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4. Synchronization of phase oscillators on the hierarchical lattice

CHAPTER 4
Synchronization of phase oscillators

on the hierarchical lattice

This chapter is based on: [52]

Abstract

Synchronization of neurons forming a network with a hierarchical structure is
essential for the brain to be able to function optimally. In this paper we study syn-
chronization of phase oscillators on the most basic example of such a network, namely,
the hierarchical lattice. Each site of the lattice carries an oscillator that is subject to
noise. Pairs of oscillators interact with each other at a strength that depends on their
hierarchical distance, modulated by a sequence of interaction parameters. We look at
block averages of the oscillators on successive hierarchical scales, which we think of
as block communities. In the limit as the number of oscillators per community tends
to infinity, referred to as the hierarchical mean-field limit, we find a separation of
time scales, i.e., each block community behaves like a single oscillator evolving on its
own time scale. We argue that the evolution of the block communities is given by a
renormalized mean-field noisy Kuramoto equation, with a synchronization level that
depends on the hierarchical scale of the block community. We find three universality
classes for the synchronization levels on successive hierarchical scales, characterized
in terms of the sequence of interaction parameters.

What makes our model specifically challenging is the non-linearity of the interac-
tion between the oscillators. The main results of our paper therefore come in three
parts: (I) a conjecture about the nature of the renormalisation transformation con-
necting successive hierarchical scales; (II) a truncation approximation that leads to a
simplified renormalization transformation; (III) a rigorous analysis of the simplified
renormalization transformation. We provide compelling arguments in support of (I)
and (II), but a full verification remains an open problem.
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§4.1 Introduction

The concept of spontaneous synchronization is ubiquitous in nature. Single oscillators
(like flashing fireflies, chirping crickets or spiking brain cells) may rotate incoherently,
at their own natural frequency, when they are isolated from the population, but
within the population they adapt their rhythm to that of the other oscillators, acting
as a system of coupled oscillators. There is no central driving mechanism, yet the
population reaches a globally synchronized state via mutual local interactions.

The omnipresence of spontaneous synchronization triggered scientists to search for
a mathematical approach in order to understand the underlying principles. The first
steps were taken by Winfree [136], [137], who recognized that spontaneous synchron-
ization should be understood as a threshold phenomenon: if the coupling between
the oscillators is sufficiently strong, then a macroscopic part of the population freezes
into synchrony. Although the model proposed by Winfree was too difficult to solve
analytically, it inspired Kuramoto [72], [73] to suggest a more mathematically tract-
able model that captures the same phenomenon. The Kuramoto model has since been
used successfully to study synchronization in a variety of different contexts. By now
there is an extended literature, covering aspects like phase transition, stability, and
effect of disorder (for a review, see Acébron et al. [3]).

Mathematically, the Kuramoto model still poses many challenges. As long as
the interaction is mean-field (meaning that every oscillator interacts equally strongly
with every other oscillator), a fairly complete theory has been developed. However, as
soon as the interaction has a non-trivial geometry, computations become cumbersome.
There is a large literature for the Kuramoto model on complex networks, where the
population is viewed as a random graph whose vertices carry the oscillators and whose
edges represent the interaction. Numerical and heuristic results have been obtained
for networks with a small-world, scale-free and/or community structure, showing a
range of interesting phenomena (for a review, see Arenas et al. [5]). Rigorous results
are rare. In the present paper we focus on one particular network with a community
structure, namely, the hierarchical lattice.

The remainder of this paper is organised as follows. Sections 4.1.1–4.1.3 are de-
voted to the mean-field noisy Kuramoto model. In Section 4.1.1 we recall definitions
and basic properties. In Section 4.1.2 we recall the McKean-Vlasov equation, which
describes the evolution of the probability density for the phase oscillators in the mean-
field limit. In Section 4.1.3 we take a closer look at the scaling properties of the order
parameters towards the mean-field limit. In Section 4.1.4 we define the hierarchical
lattice and in Section 4.1.5 introduce the noisy Kuramoto model on the hierarchical
lattice, which involves a sequence of interaction strengths (Kk)k∈N acting on success-
ive hierarchical levels. Section 4.2 contains our main results, presented in the form of
a conjecture, a truncation approximation, and rigrorous theorems. These concern the
hierarchical mean-field limit and show that, for each k ∈ N, the block communities at
hierarchical level k behave like the mean-field noisy Kuramoto model, with an inter-
action strength and a noise that depend on k and are obtained via a renormalization
transformation connecting successive hierarchical levels. There are three universal-
ity classes for (Kk)k∈N, corresponding to sudden loss of synchronization at a finite

70



§4.1. Introduction

C
h
a
pter

4

hierarchical level, gradual loss of synchronization as the hierarchical level tends to
infinity, and no loss of synchronization. The renormalization transformation allows
us to describe these classes in some detail. In Section 4.3 we analyse the renormaliza-
tion scheme, in Section 4.4 we find criteria for the universality classes. Appendix 4.A
provides numerical examples and computations.

