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There is steadily increasing evidence that the two-dimensional electron gas (2DEG) formed at the
interface of some insulating oxides like LaAlO3/SrTiO3 and LaTiO3/SrTiO3 is strongly inhomoge-
neous. The inhomogeneous distribution of electron density is accompanied by an inhomogeneous
distribution of the (self-consistent) electric field confining the electrons at the interface. In turn
this inhomogeneous transverse electric field induces an inhomogeneous Rashba spin-orbit coupling
(RSOC). After an introductory summary on two mechanisms possibly giving rise to an electronic
phase separation accounting for the above inhomogeneity, we introduce a phenomenological model to
describe the density-dependent RSOC and its consequences. Besides being itself a possible source
of inhomogeneity or charge-density waves, the density-dependent RSOC gives rise to interesting
physical effects like the occurrence of inhomogeneous spin-current distributions and inhomogeneous
quantum-Hall states with chiral “edge” states taking place in the bulk of the 2DEG. The inho-
mogeneous RSOC can also be exploited for spintronic devices since it can be used to produce a
disorder-robust spin Hall effect.

PACS numbers: 73.20.-r, 71.70.Ej, 73.43.-f

I. INTRODUCTION

After a two-dimensional electron gas (2DEG) was de-
tected at the interface between two insulating oxides1,
an increasingly intense theoretical and experimental in-
vestigation has been devoted to these systems. The
properties of this 2DEG are intriguing for several rea-
sons. The 2DEG can be made superconducting when
its carrier density is tuned by means of gate voltage,
both in LaAlO3/SrTiO3 (henceforth, LAO/STO)2,3 and
LaTiO3/SrTiO3 (henceforth, LTO/STO)4,5 interfaces,
thus opening the way to voltage-driven superconduct-
ing devices. Also, it exhibits magnetic properties6–11,
displays a strong and tunable13–16 Rashba spin-orbit
coupling17, and it is extremely two-dimensional, having a
lateral extension ∼ 5 nm. Magnetotransport experiments
reveal the presence of high- and low-mobility carriers in
LTO/STO, and superconductivity seems to develop as
soon as high-mobility carriers appear5,18, when the car-
rier density is tuned above a threshold value by means
of gate voltage, Vg. When the temperature T is lowered,
the electrical resistance is reduced, and signatures of a
superconducting fraction are seen well above the temper-
ature at which the global zero resistance state is reached
(if ever). The superconducting fraction decreases with
decreasing Vg, although a superconducting fraction sur-
vives at values of Vg such that the resistance stays finite
down to the lowest measured temperatures. When Vg is
further reduced, the superconducting fraction eventually
disappears, and the 2DEG stays metallic at all temper-
atures and seems to undergo weak localization at low T .
At yet smaller carrier densities, the system behaves as
an insulator. The width of the superconducting tran-

sition is anomalously large and it cannot be accounted
for by reasonable superconducting fluctuations19. This
phenomenology suggests instead that an inhomogeneous
2DEG is formed at these oxide interfaces, consisting of
superconducting “puddles” embedded in a weakly localiz-
ing metallic background, opening the way to a percolative
superconducting transition20. Inhomogeneities are re-
vealed in various magnetic experiments6–12, in tunneling
spectra21, and in piezoforce microscopy measurements22.
Specific informations on the doping and temperature de-
pendence of the inhomogeneity in these systems have
been recently extracted from a theoretical analysis23 of
tunnelling experiments24. The inhomogeneous structure
of these systems is rather complex. On the one hand,
large micrometric-scale inhomogeneities have been re-
vealed by the occurrence of striped textures in the cur-
rent distribution25 and in the surface potential26. On
the other hand, experiments investigating the quan-
tum critical behavior of the superconductor-(weakly lo-
calized) metal transition29, transport experiments in
nanobridges30, and piezo-force experiments22 indicate
that inhomogeneities have a finer structure extending
down to nanometric scales. The inhomogeneous char-
acter of these oxide interfaces (henceforth referred to as
LXO/STO interfaces, when referring to both LAO/STO
and LTO/STO) has been extensively discussed in phe-
nomenological analyses of transport experiments27,28.
The very inhomogeneous character (especially at small
scales) also calls for some intrinsic mechanisms promot-
ing the inhomogeneous distribution of electron density.
The possibility of an electronic phase separation (EPS)
in these materials has indeed been considered and two,
possibly cooperative, mechanisms have been identified.
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In Sect. II, after a short presentation of the electronic
structure of LXO/STO interfaces, we will briefly recon-
sider these mechanisms for EPS both for the sake of com-
pleteness and to introduce the model that will be the
main focus of this paper: the density-dependent Rashba
spin-orbit coupling (RSOC). In this model the RSOC is
assumed to depend on the local electric field, which in
turn is a monotonically increasing function of the local
electron density. Therefore, where the electron density is
larger, also the local confining electric field perpendicu-
lar to the interface is larger, thereby inducing a stronger
RSOC. The subsequent sections will instead be devoted
to the analysis of the remarkable consequences of this in-
homogeneous distribution of electron density and RSOC.

II. TWO MECHANISMS FOR ELECTRONIC
INSTABILITIES IN LXO/STO

Photoemission spectroscopy clearly indicates that the
valence band of STO and of the LXO overlayer align
themselves and the excess electrons at the interface are
accommodated in the potential well formed by the STO
conduction band bending, while the conduction band of
the overlayer is well above31. This well, which is some
tens of eV deep (> 0.4 eV), gives rise to a quantum con-
finement of the electrons in the z direction perpendicular
to the LXO/STO interface and the interfacial electron
gas acquires a strong two-dimensional character. Thus
the 2DEG resides on the STO side and it occupies the
t2g orbitals (dxy, dxz, dyz) of the STO conduction band.
The different orientation and overlap of the orbitals in
the (xy) and z directions has important consequences in
the electronic structure of the quantized sub-bands. The
dxy orbitals have small overlap along z and give rise to
a band with small dispersion (heavy mass mH ∼ 20m0,
where m0 is the free electron mass) along this direction.
Therefore, when quantum confinement is enforced, the
sub-band levels are relatively closely spaced. On the
other hand, the dxz,yz orbitals have a substantial overlap
in the z direction and would give rise to dispersed bands
(and light masses, mL ∼ 0.7m0), were it not for the con-
finement. Then the quantized sub-bands are much more
widely spaced and the first occupied level is 50−100 meV
above the lowest sub-bands of dxy origin. Both XAS
experiments32 and first-principle calculations33–35 agree
on this electronic scheme.

