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5. Two-community noisy Kuramoto model

CHAPTER 5
Two-community noisy

Kuramoto model

This chapter has been submitted and is based on: [93]

Abstract

We study the noisy Kuramoto model for two interacting communities of oscillators,
where we allow the interaction in and between communities to be positive or negative.
We find that, in the thermodynamic limit where the size of the two communities tends
to infinity, this model exhibits non-symmetric synchronized solutions that bifurcate
from the symmetric synchronized solution corresponding to the one-community noisy
Kuramoto model, even in the case where the phase difference between the communities
is zero and the interaction strengths are symmetric. The solutions are given by fixed
points of a dynamical system. We find a critical condition for existence of a bifurcation
line, as well as a pair of equations determining the bifurcation line as a function of the
interaction strengths. Using the latter we are able to classify the types of solutions that
are possible and thereby identify the phase diagram of the system. We also analyze
properties of the bifurcation line in the phase diagram and its derivatives, calculate
the asymptotics, and analyze the synchronization level on the bifurcation line. Lastly
we present some simulations illustrating the stability of the various solutions.
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§5.1 Background and motivation

The motivation for studying the two-community noisy Kuramoto model is two-fold.
On the one hand, the suprachiasmatic nucleus (SCN) in the brain of mammals is
responsible for biological time-keeping and consists of two communities of cells that
exhibit synchronization [134]. On the other hand, there are recent studies of interact-
ing particle systems with community structure, that reveal vast richness in behavior
[34, 12, 35, 27]. The noisy Kuramoto model consists of a collection of oscillators with
a mean-field interaction that favors alignment subject to external noisy [114].

The SCN is a cluster of neurons responsible for dictating the rhythm of bodily
functions, most significantly the sleep-cycle. Malfunctioning of the SCN leads to a
variety of health problems, ranging from epilepsy to narcolepsy. Remarkably, the
network structure of the cluster is similar in all mammals, with the universal feature
that it is split into two communities. In humans each cluster has a size of about 104

neurons. It seems that this two-community structure is ideal, both for the robustness
of the rhythm of the cluster not to be disturbed by unusual light inputs, as well as
for the cluster to be adaptable enough to re-synchronize when there is a change in
the light-dark cycle it is exposed to. As we will see below, this is reflected by the
mathematical properties of the two-community noisy Kuramoto model, for which the
interplay between positive and negative interactions introduces new features. The
negative interaction, studied before in [63], [64], seems to play a key role in the
appearance of a negative correlation between the neurons in the two communities in
the SCN, resulting in new emergent behavior such as phase splitting [65].

In the mathematics literature there have been recent studies on bipartite mean-
field spin systems [34], as well as on the Ising block model [12] and the asymmetric
Curie-Weiss model [35], [27], where the splitting into two communities introduces in-
teresting features, for example, the appearance of periodic orbits. These are discrete
models which makes them hard to analyze. What makes the Kuramoto model con-
sidered here hard to analyze is that the interaction between phase oscillators in the
Kuramoto model is non-linear.

Also in [120] the authors consider the two-community noisy Kuramoto model.
They find an intricate phase diagram, with the system being able to take on a variety
of different states. This confirms the observation that a simple modification in the
network structure can greatly increase the complexity of the system. The results in
[120], however, depend strongly on a Gaussian approximation for the phase distri-
bution in each community (explained in [122]), which allows for a reduction of the
dynamics to a low-dimensional setting. In this paper we do not rely on any such
approximation.

We have recently studied the noisy Kuramoto model on the hierarchical lattice
[52], finding conditions for synchronization either to propagate to all levels in the
hierarchy or to vanish at a finite level. This analysis came about by writing down
renormalized evolution equations for the average phases in a block-community at a
given hierarchical level in the hierarchical mean-field limit. In the present paper we
allow for negative interactions across the communities, a situation we did not consider
in the hierarchical model.

104



§5.2. Basic properties

C
h
a
pter

5

In Section 5.2 we introduce the noisy Kuramoto model on the two-community net-
work (see Fig. 5.1) and show that the empirical measures defined for each community
evolve according to a McKean-Vlasov equation in the thermodynamic limit. We
also give the steady-state solutions to these McKean-Vlasov equations and conjecture
which values the phase difference between the average phases of the two communities
can take in the steady state. In Section 5.3 we present results on the critical con-
dition for synchronization in the case of symmetric interaction strengths and equal
community sizes, first without disorder and then with disorder. By disorder we mean
that the natural frequencies of the oscillators are taken from a distribution while
without disorder means that all oscillators are assumed to have a natural frequency
of zero. In Section 5.4 we prove the conjecture from the previous section for a simpli-
fied version of the model where we take the interaction strengths to be symmetric and
prove the existence of non-symmetric solutions in this case. Here symmetric solutions
are solutions in which the synchronization level is the same in both communities while
non-symmetric solutions are solutions where the synchronization level are non-zero
and not the same in both communities. We also characterize the bifurcation line at
which the non-symmetric solutions split off from the symmetric solutions, and ex-
pound a collection of results on the (asymptotic) properties of the bifurcation line
in the phase diagram. Furthermore we analyze the synchronization level along the
bifurcation line. Some of the proofs in Section 5.4 are numerically assisted. Finally,
in Section 5.5 we present some simulations illustrating the stability of the various
solutions as well as the possible transitions between various steady-states.

§5.2 Basic properties

In Section 5.2.1 we define the model, in Section 5.2.2 we take the McKean-Vlasov
limit, and in Section 5.2.3 we identify the stationary solutions.

§5.2.1 Model
We consider two communities of oscillators of size N1 and N2 with internal mean-
field interactions of strength K1

N1
and K2

N2
, respectively. In addition, the oscillators in

community 1 experience a mean-field interaction with the oscillators in community 2
of strength L1

N2
and the oscillators in community 2 experience a mean-field interaction

of strength L2

N1
with the oscillators in community 1. Here we will take K1,K2 ∈ R to

be positive and L1, L2 ∈ R \ {0}.

5.2.1 Definition (Two-community noisy Kuramoto model). The phase angles
of the oscillators in community 1 are denoted by θ1,i, i = 1, · · · , N1, and their evolu-
tion on S = R/2π is governed by the SDE

dθ1,i(t) = ω1,idt+ K1

N1+N2

∑N1

k=1 sin(θ1,k(t)− θ1,i(t))dt

+ L1

N1+N2

∑N2

l=1 sin(θ2,l(t)− θ1,i(t))dt+
√
DdW1,i(t). (5.2.1)
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Figure 5.1: Schematic picture of the two-community network, with community 1 consisting
of N1 yellow nodes and community 2 of N2 red nodes. The interaction between yellow nodes
has strength K1, between red nodes strength K2. Yellow nodes feel red nodes at strength L1

and red nodes feel yellow nodes at strength L2. Not all the interaction links between the
communities are drawn.

The phase angles of the oscillators in community 2 are denoted by θ2,j , j = 1, · · · , N2,
and their evolution on S = R/2π is governed by the SDE

dθ2,j(t) = ω2,jdt+ K2

N1+N2

∑N2

l=1 sin(θ2,l(t)− θ2,j(t))dt

+ L2

N1+N2

∑N1

k=1 sin(θ1,k(t)− θ2,j(t))dt+
√
DdW2,j(t). (5.2.2)

Here, the natural frequencies ω1,i, i = 1, . . . , N1, of the oscillators in community 1
are drawn independently from a probability distribution µ1(dω) on R and the natural
frequencies ω2,i, i = 1, . . . , N2, of the oscillators in community 2 are drawn independ-
ently from a probability distribution µ2(dω) on R, while D > 0 is the noise strength,
and

(
W1,i(t)

)
t≥0

, i = 1, . . . , N1, and
(
W2,j(t)

)
t≥0

, j = 1, . . . , N2, are independent
standard Brownian motions. For simplicity we take µ1, µ2 to be symmetric and have
the same mean which we can assume to be zero without loss of generality.

The model can alternatively be defined in terms of an interaction Hamiltonian
and a weighted adjacency matrix, given by

HN (θ1, . . . , θN ) = − 1

N

N∑
i=1

N∑
j=1

Ai,j cos(θj(t)− θi(t)) +

N∑
i=1

θi(t)ωi (5.2.3)
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with

A := (Ai,j)i,j=1,...,N =



0 K1 . . . K1 L1 L1 . . . L1

K1 0 . . . K1 L1 L1 . . . L1

...
...

. . .
... L1 L1 . . . L1

K1 K1 . . . 0 L1 L1 . . . L1

L2 L2 . . . L2 0 K2 . . . K2

L2 L2 . . . L2 K2 0 . . . K2

L2 L2 . . . L2

...
...

. . .
...

L2 L2 . . . L2 K2 K2 . . . 0


=

[
K11∗ L11
L21 K21∗

]
, (5.2.4)

where 1 = all 1’s and 1∗ = all 1’s, except for 0’s on the diagonal. The model then
reads

dθi(t) = ∂θiHN (θ1, . . . , θN )dt+DdWi(t), i = 1, . . . , N, (5.2.5)

whereN = N1+N2. Here, we identify phase angle θi with the oscillators in community
1 when i ∈ [1, N1] and with the oscillators in community 2 when i ∈ (N1, N1 + N2].
This representation of the model illustrates the network structure of the underlying
interactions and in principle the adjacency matrix can be replaced by a matrix arising
from a random graph model and has recently been addressed by a number of authors
[16, 28, 38, 82, 100]. This however significantly complicates the calculations since the
interactions are no longer expressible in terms of a closed function of the empirical
measure. The representation via the Hamiltonian may also provide a method for
studying the stability properties of the stationary states.