§4.1.1 Mean-field Kuramoto model
We begin by reviewing the mean-field Kuramoto model. Consider a population of
N ∈ N oscillators, and suppose that the ith oscillator has a natural frequency ωi, such
that

I ωi, i = 1, . . . , N, are i.i.d. and are drawn from
a common probability distribution µ on R. (4.1.1)

Let the phase of the ith oscillator at time t be θi(t) ∈ R. If the oscillators were not
interacting, then we would have the system of uncoupled differential equations

dθi(t)

dt
= ωi, i = 1, . . . , N. (4.1.2)

Kuramoto [72], [73] realized that the easiest way to allow for synchronization was to
let every oscillator interact with every other oscillator according to the sine of their
phase difference, i.e., to replace (4.1.2) by:

dθi(t)

dt
= ωi +

K

N

N∑
j=1

sin
[
θj(t)− θi(t)

]
, i = 1, . . . , N. (4.1.3)

Here, K ∈ (0,∞) is the interaction strength, and the factor 1
N is included to make

sure that the total interaction per oscillator stays finite in the thermodynamic limit
N →∞. The coupled evolution equations in (4.1.3) are referred to as the mean-field
Kuramoto model. An illustration of the interaction in this model is given in Fig. 4.1.
If noise is added, then (4.1.3) turns into the mean-field noisy Kuramoto model, given
by

dθi(t) = ωi dt+
K

N

N∑
j=1

sin
[
θj(t)− θi(t)

]
dt+D dWi(t), i = 1, . . . , N. (4.1.4)

Here, D ∈ (0,∞) is the noise strength, and (Wi(t))t≥0, i = 1, . . . , N , are independent
standard Brownian motions on R. The coupled evolution equations in (4.1.4) are
stochastic differential equations in the sense of Itô (see e.g. Karatzas and Shreve [69]).
As initial condition we take

I θi(0), i = 1, . . . , N, are i.i.d. and are drawn from
a common probability distribution ρ on [0, 2π).

(4.1.5)

In order to exploit the mean-field nature of (4.1.4), the complex-valued order
parameter (with i the imaginary unit)

rN (t) eiψN (t) =
1

N

N∑
j=1

eiθj(t) (4.1.6)
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Figure 4.1: Mean-field interaction of N = 6 oscillators with natural frequencies ωi and phases
θi, i = 1, . . . , 6, evolving according to (4.1.3).

is introduced. In (4.1.6), rN (t) is the synchronization level at time t and takes val-
ues in [0, 1], while ψN (t) is the average phase at time t and takes values in [0, 2π).
(Note that ψN (t) is properly defined only when rN (t) > 0.) The order parameter
(r, ψ) is illustrated in Fig. 4.2 (r = 0 corresponds to the oscillators being completely
unsynchronized, r = 1 to the oscillators being completely synchronized).

Figure 4.2: Phase distribution of oscillators for two different values of r. The arrow repres-
ents the complex number reiψ.

By rewriting (4.1.4) in terms of (4.1.6) as

dθi(t) = ωi dt+KrN (t) sin
[
ψN (t)− θi(t)

]
dt+D dWi(t), i = 1, . . . , N, (4.1.7)

we see that the oscillators are coupled via the order parameter, i.e., the phases θi are
pulled towards ψN with a strength proportional to rN . Note that rN (t) and ψN (t)

are random variables that depend on µ, D and ρ.
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In the mean-field limit N → ∞, the system in (4.1.7) exhibits what is called
“propagation of chaos”, i.e., the evolution of single oscillators becomes autonomous.
Indeed, let the order parameter associated with ρ in (4.1.5) be the pair (R,Φ) ∈
[0, 1]× [0, 2π) defined by

R eiΦ =

∫ 2π

0

ρ(dθ) eiθ. (4.1.8)

Suppose that R > 0, so that Φ is properly defined. Suppose further that

I the disorder distribution µ in (4.1.1) is symmetric. (4.1.9)

Then, as we will see in Sections 4.1.2–4.1.3, the limit as N → ∞ of the evolution of
a single oscillator, say θ1, is given by

dθ1(t) = ω1 dt+Kr(t) sin
[
Φ− θ1(t)

]
dt+D dW1(t), (4.1.10)

where (W1(t))t≥0 is a standard Brownian motion, and r(t) is driven by a deterministic
relaxation equation such that

r(0) = R, lim
t→∞

r(t) = r for some r ∈ [0, 1). (4.1.11)

The parameter r = r(µ,D,K) will be identified in (4.1.21) below (and the convergence
holds at least when R is close to r; see Remark 4.1.1 below). The evolution in (4.1.10)
is not closed because of the presence of r(t), but after a transient period it converges
to the autonomous evolution equation

dθ1(t) = ω1 dt+Kr sin
[
Φ− θ1(t)

]
dt+D dW1(t). (4.1.12)

Without loss of generality, we may calibrate Φ = 0 by rotating the circle [0, 2π) over
−Φ. After that the parameters R,Φ associated the initial distribution ρ are gone,
and only r remains as the relevant parameter. It is known (see e.g. (4.1.23) below)
that there exists a critical threshold Kc = K(µ,D) ∈ (0,∞) separating two regimes:

• For K ∈ (0,Kc] the system relaxes to an unsynchronized state (r = 0).

• ForK ∈ (Kc,∞) the system relaxes to a partially synchronized state (r ∈ (0, 1)),
at least when ρ in (4.1.5) is chosen such that R is close to r (see Remark 4.1.1
below).