A. Phase separation instability in confined
electrons at LXO/STO interfaces

The thermodynamic stability of the LXO/STO sys-
tems was recently investigated39 in order to identify a
possible mechanism for EPS. In particular the system
was schematized as in Fig. 1, where the thin LXO over-
layer is positively charged because of the countercharges
(due to the polarity-catastrophe mechanism36,37 and/or

to oxygen vacancies) left by the electrons transferred to
the STO interface region. These transferred electrons ei-
ther occupy discrete levels in the potential well, which
form mobile 2D bands along the x, y directions or are
trapped in more deeply localized states inside the STO
layer.
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TRAPPED	ELECTRONS	

LXO
	 STO	
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FIG. 1. Sketch of the interface for back (a) and top (b) gat-
ing. The upper part sketches the confining potentials, while
the bottom part reports the structure of samples and elec-
trodes. The confining potential depends on both mobile (dark
green shade) and trapped (light green shade) charges, which
together compensate the positive counter-charges n in the
LXO side. Applying a positive (negative) voltage electrons
are added to (subtracted from) the interface and the poten-
tial changes accordingly.

The electrostatic configuration of the system is also de-
termined by the metallic gates that are under the STO
substrate (back gating) and/or above the LXO overlayer
(top gating), tuning the electron density. The stability of
the electronic state was investigated by varying the den-
sity of the interfacial gas while keeping the overall neu-
trality. Therefore, a corresponding amount of positive
countercharges has to be varied (see Fig. 1). Because
of this tight connection between positive and negative
charges the (in)stability will be determined by calculating
the chemical potential of the whole system (i.e., of both
the mobile electrons and of the other charges). While we
will solve the quantum problem of the mobile electrons
in the self-consistent confining well, the countercharges,
the fraction of electrons trapped in impurity states of the
bulk (see below), and the boundary conditions fixing the
gating potential will determine the classical electrostatic
energy of the system. All these contributions (see Ref. 39)
yield the total energy E and, in turn, the chemical poten-
tial µ = E(N+1)−E(N) ≈ ∂NE (here N represents the
number of electrons, which is always kept equal to the
number of countercharges). The mobile electron density
along z and the spectrum of the discrete levels was deter-
mined by solving the Schrödinger equation along the z
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direction, while the corresponding electrostatic potential
was found by solving the Poisson equation. By iteratively
solving these two equations the self-consistent potential
well and the electronic states were determined, providing
the total energy of the system (also including all electro-
static contributions arising from positive countercharges,
gate electric fields, trapped localized electrons). From
this the chemical potential evolution with the electron
density n was found, as reported in Fig. 2.
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FIG. 2. (a-c) Chemical potential as a function of the mo-
bile electron density at fixed values of the back-gating po-
tential Vg (the electrons due to gating are thus also fixed) in
the presence of a short-range background contribution to the
chemical potential accounting for the short-range rigidity of
the countercharges (see Ref.39) In (b) an example of Maxwell
construction is given, with the gray shaded areas being equal.
(d) Sketch of the phase diagram with the phase separation
region (gray) mixing the superconducting (red) and normal
metallic (light green) phases. The thick red dashed line marks
the critical filling at which SC sets in, while the dotted lines
show how the total density varies in a back-gating configura-
tion. The darker shaded area marks the The densities n1 and
n2 delimit the miscibility gap.

It is clear that at some densities the chemical potential
decreases upon increasing n, thereby signaling a negative
compressibility that marks the EPS. The boundaries of
the coexistence region are then determined by a standard
Maxwell construction in full analogy with the liquid-gas
transition. As a consequence, a density-vs-gate poten-
tial region is determined, where regions at different elec-
tron density coexist. Of course, the above treatment says
nothing about the size of the minority droplets embed-
ded in the majority phase: this is determined by specific,
model-dependent ingredients like the interface energy of
the droplets, the mobility of the countercharges that are
needed to keep charge neutrality, and so on. Simple es-
timates show that the very large value of the dielectric
constant of STO weakens the Coulomb repulsion and al-
lows this frustrated EPS mechanism to produce rather
large (∼ 50 nm) inhomogeneities. On the other hand, it
is also possible that the positive countercharges (like the

oxygen vacancies) diffuse and follow the segregating elec-
trons keeping charge neutrality. Of course, also in this
case, EPS stops when the segregating electrons become
too dense for the countercharges to follow, but finite in-
homogeneities of substantial size can still be formed. It
is important to notice that the calculations find perfectly
realistic density ranges in which the EPS occurs, with the
high-density phases always reaching local electron den-
sities sufficient to fill the higher orbitals dxz,yz. Since
these are associated to the high-mobility carriers respon-
sible for superconductivity, it is quite natural to assume
that the EPS creates puddles at higher-density where su-
perconductivity takes place at low-enough temperature.
These puddles are then the basic “bricks” giving rise to
the inhomogeneous superconducting state discussed in
Sect. I.

B. Phase separation instability in confined
electrons with Rashba spin-orbit coupling

Before the quite effective mechanism for EPS presented
in the previous subsection was identified, another mech-
anism was found and discussed based on the dependence
of the RSOC self-consistent local electric field and, con-
sequently, on the local density. Simple inspection of the
electrostatic potential well confining the electrons (as ob-
tained from the self-consistent Schrödinger-Poisson ap-
proach) shows that where the electron density is higher,
the confining electric field is correspondingly higher (on
the average in the well). Therefore the RSOC is also
larger. Since RSOC brings along a lowering of the planar
electronic spectrum (for free electrons, if the minimum
of the parabolic dispersion is set to zero for α = 0, it
becomes −ε0 = −α2m/2 for finite RSOC), the electron
energy tends to be lower in the high-density regions. (see
Fig. 3).

