is, Ig} + i{la, Rp} + i{R4, Iz}. Then

({A, B}Y) = ({Ra, Rg}) — ({In, Ig}) + i{{Is, R}) + i{{Ra, Ip}). (60)

Each of the averages in the rhs can be measured using the protocol for Hermitian observables outlined above.
Then combining them according to equation (60) yields the desired correlation of non-Hermitian non-
commuting observables.

Appendix D. Extra numerical data on the bounds for correlations in the system of
parafermions

In the main text, table 1, we provided the results of testing the bounds on correlations for two sets of observables,
non-signaling (Ao, Ay, By, By) and signaling (Ao, Ay, By, B/). Here, in table D1, we present the results for several
more sets of observables. Namely, we checked what happens when the roles of Alice’s operators Ay andA jare
exchanged, and srmllarly for Bob. Apart from that, we also tested the sets involving B, = By B; = o 50} ¢and

B} = B}'B = ap 6Ok 53 [Ba, Ajl = [By, Aj] = 0,withA;, B;, B B! defined in equations (33)—~(38). In all the sets we

1

13



I0OP Publishing NewJ. Phys. 21 (2019) 073032 A Carmietal

Table D1. Characterization of bounds on non-local correlations for various sets of parafermionic observables.

I Generalized
Bound: (39), Generalized TLM (5), Relation
lhs Tsirelson (4), Ihs lhs/rhs (6),1hs Relation (7), lhs
291 1 (if assump-
Theoretical maximum [32] 2J2 (~2.83) 1 1 tions hold)
Maximum for paraf- Alice’s Bob’s
ermionic operators operators
observables
Ao, Ay By, By 2.60 2.44 0.71 0.74 1.00
Ag, Ay B, B! 2.60 2.82 1.00 1.00 1.56
AL Ao By, B, 2.60 2.44 0.71 0.74 1.00
Ay, A B/, B 2.60 2.82 1.00 1.00 1.56
Ap, Ay By, By 2.60 2.22 0.71 0.62 1.00
A Ay B/, B} 2.60 2.71 1.00 0.97 1.56
Ap, Ay By, B, 2.60 2.44 0.71 0.74 1.00
Ag, Ay By, B, 2.00 2.23 1.00 0.75 1.50
Ag, Ay B,, By 2.60 2.22 0.71 0.62 1.00
Ag, Ay Bj, B, 2.00 2.44 1.00 0.75 1.50

tested, all Alice’s and Bob’s operators commute when Bob uses unprimed observables; some of Alice’s operators
do not commute with some of the Bob’s observables when Bob uses primed observables, Bj’ .

Note that all the sets we have tested obey all bounds except for relation (7). The latter is obeyed by all the non-
signaling sets (when Bob uses B; observables) and violated by all the signaling sets (when Bob uses Bj’
observables). This strengthens the numerical evidence that relation (7) is a good candidate for quantifying the
effect of signaling on quantum correlations.

In principle, the system of parafermions has many more possible sets of observables. First, assigning
different parafermions to Alice and Bob, one can have different local algebras at Alice’s and Bob’s sites, as well as
different Alice-Bob commutation relations. We investigate them in part by switching the order of Ag and A, etc
or replacing By with B, in table D1. While this does not exhaust all the possibilities, the numerical results we do

have, indicate that our conclusions are likely to hold in the cases we did not check. An even richer set of algebras

can be accessed by using operators beyond quadratic in parafermions, e.g. (as’jozj Whor ol i ol al ,aswellas

arbitrary linear combinations of quadratic operators, e.g. xc, jaj’ « Ty jaj,l. While investigating our bounds
with these would be an interesting non-trivial check, we believe that the more important task is understanding
and proving the role of theorem 4 and bound (7) in the general context.
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