See Strogatz [125] and Luçon [81] for overviews.

§4.1.2 McKean-Vlasov equation
For the system in (4.1.4), Sakaguchi [114] showed that in the limit as N → ∞, the
probability density for the phase oscillators and their natural frequencies (with respect
to λ × µ, with λ the Lebesgue measure on [0, 2π] and µ the disorder measure on R)
evolves according to the McKean-Vlasov equation

∂

∂t
p(t; θ, ω) = − ∂

∂θ

[
p(t; θ, ω)

{
ω+Kr(t) sin

[
ψ(t)−θ

]}]
+
D

2

∂2

∂θ2
p(t; θ, ω), (4.1.13)
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where

r(t) eiψ(t) =

∫
R
µ(dω)

∫ 2π

0

dθ eiθ p(t; θ, ω), (4.1.14)

is the continuous counterpart of (4.1.6). If ρ has a density, say ρ(θ), then p(0; θ, ω) =

ρ(θ) for all ω ∈ R.
By (4.1.9), we can again calibrate the average phase to be zero, i.e., ψ(t) = ψ(0) =

Φ = 0, t ≥ 0, in which case the stationary solutions of (4.1.13) satisfy

0 = − ∂

∂θ

[
p(θ, ω) (ω −Kr sin θ)

]
+
D

2

∂2

∂θ2
p(θ, ω). (4.1.15)

The solutions of (4.1.15) are of the form

pλ(θ, ω) =
Aλ(θ, ω)∫ 2π

0
dφAλ(φ, ω)

, λ = 2Kr/D, (4.1.16)

with

Aλ(θ, ω) = Bλ(θ, ω)

(
e4πω

∫ 2π

0

dφ

Bλ(φ, ω)
+ (1− e4πω)

∫ θ

0

dφ

Bλ(φ, ω)

)
,

Bλ(θ, ω) = eλ cos θ+2θω.

(4.1.17)

After rewriting

Aλ(θ, ω) = Bλ(θ, ω)

(∫ 0

θ−2π

dφ

Bλ(−φ,−ω)
+

∫ θ

0

dφ

Bλ(φ, ω)

)
(4.1.18)

and noting that Bλ(φ, ω) = Bλ(−φ,−ω), we easily check that

pλ(θ, ω) = pλ(−θ,−ω), (4.1.19)

a property we will need later. In particular, in view of (4.1.9), we have∫
R
µ(dω)

∫ 2π

0

dθ pλ(θ, ω) sin θ = 0. (4.1.20)

Since ψ(t) = ψ(0) = Φ = 0, we see from (4.1.14) that pλ(θ, ω) in (4.1.16) is a
solution if and only if r satisfies∫

R
µ(dω)

∫ 2π

0

dθ pλ(θ, ω) cos θ = r, λ = 2Kr/D. (4.1.21)

This gives us a self-consistency relation for

r = r(D,K) (4.1.22)

a situation that is typical for mean-field systems, which can in principle be solved (and
possibly has more than one solution). The equation in (4.1.21) always has a solution
with r = 0: the unsynchronized state corresponding to p0(θ, ω) = 1

2π for all θ, ω. A
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(not necessarily unique) solution with r ∈ (0, 1) exists when the coupling strength
K exceeds a critical threshold Kc = Kc(µ,D). When this occurs, we say that the
oscillators are in a partially synchronized state. As K increases also r increases (see
Fig. 4.3). Moreover, r ↑ 1 as K → ∞ and we say that the oscillators converge to
a fully synchronized state. When K crosses Kc, the system exhibits a second-order
phase transition, i.e., K 7→ r(K) is continuous at K = Kc.

K

r(K)

Kc

1

Figure 4.3: Picture of K 7→ r(K) for fixed µ and D.

For the case where the frequency distribution µ is symmetric and unimodal, an
explicit expression is known for Kc:

1

Kc
=

∫
R
µ(dω)

D

D2 + 4ω2
. (4.1.23)

Thus, when the spread of µ is large compared to K, the oscillators are not able to
synchronize and they rotate near their own frequencies. As K increases, this remains
the case until K reaches Kc. After that a small fraction of synchronized oscillators
starts to emerge, which becomes of macroscopic size when K moves beyond Kc.
For µ symmetric and unimodal it is conjectured that for K > Kc there is a unique
synchronized solution pλ(·, ·) with r ∈ (0, 1) solving (4.1.21) (Luçon [81, Conjecture
3.12]). This conjecture has been proved when µ is narrow, i.e., the disorder is small
(Luçon [81, Proposition 3.13]).

4.1.1 Remark. Stability of stationary solutions has been studied by Strogatz and
Mirollo [123], Strogatz, Mirollo and Matthews [124], Luçon [81, Section 3.4]. For
symmetric unimodal disorder, the unsynchronized state is linearly stable for K < Kc

and linearly unstable for K > Kc, while the synchronized state for K > Kc is linearly
stable at least for small disorder. Not much is known about stability for general
disorder.