The following order parameters allow us to monitor the dynamics in each com-
munity:

r1,N1(t)eiψ1,N1
(t) = 1

N1

∑N1

k=1 eiθ1,k(t), (5.2.6)

r2,N2
(t)eiψ2,N2

(t) = 1
N2

∑N2

l=1 eiθ2,l(t), (5.2.7)

where r1,N1(t) ∈ [0, 1] and r2,N2(t) ∈ [0, 1] represent the synchronization levels, and
ψ1,N1(t) and ψ2,N2(t) represent the average phases, in community 1 and 2, respectively.
Using these order parameters, we can rewrite the evolution equations in (5.2.1) and
(5.2.2) as

dθ1,i(t) = ω1,idt+ K1N1

N1+N2
r1,N1

(t) sin(ψ1,N1
(t)− θ1,i(t))dt

+ L1N2

N1+N2
r2,N2

(t) sin(ψ2,N2
(t)− θ1,i(t))dt+

√
DdW1,i(t) (5.2.8)

and

dθ2,j(t) = ω2,jdt+ K2N2

N1+N2
r2,N2

(t) sin(ψ2,N2
(t)− θ2,j(t))dt

+ L2N1

N1+N2
r1,N1(t) sin(ψ1,N1(t)− θ2,j(t))dt+

√
DdW2,j(t). (5.2.9)
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§5.2.2 McKean-Vlasov limit
We assume that the sizes of the communities are related to one another by setting
N1 = α1N and N2 = α2N , α1 +α2 = 1. In the limit as N →∞, we expect the angle
density of oscillators in each community to follow a McKean-Vlasov equation. Define
the empirical measure for each community (θ ∈ S, ω ∈ R):

νN1,t(dθ,dω) :=
1

N1

N1∑
i=1

δ(θ1,i(t),ω1,i)(dθ,dω), (5.2.10)

νN2,t(dθ,dω) :=
1

N2

N2∑
j=1

δ(θ2,j(t),ω2,j)(dθ,dω). (5.2.11)

5.2.2 Proposition (McKean-Vlasov limit). In the limit as N → ∞, the em-
pirical measure νN1,t(dθ,dω) converges to ν1,t(dθ,dω) = p1(t; θ, ω) dθ dω, and the
empirical measure νN2,t(dθ,dω) converges to ν2,t(dθ,dω) = p2(t; θ, ω) dθ dω, where
p1(t; , θ, ω) evolves according to

∂p1(t; θ, ω)

∂t
=
D

2

∂2p1(t; θ, ω)

∂θ2
− ∂

∂θ

[
v1(t; θ, ω)p1(t; θ, ω)

]
(5.2.12)

with

v1(t; θ, ω) = ω + α1K1r1(t) sin(ψ1(t)− θ) + α2L1r2(t) sin(ψ2(t)− θ), (5.2.13)

and p2(t; θ, ω) evolves according to

∂p2(t; θ, ω)

∂t
=
D

2

∂2p2(t; θ, ω)

∂θ2
− ∂

∂θ

[
v2(t; θ, ω)p2(t; θ, ω)

]
(5.2.14)

with

v2(t; θ, ω) = ω + α2K2r2(t) sin(ψ2(t)− θ) + α1L2r1(t) sin(ψ1(t)− θ). (5.2.15)

Here, r1(t), r2(t), ψ1(t) and ψ2(t) are defined by

r1(t)eiψ1(t) :=

∫
S×R

ν1,t(dθ,dω) eiθ, (5.2.16)

r2(t)eiψ2(t) :=

∫
S×R

ν2,t(dθ,dω) eiθ. (5.2.17)

The convergence is in C([0, T ],M1(S × R)) and takes place for any T > 0. Here we
consider annealed convergence with respect to the natural frequencies.

Proof. The proof is analogous to that in the case of the one-community noisy Kur-
amoto model in [33] with straightforward modifications. �
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§5.2.3 Stationary solutions
The stationary solutions of the McKean-Vlasov limit in Proposition 5.2.2 give the
possible states the system can assume in the long time limit. These are presented in
the next proposition.

5.2.3 Proposition (Stationary solutions). In the cases r1 = r2 = 0 and r1, r2 >

0, the stationary density p1(θ, ω) solves the equation

0 =
D

2

∂2p1(θ, ω)

∂θ2
− ∂

∂θ

[
v1(θ, ω)p1(θ, ω)

]
, (5.2.18)

which has solution

p1(θ, ω) =
A1(θ, ω)∫

S dφA1(φ, ω)
, (5.2.19)

where

A1(θ, ω) = B1(θ, ω)
(

e
4πω
D

∫
S

dφ

B1(φ, ω)
+ (1− e

4πω
D )

∫ θ

0

dφ

B1(φ, ω)

)
(5.2.20)

with

B1(θ, ω) = exp
[2ωθ

D
+

2α2L1r2 cos(ψ2 − θ)
D

+
2α1K1r1 cos(ψ1 − θ)

D

]
. (5.2.21)

The stationary density p2(θ, ω), solves the equation

0 =
D

2

∂2p2(θ, ω)

∂θ2
− ∂

∂θ

[
v2(θ, ω)p2(θ, ω)

]
, (5.2.22)

which has solution

p2(θ, ω) =
A2(θ, ω)∫

S dφA2(φ, ω)
, (5.2.23)

where

A2(θ, ω) = B2(θ, ω)
(

e
4πω
D

∫
S

dφ

B2(φ, ω)
+ (1− e

4πω
D )

∫ θ

0

dφ

B2(φ, ω)

)
(5.2.24)

with

B2(θ, ω) = exp
[2ωθ

D
+

2α1L2r1 cos(ψ1 − θ)
D

+
2α2K2r2 cos(ψ2 − θ)

D

]
. (5.2.25)

In addition, the following self-consistency equations must be satisfied:

r1 = V µ1

1 (r1, r2) :=

∫
R
µ1(dω)

∫
S

dθ cos(ψ1 − θ) p1(θ, ω), (5.2.26)

r2 = V µ2

2 (r1, r2) :=

∫
R
µ2(dω)

∫
S

dθ cos(ψ2 − θ) p2(θ, ω),

0 = Uµ1

1 (r1, r2) :=

∫
R
µ1(dω)

∫
S

dθ sin(ψ1 − θ) p1(θ, ω),

0 = Uµ2

2 (r1, r2) :=

∫
R
µ2(dω)

∫
S

dθ sin(ψ2 − θ) p2(θ, ω).
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Proof. Note that in the case when r1 = r2 = 0, both stationary densities are uniform
on S, i.e., p1(θ, ω) = p2(θ, ω) = 1

2π , which satisfies (5.2.18) and (5.2.22). The proof
in the case when r1, r2 > 0 is analogous to the calculation given in [40, Solution to
Exercise X.33]. �

5.2.4 Remark. In the simplified version of the model we will consider below, we
are able to prove that solutions of the type r1 = 0 and r2 > 0 (or vice versa) are not
possible, but it is difficult to prove this in the general case considered above.

In order to understand the steady-state phase difference between the communities,
we proceed heuristically as follows. For the stationary solutions we assume that
r1(t), r2(t),

ψ1(t), ψ2(t) reach their steady-state values r1, r2, ψ1, ψ2 as t→∞ and assume that the
parameters of the system are such that r1, r2 > 0. For the synchronization levels the
possible steady-state values are computed by solving the self-consistency equations
in (5.2.26). For the average phases we use standard Itô-calculus to compute their
evolution

dψm(t) =

Nm∑
j=1

∂ψm
∂θm,j

dθm,j +
1

2

Nm∑
j=1

∂2ψm
∂θ2
m,j

(dθm,j)
2, m ∈ {1, 2}. (5.2.27)

From the definition of the order parameters we have

∂ψm
∂θm,j

=
1

Nmrm(t)
cos(ψm(t)− θm,j(t)), m ∈ {1, 2}, (5.2.28)

and

∂2ψm
∂θ2
m,j

=
1

Nmrm(t)
sin(ψm(t)− θm,j(t)) (5.2.29)

− 2

(Nmrm(t))2
sin(ψm(t)− θm,j(t)) cos(ψm(t)− θm,j(t)), m ∈ {1, 2}.