Of course, whether or not this is enough to induce
an electronic instability, is a matter of numbers and the
detailed analysis of this mechanism15,38 established that
the DOS of electrons in the dispersive dxy bands is not
large enough to cause an EPS, while the substantially
larger DOS of the higher dxz,yz sub-bands might in-
deed induce this instability for values of the order (or
just 30 − 40 % larger) of those experimentally found in
LXO/STO interfaces13,14,16. After the discovery of the
more effective mechanism based on the electrostatic con-
finement (see the previous subsection), the safer attitude
is perhaps to consider this mechanism as cooperative
to strengthen the instability tendency in the 2DEG at
the LXO/STO interfaces. Most interestingly, however, is
that any inhomogeneous distribution of electron density
(whatever the formation mechanisms might be) entails
an inhomogeneous distribution of RSOC, with important
consequences both from the fundamental and applicative
points of view. The focus of this paper is precisely to
present some of these important physical and applicative
consequences of a density-related inhomogeneous RSOC.
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homogenoeus	field	E	and	RSOC	a(E)	and	homogeneous	el.	density

inhomogenoeus	field	E	[and	RSOC	a(E)]	and	inhomogeneous	el.	density
increasing	locally	n	may	lower	the	energy

large	E,	n	
and	RSOC	a

small	E,	n	
and	RSOC	a

FIG. 3. Schematic view of the 2DEG in the homogeneous
case (above) where both electron density and transverse elec-
tric field (the arrows) are uniformly distributed. (Bottom)
Inhomogeneous case where the electric field is larger where
the electron density is higher (darker region). The schematic
view of the electron spectrum is reported showing that the
bottom of the band is lower when the RSOC is larger.

III. RASHBA MODEL WITH DENSITY
DEPENDENT COUPLING

The basic features resulting from a density depen-
dent RSOC can be elucidated from a single-band Rashba
model on a lattice described by the hamiltonian

H =
∑
ijσ

tijc
†
iσcjσ +

∑
ijσσ′

[
gxijτ

x
σσ′ + gyijτ

y
σσ′

]
c†iσcjσ′

+
∑
i,σ

λi

[
c†iσciσ − ni

]
+
∑
iσ

Vic
†
iσciσ. (1)

Here, the first term describes the kinetic energy of elec-
trons on a square lattice (with lattice constant a) where
we only take hopping between nearest-neighbors into ac-
count (tij ≡ −t for |Ri − Rj | = a). The second term
is the RSOC with gαij = −gαji = −(gαij)

∗. Since the cou-
pling constants will be defined as density dependent, this
results in a local coupling to charge density fluctuations

with ni =
∑
σ〈c
†
iσciσ〉 and the λi are determined self-

consistently. The last term describes an external (im-
purity) potential with local energies Vi which are drawn
from a flat distribution with −V0 ≤ Vi ≤ V0.

In our investigations the RSOC is also restricted to

nearest-neighbor processes. We write the couplings as

gxij = −iγij
[
δRj ,Ri+y − δRj ,Ri−y

]
gyij = −iγij

[
δRj ,Ri+x

− δRj ,Ri−x

]
so that the property gαij = −gαji requires

γij = γji. (2)

The coupling can be also written in the form

HRSO =
∑
i

[
γi,i+yj

x
i,i+y − γi,i+xjyi,i+x

]
where

jαi,i+η = −i
∑
σσ′

[
c†iστ

α
σσ′ci+η,σ′ − c†i+η,στασ′σci,σ

]
denotes the α-component of the spin-current flowing on
the bond between Ri and Ri+η. Following Ref. 15, we
assume that the coupling constants depend on a perpen-
dicular electric field Eez which is proportional to the
local charge density. Since in real space the coupling
constants gi,i+η are defined on the bonds, we discretize
the electric field at the midpoints of the bonds and define
the dependence on the charge as

Ei+η/2 = e0 + e1(ni + ni+η) .

For the dependence of the RSOC on the electric field
we adopt the form given in Ref. 15, so that altogether the
following coupling is considered

γi,i+η =
a0 + a1(ni + ni+η)

[1 + b0 + b1(ni + ni+η)]3
, (3)

which fulfills the property Eq. (2).
We show below that for strong RSOC this coupling

will induce the formation of electronic inhomogeneities
and thus concomitant variations in the local chemical
potential λi. The latter can be obtained self-consistently
by minimizing the energy which yields

λi =
∂gi,i+y
∂ni

〈jxi,i+y〉 −
∂gi,i+x
∂ni

〈jyi,i+x〉 . (4)

A. Stability analysis

If we insert the Lagrange parameter in the hamiltonian
Eq. (1) the energy functional reads as

E = E0 +
∑
iσ

(
∂γi,i+y
∂ni

〈c†iσciσ〉+
∂γi,i+y
∂ni+y

〈c†i+y,σci+y,σ〉
)
〈jxi,i+y〉

−
∑
iσ

(
∂γi,i+x
∂ni

〈c†iσciσ〉+
∂γi,i+x
∂ni+x

〈c†i+x,σci+x,σ〉
)
〈jyi,i+x〉 (5)
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with

E0 =
∑
ijσ

tij〈c†iσcjσ〉

+
∑
i

[
γ0i,i+y〈jxi,i+y〉 − γ0i,i+x〈jyi,i+x〉

]
and the notation γ0 = γ(n0) refers to the coupling at a
given density n0.

From Eq. (5) it becomes apparent that the density de-
pendent coupling induces an effective density-current in-
teraction. Assume that the problem has been solved for
a given homogeneous density n0 (in the following we take
densities and currents as site independent). Then one can
obtain the instabilities of the system from the expansion
of the energy in the small fluctuations of the density ma-
trix in momentum space

δE = Tr(Hδρ) (6)

+
γ′

2N

∑
q

2 cos(
qy
2

)
[
δρqδj

x
−q + δjxq δρ−q

]
− γ′

2N

∑
q

2 cos(
qx
2

)
[
δρqδj

y
−q + δjyq δρ−q

]
where γ′ denotes the (site independent) first derivative
of the RSOC with respect to the density.