There is no closed form expression for Kc beyond symmetric unimodal disorder,
except for special cases, e.g. symmetric binary disorder. We refer to Luçon [81] for an
overview. A large deviation analysis of the empirical process of oscillators has been
carried out in Dai Pra and den Hollander [33].
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§4.1.3 Diffusive scaling of the average phase
Bertini, Giacomin and Poquet [14] showed that for the mean-field noisy Kuramoto
model without disorder, in the limit as N → ∞ the synchronization level evolves on
time scale t and converges to a deterministic limit, while the average phase evolves
on time scale Nt and converges to a Brownian motion with a renormalized noise
strength.1

4.1.2 Theorem (Bertini, Giacomin and Poquet [14]). Suppose that µ = δ0
and r > 0. Then, in distribution,

lim
N→∞

ψN (Nt) = ψ∗(t),

lim
N→∞

rN (t) = r(t),
(4.1.24)

with
dψ∗(t) = D∗ dW∗(t), ψ∗(0) = Φ,
limt→∞ r(t) = r, r(0) = R,

(4.1.25)

where (W∗(t))t≥0 is a standard Brownian motion and

D∗ = D∗(D,K, r) =
1√

1− [I0(2Kr/D)]−2
, r = r(D,K), (4.1.26)

with I0 the modified Bessel function of order zero given by

I0(λ) =
1

2π

∫ 2π

0

dθ eλ cos θ, λ ∈ [0,∞). (4.1.27)

The work in [14] also shows that

lim
N→∞

rN (Nt) = r ∀ t > 0, (4.1.28)

i.e., the synchronization level not only tends to r over time, it also stays close to r
on a time scale of order N . Thus, the synchronization level is much less volatile than
the average phase.

In Section 4.3.1 we explain the heuristics behind Theorem 4.1.2. This heuristics
will play a key role in our analysis of the Kuramoto model on the hierarchical lattice
in the hierarchical mean-field limit. In fact, Conjecture 4.2.1 below will extend The-
orem 4.1.2 to the hierarchical lattice. It is important to note that the diffusive scaling
only occurs in the model without disorder. Indeed, for the model with disorder it was
shown in Luçon and Poquet [83] that the fluctuations of the disorder prevail over the
fluctuations of the noise, resulting in ‘travelling waves’ for the empirical distribution
of the oscillators. Therefore, also on the hierarchical lattice we only consider the
model without disorder.

1The fact that the average phase evolves slowly was already noted by Ha and Slemrod [59] for the
Kuramoto model with disorder and without noise, while an approximate solution was obtained by
Sonnenschein and Schimansky-Geier [122] for the Kuramoto model without disorder and with noise.

76



§4.1. Introduction

C
h
a
pter

4

§4.1.4 Hierarchical lattice
The hierarchical lattice of order N consist of countable many vertices that form com-
munities of sizes N , N2, etc. For example, the hierarchical lattice of order N = 3

consists of vertices that are grouped into 1-block communities of 3 vertices, which in
turn are grouped into 2-block communities of 9 vertices, and so on. Each vertex is
assigned a label that defines its location at each block level (see Fig. 4.4).

Figure 4.4: The hierarchical lattice of order N = 3. The vertices live at the lowest level.
The tree visualizes their distance: the distance between two vertices η, ζ is the height of their
lowest common branching point in the tree: d(η, ζ) = 2 in the picture.

Formally, the hierarchical group ΩN of order N ∈ N\{1} is the set

ΩN =

{
η = (η`)`∈N0

∈ {0, 1, . . . , N − 1}N0 :
∑
`∈N0

η` <∞
}

(4.1.29)

with addition modulo N , i.e., (η + ζ)` = η` + ζ` (modN), ` ∈ N0. The distance on
ΩN is defined as

d : ΩN × ΩN → N0, (η, ζ) 7→ min
{
k ∈ N0 : η` = ζ` ∀ ` ≥ k

}
, (4.1.30)

i.e., the distance between two vertices is the smallest index from which onwards the
sequences of hierarchical labels of the two vertices agree. This distance is ultrametric:

d(η, ζ) ≤ min{d(η, ξ), d(ζ, ξ)} ∀ η, ζ, ξ ∈ ΩN . (4.1.31)

For η ∈ ΩN and k ∈ N0, the k-block around η is defined as

Bk(η) = {ζ ∈ ΩN : d(η, ζ) ≤ k}. (4.1.32)

§4.1.5 Hierarchical Kuramoto model
We are now ready to define the model that will be our object of study. Each vertex η ∈
ΩN carries a phase oscillator, whose phase at time t is denoted by θη(t). Oscillators
interact in pairs, but at a strength that depends on their hierarchical distance. To
modulate this interaction, we introduce a sequence of interaction strengths

(Kk)k∈N ∈ (0,∞)N, (4.1.33)
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and we let each pair of oscillators η, ζ ∈ ΩN at distance d(η, ζ) = d interact as in
the mean-field Kuramoto model with K/N replaced by Kd/N

2d−1, where the scaling
factor is chosen to ensure that the model remains well behaved in the limit as N →∞.
Thus, our coupled evolution equations read

dθη(t) =
∑
ζ∈ΩN

Kd(η,ζ)

N2d(η,ζ)−1
sin
[
θζ(t)− θη(t)

]
dt+D dWη(t), η ∈ ΩN , t ≥ 0,

(4.1.34)
where (Wη(t))t≥0, η ∈ ΩN , are i.i.d. standard Brownian motions. As initial condition
we take, as in (4.1.5),

I θη(0), η ∈ ΩN , are i.i.d. and are drawn from
a common probability distribution ρ(dθ) on [0, 2π).

