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PART I  
ROLE OF PROTEIN MODIFICATIONS ON AUTOIMMUNITY 

 

 

 

Adapted from Croonian Lecture “On Immunity with Special Reference to Cell Life” 
Paul Erlich read 22 March 1900 
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Introduction 

The identification of anti-citrullinated protein antibodies (ACPA) has had a major impact on 
the understanding of rheumatoid arthritis (RA). In the late 1990’s it was described for the 
first time that RA patients produce autoantibodies which target peptides and proteins 
containing citrulline, a modified form of the amino acid arginine (1) (2). Citrullination is a 
posttranslational modification of protein-bound arginine into citrulline residues which is 
mediated by peptidyl arginine deiminase (PAD) enzymes and is essential for the generation 
of antigens recognized by ACPA (3). Although the physiological role of citrullination is not 
precisely known, it is clear that this protein modification can occur during a variety of 
biological processes, including inflammation. Following the identification of citrullinated 
proteins, several diagnostic tests were developed based on cyclic citrullinated peptides 
(CCP) as a test substrate for detecting ACPA. Using the CCP-assay, a highly reliable diagnostic 
tool became available for routine testing of antibodies directed against citrullinated 
epitopes in early RA patients.  
The presence of ACPA in the sera of patients represents an important early biomarker and 
has been added to the 2010 American College of Rheumatology/European League Against 
Rheumatism (ACR/EULAR) classification criteria for RA (4). The selected parameters in the 
2010 classification criteria were designed to include early markers of disease rather than 
established clinical features as was the case in the 1987 ACR guidelines. The ACPA serology 
enables the clinician to identify recent-onset RA patients earlier, which is crucial for 
achieving timely control of disease progression. Using the ACPA test it is possible to 
distinguish two subclasses RA patients: ACPA-positive and ACPA-negative. When comparing 
these two subclasses of RA, major differences have been observed regarding genetic- and 
environmental risk factors, progression, remission, and response to treatment. In this 
review, we will provide an update on the latest findings concerning the ACPA maturation 
profile, the association between RA and the HLA DR-locus, and the hypotheses about 
disease pathogenesis that contribute to a greater understanding of the role of ACPA in early 
RA.  
 