The fluctuations are given by

δjxq = −2t
∑
kσσ′

sin(ky +
qy
2

)c†k+q,στ
x
σσ′ck,σ′

δjyq = −2t
∑
kσσ′

sin(kx +
qx
2

)c†k+q,στ
y
σσ′ck,σ′

δρq =
∑
kσσ′

c†k+q,σ1σσ′ck,σ′

and the instabilities can now be determined from a stan-
dard RPA analysis. We introduce response functions

χq(q) = − i

N

∫
dt〈T δAq(t)δA−q(0)〉

where δAq refer to the fluctuations defined above.
The non-interacting susceptibilities can be obtained

from the eigenstates of the Rashba hamiltonian Eq. (1).
Denoting the response functions in matrix form

χ0(q) =


χ0
jx,jx χ0

jx,jy χ0
jx,ρ

χ0
jy,jx χ0

jy,jy χ0
jy,ρ

χ0
ρ,jx χ0

ρ,jy χ0
ρ,ρ


and the interaction, derived from Eq. (6) as

V (q) =


0 0 2γ′ cos(

qy
2 )

0 0 −2γ′ cos( qx2 )

2γ′ cos(
qy
2 ) −2γ′ cos( qx2 ) 0



the full response is given by

χ(q) =
(
1− χ0(q)V (q)

)−1
χ0(q) (7)

and the instabilities can be obtained from the zeros of
the determinant ∣∣∣1− χ0(q)V (q)

∣∣∣ = 0 .

Here the element χρρ(q = 0) is proportional to the com-

0,6 0,8 1 1,2 1,4 1,6 1,8 2

a
1
 [t]

-10

-8

-6

-4

-2

0

2

4

χ
ρ

ρ
(q

=
0
) 

[1
/t

]

0 0,035 0,07
n

-4,12

-4,11

-4,1

-4,09

-4,08

µ
 [

t]

FIG. 4. Main panel: χρρ(q = 0) vs. a1 for a0 = 0.3 and
density n = 0.07. A q = 0 instability occurs at a1 ≈ 1.05.
Inset: The µ vs. n curve for parameters a0 = 0.3 and a1 =
1.05 which demonstrates the zero slope at n = 0.07.

pressibility, i.e. within our sign convention proportional
to the inverse of −∂µ/∂n. A (locally) stable system thus
corresponds to χρρ(q = 0) < 0 whereas an unstable sys-
tem is characterized by χρρ(q = 0) > 0.

Fig. 4 demonstrates the consistency of the present ap-
proach. For density n = 0.07 and fixed a0 = 0.3 the main
panel shows χρρ(q = 0) as a function of a1. Obviously
the system changes from locally stable to locally unstable
at a1 ≈ 1.05. This is consistent with the µ vs. n curve
which is shown in the inset and shows a zero slope for
the same parameters (cf. also upper left panel of Fig. 6).

Due to the momentum dependence of the density-
current coupling and the momentum structure of χ0(q) a
finite q instability can occur before. This is demonstrated
in the left panel of Fig. 5 which shows the momentum de-
pendence of χρρ(q) along the x-direction. Clearly, as a
function of a1 a instability occurs at q ≈ (0.3, 0) be-
fore the q = 0 instability is reached. Moreover, the cor-
responding momentum is larger than one would expect
from the nesting momentum of the upper band which is
shown in the right panel of Fig. 5 which clearly reveals
the importance of the momentum dependent coupling.
A detailed investigation of the phase diagram and the
corresponding structure of instabilities as a function of
doping is presented in Ref. 42. In this latter work it was
also shown that the Maxwell construction establishing
the whole phase separated region preempts reaching the
finite-q instability
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0 0,2 0,4 0,6 0,8 1

q
x
 [1/a]

-150

-100
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0
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]

a
1
=1.033

a
1
=1.0355

a
1
=1.036

0 0,2 0,4 0,6 0,8 1

q [1/a]

0

1

2

E
k
 [

t]

x=0.07, a
0
=0.3

FIG. 5. Left panel: χρρ(q) vs. (qx, 0) for several a1 ( momenta
qx are in units of inverse of the lattice spacing a). Right
panel: band structure along (qx, 0). Parameters: a0 = 0.3
and density n = 0.07.

B. Spin currents

Spin currents and associated torques are important
quantities in characterizing the ground state of inhomo-
geneous Rashba models. In fact, the electron spin S is
not a conserved quantity in systems with spin-orbit cou-
pling. It obeys the Heisenberg equation of motion

dS

dt
= −i[S, H] +

∂S

∂t
(8)

which can be interpreted in terms of a continuity equation

G = div J +
∂S

∂t
(9)

where G is a ’source’ term which in general is finite due
to the non-conservation of spin. Since we are dealing
with the time-independent Schrödinger equation where
all expectation values are stationary, the source term is
’hidden’ in the commutator, i.e.

[S, H] = i div J− iG (10)

and G contains all contributions which cannot be asso-
ciated with a divergence.

In particular one obtains for Jz and Gx,y

Jzi,i+x(y) = −i
∑
σσ′

[
c†iστ

z
σσ′ci+x(y),σ′ − c†i+x(y),στzσ′σci,σ

]
G
x(y)
i = iγi,i+x(y) ×
×
∑
σσ′

[
c†nστ

z
σσ′ci+x(y)σ′ − c†i+x(y)στzσσ′ciσ′

]
corresponding to the relations

G
x(y)
i = −γi,i+x(y)Jzi,i+x(y) − γi−x(y),iJzi−x(y),i, (11)

i.e., a torque for the x(y)-component of the spin is as-
sociated with a z-polarized spin current along the x(y)
direction when the RSOC γ 6= 0.

In a system with homogeneous RSOC one has fi-
nite x(y)-polarized spin currents flowing along the y(x)-
direction. In particular, since the currents are constant
the corresponding torques vanish and from Eq. (11) it
turns out that z-polarized spin currents are absent in the
homogeneous system. In the next subsection we demon-
strate that the situation drastically changes when the
RSOC depends on the density and thus induces an inho-
mogeneous charge distribution in the ground state.
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FIG. 6. Chemical potential vs charge density for different
parameters of the coupling constant. Each panel shows the
curves for a1 = 0.5 (black), a1 = 1.0 (red), and a1 = 1.5
(blue), whereas a0 and b1 are different in each panel.