(4.1.35)

We will be interested in understanding the evolution of average phase in the definition
of the order parameter associated with the Nk oscillators in the k-block around η at
time Nkt, defined by

R
[k]
η,N (Nt) eiΦ

[k]
η,N (t) =

1

Nk

∑
ζ∈Bk(η)

eiθζ(Nkt), η ∈ ΩN , t ≥ 0, (4.1.36)

where R[k]
η,N (Nt) is the synchronization level at time Nkt and Φ

[k]
η,N (t) is the average

phase at time Nkt. The new time scales Nt and t will turn out to be natural in
view of the scaling in Theorem 4.1.2. The synchronization level R[k]

η,N captures the
synchronization of the (k − 1)-blocks, of which there are N in total constituting the
k-block around η. These blocks must synchronize before their average phase Φ

[k]
η,N can

begin to move, which is why R[k]
η,N moves on a different time scale compared to Φ

[k]
η,N .

Our goal will be to pass to the limit N → ∞, look at the limiting synchronization
levels around a given vertex, say η = 0N, and classify the scaling behavior of these
synchronization levels as k → ∞ into universality classes according to the choice of
(Kk)k∈N in (4.1.33).

Note that, for every η ∈ ΩN , we can telescope to write∑
ζ∈ΩN

Kd(ζ,η)

N2d(η,ζ)−1
sin
[
θζ(t)− θη(t)

]
=
∑
k∈N

Kk

N2k−1

∑
ζ∈Bk(η)/Bk−1(η)

sin
[
θζ(t)− θη(t)

]
(4.1.37)

=
∑
k∈N

( Kk

N2k−1
− Kk+1

N2(k+1)−1

) ∑
ζ∈Bk(η)

sin
[
θζ(t)− θη(t)

]
.

Inserting (4.1.37) into (4.1.34) and using (4.1.36), we get

dθη(t) =
∑
k∈N

1

Nk−1

(
Kk −

Kk+1

N2

)
R

[k]
η,N (N1−kt)

× sin
[
Φ

[k]
η,N (N−kt)− θη(t)

]
dt+D dWη(t). (4.1.38)
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This shows that, like in (4.1.7), the oscillators are coupled via the order parameters
associated with the k-blocks for all k ∈ N, suitably weighted. As for the mean-
field Kuramoto model, for every η ∈ ΩN , R[k]

η,N (N1−kt) and Φ
[k]
η,N (N−kt) are random

variables that depend on (Kk)k∈N and D.
When we pass to the limit N → ∞ in (4.1.38), in the right-hand side of (4.1.38)

only the term with k = 1 survives, so that we end up with an autonomous evolution
equation similar to (4.1.10). The goal of the present paper is to show that a similar
decoupling occurs at all block levels. Indeed, we expect the successive time scales at
which synchronization occurs to separate. If there is synchronization at scale k, then
we expect the average of the k-blocks around the origin forming the (k+1)-blocks (of
which there are N in total) to behave as if they were single oscillators at scale k+ 1.

Dahms [32] considers a multi-layer model with a different type of interaction: single
layers labelled by N, each consisting of N oscillators, are stacked on top of each other,
and each oscillator in each layer is interacting with the average phases of the oscillators
in all the other layers, with interaction strengths (K̃k)k∈N (see [32, Section 1.3]). For
this model a necessary and sufficient criterion is derived for synchronization to be
present at all levels in the limit as N →∞, namely,

∑
n∈N K̃

−1
k <∞ (see [32, Section

1.4]). We will see that in our hierarchical model something similar is happening, but
the criterion is rather more delicate.

§4.2 Main results

In Section 4.2.1 we state a conjecture about the multi-scaling of the system (Con-
jecture 4.2.1 below), which involves a renormalization transformation describing the
synchronization level and the average phase on successive hierarchical levels. In Sec-
tion 4.2.2 we propose a truncation approximation that simplifies the renormalization
transformation, and argue why this approximation should be fairly accurate. In Sec-
tion 4.2.3 we analyse the simplified renormalization transformation and identify three
universality classes for the behavior of the synchronization level as we move upwards
in the hierarchy, give sufficient conditions on (Kk)k∈N for each universality class (The-
orem 4.2.5 below), and provide bounds on the synchronization level (Theorem 4.2.6
below). The details are given in Sections 4.3–4.4. Without loss of generality we set
D = 1 in (4.1.34).

§4.2.1 Multi-scaling
Our first result is a conjecture stating that the average phase of the k-blocks behaves
like that of the noisy mean-field Kuramato model described in Theorem 4.1.2. Recall
the choice of time scales in (4.1.36).

4.2.1 Conjecture. (Multi-scaling for the block average phases) Fix k ∈ N
and assume that R[k] > 0. Then, in distribution,

lim
N→∞

Φ
[k]
0,N (t) = Φ

[k]
0 (t), (4.2.1)
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where (Φ
[k]
0 (t))t≥0 evolves according to the SDE

dΦ
[k]
0 (t) = Kk+1 E [k]R

[k+1]
0 (t) sin

[
Φ− Φ

[k]
0 (t)

]
dt+D[k] dW

[k]
0 (t), t ≥ 0, (4.2.2)

(W
[k]
0 (t))t≥0 is a standard Brownian motion, Φ = 0 by calibration, and

(E [k],D[k]) = T(K`)1≤`≤k(E [0],D[0]), k ∈ N, (4.2.3)

with (E [0],D[0]) = (1, 1) and T(K`)1≤`≤k a renormalization transformation.