Substituting (5.2.28)–(5.2.29) and (5.2.8)–(5.2.9) into (5.2.27), setting Nm = αmN

and taking the large-N limit, we get the equations

dψ1(t) =

(
K1α1

2

∫
S

dθ

∫
R
µ1(dω) cos(ψ1(t)− θ) sin(ψ1(t)− θ)p1(t; θ, ω) (5.2.30)

+
L1α2r2(t)

2r1(t)

∫
S

dθ

∫
R
µ1(dω) cos(ψ1(t)− θ) sin(ψ2(t)− θ)p1(t; θ, ω)

+
1

r1(t)

∫
S

dθ

∫
R
µ1(dω)ω cos(ψ1(t)− θ)p1(t; θ, ω)

+
D

2

∫
S

dθ

∫
R
µ1(dω) sin(ψ1(t)− θ)p1(t; θ, ω)

)
dt,
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dψ2(t) =

(
K2α2

2

∫
S

dθ

∫
R
µ2(dω) cos(ψ2(t)− θ) sin(ψ2(t)− θ)p2(t; θ, ω) (5.2.31)

+
L2α1r1(t)

2r2(t)

∫
S

dθ

∫
R
µ2(dω) cos(ψ2(t)− θ) sin(ψ1(t)− θ)p2(t; θ, ω)

+
1

r2(t)

∫
S

dθ

∫
R
µ2(dω)ω cos(ψ2(t)− θ)p2(t; θ, ω)

)
dt.

+
D

2

∫
S

dθ

∫
R
µ2(dω) sin(ψ2(t)− θ)p2(t; θ, ω)

)
dt.

Due to the last two self-consistency equations in (5.2.26) the last line of (5.2.30) and
(5.2.31) is zero. For the steady-state average phases in the case when µ1 = µ2 = δ0,
we must therefore simultaneously solve the equations

0 =
K1α1

2

∫
S

cos(ψ1 − θ) sin(ψ1 − θ)p1(θ, 0)dθ (5.2.32)

+
L1α2r2

2r1

∫
S

cos(ψ1 − θ) sin(ψ2 − θ)p1(θ, 0)dθ,

0 =
K2α2

2

∫
S

cos(ψ2 − θ) sin(ψ2 − θ)p2(θ, 0)dθ (5.2.33)

+
L2α1r1

2r2

∫
S

cos(ψ2 − θ) sin(ψ1 − θ)p2(θ, 0)dθ.

Since the system is invariant under rotations, we can set one of the two angles to zero.
If we set ψ1 = 0, then we see that the equation for ψ2 is satisfied by taking ψ2 = 0

or ψ2 = π. The above calculation is not rigorous, but does suggest the following
conjecture.

5.2.5 Conjecture (Steady-state phase difference). In the system without
disorder, the phase difference ψ = ψ2 − ψ1 between the two communities in the two-
community noisy Kuramoto model with K1 = K2 = K and L1 = L2 = L 6= 0 in the
steady state can only be ψ = 0 or ψ = π.

The intuition for this conjecture is that the system will try to maximize the interaction
strength between oscillators in order to achieve the highest synchronization in each
community. This will be achieved at ψ = 0 when L > 0 and at ψ = π when L < 0.
The other combinations (ψ = 0 with L < 0 and ψ = π with L > 0) should also be
possible, but should not be stable. For an illustration of stability properties obtained
via simulations, we refer the reader to Section 5.5.

§5.3 Symmetric interaction with fixed phase differ-
ence

In this section we pick L1 = L2 = L, K1 = K2 = K, α1 = α2, D = 1. In Section
5.3.1 we consider the case where the natural frequency of the oscillators is zero, and
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in Section 5.3.2 the case where the natural frequency of the oscillators is drawn from
a symmetric distribution µ on R.

§5.3.1 Without disorder
Here we take µ1 = µ2 = δ0. This simplifies (5.2.19) and (5.2.23) to

p1(θ) =
exp

[
Lr2 cos(ψ2 − θ) +Kr1 cos(ψ1 − θ)

]
∫
S dφ exp

[
Lr2 cos(ψ2 − φ) +Kr1 cos(ψ1 − φ)

] , (5.3.1)

p2(θ) =
exp

[
Lr1 cos(ψ1 − θ) +Kr2 cos(ψ2 − θ)

]
∫
S dφ exp

[
Lr1 cos(ψ1 − φ) +Kr2 cos(ψ2 − φ)

] . (5.3.2)

The self-consistency equations for r1 and r2 in (5.2.26) can be written in the form

r1 =
(a1 cosψ1 + b1 sinψ1)

2
W
(√

a2
1 + b21

)
, (5.3.3)

r2 =
(a2 cosψ2 + b2 sinψ2)

2
W
(√

a2
2 + b22

)
,

where W (x) = 2V (x)
x , x ∈ (0,∞), with

V (x) =

∫
S dθ cos θ ex cos θ∫

S dθ ex cos θ
, x ∈ [0,∞). (5.3.4)

The definitions of a1, a2, b1 and b2 will be given below. The function V (x) is the same
function that appears in the self-consistency equation of the one-community noisy
Kuramoto model [53, Equation 2.2]. To see why the self-consistency equations can
be written as in (5.3.3), note that∫

S
dθ ea cos θ+b sin θ = 2πI0(

√
a2 + b2), (5.3.5)

with Im(x) := 1
2π

∫
S dθ(cos θ)m exp(x cos θ) the modified Bessel functions of the first

kind, so that∫
S

dθ cos θ ea cos θ+b sin θ =
∂

∂a
2πI0(

√
a2 + b2) =

2πaI1(
√
a2 + b2)√

a2 + b2
, (5.3.6)∫

S
dθ sin θ ea cos θ+b sin θ =

∂

∂b
2πI0(

√
a2 + b2) =

2πbI1(
√
a2 + b2)√

a2 + b2
.

Here we have used the identity I0(x) = I1(x) given in [2, 9.6.27]. Using (5.3.6) and
the trigonometric identity cos(a− b) = cos a cos b+ sin a sin b, a, b ∈ R, we can rewrite
the self-consistency equations for r1 and r2 as

r1 =
(a1 cosψ1 + b1 sinψ1)I1(

√
a2

1 + b21)√
a2

1 + b21 I0(
√
a2

1 + b21)
, (5.3.7)

r2 =
(a2 cosψ2 + b2 sinψ2)I1(

√
a2

2 + b22)√
a2

1 + b21 I0(
√
a2

2 + b22)
,
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where

a1 = Kr1 cosψ1 + Lr2 cosψ2, b1 = Kr1 sinψ1 + Lr2 sinψ2, (5.3.8)
a2 = Kr2 cosψ2 + Lr1 cosψ1, b2 = Kr2 sinψ2 + Lr1 sinψ1.

Note that

a2
1 + b21 = K2r2

1 + L2r2
2 + 2KLr1r2 cosψ, (5.3.9)

a2
2 + b22 = K2r2

2 + L2r2
1 + 2KLr1r2 cosψ, (5.3.10)

where we recall ψ = ψ2 − ψ1. The most suggestive form of the self-consistency
equations is in terms of K,L and the phase difference ψ:

r1 =
(Kr1 + Lr2 cosψ)

2
W
(√

K2r2
1 + L2r2

2 + 2KLr1r2 cosψ
)
,

r2 =
(Kr2 + Lr1 cosψ)

2
W
(√

K2r2
2 + L2r2

1 + 2KLr1r2 cosψ
)

(5.3.11)

and is obtained by substituting the expressions for a1, a2, b1 and b2 into (5.3.3).

5.3.1 Proposition (Properties of V ).
(a) V (0) = 0.

(b) V ′(0) = 1
2 .

(c) x 7→ V (x) is strictly increasing on [0,∞).

(d) x 7→ V (x) is strictly concave on [0,∞).

(e) V (x) < x
2 for x ∈ (0,∞).

(f) limx→∞ V (x) = 1.

(g) V (−x) = −V (x) for all x ∈ (0,∞).

Proof. Properties 1, 2, 3 and 6 are easily verified. Property 4 is proven by applying
Lemma 4 in [105] (see Appendix 5.A for a comprehensive proof). Property 5 is a
direct consequence of properties 1, 2 and 4. For Property 7, use − cos(θ) = cos(π−θ)
to write

V (−x) =

∫
S dθ cos θex cos(π−θ)∫

S dθ ex cos(π−θ) . (5.3.12)

By performing the change of variable φ = π − θ, we get V (−x) = −V (x). �

5.3.2 Proposition (Properties of W ).
(a) limx↓0W (x) = 1.

(b) x 7→W (x) is continuous and strictly decreasing on [0,∞).

(c) limx→∞W (x) = 0.
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Proof. Properties 1 and 3 are easily verified. For property 2, note that

W ′(x) = 2
V ′(x)x− V (x)

x2
, (5.3.13)

so we need to verify that V ′(x) < V (x)
x . This is true by properties 1 and 4 in

Proposition 5.3.1. �

In the case without disorder Conjecture 5.2.5 can be proven.

5.3.3 Proposition. Fix ψ1 = 0 and assume that µ1 = µ2 = δ0. Then the order
parameters of the system are either r1, r2 = 0 or r1, r2 > 0 and ψ ∈ {0, π}.