IV. RESULTS FOR INHOMOGENEOUS
CHARGE AND SPIN STRUCTURES

In case of a homogeneous system Fig. 6 displays the
chemical potential vs density for the various parameters
entering the coupling constant Eq. (3). For simplicity
only the case b0 = 0 in Eq. (3) is considered. Clearly a
phase separation instability is triggered by increasing the
RSOC to the density via the parameter a1. On the other
hand the parameter b1 puts an upper limit to this cou-
pling so that the PS instability is shifted to lower doping
upon increasing b1. Fig. 7 reports a particular realiza-
tion of a phase-separated solution obtained on a 16× 16
lattice with 26 particles. The charge carriers are confined
to square shaped cluster with “large density sites” n ≈ 1
and a border region with n ≈ 0.04, indicated by dark
and light grey squares, respectively. As in the homoge-
neous case the dominant flow of the x(y)-spin currents
is along the y(x) direction but now of course confined to
the “large density square”. However, due to this con-
finement the currents are obviously not conserved but
finite torques lead to a generation (annihilation) of spin
currents. This implies finite torques Gx,y for both x-
and y- components at the border of the phase separated
region which in turn from Eq. (11) induces z-polarized
edge spin currents flowing counter clockwise around the
square. Not that there is also a smaller edge current at
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FIG. 7. (a-c) The x- (panel a), y- (panel b), and z- (panel
c) component of spin currents (arrows) and torques (circles,
squares) for a phase separated solution. The distribution of
charge (26 particles on a 16× 16 lattice) is indicated in grey.
Parameters: a0 = 0.3, a1 = 1.5, b0 = 0, b1 = 0.

the outer border (within the low density region) flowing
clockwise. This is due to small x(y)-spin currents in this
region (not visible on the scale of the plot) which flow
opposite to the ones within the main square and thus are
related to torques with opposite sign.

The pure phase separated state is very susceptible to
the presence of disorder which will break up the system
into “puddles” with enhanced charge density. This is
shown in Fig. 8 for a disorder strength V0/t = 0.5. x- and
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FIG. 8. (a-c) The x- (panel a), y− (panel b), and z− (panel
c) component of spin currents (arrows) and torques (circles,
squares) for a phase separated solution including disorder
V0/t = 0.5. The distribution of charge (26 particles on a
16 × 16 lattice) is indicated in grey. Parameters: a0 = 0.3,
a1 = 1.5, b0 = 0, b1 = 0.

y- polarized spin currents are dominant in the extended
puddle with large charge density (around site [4, 12]) but
are also present (though not visible on the scale of the
plot) in the smaller puddles. Again the most interesting
observation is the torque induced flow of z-polarized spin
edge currents around the puddles.



8

V. INHOMOGENEOUS QUANTUM HALL
STATES

A. Momentum and real-space analysis of
inhomogeneous QH states

Since a sufficiently strong and density dependent
RSOC can promote an inhomogeneous electron state at
LXO/STO interfaces, it is worthwhile investigating the
properties of this inhomogeneous electron gas under a
strong magnetic field B = Bẑ perpendicular to the inter-
face, in the quantum Hall regime. The Landau levels of
a 2DEG in the presence of RSOC are50

E±s = ~ωc

[
s+

1

2
± 1

2
∓ α

~

√
2m

~ωc

(
s+

1

2
± 1

2

)]

where ωc = eB/m and we have taken the free-electron
gyromagnetic factor g = 2. As it is seen from the above
equation, the RSOC α lifts the degeneracy of the levels
E+
s and E−s+1 even at g = 2, so all levels have the same

degeneracy as the ground state and host the same num-
ber of states Nφ. Furthermore, the level spacing is not
constant and in particular the spacing between one level
and the following with equal chirality decreases when the
quantum number s increases. The ordering of the levels
is not defined a priori: the level E+

s+1 may fall below

the level E−s+1, provided the ratio α/
√
B is large enough.

Only the level E−s=0 is independent of α.

If the RSOC is constant, the chemical potential at T =
0 is a non-decreasing step-wise function of the electron
density, as in the case α = 0. However, if the RSOC
depends on the electron density, µ may decrease when
jumping from one Landau level to the next. Within the
present continuum model we adopt a density dependent
RSOC of the form

α(n) =
2a1n

(1 + 2b1n)3
(12)

in agreement with Eq. (3) once the identification ni =
ni+η = n is adopted in the continuum limit, and, for
simplicity, a0 = b0 = 0. Furthermore, if the conditions
required in Sec. II B are met, a situation like the one de-
picted in Fig. 9 occurs, where the stepwise function µ(n)
oscillates around the smooth curve µB=0(n), which is it-
self a non-monotonic function of the density. Thus we
may expect inhomogeneous quantum Hall states to oc-
cur.

To investigate the properties of inhomogeneous quan-
tum Hall states, we performed calculations in real space,

4.3 Numerical results 62

Figure 4.6: (a)µ(n) for fixed magnetic field B = 10T and αmax = 5.8 · 10−11eV m.
(b) Zoom of a range ∆n.
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Figure 4.7: µ(n) as a function of the magnetic field.

FIG. 9. Chemical potential as a function of the electron den-
sities at various magnetic fields. The values of the parameters
(a1 and b1) determining the RSOC are such that the maxi-
mum value αmax reported in the figure panel is reached at a
density nmax (per unit cell). The maximum value Emax of
the interfacial electric field is also reported. The units of the
magnetic field B are in Tesla.

with the Hamiltonian

H =
∑
i,σ

[
ti,i+x

(
eiByic†i+x,σci,σ + h.c.

)
+ti,i+y

(
c†i+y,σci,σ + h.c.

)
+ (Bσ − µ+ λi)c

†
i,σci,σ

]
+i
∑
i,σσ′

[
γi,i+x

(
e−iByic†i,στ

y
σσ′ci+x,σ′ + h.c.

)
−γi,i+y

(
c†i,στ

x
σσ′ci+y,σ′ + h.c.

)]
−
∑
i

λini,

and the density dependent RSOC is described as before,
by taking Eq. (3) with a0 = b0 = 0. The results reported
below are obtained for a square lattice of size L = 16. In
the absence of RSOC, the commensurability condition
requires that the magnetic flux through a unit cell φa is
a rational fraction p/q of the flux quantum φ0. Under
this condition, the size of the magnetic unit cells 1 × q.
Although for the chosen Landau gauge [A = (By, 0, 0)]
the vector potential breaks the translational invariance
along y, the system preserves the symmetry for trans-
lations of q lattice spacings along y (see, e.g., Ref. 40).
Then, if the system is composed by an integer number
of magnetic cells along y, periodic boundary conditions
(PBCs) can be imposed. In a 16 × 16 lattice, the lower
field compatible with the latter condition corresponds to
the ratio p/q = 1/16, yielding Bmin = 1692 T, given the
planar unit cell of LXO/STO. We notice in passing, that
such a large unphysical magnetic field is only required to
deal with a small enough cluster to be numerically man-
ageable. Since the RSOC affects the QH states via the
combination

√
α2/B, the same physics can be obtained
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by choosing a ten times smaller RSOC and a hundred
times smaller field B ∼ 17 T. This, however, gives rise
to a ten times larger magnetic length, that would require
larger real-space clusters. In order to attack this prob-
lem with real-space calculations, we are therefore led to
use larger fields having in mind that the same physical
effects would occur at much lower fields on somewhat
larger length scales. For the case at hand, the resulting
Hofstadter spectrum is composed of 16 sub-bands, each
of them accommodating 16 electrons. If spin is taken into
account the number of the sub-bands doubles. If N = 16
electrons are present, the ground state corresponds to the
complete filling of the first level. The electron density is
homogeneous and a current locally flows along x, within
the chosen gauge (see Fig. 10).