The evolution in (4.2.2) is that of a mean-field noisy Kuramoto model with renormal-
ized coefficients, namely, an effective interaction strength Kk+1 E [k] and an effective
noise strength D[k] (compare with (4.1.7)). These coefficients are to be viewed as
the result of a renormalization transformation acting on block communities at levels
k ∈ N successively, starting from the initial value (E [0],D[0]) = (1, 1). This ini-
tial value comes from the fact that single oscillators are completely synchronized by
definition. The renormalization transformation at level k depends on the values of
K` with 1 ≤ ` ≤ k. It also depends on the synchronization levels R[`] with 1 ≤ ` ≤ k,
as well as on other order parameters associated with the phase distributions of the
`-blocks with 1 ≤ ` ≤ k. In Section 4.2.2 we will analyse an approximation for which
this dependence simplifies, in the sense that only one set of extra order parameter
comes into play, namely, Q[`] with 1 ≤ ` ≤ k, where Q[`] is the average of the cosine
squared of the phase distribution of the `-block.

The evolution in (4.2.2) is not closed because of the presence of the term R
[k+1]
0 (t),

which comes from the (k + 1)-st block community one hierarchical level up from k.
Similarly as in (4.1.11), R[k+1]

0 (t) is driven by a deterministic relaxation equation such
that

R
[k+1]
0 (0) = R, lim

t→∞
R

[k+1]
0 (t) = R[k+1]. (4.2.4)

This relaxation equation will be of no concern to us here (and is no doubt quite
involved). Convergence holds at least for R close to R[k+1] (recall Remark 4.1.1).
Thus, after a transient period, (4.2.2) converges to the closed evolution equation

dΦ
[k]
0 (t) = Kk+1 E [k]R[k+1] sin

[
Φ− Φ

[k]
0 (t)

]
dt+D[k] dW

[k]
0 (t), t ≥ 0. (4.2.5)

The initial values (R,Φ) in (4.2.4) and (4.2.5) come from (4.1.8) and (4.1.35).
Conjecture 4.2.1 perfectly fits the folklore of renormalization theory for interacting

particle systems. The idea of that theory is that along an increasing sequence of
mesoscopic space-time scales the evolution is the same as on the microscopic space-
time scale, but with renormalised coefficients that arise from an ‘averaging out’ on
successive scales. It is generally hard to carry through a renormalization analysis in
full detail, and there are only a handful of interacting particle systems for which this
has been done with mathematical rigour. Moreover, there are delicate issues with
the renormalization transformation being properly defined. However, in our model
these issues should not arise because of the ‘layered structure’ of the hierarchical
lattice and the hierarchical interaction. Since the interaction between the oscillators
is non-linear, we currently have little hope to be able to turn Conjecture 4.2.1 into a
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theorem and identify the precise form of T(K`)1≤`≤k . In Section 4.3.2 we will see that
the non-linearity of the interaction causes a delicate interplay between the different
hierarchical levels.

In what follows we propose a simplified renormalization transformation T̄(K`)1≤`≤k ,
based on a truncation approximation in which we keep only the interaction between
successive hierarchical levels. The latter can be analysed in detail and replaces the
renormalization transformation T(K`)1≤`≤k in Conjecture 4.2.1, of which we do not
know the details. We also argue why the truncation approximation is reasonable.

§4.2.2 Truncation approximation
The truncation approximation consists of replacing T(K`)1≤`≤k by a k-fold iteration of
a renormalization map:

T̄(K`)1≤`≤k = TKk ◦ · · · ◦ TK1
. (4.2.6)

In other words, we presume that what happens at hierarchical scale k + 1 is dictated
only by what happens at hierarchical scale k, and not by any of the lower scales.
These scales do manifest themselves via the successive interaction strengths, but not
via a direct interaction.

Define

I0(λ) =
1

2π

∫ 2π

0

dφ eλ cosφ, λ > 0, (4.2.7)

which is the modified Bessel function of the first kind. After normalization, the
integrand becomes what is called the von Mises probability density function on the
unit circle with parameter λ, which is φ 7→ pλ(φ, 0) in (4.1.16)–(4.1.17). We write
I ′0(λ) = I1(λ) and I ′′0 (λ) = I2(λ).

4.2.2 Definition. (Renormalization map) For K ∈ (0,∞), let TK : [0, 1]× [ 1
2 , 1]→

[0, 1]× [ 1
2 , 1] be the map

(R′, Q′) = TK(R,Q) (4.2.8)

defined by

R′ = R
I1(2KR′

√
Q)

I0(2KR′
√
Q)
,

Q′ − 1
2 = (Q− 1

2 )

[
2
I2(2KR′

√
Q)

I0(2KR′
√
Q)
− 1

]
.

(4.2.9)

The first equation is a consistency relation, the second equation is a recursion relation.
They must be used in that order to find the image point (R′, Q′) of the original point
(R,Q) under the map TK .