Auto-immunity related to RA is present long before onset of clinical symptoms 

Autoantibodies are an important hallmark of RA and several classes of autoantibodies have 
been described that precede the development of RA, including ACPA, rheumatoid factor 
(RF) and the recently identified anti-carbamylated protein antibodies (5-8). Especially ACPA 
are of particular interest as these autoantibodies are highly specific for RA and can be found 
in about 50% of early RA patients. The fact that ACPA are quite rare in healthy individuals, 
suggests that auto-antibody positive healthy individuals are at an increased risk of 
developing RA (9). These findings suggest that ACPA and/or the underlying B-/T-cell 
responses play a prominent role in disease pathogenesis. Shortly before clinical onset of 
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disease, there appears to be maturation of the ACPA response which is characterized by an 
increase in ACPA titre, isotype switching, an increased antigen-recognition profile, and a 
change in Fc glycosylation pattern (10-15). Different observations strongly suggest that the 
development of ACPA-positive RA is based on a two-hit model. Environmental triggers and 
epigenetic stochastic events are thought to play a role in the initial break of tolerance 
leading to the formation of ACPA. A ‘second hit’, such as an infection or other factors, 
triggers the expansion of the ACPA response, which occurs relatively short before disease 
manifestation (16). Epidemiological studies have indicated that the HLA molecules do not 
play a considerable role during the first hit, but mainly contribute to the second hit that 
enables the expansion of the ACPA response.     
ACPA can recognize a variety of citrullinated antigens, including type II collagen, fibrinogen, 
vimentin and many other citrullinated proteins. An increase or shift of the antigen 
recognition profile, epitope spreading, can be a sign of maturation of the antibody response 
and disease progression. Epitope spreading is a hallmark of maturation of the ACPA 
response and is predictive for disease progression to early RA. After disease onset, the 
increased citrullinated epitope-recognition profile stabilizes and does not change anymore 
(10). A recent 2-year follow up study enrolling 316 early RA patients in a Swedish 
pharmacotherapy trial  suggested that disappearance of particular ACPA reactivities may be 
associated with a good treatment response in early RA (17). These results differ from 
previous reports in which the ACPA fine specificity did not seem to correlate with disease 
activity, progression, or response to therapy (18-20). In the case of the response against 
recall antigens, antibodies undergo class switching, somatic hypermutation and affinity 
maturation to improve the immune reaction against the antigen. 
The variable region of ACPA has undergone extensive somatic hypermutation, indicative of 
a T-cell-dependent B-cell response (21). The avidity maturation of ACPA however, appears 
to be different from recall antigens. As compared with antibodies against recall antigens, 
ACPA display a considerably lower avidity and the ACPA response shows only limited avidity 
maturation over time (22, 23). The presence of these low-avidity ACPA in RA patients is 
associated with a higher rate of joint destruction. ACPA can activate the complement 
system and can therefore play a role in the complement-mediated recruitment of 
inflammatory cells (24), which suggests that ACPA could be directly involved in the disease 
process. Moreover, ACPA-immune complexes combined with IgM or IgA RF can directly 
trigger Fcγ receptors on macrophages and mast cells leading to the production of 
proinflammatory cytokines which contribute to RA synovitis (25, 26).  
Maturation of antibody responses leads to a shift in isotype which enables the activation of 
other immune effector mechanisms. ACPA can use multiple isotypes, and these ACPA 
isotypes are already present before onset of RA (27). In addition, the number of different 
ACPA isotypes is predictive for the development of radiological damage (28). Similar to the 
epitope-recognition profile, the ACPA isotype profile appears not to expand anymore during 
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disease progression, indicating that maturation of the ACPA response takes place before 
onset of arthritis. As mentioned above, the fragment crystallisable (Fc) region of an antibody 
interacts with Fc receptors of immune effector cells and the complement system, and thus 
determines which immune effector mechanisms can be recruited by the antibody. The 
glycosylation of the IgG-Fc region of ACPA has been reported to be different from non-ACPA 
IgG. The Fc region of ACPA-IgG1 contains reduced numbers of sialic acid and galactose 
residues (29), a feature which is generally considered to render IgG antibodies 
proinflammatory (30). The changes in ACPA Fc glycosylation pattern become more 
prominent around 3 months before onset of RA (15). Differences in glycosylation pattern 
between Ig isotypes might influence their affinity for Fc receptors. A recent study showed 
that ACPA-IgG1 has a different Fc glycan profile compared to non-CCP2 reactive IgG1 (30), a 
particularity which can influence the affinity of ACPA IgG to Fc receptors and complement 
and may modulate ACPA effector- and immune-regulatory functions (31). In conclusion, all 
these different autoantibody characteristics evolve and mature before disease onset, and 
once patients present with arthritis, the ACPA response is generally increased in titre, uses 
more isotypes, displays a different glycosylation pattern, and are cross-reactive towards 
different citrullinated proteins (Figure 1). 
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Figure 1. Maturation of the ACPA-response. Antibodies reactive towards citrullinated proteins are 
already present in the preclinical phase of RA. Environmental triggers and epigenetic stochastic events 
are thought to play a role in the ‘first hit’, leading to the formation of ACPA. A ‘second hit’, such as an 
infection, triggers further expansion and maturation of the ACPA response. Once the disease 
manifests itself, the ACPA response is generally increased in titre, uses more isotypes, has a different 
glycosylation pattern, and an increased antigen recognition profile towards various citrullinated 
proteins. Abbreviations: MHC, major histocompatibility complex; TH, T-helper cell; Fab, fragment 
antigen-binding; Fc, fragment crystallisable.  