5.2 QHS in absence of Rashba coupling 71
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Figure 5.2: Charge density and charge current for a system with N = 16 electrons
when PBCs are imposed. The lowest subband is completely filled.

FIG. 10. Charge density distribution and charge current for a
16×16 system with N = 16 electrons with PBCs. The lowest
sub-band is completely filled.

The main features of quantum Hall states are deeply
related to the existance of boundaries delimiting the
physical space available for electron motion. When elec-
trons are confined in a box, the wave functions must van-
ish approaching the walls. The effect of the boundaries is
to lift the degeneracy of the Hofstadter sub-bands, that
acquire a finite width. In other words, each sub-band
in turn splits into a stack of levels. In Fig. 11 for peda-
gogical reasons and for the sake of comparison, we show
the charge distribution and the edge currents for systems
with N = 12 (left) and N = 16 (right) electrons, re-
spectively, with open boundary conditions (OBCs). In
the first case, all the electrons are accommodated in the
lowest sub-band and a single edge current goes through
the sample. The charge density is substantially homoge-
neous in the bulk and decreases when approaching the
boundaries. For N = 16, instead, the first sub-band is
completely filled and the second one is partially filled,
unlike the situation with PBCs where for N = 16 the
latter was empty. The second sub-band is characterized
by a negative conductance and two different edge states
with currents flowing in opposite directions are achieved
(left panel). If no spin-orbit coupling is present, the z-

spin current is simply opposite to the charge current:
when the electrons move towards the left, there is a net
spin current along the direction of their motion, while
the electric current is directed to the right.

5.2 QHS in absence of Rashba coupling 73

Figure 5.4: Fermi energy as a function of density for a 2DEG in a perpendicular
magnetic field of magnitude B = 1692T (blue) and at B = 0 (red) when
OBCs are imposed. The Hofstadter subbands are well distinguished only
at the extremal left and right part of the graph (low and high density).
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Figure 5.5: Homogeneous states in the Quantum Hall regime without RSOC. Left:
Just the lowest subband is populated. Right: Opposite edge currents due
to the filling of different Hofstadter subbands.

FIG. 11. Homogeneous states of a for a 16× 16 system in the
quantum Hall regime without RSOC, for OBCs. Left: The
lowest sub-band only is populated. Right: Opposite edge
currents due to the filling of different Hofstadter sub-bands.

When RSOC (and its dependence on the local density)
is taken into account, our real-space numerical analysis
automatically carries out a minimization of the (λ con-
strained) energy, by allowing inhomogeneous solutions
when phase separation occurs. In Fig. 12 we compare a
situation in which the homogeneous system is inside the
phase-separation region (N = 36) and a system in which
the homogeneous system is outside the phase-separation
region (N = 101). As it is evident, in the former case, we
obtain an inhomogeneous solution in our real-space cal-
culation. Interestingly, the edge currents run along the
boundary of the self-nucleated droplet.

5.3 QHS with Rashba coupling 79

Figure 5.10: Charge (violet) and spin (light blue) currents in presence of RSOC.
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      n=0.394

Figure 5.11: Left: N = 36. Right: N = 101.FIG. 12. Charge density distributions and charge currents
for a 16 × 16 system. Left: Inhomogeneous quantum Hall
state for a number of electrons N = 36, corresponding to a
filling at which the infinite homogeneous systems falls inside
the phase-separation region. Right: Homogeneous quantum
Hall state for a number of electrons N = 101, corresponding
to a filling at which the infinite homogeneous systems falls
outside the phase-separation region.

B. Lattice model for QHE: Harper equation with
RSOC

We consider a square lattice infinite in the x-direction
and extended over L unit cells (lattice constant a = 1)
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in the y-direction. Electrons can hop between neighbor-
ing sites in the xy-plane and are subject to a strong ho-
mogeneous magnetic field B = Bẑ generated by a site-
dependent vector potential A(j) = (−Byj , 0, 0). The
tight-binding Hamiltonian in presence of RSOC is HTB =
H0 +HRSOC with

H0 = −
∑
j

tj,j+x

[
ei2πφyjc†j+xcj + h.c.

]
(13)

−
∑
j

tj,j+y

[
c†j+ycj + h.c.

]
− EZ

∑
jσσ′

[
c†jστ

z
σσ′cjσ′

]
,

HRSOC = i
∑
j,σ,σ′

γj,j+x

[
ei2πφyjc†j,στ

y
σσ′cj+x,σ′ + h.c

]
− i

∑
j,σ,σ′

γj,j+y

[
c†j,στ

x
σσ′cj+y,σ′ + h.c

]
. (14)

The orbital effect of the magnetic field is encoded in the
phase factor acquired by the hopping amplitudes

tj,j+x(y) −→ tj,j+x(y)e
ie/~

∫ j+x(y)
j A·dr, tj,j+x(y) = tx(y)

and

γj,j+x(y) −→ γj,j+x(y)e
ie/~

∫ j+x̂(ŷ)
j A·dr, γj,j+x(y) = γx(y)

which can be written in terms of the flux φ through a lat-
tice cell (in units of the flux quantum φ0 = h/e). τx, τy

and τz are Pauli matrices acting on the electron spin and
EZ = g2πφ the Zeeman coupling constant. An eigenstate

of HTB can be expanded as |Ψ〉 =
∑
jσ ψσ(xj , yj)c

†
jσ|0〉,

with the wavefunction ψσ(xj , yj) = ψσ(`,m) centered on
the lattice site of coordinates xj = ` and yj = m. Trans-
lational invariance along x allows for the factorization
ψσ(`,m) = ψσ(m)eikx` and the eigenvalue problem can
be solved in a ribbon of vertical size L.