Proof. Here the set of self-consistency equations (5.2.26) simplify to

r1 =

∫
S

dθ cos(ψ1 − θ) p1(θ), (5.3.14)

r2 =

∫
S

dθ cos(ψ2 − θ) p2(θ), (5.3.15)

0 =

∫
S

dθ sin(ψ1 − θ) p1(θ), (5.3.16)

0 =

∫
S

dθ sin(ψ2 − θ) p2(θ). (5.3.17)

Since the system is invariant under rotations we can set one of the average phase angles
to zero. So take ψ1 = 0 such that ψ = ψ2. To determine which phase differences are
possible we are left to solve

0 =

∫
S

dθ sin θ
exp

[
Lr2 cos(ψ2 − θ) +Kr1 cos θ

]
∫
S dφ exp

[
Lr2 cos(ψ2 − θ) +Kr1 cos θ

] (5.3.18)

= Lr2 sinψ W
(√

K2r2
1 + L2r2

2 + 2KLr1r2 cosψ
)
,

0 =

∫
S

dθ sin(ψ2 − θ)
exp

[
Lr1 cos θ +Kr2 cos(ψ2 − θ)

]
∫
S dφ exp

[
Lr1 cosφ+Kr2 cos(ψ2 − φ)

] (5.3.19)

= Lr1 sinψ W
(√

K2r2
2 + L2r2

1 + 2KLr1r2 cosψ
)
.

Let us first consider the case when r1 = 0. In this case (5.3.14) becomes

0 =

∫
S

dθ cos θ
exp

[
Lr2 cos(ψ2 − θ)

]
∫
S dφ exp

[
Lr2 cos(ψ2 − φ)

] (5.3.20)

and (5.3.15) becomes

r2 =

∫
S

dθ cos(ψ2 − θ)
exp

[
Kr2 cos(ψ2 − θ)

]
∫
S dφ exp

[
Kr2 cos(ψ2 − φ)

] = V (Kr2), (5.3.21)
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which is exactly the self-consistency equation for the one-community noisy Kuramoto
model without disorder, and can be divided into two cases: Either K ≤ 2, in which
case r2 = 0, making (r1, r2) = (0, 0) the only stationary solution, or K > 2, in
which case there is a unique r2 > 0 solving (5.3.21). By making the change of
variable ϑ = ψ2 − θ in (5.3.20) and using the trigonometric identity cos(ψ2 − ϑ) =

cosψ2 cosϑ + sinψ2 sinϑ in (5.3.20), we see that (5.3.20), in this case, is only solved
by ψ2 = π

2 or ψ2 = 3π
2 . In order to satisfy the self-consistency equations, these angles

must satisfy (5.3.18) and (5.3.19) with r1 = 0:

0 =

∫
S

dθ sin θ
exp

[
Lr2 cos(ψ2 − θ)

]
∫
S dφ exp

[
Lr2 cos(ψ2 − θ)

] , (5.3.22)

0 =

∫
S

dθ sin(ψ2 − θ)
exp

[
Kr2 cos(ψ2 − θ)

]
∫
S dφ exp

[
Kr2 cos(ψ2 − φ)

] . (5.3.23)

The second equation is satisfied for all ψ2, but the first equation is incompatible with
ψ2 = π

2 as well as ψ2 = 3π
2 . so that the solution r1 = 0 and r2 > 0 is not possible,

leaving only the solution (r1, r2) = (0, 0). Note that in this case the average angles
are not well defined.

Let us next consider the case when r1 > 0 (so that we must also have r2 > 0).
The allowed angles have to satisfy (5.3.18) and (5.3.19) simultaneously. These are
satisfied only when sinψ = 0, so that ψ ∈ {0, π}. �

5.3.4 Theorem (Critical line without disorder). Fix ψ = ψ2 − ψ1 ∈ {0, π}.
Then the parameter space {(K,L) : K,L ∈ R2} splits into two regions:

a) In the region K+L cosψ ≤ 2, there is precisely one solution: the unsynchronized
solution (r1, r2) = (0, 0).

b) In the region K + L cosψ > 2, there are at least two solutions: the unsyn-
chronized solution (r1, r2) = (0, 0) and the symmetric synchronized solution
(r1, r2) = (r, r) for some r ∈ (0, 1).

Proof. For part a), note that (0, 0) always solves the self-consistency equations in
(5.3.11), due to property 1 of Proposition 5.3.2 and the fact that a1, a2, b1, b2 are zero
when (r1, r2) = (0, 0). The calculation given in the proof of Proposition 5.3.3 when
r1 = 0 shows that a solution of the form r1 = 0 and r2 > 0 is not possible, and due
to symmetry the same is true for solutions with r2 = 0 and r1 > 0. To have strictly
positive r1, r2, we use property 5 in Proposition 5.3.1 to get

r1 <
Kr1 + Lr2 cosψ

2
,

r2 <
Kr2 + Lr1 cosψ

2
. (5.3.24)

Adding these equations, we get

K + L cosψ > 2, (5.3.25)
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Figure 5.1: Regions appearing in Theorem 5.3.4 ψ = 0 (left) ψ = π (right). Part a): the red
region (labeled by a U); part b): the green region (labeled by an S).

which is the condition to have positive synchronized solutions and defines the critical
line. Let us next consider the case ψ = 0 and r1, r2 > 0. Then the self-consistency
equations in (5.3.11) reduce to

r1 =
(Kr1 + Lr2)

2
W (Kr1 + Lr2) = V (Kr1 + Lr2),

r2 =
(Kr2 + Lr1)

2
W (Kr2 + Lr1) = V (Kr2 + Lr1). (5.3.26)

If we consider symmetric solutions so that r1 = r2 = r, then these two equations are
identical and correspond to the self-consistency equation for the one-community noisy
Kuramoto model with the replacement 2K → K + L, which has a positive solution
when K+L > 2. The same can be done when ψ = π and yields K−L > 2 as critical
condition. �

It is tempting to conclude that the two-community model is the same as the one-
community model with the replacement 2K → K+L cosψ. This is, however, not the
case as we will see in Section 5.4.

§5.3.2 With disorder

In this section we identify the critical line when we include disorder. We simplify the
system by taking the distributions from which the natural frequencies are drawn in
the two communities to be the same, i.e., µ1 = µ2 = µ. Then the self-consistency
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equations in (5.2.26) read

r1 = V µ1 (r1, r2) =

∫
S

dθ

∫
R
µ(dω) cos(ψ1 − θ) p1(θ, ω),

r2 = V µ2 (r1, r2) =

∫
S

dθ

∫
R
µ(dω) cos(ψ2 − θ) p2(θ, ω), (5.3.27)

0 = Uµ1 (r1, r2) :=

∫
S

dθ

∫
R
µ(dω) sin(ψ1 − θ)p1(θ, ω),

0 = Uµ2 (r1, r2) :=

∫
S

dθ

∫
R
µ(dω) sin(ψ2 − θ)p2(θ, ω).

In light of Conjecture 5.2.5 we will restrict the following theorem to the two cases
ψ = 0 and ψ = π. Define

χ =

∫
R
µ(dω)

1

2(1 + 4ω2)
. (5.3.28)

5.3.5 Conjecture (Critical line with disorder). ψ = ψ2 − ψ1 ∈ {0, π}. If the
disorder in the two communities is drawn from a symmetric unimodal distribution µ,
then the parameter space {(K,L) : K,L ∈ R2} splits into two regions:

a) In the region K + L cosψ ≤ χ−1, there is precisely one solution: the unsyn-
chronized solution (r1, r2) = (0, 0).

b) In the region K + L cosψ > χ−1, there are at least two solutions: the un-
synchronized solution (r1, r2) = (0, 0) and the symmetric synchronized solution
(r1, r2) = (r, r) for some r ∈ (0, 1).

Heuristic Proof. Following the method used in [114] for the one-community model,
we Taylor expand the self-consistency equations for r1 and r2 in the two variables r1

and r2. The equations in (5.3.27) read, to first order,

r1 = V µ1 (0, 0) + ∂r1V
µ
1 (r1, r2)|(r1,r2)=(0,0)r1

+ ∂r2V
µ
1 (r1, r2)|(r1,r2)=(0,0)r2 +O(r2

1 + r2
2), (5.3.29)

r2 = V µ2 (0, 0) + ∂r1V
µ
2 (r1, r2)|(r1,r2)=(0,0)r1

+ ∂r2V
µ
2 (r1, r2)|(r1,r2)=(0,0)r2 +O(r2

1 + r2
2).

We can verify that V µ1 (0, 0) = V µ2 (0, 0) = 0, and calculate the derivatives at zero.
This leads to

r1 = r1Kχ+ r2

∫
R
µ(dω)

L(cos(ψ1 − ψ2) + 2ω sin(ψ1 − ψ2))

2(1 + 4ω2)
+O(r2

1 + r2
2), (5.3.30)

r2 = r2Kχ+ r1

∫
R
µ(dω)

L(cos(ψ2 − ψ1) + 2ω sin(ψ2 − ψ1))

2(1 + 4ω2)
+O(r2

1 + r2
2).