With this renormalization mapping we can approximate the true renormalized
system.

4.2.3 Approximation. After truncation, (4.2.2) can be approximated by

dΦ
[k]
0 (t) = Kk+1 Ē [k]R

[k+1]
0 (t) sin

[
Φ− Φ

[k]
0 (t)

]
dt+ D̄[k] dW

[k]
0 (t), t ≥ 0, (4.2.10)
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with

Ē [k] =
Q[k]

R[k]
, D̄[k] =

√
Q[k]

R[k]
, (4.2.11)

where

(R[k], Q[k]) = T̄(K`)1≤`≤k(R[0], Q[0]), (R[0], Q[0]) = (1, 1). (4.2.12)

We will see in Section 4.3.2 that R[k] plays the role of the synchronization level of the
k-blocks, while Q[k] plays the role of the average of the cosine squared of the phase
distribution of the k-blocks (see (4.3.33) below).

In the remainder of this section we analyse the orbit k 7→ (R[k], Q[k]) in detail. We
will see that, under the simplified renormalization transformation, k 7→ (R[k], Q[k])

is non-increasing in both components. In particular, synchronization cannot increase
when the hierarchical level goes up.

4.2.4 Remark. In Section 4.3.2 we will argue that a better approximation can be
obtained by keeping one more term in the truncation approximation, but that the
improvement is minor.

§4.2.3 Universality classes
There are three universality classes depending on the choice of (Kk)k∈N in (4.1.33),
illustrated in Fig. 4.1:

Q

R
0

1

1

(1)
(3)

(2)

1
2

1
2

Figure 4.1: The dots represent the map k 7→ (R[k], Q[k]) for the three universality classes,
starting from (R[0], Q[0]) = (1, 1). The dots move left and down as k increases.

(1) Synchronization is lost at a finite level:
R[k] > 0, 0 ≤ k < k∗, R[k] = 0, k ≥ k∗ for some k∗ ∈ N.

(2) Synchronization is lost asymptotically:
R[k] > 0, k ∈ N0, lim

k→∞
R[k] = 0.

(3) Synchronization is not lost asymptotically:
R[k] > 0, k ∈ N0, lim

k→∞
R[k] > 0.
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Our second result provides sufficient conditions for universality classes (1) and (3) in
terms of the sum

∑
k∈NK

−1
k .

4.2.5 Theorem. (Criteria for the universality classes)

•
∑
k∈NK

−1
k ≥ 4 =⇒ universality class (1).

•
∑
k∈NK

−1
k ≤ 1√

2
=⇒ universality class (3). �

Two examples are: (1) Kk = 3
2 log 2 log(k + 1); (3) Kk = 4ek. The scaling behaviour

for these examples is illustrated via the numerical analysis in Appendix 4.A (see, in
particular, Fig. 4.A.1 and Fig. 4.A.2 below).

The criteria in Theorem 4.2.5 are not sharp. Universality class (2) corresponds
to a critical surface in the space of parameters (Kk)k∈N that appears to be rather
complicated and certainly is not (!) of the type

∑
k∈NK

−1
k = c for some 1√

2
< c < 4

(see Fig. 4.2). Note that the full sequence (Kk)k∈N determines in which universality
class the system is.

(1)

(3)

(2)

Figure 4.2: Caricature showing the critical surface in the parameter space and the bounds
provided by Theorem 4.2.5.

The behaviour of Kk as k → ∞ determines the speed at which R[k] → R[∞] in
universality classes (2) and (3). Our third theorem provides upper and lower bounds.

4.2.6 Theorem. (Bounds for the block synchronization levels)

• In universality classes (2) and (3),

1
4σk ≤ R[k] −R[∞] ≤

√
2σk, k ∈ N0, (4.2.13)

with σk =
∑
`>kK

−1
` .

• In universality class (1), the upper bound in (4.2.13) holds for k ∈ N0, while the
lower bound in (4.2.13) is replaced by

R[k] −R[k∗−1] ≥ 1
4

k∗−1∑
`=k+1

K−1
` , 0 ≤ k ≤ k∗ − 2. (4.2.14)
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The latter implies that

k∗ ≤ max

{
k ∈ N :

k−1∑
`=1

K−1
` < 4

}
(4.2.15)

because R[0] = 1 and R[k∗−1] > 0.

In universality classes (2) and (3) we have limk→∞ σk = 0. Depending on how fast
k 7→ Kk grows, various speeds of convergence are possible: logarithmic, polynomial,
exponential, superexponential.

§4.3 Multi-scaling for the block average phases

In Section 4.3.1 we explain the heuristics behind Theorem 4.1.2. The diffusive scaling
of the average phase in the mean-field noisy Kuramato model, as shown in the first
line of (4.1.24), is a key tool in our analysis of the multi-scaling of the block average
phases in the hierarchical noisy Kuramoto model, stated in Conjecture 4.2.1. The
justification for the latter is given in Section 4.3.2.