L

FIG. 13. Schematic view of a ribbon with periodic boundary
conditions along x and finite size L along y. For an homoge-
neous state only two edge states are present: the upper edge
state (red) flows counterclockwise, while the lower edge (blue)
flows clockwise.

The Schrödinger equation for the spinor

Ψm =

(
ψm↑
ψm↓

)
m = 0, · · · , L− 1 (15)

reads as

EΨm = DmΨm +RmΨm+1 +R†mΨm−1, (16)

known as Harper equation51–53. RSOC enters in the off-
diagonal elements of the 2× 2 blocks

Dm =

(
−2tx cos(k̃x)− EZ 2iγx sin(k̃x)

−2iγx sin(k̃x) −2tx cos(k̃x) + EZ

)
Rm =

(
−ty −iγy
−iγy −ty

)
,

where k̃x ≡ kx+2πφm. The solution of the coupled eigen-
value equations defined by Eq. (16) returns 2L energy
sub-bands E`(kx) with ` = 0, 1, · · · , 2L − 1. It is conve-
nient to take the origin of the y-axis m = 0 at the middle
of the ribbon, so that m takes the integer values between
−L/2 and L/2 − 1 (for simplicity we assume L to be
even here). In order to investigate inhomogeneous quan-
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FIG. 14. Electronic sub-bands for the two-dimensional sys-
tem in strong magnetic field for (a) heterostructure formed
by a region with RSOC (γ1 = a01 = 0.3t and a region
with RSOC γ2 = a02 = 0.6t; (b) heterostructure formed by
a region without RSOC (γ1 = 0 and a region with RSOC
γ2 = a0 = 0.3t. Colors distinguish the edge states – prop-
agating along the top edge from left to right (in red) and
along the bottom edge from right to left (in blue) – from the
bulk states (light grey), according to the calculated expecta-
tion value of the y-coordinate 〈m〉 =

∑
mσm|ψmσ|

2. Black
arrows represent magnitude and direction of the expectation
value of the spin angular-momentum: vertical arrows stay for
〈σy〉 = 1, 〈σz〉 = 0, horizontal arrows for 〈σy〉 = 0, 〈σz〉 = 1.

tum Hall states we consider an interface in the y-direction
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between two (macroscopic) regions with different RSOC
γ1 and γ2 (which might result from different electronic
densities in the two regions due to a density-dependence
of the RSOC) and compare the spectrum – as a func-
tion of the momentum kx – for this heterostructure with
the conventional spectrum of Landau levels in absence
of RSOC and with the case where RSOC is present but
is homogeneous. Given a ribbon as in Fig. 13, numerical
results are shown in Fig. 14 for the different cases: (a)
γy(x) = γ1 = 0.3t for 0 < m ≤ L/2− 1, γy(x) = γ2 = 0.6t
for 0 > m ≥ −L/2 and γy = (γ1 + γ2)/2 at m = 0; (b)
γy(x) = γ1 = 0 for 0 < m ≤ L/2 − 1, γy(x) = γ2 = 0.3t
for 0 > m ≥ −L/2 and γy = (γ1 + γ2)/2 at m = 0.

At φ � 1 the bulk spectrum consists of a set of
flat bands (Landau levels) which have different order-
ing and spin-polarizations depending on whether RSOC
is present or not. Of course, inhomogeneous QH states
have been investigated before (see, e.g., Ref. 54–57 and
references therein). However, it is interesting that we
face here an inhomogeneous QH state where different
strengths of the local RSOC induce differently spin-
polarized edge states. In Fig. 14(a,b) one can distinguish
two sets of bulk levels which are connected at kx ≈ 0. It
is interesting to note the avoided crossings between levels
with different quantum numbers and the variation of the
orientation of the spin particularly along the lowest en-
ergy levels. On the one hand, case (a) is rather similar to
the case of no RSOC and differently gated regions of the
system that was considered in Ref. 54. The main differ-
ence here is that the presence of a sizable RSOC forces
the spin polarization of the edge states (moving in the x
direction) along the y direction instead of the usual z di-
rection. On the other hand, in the case of Fig. 14(b) the
upper edge lives in a region of vanishing RSOC and is po-
larized along z, while the blue (i.e. lower) edge lives in a
region of sizable RSOC and carries a chiral spin polarized
along y. The corresponding edge states that mix and in-
terfere inside the bulk of the ribbon give rise to smoothly
rotating spin polarizations. These effects, might be of
applicative relevance for spin interferometry.58 or they
might play important roles in electronic transport. Note
that even at γ 6= 0 there is always a level with electrons
having the spin polarized in the z-direction, regardless
of the momentum kx (the s = 0 level in the previous
section).

VI. SPIN HALL EFFECT

In the ground state of the Rashba model the total x(y)-
torques have to vanish and therefore from Eq. (11) we get∑

i

G
x(y)
i = 0 = −γi,i+x(y)Jzi,i+x(y) − γi−x(y),iJzi−x(y),i,

(17)
which implies also a vanishing of the total z-polarized
spin currents for γi,i+x(y) = const. However, consider
for example a system with striped RSOC as depicted in

the inset to Fig. 15b. Denote with Jz1,2 the total z-spin
current flowing along the bonds of the γ1,2-stripes which
are assumed to have the same width. Then we can rewrite
Eq. (17) as

0 = γ1J
z
1 + γ2J

z
2 −→ Jz2 = −a1

a2
Jz1

and the total z-spin current of the system is thus given
by

Jztot = nstr (Jz1 + Jz2 ) = nstrJ
z
1

(
1− γ1

γ2

)
,

where nstr denotes the total number of γ1,2 stripes.