Adding these equations, we get

r1 + r2 = (r1 + r2)(K + L cos(ψ1 − ψ2))χ

+ (r2 − r1)2L sin(ψ1 − ψ2)

∫
R
µ(dω)

ω

2(1 + 4ω2)
+O(r2

1 + r2
2). (5.3.31)
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Since we are considering the case where µ is symmetric, the last term vanishes and
we obtain the critical line in Theorem 5.3.5. This shows that below the critical line
the self-consistency equations are a contraction, making (r1, r2) = (0, 0) a fixed point.
In order to show that solutions of the form r1 = 0 and r2 > 0 are not possible, we
would have to repeat the calculation used in the proof of Proposition 5.3.3 for the
general case. This turns out to be non-trivial, but we expect that it is possible to
prove this for symmetric, unimodal µ by proving that p1(θ+ψ2, ω) = p1(−θ+ψ2,−ω)

(in the case that ψ1 = 0) and using this symmetry to show that the first and third
equation in (5.2.26) cannot be simultaneously satisfied when r1 = 0 and r2 > 0. If µ
is symmetric and unimodal, then it is conjectured that the analog of V µ1 (r1, r2) and
V µ2 (r1, r2) in the one-community noisy Kuramoto model is concave [see Conjecture
[3.12], Chapter 3 in [80]]. We assume that this conjecture also holds in this case for
both V µ1 (r1, r2) and V µ2 (r1, r2), at least for symmetric solutions. In the case ψ = 0 the
symmetric solution r1 = r2 > 0 reduces the system of self-consistency equations in
(5.3.27) to a single equation that is analogous to the one-community noisy Kuramoto
model self-consistency equation [80, Proposition 3.10, Chapter 3] with the replacement
K → K +L. In the case ψ = π we can perform a change of variable in the integral of
the second line (5.3.27), namely, φ = ψ2 − θ, to see that the equations again reduce
to the equation for the one-community case with the replacement K → K−L. Thus,
we see that in both cases we can apply the conjecture in [80, Conjecture 3.12] to
ensure that the line K + L cosψ = χ−1 is the critical condition for symmetrically
synchronized solutions, which settles the conditions in a) and b).

For part b), we must still show that the symmetric solution is possible above
the critical line. Due to the reduction of the system to the one-community noisy
Kuramoto model, both for ψ = 0 and for ψ = π, we see that the symmetric solution
indeed exists above the critical line.

§5.4 Bifurcation of non-symmetric solutions

In this section we consider the system with the same parameter specifications and
simplifications as in Section 5.3, but without disorder and with ψ = 0. The analysis
with ψ = π carries over after the replacement L → −L in the self-consistency equa-
tions in (5.3.26) (the resulting modified phase diagram is shown in the right panel of
Fig. 5.6). The proofs in this section rely on numerics.

The self-consistency equations can be visualized as a vector field, in which the
solutions to the equations appear as fixed points, by plotting

~Vr1,r2 = (V (Kr1 + Lr2)− r1, V (Kr2 + Lr1)− r2). (5.4.1)

For a certain range of parameters non-symmetric solutions appear, as seen in Fig. 5.1.
The non-symmetric solutions appear to be saddle-points, having a stable and an un-
stable manifold under the vector field representing the self-consistency equations.
Note that this vector field does not represent the dynamics of the system, since the
self-consistency equations contain only the stationary densities. By plotting the pos-
sible solutions as functions of K while keeping L fixed, we see that the non-symmetric
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Figure 5.1: Self-consistency vector field (5.4.1) for K = 5 and L = −1.

solutions bifurcate from the symmetric solutions, as is seen in Fig. 5.2 for the case
where L = −2. The symmetric solutions correspond to equal amounts of synchroniz-
ation in the two communities. This is also the only solution possible between K = 4

and K = 4.9953 . . .. At K = 4.9953 . . ., the non-symmetric solutions appear, cor-
responding to one community having a larger synchronization level than the other
community. Due to the symmetry of the system, both communities can have a higher
level of synchronization in the non-symmetric solution.

In Section 5.4.1 we prove a necessary and sufficient condition for the existence of
non-symmetric solutions. In Section 5.4.2 we show that the non-symmetric solutions
are ordered and are such that the symmetric solution is wedged in between the two
non-symmetric solutions. In Section 5.4.3 we analyze the (asymptotic) properties of
the bifurcation line as well as the synchronization level along the bifurcation line.

§5.4.1 Existence and characterization of
non-symmetric solutions

5.4.1 Theorem (Characterization of the bifurcation line). The existence of
non-symmetric solutions requires L < 0, in which case the bifurcation point K∗ =

K∗(L) is the unique solution to the equation√
1− 2K

K2 − L2
= V

(
(K + L)

√
1− 2K

K2 − L2

)
, (5.4.2)
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Figure 5.2: Solutions to the self-consistency equations in (5.3.11) for different values of K
when L = −2. Drawn are the pairs of symmetric solutions (solid), and the pairs of non-
symmetric solution (dashed and dotted).

and the synchronization level at the bifurcation point is given by

r∗(K∗, L) =

√
1− 2K∗

K∗2 − L2
. (5.4.3)

Proof. We assume that a non-zero symmetric solution exists, so that r1 = r2 = r and
r = V ((K + L)r), which is the case when K + L > 2. Let (K∗, r∗) be a bifurcation
point for fixed L. We will show via a perturbation argument that this bifurcation
point exists and is unique. At the bifurcation point the non-symmetric solutions split
off from the symmetric solution since V is continuous. This allows us to perform a
perturbation around r∗, namely,

r∗ + ε = V (K(r∗ + ε) + L(r∗ − δ)), (5.4.4)
r∗ − δ = V (K(r∗ − δ) + L(r∗ + ε)), (5.4.5)

where ε and δ are small, either positive or negative, and are related, as will be shown
shortly. We Taylor expand around the point (K + L)r∗ and use r∗ = V ((K + L)r∗),
to get

ε ∼ (Kε− Lδ)V ′((K + L)r∗), −δ ∼ (Lε−Kδ)V ′((K + L)r∗), ε, δ ↓ 0, (5.4.6)

where by ∼ (here and in the rest of the paper) we mean that the ratio tends to
1 asymptotically. Abbreviate C∗ = V ′((K + L)r∗). Then the equations in (5.4.6)
combine to give

ε ∼
( LC∗

KC∗ − 1

)2

ε, (5.4.7)

which implies

LC∗ = ±(KC∗ − 1), (5.4.8)
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Figure 5.3: Visualization of the procedure to determine the bifurcation point. (Here C is a
constant determined in order to plot the tangent line and is not C∗.)

and ε ∼ ±δ. Using the negative sign would require the following two equations to be
satisfied:

r∗ = V ((K + L)r∗), (5.4.9)
1

K + L
= V ′((K + L)r∗). (5.4.10)

However, these equations cannot be satisfied simultaneously with r∗ > 0. Indeed, the
first finds the intersection point of V with the line of slope 1

K+L passing through zero.
But due to properties 1 and 4 we know that V has slope 1

K+L before this intersection
point. Thus, the two equations that must be satisfied at the bifurcation point are

r∗ = V ((K + L)r∗), (5.4.11)
1

K − L = V ′((K + L)r∗). (5.4.12)

For fixed L, these equations determine both the value r∗ = r∗(L) of the synchroniz-
ation level at the bifurcation point and the internal coupling strength K∗ = K∗(L)

at which the bifurcation occurs. The first equation finds the intersection point of V
and the line with slope 1

K+L passing through zero. The second equation requires the
derivative of V at this point to be 1

K−L . Due to the concavity of V (Property 4 of
Proposition 5.3.1), this gives the relation

1

K + L
>

1

K − L, (5.4.13)

which implies that L < 0, as claimed. To visualize the procedure for determining the
bifurcation point, we plot the appropriate lines in Fig. 5.3. It is clear that the slope
of the thickly dashed line must be less than that of the solid line, which gives L < 0.
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We can find an expression for the derivative of V in (5.3.4) by writing

V ′(x) =

∫
S dθ cos2 θ ex cos θ∫

S dθ ex cos θ
− V 2(x). (5.4.14)

For the first term in the right-hand side we can use the identity from [13, Eq. (2.21)],
so that in our case

V ′((K + L)r∗) = 1− 1

K + L
− (r∗)2, (5.4.15)

where we have used (5.4.11) for the second term. This reduces (5.4.12) to

r∗(K,L) =

√
1− 2K

K2 − L2
. (5.4.16)

To find r∗ = r∗(K∗, L), we must find K∗ = K∗(L) that solves (5.4.11). Substituting
(5.4.16) into (5.4.11), we obtain (5.4.2).

We will first prove that, given r, there is a unique K∗. In order to do this, we
solve the equation

r =

√
1− 2K

K2 − L2
(5.4.17)

for L to find

L = −
√
K2 − 2K

1− r2
, (5.4.18)

where we have taken the negative since we are dealing with the case L < 0. In order
to have a real solution, we require

K >
2

1− r2
. (5.4.19)

The equation for the bifurcation point in (5.4.2) reads

V (fr(K)r) = r, (5.4.20)

where

fr(K) = K −
√
K2 − 2K

1− r2
. (5.4.21)

Clearly, K 7→ fr(K) is strictly decreasing on ( 2
1−r2 ,∞) for r ∈ (0, 1). Since x 7→ V (x)

is strictly increasing, K 7→ V (fr(K)r) is strictly decreasing on ( 2
1−r2 ,∞). However,

in order to satisfy (5.4.20) with r ∈ (0, 1), by property 5 in Proposition 5.3.1, we must
have

fr(K) > 2, (5.4.22)
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i.e.,

K ∈
( 2

1− r2
,

2(1− r2)

1− 2r2

)
, r ∈

(
0,

1√
2

)
, (5.4.23)

K ∈
( 2

1− r2
,∞
)
, r ∈

[ 1√
2
, 1
)
. (5.4.24)

Moreover,

lim
K→∞

fr(K) =
1

1− r2
. (5.4.25)