 

HLA class II associations in rheumatoid arthritis 

The most important genetic risk factor for ACPA positive RA is the HLA class II region. RA, 
like many other autoimmune diseases, is characterized by a strong association with variants 
in the human leucocyte antigen (HLA) class II region. These HLA-associations differ in ACPA-
positive and ACPA-negative disease (32-35), highlighting the complexity of pathogenic 
mechanisms underlying HLA associations in RA. The HLA class II region encodes for HLA-DR, 
HLA-DQ and HLA-DP proteins and is involved in antigen presentation to HLA-class II 
restricted CD4+ T-helper cells. In 1976, analysis of mixed lymphocyte cultures from RA 
patients revealed that these individuals had certain HLA-DR4 molecules in common (36). 
The HLA haplotypes that encode for the HLA-DR4 molecules were found to be characterized 
by the so-called ‘HLA-shared epitope (SE)’, a common amino acid sequence in the HLA-DRB1 
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chain  (37). Recent genome wide analysis revealed specific amino acids at positions 11, 13, 
71 and 74 of the HLA-DRB1 chain as well was single-amino-acid polymorphisms at position 
nine of HLA-B and HLA-DPB1 are associated with the greatest risk for RA (38). Amino acid 
positions 11 and 13 of HLA-DRB1 are among the most polymorphic and are highly relevant 
for the shaping of peptide binding pockets located in peptide-binding groove of the HLA 
molecule. It is therefore not surprisingly that the statistically significant amino acid positions 
are those involved in peptide presentation.  
The HLA SE alleles, are now known to be specifically associated with ACPA-positive RA (38) 
(32). Conversely, HLA-DRB1*13 alleles haplotypes have been found to protect against the 
development of ACPA-positive RA (33, 34). A possible explanation for the association of the 
‘HLA-shared epitope’ with ACPA-positive RA might be that peptide presentation by the 
‘HLA-shared epitope’ HLA molecules can facilitate the activation of CD4+ T-cells which 
provide help to ACPA-producing B-cells. In ACPA positive RA, ACPA are cross-reactive and 
bind to a wide variety of citrullinated self-proteins which indicates to a loss of B-cell 
tolerance. However, it is unclear to what extent T-cell tolerance is lost. Identification of 
citrullinated epitopes recognized by autoreactive T-cells in patients with RA has proven 
difficult. Analysis using peptide-HLA tetramers and in vitro T-cell responses to candidate 
epitopes revealed T-cell recognition of several citrullinated epitopes in humans (39-42).  
The HLA-DRB1*13 alleles which are protective for RA, carry a five amino-acid sequence 
called: DERAA. The DERAA sequence is also expressed by many microbes and in a self-
protein vinculin. Citrullinated vinculin is expressed in the inflamed synovial membrane and 
was recently identified as a novel autoantigen for ACPA antibodies (43). It is proposed that 
molecular mimicry of self-proteins with pathogenic microbial proteins might lead to a break 
of T-cell tolerance. Indeed, it was recently shown, that T-cells present in HLA-DRB1*13-
negative donors were able to specifically recognize a DERAA-containing vinculin epitope 
that cross-react with DERAA sequences derived from pathogens (44). However, many T-cell 
responses are absent in HLA-DR13+ donors, indicating the induction of DERAA-specific T-
cell tolerance in these donors. Together, these studies suggests that the HLA class II locus 
can directly influence the maturation of the ACPA response via antigen-specific T-cells, 
providing help to ACPA-producing B-cells and enabling the maturation of the citrullinated 
protein-specific autoantibody response.  
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Pathogenic role of the immune response against citrullinated proteins 