0 0,05 0,1 0,15 0,2 0,25

ω [t]

0,28

0,3

0,32

0,34

σ
(ω

) 
[1

/8
π

]
-0,4 -0,2 0 0,2 0,4

k
x

-4,37

-4,36

-4,35

-4,34

-4,33

-4,32

-4,31

-4,3

E
k

0 0,05 0,1 0,15 0,2

ω [t]

0

0,2

0,4

0,6

0,8

1

  
Im

 <
S

y
,S

y
>

 /
ω

b)

212121

L L

γ γ γγγγγ
1

FIG. 15. Top panel: Frequency dependence of the spin Hall
correlation function Eq. (18) for different values of the chem-
ical potential which is located within the lowest bands as in-
dicated in the inset. Lower panel: Imaginary part of the re-
sponse related to the time derivative of Sy. The inset depicts
the coupling structure of the striped Rashba system (L = 4)
with RSOC γ1 = 0.2t and γ1 = 0.8t, respectively.

The same reasoning can also be applied in a non-
equilibrium situation, i.e. in the presence of an applied
electric field, where it gives rise to the so-called spin
Hall effect (SHE)41, i.e. the generation of a transverse
spin current by an applied electric field with the current
spin polarization being perpendicular to both the field
and the current flow. For a homogeneous system (with
homogeneous linear RSOC) the SHE vanishes in a sta-
tionary situation because of the same argument, which
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leads to Eq. (17) and which has been first pointed out
by Dimitrova43. On the other hand we have shown in
Refs. 44–46 that in the linear response regime a periodic
modulation of the RSOC as depicted in Fig. 15 generates
a finite SHE within the low doping doping regime where
the electronic states are localized but can sustain a finite
spin current under stationary conditions.

The spin Hall coefficient can be obtained as the zero
frequency limit of the following spin-charge current cor-
relation function as

σsH(ω) =
∑
ij

<σregij (ω) (18)

σregij (ω) = − ie

N

∑
`,m

f` − fm
E` − Em

〈`|jzi,i+y|m〉〈m|jchj,j+x|`〉
ω + iη + E` − Em

,

where |`〉 and E` are exact eigenstates and eigenvalues of
the system and f` denotes the corresponding Fermi func-
tion. Due to the modulation of the RSOC, there a band
folding producing a sub-band structure in the reduced
Brillouin zone. Fig. 15a shows the frequency dependence
of σsH(ω) for a L = 4 striped system (cf. inset to panel
b) and a set of chemical potentials within the lowest pair
of Rashba split sub-bands. Clearly σsH(ω) approaches a
finite value for ω → 0 which is slightly reduced when the
chemical potential corresponds to the energy of a band
crossing. However, one has to additionally show that this
is a result obtained under stationary conditions. This can
be substantiated from the computation of =χ(Sy, Sy)/ω
which corresponds to the dynamics of the time derivative
of Sy. From Fig. 15b it turns out this quantity vanishes
in the limit of ω → 0 due to the strong localization of the
bands perpendicular to the stripe direction. The van-
ishing of dSy/dt can also be derived directly from the
equation of motion for Sy which then provides another
validation for Eq. (17)44.

It is important to note that this effect is due to the
modulation of the RSOC and cannot arise in a conven-
tional charge-density wave system. Experimentally our
proposal could be realized in the 2DEG at the interface of
a LaAlO3/SrTiO3 ( LAO/STO) heterostructure with pe-
riodic top gating or in heterostructures of semiconductors
with modulated Rashba SOC which have been already
discussed in the literature in different contexts47–49.

VII. CONCLUSIONS

In this paper we discuss the role of density inho-
mogeneities in oxide interfaces. These inhomogeneities
seem to be a common (if not ubiquitous) occurrence in
LXO/STO oxide interfaces and likely have a submicro-
metric character. The inhomogeneous density distribu-
tion is directly related to an inhomogeneous distribution
of the confining electric field perpendicular to the in-
terface and, in turn, to an inhomogeneous distribution
of the RSOC. This naturally leads to the idea that the
RSOC can be phenomenologically assumed as a function
of the local density, that increases at low density and is
implemented in the simplified model presented in Sect.
III. The RPA analysis and the real-space solution of the
model on finite clusters show that a phase-separation in-
stability is present, which also preemps the occurrence of
an electronic instability at finite momentum.

The explicit solution of the model in real space finite
lattices directly shows that the density-driven RSOC can
indeed induce (or at least makes it easier) an EPS and
that the high-density phase is fragmented into ‘puddles’
when disorder is present. This inhomogeneous distribu-
tion of electrons and RSOC gives rise to spin torques at
the puddle boundaries. These torques act as sources and
drains of spin currents, which tend to flow inside and
around the puddles.

Spin and charge currents also flow at the boundaries of
the density inhomogeneities, when strong magnetic fields
drive the system into a quantum Hall state. When the
edge is between a metallic filled region and an empty in-
sulating matrix, the edge state assumes a simpler struc-
ture with the RSOC linking the spin to the momentum
inducing a chiral edge state with the spin polarization
on the interface plane. The edge states are instead more
intricate and display a complex behavior at the interface
between regions with differently filled Landau levels.

In summary, electronic inhomogeneities in oxide inter-
faces can induce inhomogeneous RSOC leading to inter-
esting new physical effects (inhomogeneous spin currents
and edge states). Of course these effects can be exploited
and engineered for applicative purposes. This paves the
way to effects of interest for spintronics, like spin inter-
ferometry or the occurrence of a robust spin Hall effect
in systems with striped RSOC.
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55 Daniel Hernangómez-Pérez, et al., (2013) Phys. Rev. B 88,

245433
56 K. Hashimoto, et al., (2008) Phys. Rev. Lett. 101, 256802.
57 J. L. Lado, et al., (2013) Phys. Rev. B 88, 035448.
58 Luca Chirolli, Davide Venturelli, Fabio Taddei, Rosario

Fazio, and Vittorio Giovannetti, (2012) Phys. Rev. B 85,
155317

http://dx.doi.org/10.1016/j.jmmm.2016.12.066

	Density inhomogeneities and Rashba spin-orbit coupling interplay in oxide interfaces
	Abstract
	I Introduction
	II Two mechanisms for electronic instabilities in LXO/STO
	A Phase separation instability in confined electrons at LXO/STO interfaces
	B Phase separation instability in confined electrons with Rashba spin-orbit coupling

	III Rashba model with density dependent coupling
	A Stability analysis
	B Spin currents

	IV Results for inhomogeneous charge and spin structures
	V Inhomogeneous Quantum Hall States
	A Momentum and real-space analysis of inhomogeneous QH states
	B Lattice model for QHE: Harper equation with RSOC

	VI Spin Hall effect
	VII Conclusions
	 References