For fixed r ∈ (0, 1/
√

2), V (fr(K)r) decreases from V ( 2r
1−r2 ) to V (2r) as K increases

from 2
1−r2 to 2(1−r2)

1−2r2 while for r ∈ [1/
√

2, 1), V (fr(K)r) decreases from V ( 2r
1−r2 ) to

V ( r
1−r2 ) as K increases from 2

1−r2 to ∞. In order to prove uniqueness, we need to
show that

V
( 2r

1− r2

)
> r > V (2r), r ∈ (0, 1/

√
2), (5.4.26)

V
( 2r

1− r2

)
> r > V

( r

1− r2

)
, r ∈ [1/

√
2, 1). (5.4.27)

Uniqueness follows because is be a unique K∗ satisfying (5.4.16), due to V decreasing
continuously from the upper to the lower bounds in (5.4.26) and (5.4.27) and the
line r being wedged between the bounds (note that r 7→ V (fr(K)r) intersects r
exactly once). The curves V ( 2r

1−r2 ), r, V ( r
1−r2 ) are plotted numerically in Fig. 5.4,

which shows that the bounds in (5.4.27) and the upper bound in (5.4.26) hold for all
r ∈ (0, 1). The lower bound in (5.4.26) is immediate from property 5 in Proposition
5.3.1. Indeed, we see that the bifurcation point exists and that K∗ is unique given
r. We will show later that r∗ is also unique given K by showing that ∂r∗

∂K > 0 in
Theorem 5.4.4. �
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Figure 5.4: Plot via MATHEMATICA of V ( 2r
1−r2 ) (dashed), r (solid) and V ( r

1−r2 ) (dotted)
as functions of r.
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The uniqueness of the bifurcation point corroborates the picture in Fig. 5.2.

5.4.2 Remark. Note that (5.4.2) can also be solved for L∗ = L∗(K). The way
this should be understood is that, after one of the variables K and L is fixed, the
bifurcation point for the other variable is determined. A plot of the bifurcation point
as a function of K and L is shown in Fig. 5.5.

-4

-2

0
2

4

6

8
0.4

0.6

0.8

L

K

r∗(K,L)

Figure 5.5: Plot of (K,L) 7→ r∗(K,L) along the critical line.

§5.4.2 Ordering of non-symmetric solutions
Due to the symmetry of the system, if (r1, r2) is a solution to (5.3.11) with ψ = 0, then
so is (r2, r1). When non-symmetric solutions exist, we have the following ordering of
the synchronization levels in the two communities.

5.4.3 Theorem (Ordered solutions). Fix L and take K > K∗ where K∗ is the
bifurcation point obtained by solving (5.4.2). Furthermore take only positive solutions
so that r1, r2, r > 0. Without loss of generality, consider a non-symmetric solution
with r1 > r2. Then

r2 < r < r1. (5.4.28)

Proof. The symmetric solution r solves the equation

r = V (r(K + L)). (5.4.29)

To prove that r < r1, we consider the self-consistency equation (5.3.26) for r1,

r1 = V
(
r1

(
K + L

r2

r1

))
, (5.4.30)

and recall that we must have L < 0 for non-symmetric solutions to exist. Since
r2
r1
< 1, we know that K+L r2r1 > K+L and, due to the fact that x 7→ V (x) is strictly

increasing, also r < r1. Note that we are not quantifying the difference r1 − r2. The
strict inequality follows purely from the fact that r2

r1
< 1, making it impossible to

match the solutions for r and r1. Similarly, we can show that r2 < r. �
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Figure 5.6: In the light red region there is one pair of solutions: unsynchronized. In the
light green region there are two pairs of solutions: unsynchronized and symmetric synchron-
ized. In the light blue region there are three pairs of solutions: unsynchronized, symmetric
synchronized and non-symmetric synchronized.

§5.4.3 Properties of the bifurcation line
We cannot solve (5.4.11) analytically for K∗. We can, however, plot (5.4.11) numer-
ically, which refines the phase diagram in Fig. 5.1 for ψ = 0, as shown in Fig. 5.6. In
this section we first list some basic properties of r∗(K) and its derivatives, defined as
the solution of (5.4.11) when we eliminate L with the help of (5.4.18). After that we
state a theorem on the asymptotic properties of the bifurcation line L∗(K) defined
implicitly by (5.4.2).

5.4.4 Theorem (Properties of K 7→ r∗(K)).

(a) limK↓2 r∗(K) = 0.

(b) limK→∞ r∗(K) = 1.

(c) r∗(K) ∼
√

K−2
2 as K ↓ 2.

(d) 1− r∗(K) ∼ 1
2
√
K

as K →∞.

(e) ∂r∗(K)
∂K > 0 for all K > 2.

(f) ∂2r∗(K)
∂K2 < 0 for all K > 2.

Proof. We use (5.4.19) to get

0 ≤ r∗(K) <

√
K − 2

K
, (5.4.31)
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from which property 1 follows by taking the limit K ↓ 2. The inequality in (5.4.19)
also implies

lim
r↑1

K∗(r) =∞. (5.4.32)

If both K 7→ r∗(K) and r 7→ K∗(r) are continuous, then property 2 follows. To
show that K 7→ r∗(K) is continuous, we apply the implicit function theorem (IFT)
to calculate the derivative

h(K, r∗) = V

((
K −

√
K2 − 2K

1− (r∗)2

)
r∗
)
− r∗, (5.4.33)

which we find by rewriting (5.4.20). From the conditions for the IFT [70], we have
that, in order for K 7→ r∗(K) to be continuous, we need that

2K[(r∗)2 − 1 +K(1− (r∗)2)2] 6= 0, (5.4.34)

which we obtain by differentiating h(K, r) with respect to r and setting the derivative
to zero. From this we obtain the following bound on r∗(K):

r∗(K) >

√
1− 1−

√
1 + 4K

2K
= r∗−. (5.4.35)

In order to rigorously show that this bound is satisfied, we can use the sequence of
(iteratively defined) upper bounds xu(k)

1 (x), k ∈ N0, for V (x) given in [118, Theorem
4], which converge to V (x) as k →∞. Here we will use

l(1)
ν =

(
ν − 1

2
+

√(
ν +

1

2

)2

+ x2

)−1

, (5.4.36)

as suggested in[118, Equation (22)]. If substitution of the right-hand side of (5.4.35)
for r into fr(K)ru

(k)
1 (fr(K)r)− r makes it less than 0, then we know that the bound

in (5.4.35) is satisfied. To see why, note that then

fr∗−(K)r∗−u
(k)
1 (fr∗−(K)r∗−)− r∗− > h(K, r∗−). (5.4.37)

Now, if fr∗−(K)r∗−u
(k)
1 (fr∗−(K)r∗−)− r∗− < 0 for all K, then so is h(K, r∗−), so that r∗−

does not satisfy h(K, r∗) = 0 and the solution satisfies r∗ > r∗−. Using xu
(k)
1 (x) with

k = 2,
xu

(2)
1 (x) =

x

2 + x2

3
2 +
√

( 5
2 )2+x2

, (5.4.38)

as an upper bound, we get that the bound in (5.4.35) is at least satisfied for K ∈
(2,Kk=2), where Kk=2 = 15.8684. By increasing k, we see that the upper bound of
this interval increases and we expect that in the limit as k →∞, (5.4.35) is satisfied
on K ∈ (2,∞). Numerically, we indeed see that this bound is satisfied, as shown in

126



§5.4. Bifurcation of non-symmetric solutions

C
h
a
pter

5

Fig. 5.7 (this figure shows that K∗(r) < 2−r2
(1−r2) , which is the same as (5.4.35)). For

the continuity of r 7→ K∗(r) we require, again by the condition for the IFT, that

∂K∗h(K∗, r) 6= 0, (5.4.39)

which is satisfied by all K∗ > 0 and r∗ ∈ (0, 1), so that property 2 is proved.
We know that limK↓2 r(K) = 0 (by property 1), so that we can expand V around

0 in the self-consistency equation (5.4.20). This leads to

lim
K↓2

fr∗(K)(K) = 2. (5.4.40)

The corresponding asymptotic equation can be solved for r∗(K) to obtain property
3. Property 4 follows from a similar calculation, by using the expansion of V around
infinity, and gives

1− r∗(K) ∼ 1

2fr∗(K)(K)r∗(K)
. (5.4.41)

This equation gives rise to a cubic polynomial in r∗(K), which can be solved and
gives

1− r∗(K) ∼ 1

3
− (1− i

√
3)K

3B
− (1 + i

√
3)B

12K
, (5.4.42)

where

B =
(

8K3 − 27K2 + 3
√

3
√

27K4 − 16K5
)1/3

. (5.4.43)

The complex parts in the right-hand side of (5.4.42) compensate one another, making
it real. Taking only the leading order terms in K, we obtain the asymptotics in
property 4. We can calculate ∂Kr∗(K) by differentiating (5.4.20), i.e.,

∂r∗(K)

∂K
=

cr∗
(√

K2 − 2K
1−r∗2 −K − 1

(1−r∗2)

)
√
K2 − 2K

1−r∗2 − 2cKr∗2

(1−r∗2)2 + c
√
K2 − 2K

1−r∗2
(√

K2 − 2K
1−r∗2 −K

) ,
(5.4.44)

where in the right-hand side we have abbreviated r∗ = r∗(K), and

c = V ′(fr∗(K)r∗). (5.4.45)