Besides the diagnostic application of ACPA as a biomarker, several clinical observations 
suggest that ACPA could play a direct role in disease pathology. First, ACPA may be found 
early in the course of disease, up to 7 years before RA manifests (5, 6). Second, various 
follow-up studies revealed that ACPA-positive patients with recent-onset RA develop more 
bone erosions compared to ACPA-negative RA patients (45-48). Third, bone loss and 
reduced bone mineral density can be found in healthy ACPA-positive individuals, even 
before clinical onset of arthritis (49).  Selective B-cell depletion using rituximab has been 
found to be effective in the treatment of RA (50-52), providing evidence for the involvement 
of B-cells in the pathogenesis of RA. ACPA-producing B-cells are found to be enriched in 
synovial fluid (21, 53), which suggests that ACPA can be produced locally and directly 
contribute to synovial inflammation. Moreover, the numbers of ACPA-producing B-cells in 
the blood of RA patients correlate with ACPA serum levels (54). 
Functional studies showed that immune complexes formed with ACPA mediate effector 
functions via Fc-γ receptors (55), and can induce complement activation (24) and enhanced 
neutrophil extracellular trap formation (56). In addition, there are reports that purified 
ACPA can induce osteoclastogenesis and bone resorption in mice (57), suggesting a direct 
link between ACPA and more severe joint destruction. So far, only two experimental studies 
succeeded in showing in vivo that ACPA may facilitate the transition from autoimmunity to 
inflammation. Transfer of antibodies specific to citrullinated fibrinogen (58) and transfer of 
antibodies targeting citrullinated-collagen (59) to mice with mild experimental arthritis led 
to disease exacerbation. It is interesting that no other positive data have been reported 
allowing that these two positive papers are similar as the many non-replicated preclinical 
papers in other fields such as oncology (60).  
RA patients receiving Abatacept show reduced levels of ACPA and RF in response to 
treatment (61). Moreover, a Swedish pharmacotherapy trial reported a decline of all ACPA 
levels independent of the clinical response on disease activity during the first three months 
of methotrexate treatment (17). However, effective treatment of established arthritis does 
not necessarily lead to reduced ACPA levels or a change in ACPA composition. For example, 
a Canadian cohort in early arthritis patients found that anti-CCP antibody fluctuations did 
not relate to clinical scores such as disease activity scores and the presence of erosions (62). 
These findings suggest that autoantibody producing B-cells rather than the autoantibodies 
produced may be responsible for disease pathogenesis. Activated B-cells secrete pro-
inflammatory cytokines, such as IL-6 and TNF, and ACPA-producing B-cells are found to be 
increased in the inflamed synovial membrane (16).   
Besides ACPA, other autoantibodies and/or auto-antibody-producing B-cells may also be 
involved in RA pathogenesis. Similar to ACPA, both rheumatoid factor and anti-CarP 
antibodies are associated with disease severity and persistence (8, 63, 64). Anti-CarP 
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autoantibodies recognize carbamylated proteins containing a homocitrulline, a post-
translational modification of lysine driven by cyanate, and can be found in patients with 
ACPA-negative RA. More recently, antibodies targeting another post-translational 
modification, malondialdehyde/acetaldehyde (MAA) adducts, are found to be increased in 
RA patients and this antibody response is associated with the presence of ACPA (65). Similar 
to carbamylation, MAA adducts are capable of the modification of a lysine. These findings 
raise the question why RA patients produce auto-antibodies towards post-translational 
modified proteins and whether these autoantibodies are implicated in disease 
pathogenesis. Further research is needed to confirm the current observations of anti-CarP 
antibodies in ACPA-negative and positive RA patients, and to determine whether these 
biomarkers can provide additional value next to the CCP2 test.  
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Conclusion 

ACPA have proven to be a very useful biomarker for diagnosing RA and for predicting a 
severe disease course. Future investigations on the role of ACPA, other autoantibodies, and 
ACPA-producing B-cells in RA may provide further insight in and understanding of the 
underlying disease pathogenesis. Follow-up studies of RA patients may provide useful 
information on the fluctuation of ACPA levels and changes in ACPA composition during 
disease progression and treatment. Together, these observations may allow for new 
approaches to treat RA at an early, preclinical, stage of disease, and thus enable prevention 
of the transition of autoimmunity to inflammation and autoimmune disease.   
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