It follows from (5.4.12) that

c =
1

K − L =
1

K +
√
K2 − 2K

1−r∗2
, (5.4.46)

which simplifies (5.4.44) to

∂r∗(K)

∂K
=
r∗(1− r∗2)

{(
K −

√
K2 − 2K

1−r∗2
)

(1− r∗2)− 1
}

2K{2− r∗2 −K(1− r∗2)2} . (5.4.47)
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Due to the inequality in [13, Equation (2.4)], we have that

1

fr∗(r∗(K))
< 1− r∗(K)2 <

2

fr∗(r∗(K))
, (5.4.48)

which makes the numerator positive. The denominator becomes zero when

K =
2− r∗2

(1− r∗2)2
. (5.4.49)

Rewriting the lower bound for r∗ in (5.4.35), we get

K <
2− r∗2

(1− r∗2)2
, (5.4.50)

which ensures that the denominator of (5.4.44) is never zero. For values of K satis-
fying (5.4.50) the derivative is positive. This we find by substituting a pair of values
r∗(K),K, calculated numerically, into (5.4.44), and proves property 5 because the
derivative does not change sign in the range of K. To prove property 6, we take the
derivative with respect to K of (5.4.47) and substitute the expression for the first
derivative. This leads to a lengthy equation with denominator

4K2

√
K2 − 2K

1− r∗2 {2− r
∗2 −K(1− r∗2)2}, (5.4.51)

which is positive by the same argument as for the first derivative. Setting the numer-
ator to zero and solving for K, we find that there are no solutions when r is between
zero and the appropriate root of a 9th order polynomial in r, which numerically is
0.946819. Between this value and 1 there are two solutions, for which the numerator
is zero, given by the solutions to the two roots of a quartic polynomial in K. We can
plot these solutions together with the upper and lower bounds for K∗(r) and com-
pare them with the true K∗(r), calculated numerically, as shown in the right panel
of Fig. 5.7.
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Figure 5.7: Left: Interpolation of the first (solid) and second (dashed) derivatives of r∗(K).
Right: Comparison of the numerical solution for the bifurcation point K∗(r) (red, dotted)
with the upper bound 2−r2

(1−r2)2 (long dashed) and the lower bound 2
1−r2 (solid), and with the

solutions to the numerator of the second derivative being zero (short dashed and dash-dotted).
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The right panel of Fig. 5.7 suggests that the second derivative also does not change
sign. Numerically solving for a pair (K, r∗(K)), and substituting this into the numer-
ator, we see that the second derivative is negative. This is confirmed by the left panel
of Fig. 5.7. �

To confirm the asymptotic solutions for r∗(K) in properties 3 and 4, we plot them
and compare them to the numerical solutions in Fig. 5.8.

The next theorem gives the asymptotics of L∗(K) implicitly defined by (5.4.2) in
the limit as K →∞ and close to (K,L) = (2, 0).
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Figure 5.8: Comparison of the numerical solution for the bifurcation point r∗(K) with the
asymptotic expressions for r∗(K) given in properties 4 and 5 of Theorem 5.4.4, for K close
to 2 on the left and for K large on the right.

5.4.5 Theorem (Asymptotic properties of the bifurcation line). The deriv-
ative of L∗(K), defined implicitly by (5.4.2), has the following properties:

(a) limK→∞
∂L∗(K)
∂K = −1.

(b) limK↓2
∂L∗(K)
∂K = − 1

2 .

Proof. We begin by proving the existence of the limits, for which we need the following
lemma.

5.4.6 Lemma (Derivatives of K 7→ L∗(K)). For all K > 2,

(a) ∂L∗(K)
∂K < 0.

(b) ∂2L∗(K)
∂K2 < 0.

Proof. In order for L∗(K) to be continuous by the IFT (in a similar way as in the
proof of Theorem 5.4.4), we require that

L∗(K) > −
√
K +K2 −

√
K2(1 + 4K). (5.4.52)

We will see, numerically, that this bound is satisfied because it lies below another
lower bound of L∗(K). To rigorously show that this bound is satisfied, we expect
that it is possible to use the same procedure as outlined for the bound on r∗(K) in
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(5.4.35). Now we start by differentiating (5.4.2) with respect to K and solving for
∂KL

∗(K). This leads to

∂L∗(K)

∂K
= − (K − 2)K3 + 2K2L∗(K)− 2(K − 1)KL∗(K)2 + 2L∗(K)3 + L∗(K)4

(K − 2)K3 − 2(K − 1)KL∗(K)2 + L∗(K)4
.

(5.4.53)

Setting the numerator, which is a quartic polynomial in L∗(K), equal to zero and
solving for L∗(K), we find one solution that lies above the critical condition for L
when fixing K, −K + 2. The expression is too lengthy to present here and does
not lead to any useful insight. Taking the derivative with respect to K of (5.4.53),
substituting the expression for the first derivative (5.4.53) and setting the resulting
numerator to zero, we are left with solving a 7th order polynomial for L∗(K). Again
the expression is lengthy and does not lead to any insight. Only one of the solutions to
the 7th order polynomial lies above the critical line. Comparing these two solutions,
one coming from the quartic polynomial and the other from the 7th order polynomial,
we see numerically that the first is a lower bound for L∗(K) and the second is an upper
bound for L∗(K), as seen in the right panel of Fig. 5.9. This lower bound is an upper
bound for the right-hand side of (5.4.52), so that the conditions for the IFT are
satisfied. The expression determining when the denominator of both the first and the
second derivative is zero, obtained by setting their respective denominators to zero
(which makes the derivatives diverge), is the same, and the only solution falling above
the critical condition is upper bounded by the lower bound for L∗(K) found above
(as the solution to the quartic polynomial), so that the derivatives do not diverge.
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Figure 5.9: Left: Interpolation of the first (solid) and second (dashed) derivatives of L∗(K).
Right: Comparison of the numerical solution for the bifurcation point L∗(K) (red, dot-
ted) with the upper bound/solution to the 7th order polynomial (dashed) and the lower
bound/solution to the quartic polynomial (dot-dashed), as well as the critical condition for L
when fixing K, −K + 2 (solid).

The right panel of Fig. 5.9 suggests that both the first derivative and the second
derivative of L∗(K) do not change sign as a function of K. Substituting a pair of
values K,L∗(K), solved for numerically, we confirm the statements in Lemma 5.4.6.
This is also corroborated by the left panel of Fig. 5.9. �
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5.4.7 Remark. For the mathematical reader the numerical assistance in the argu-
ment above might not be satisfying. We suspect that the proof can be made rigorous
by using the sequences of upper and lower bounds in [118, Theorem 4] on V in (5.4.2),
in order to get upper and lower bounds for L∗(K) that give a tighter wedge than the
one in the right panel of Fig. 5.9.

Due to Lemma 5.4.6 and the fact that L∗(K) is bounded below by −K + 2, we
have that the limits exists.

We now turn to the proof of Theorem 5.4.5. Abbreviate

g(K,L) = r∗(K,L)− V
(
(K + L)r∗(K,L)

)
. (5.4.54)

By the implicit function theorem, we have

∂L∗(K)

∂K
= −∂Kg(K,L)

∂Lg(K,L)
. (5.4.55)

Compute

∂Kg(K,L) =

4K2

(K2−L2)2 − 2
K2−L2

2r∗(K,L)

+
(

(K + L)

4K2

(K2−L2)2 − 2
K2−L2

2r∗(K,L)
+ r∗(K,L)

)
(5.4.56)

×
(
V 2
(

(K + L)r∗(K,L)
)
− 1

2 − 1
2S
(

(K + L)r∗(K,L)
))

and

∂Lg(K,L) =− 2KL

(K2 − L2)2r∗(K,L)

+
(
− (K + L)

2K∗L
(K2 − L2)2r∗(K,L)

+ r∗(K,L)
)

(5.4.57)

×
(
V 2
(

(K + L)r∗(K,L)
)
− 1

2 − 1
2S
(

(K + L)r∗(K,L)
))
,

where S(x) = I2(x)
I0(x) .

For property 1, we make the Ansatz L∗(K) = −aK+c,K →∞ where c = c(K) =

o(K) (which is confirmed in Fig. 5.6). Taking the limit K → ∞, we get zero for the
first terms in the right-hand sides of (5.4.56)–(5.4.57), i.e.,

lim
K→∞

4(K)2

(K2−L2)2 − 2
K2−L2

2
√

1− 2K
K2−L2

= 0, (5.4.58)

lim
K→∞

2KL

(K2 − L2)2
√

1− 2K
K2−L2

= 0, (5.4.59)
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where we have used the expression for r∗(K,L) from (5.4.3). The multiplication
factors in the last line of the right-hand sides of (5.4.56)–(5.4.57) are the same, so we
are left with calculating the limit as K →∞ of the quotient

−

(
(K + (−aK + c))

4K2

(K2−(−aK+c)2)2
− 2
K2−(−aK+c)2

2r∗(K,−aK+c) + r∗(K,−aK + c)

)
(
− (K + (−aK + c)) 2K(−aK+c)

(K2−(−aK+c)2)2r∗(K,−aK+c) + r∗(K,−aK + c)

) , c = o(K).

(5.4.60)

A straightforward but tedious calculation (with the help of MATHEMATICA) shows
that this limit is −1.

For property 2, we must find the limit of −∂Kg(K,L)
∂Lg(K,L) as we approach the point

(K,L) = (2, 0) along the line L∗(K). We make the Ansatz L∗(K) = (K − 2)b+ o(1),
K ↓ 2. Making this replacement in the expression for the derivative and doing a
Taylor expansion around K = 2, we obtain after a tedious calculation (with the help
of MATHEMATICA),

lim
K↓2

∂Kg(K,L)|L=(K−2)b = −
√
K − 2

( 3

8
√

2
+

b

4
√

2

)
(5.4.61)

for the terms in the numerator and

lim
K↓2

∂Lg(K,L)|L=(K−2)b = −
√
K − 2

2
√

2
(5.4.62)

for the terms in the denominator. Combining (5.4.61)–(5.4.62) we obtain

b = −1

4
(3 + 2b), (5.4.63)

so that b = − 1
2 . �

Properties 1 and 2 are confirmed by the left panel of Fig 5.9. It seems thatK 7→ L∗(K)

for large K does not have an asymptote, since when we take the limit after the
replacement L∗(K) = −K+ c we get an equation for the bifurcation point that reads√

1− 1

c
= V

(
c

√
1− 1

c

)
. (5.4.64)

The only solution to this equation is c = 1, which is not possible because it would
place the asymptote below the critical line. This suggests that c = c(K) grows as a
function of K, but that this growth is sublinear.

§5.5 Simulation

Fixing the phase difference is not physical, since the system will relax into a steady
state and will choose the angles that are the least costly energetically. Studying the
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dynamics of the transitions between states or the stability properties of the possible
states are both difficult tasks. However, we expect that the non-symmetric state is
either unstable or metastable and using simulations we can observe what type of trans-
itions one might expect between the possible states. To see this, we take the initial
distribution for both populations to have mean π, but choose the second community
to have a slightly larger variance initially, meaning that the synchronization level
starts lower. The outcome of the simulation can be seen in Fig 5.1. It seems that the
community with less synchronization initially is suppressed by the community with
more synchronization, until the ‘push’ from the latter becomes too strong. This is
reflected in the angles, which stay relatively close together for a while, before moving
apart. This type of transition seems only to occur when the parameters are chosen
such that the non-symmetric solutions discussed above exist.

We expect that the most stable state is the symmetric solution with the largest
synchronization level (i.e., the largest effective interaction strength). For example,
if K = 5 and L = 2, then the symmetric solution with phase difference ψ = π has
r1 = r2 = 0.724 . . ., while the symmetric solution with phase difference ψ = 0 has
r1 = r2 = 0.918 . . .. The first state is unstable/metastable, the second state is stable.
The transition from the one to the other is shown in Fig 5.2.
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Figure 5.1: Simulation of 1000 oscillators per community with K = 7 and L = −2. The time
step is set at dt = 0.01. The left image shows the synchronization levels, the right image the
phase averages.
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Figure 5.2: Simulation of 1000 oscillators per community with K = 5 and L = 2. The time
step is set at dt = 0.01. The left image shows the synchronization levels, the right images
the phase averages.
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To be clear, these simulations are not meant to prove any stability properties
or transitions, but are useful for determining what types of stability properties or
transitions we may expect. They also suggest that much interesting work remains to
be done.

Appendix

§5.A Concavity of ratio of modified Bessel functions
of the first kind

Recall that

V (x) =

∫ 2π

0
ex cos θ cos θ dθ∫ 2π

0
ex cos θ dθ

. (5.A.1)

The first derivative of (5.A.1) is

∂xV (x) =

∫ 2π

0
ex cos θ dθ

∫ 2π

0
ex cos θ cos2 θ dθ −

( ∫ 2π

0
ex cos θ cos θ dθ

)2
(
∫ 2π

0
ex cos θ dθ)2

. (5.A.2)

We can rewrite∫ 2π

0

ex cos θ cos θ dθ =

∫ 2π

0

e
1
2x cos θe

1
2x cos θ cos θ dθ (5.A.3)

≤
(∫ 2π

0

ex cos θ dθ
)1/2(∫ 2π

0

ex cos θ cos2 θ dθ
)1/2

,

where we have used Holder’s inequality in the second line. Taking the square on both
sides, we obtain(∫ 2π

0

ex cos θ cos θ dθ
)2

≤
∫ 2π

0

ex cos θ dθ

∫ 2π

0

ex cos θ cos2 θ dθ, (5.A.4)

which proves that (5.A.2) is non-negative. We evaluate (5.A.2) at x = 0, to get

∂xV (x)|x=0 =
2π × π
(2π)2

=
1

2
. (5.A.5)

For the second derivative we rewrite

∂xV (x) = I− II =

∫
f ′′(x, θ) dθ∫
f(x, θ) dθ

− (
∫
f ′(x, θ) dθ)2

(
∫
f(x, θ) dθ)2

, (5.A.6)

where f(x, θ) = ex cos θ and the prime refers to the derivative with respect to x. The
integrals are always from 0 to 2π. Taking the derivative of the first term, we find

I′ =

∫
f(x, θ) dθ

∫
f ′′′(x, θ) dθ −

∫
f ′′(x, θ) dθ

∫
f ′(x, θ) dθ

(
∫
f(x, θ) dθ)2

, (5.A.7)
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while for the second we find

II′ = 2

∫
f ′(x, θ) dθ∫
f(x, θ) dθ

×
∫
f(x, θ) dθ

∫
f ′′(x, θ) dθ − (

∫
f ′(x, θ) dθ)2

(
∫
f(x, θ) dθ)2

. (5.A.8)

Using a common denominator, we can write the difference as

∂2
xV (x) =

1( ∫
f(x, θ) dθ

)3 [( ∫ f(x, θ) dθ
)2
∫
f ′′′(x, θ) dθ

− 3

∫
f(x, θ) dθ

∫
f ′(x, θ) dθ

∫
f ′′(x, θ) dθ + 2

(∫
f ′(x, θ) dθ

)3]
(5.A.9)

To continue, we first let

2c =

∫
ex cos θdθ

making the desired expression into

V ′′(x) =
[ ∫

f ′′′(x, θ)
dθ

2c
− 3

∫
f ′(x, θ)

dθ

2c

∫
f ′′(x, θ)

dθ

2c
+ 2
(∫

f ′(x, θ)
dθ

2c

)3]
.

(5.A.10)
With the functions

arccos1 : (−1, 1)→ (0, π), arccos2 : (−1, 1)→ (π, 2π),

we can perform the change of variable u = cos θ, i.e., θ = arccosu and

dθ =
−du√
1− u2

. (5.A.11)

Here we get∫ 2π

0

(cos θ)kex cos θ dθ

2c
=

∫ π

0

(cos θ)kex cos θ dθ

2c
+

∫ 2π

π

(cos θ)kex cos θ dθ

2c
(5.A.12)

= −
∫ −1

1

ukexu
du

c
√

1− u2

=

∫ 1

−1

ukexu
du

c
√

1− u2
.

where we have used arccos1 for the first integral and arccos2 for the second. Note
that, when k = 0, ∫ 1

−1

exu
du

c
√

1− u2
= 1. (5.A.13)

With the change of measure

dν(u) =
1

c
√

1− u2
du (5.A.14)

we obtain

V ′′(x) =
[ ∫ 1

−1

u3exu dν(u)−3

∫ 1

−1

uexu dν(u)

∫ 1

−1

u2exu dν(u)+2
(∫ 1

−1

uexu dν(u)
)3]

(5.A.15)
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and defining m = m(x) =
∫ 1

−1
uexu dν(u) we get

V ′′(x) =
[ ∫ 1

−1

u3exu dν(u)− 3m

∫ 1

−1

u2exu dν(u) + 2m3
]
. (5.A.16)

Note that, due to (5.A.13), and since
∫ 1

−1
3m2 u exu dν(u) = 3m3, (5.A.16) equals∫ 1

−1

(u−m)3exu dν(u). (5.A.17)

We can check this by writing∫ 1

−1

(u−m)3exu dν(u) =

∫ 1

−1

(u3 − 3mu2 + 3m2u−m3)exu dν(u) (5.A.18)

=
[ ∫ 1

−1

u3exu dν(u)− 3m

∫ 1

−1

u2exu dν(u) + 2m3
]
. (5.A.19)

To complete the proof we state [105, Lemma 4], suitably adapted.

5.A.1 Lemma. Let ν be an even probability measure with support on [−1, 1], and
suppose that ν is absolutely continuous, i.e., dν(σ) = f(σ)dσ, with f non-decreasing
on [0, 1]. Then ν ∈ P, the class of all probability measures on R with compact support,
is such that ∫ 1

−1

ekσ(m− σ)pdν(σ) ≥ 0, (5.A.20)

where

m = m(k) =

∫
σekσdν(σ)∫
ekσdν(σ)

, (5.A.21)

and k = Jm+h, where J is the mean-field interaction strength and h is the magnetic
field strength of the spin system.

With the identification
σ = u, k = x, p = 3 (5.A.22)

and taking out a negative, we complete the proof. To get the strict inequality we note
that the equality in the lemma does not hold for our choice of ν(u).
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