§4.3.1 Diffusive scaling of the average phase for mean-
field Kuramato

Proof. For the heuristic derivation of the second line of (4.1.24) we combine (4.1.13)–
(4.1.14), to obtain

d

dt
r(t) =

∫ 2π

0

dθ cos θ

×
{
− ∂

∂θ

[
pλ(t; θ)

{
Kr(t) sin[ψ(t)− θ]

}]
+

1

2

∂2

∂θ2
pλ(t; θ)

} (4.3.1)

with λ = 2Kr and pλ(t; θ) = pλ(t; θ, 0) (recall that ω ≡ 0). After partial integration
with respect to θ this becomes (use that θ 7→ pλ(t; θ) is periodic)

d

dt
r(t) =

∫ 2π

0

dθ pλ(t; θ)

{
(− sin θ)Kr(t) sin(−θ) + (− cos θ)

1

2

}
, (4.3.2)

where we use that ψ(t) = ψ(0) = 0. Define

q(t) =

∫ 2π

0

dθ pλ(t; θ) cos2 θ. (4.3.3)

Then (4.3.2) reads
d

dt
r(t) =

[
K(1− q(t))− 1

2

]
r(t). (4.3.4)

We know that

lim
t→∞

q(t) = q =

∫ 2π

0

dθ pλ(θ) cos2 θ (4.3.5)
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with (put ω ≡ 0 in (4.1.16))

pλ(θ) =
eλ cos θ∫ 2π

0
dφ eλ cosφ

. (4.3.6)

Note that K(1− q)− 1
2 = 0 because λ = 2Kr and∫ 2π

0

dθ pλ(θ) sin2 θ = (1/λ)

∫ 2π

0

dθ pλ(θ) cos θ = r/λ (4.3.7)

by partial integration. Hence limt→∞ r(t) = r. (The fine details of the relaxation are
delicate, depend on the full solution of the McKean-Vlasov equation in (4.1.13), but
are of no concern to us here.)

For the derivation of the first line of (4.1.24) we use the symmetry of the equilib-
rium distribution (recall (4.1.16)–(4.1.17)), i.e.,

pλ(θ) = pλ(−θ), (4.3.8)

together with the fact that x 7→ cosx is a symmetric function and x 7→ sinx is an
asymmetric function.

Write the definition of the order parameter as

rN =
1

N

N∑
j=1

ei(θj−ψN ) (4.3.9)

and compute
∂rN
∂θi

=
i

N
ei(θi−ψN ) − i

∂ψN
∂θk

rN . (4.3.10)

Collecting the real and the imaginary part, we get

∂ψN
∂θi

=
1

NrN
cos(ψN − θi),

∂rN
∂θi

=
1

N
sin(ψN − θi). (4.3.11)

One further differentiation gives

∂2ψN
∂θ2
i

= − 1

Nr2
N

∂rN
∂θi

cos(ψN − θi)−
1

NrN

[
∂ψN
∂θi

− 1

]
cos(ψN − θi)

= − 2

(NrN )2
sin(ψN − θi) cos(ψN − θi) +

1

NrN
sin(ψN − θi),

(4.3.12)

plus a similar formula for ∂2rN
∂θ2i

(which we will not need). Thus, Itô’s rule applied to
(4.1.6) yields the expression

dψN (t) =

N∑
i=1

∂ψN
∂θi

(t) dθi(t) +
1

2

N∑
i=1

∂2ψN
∂θ2
i

(t)
(
dθi(t)

)2 (4.3.13)
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with
∂ψN
∂θi

(t) =
1

NrN (t)
cos
[
ψN (t)− θi(t)

]
, (4.3.14)

∂2ψN
∂θ2
i

(t) = − 2(
NrN (t))2

sin
[
ψN (t)− θi(t)

]
cos
[
ψN (t)− θi(t)

]
+

1

NrN (t)
sin
[
ψN (t)− θi(t)

]
.

Inserting (4.1.7) into (4.3.13)–(4.3.15), we get

dψN (t) = I(N ; t) dt+ dJ(N ; t) (4.3.15)

with

I(N ; t) =

[
K

N
− 1(

NrN (t)
)2
]

N∑
i=1

sin
[
ψN (t)− θi(t)

]
cos
[
ψN (t)− θi(t)

]
,

dJ(N ; t) =
1

NrN (t)

N∑
i=1

cos
[
ψN (t)− θi(t)

]
dWi(t),

(4.3.16)

where we use that
∑N
i=1 sin[ψN (t)− θi(t)] = 0 by (4.1.6). Multiply time by N , to get

dψN (Nt) = NI(N ;Nt) dt+ dJ(N ;Nt) (4.3.17)

with

NI(N ;Nt) =

[
K − 1

N
(
rN (Nt)

)2
]

N∑
i=1

sin
[
ψN (Nt)− θi(Nt)

]
cos
[
ψN (Nt)− θi(Nt)

]
,

dJ(N ;Nt) =
1

NrN (Nt)

N∑
i=1

cos
[
ψN (Nt)− θi(t)

]
dWi(Nt).

(4.3.18)
Suppose that the system converges to a partially synchronized state, i.e., in dis-

tribution
lim
N→∞

rN (Nt) = r > 0 ∀ t > 0 (4.3.19)

(recall (4.1.28)). Then limN→∞ 1/N(rN (Nt))2 = 0, and so the first line in (4.3.18)
scales like

K

N∑
i=1

sin
[
ψN (Nt)− θi(Nt)

]
cos
[
ψN (Nt)− θi(Nt)

]
, N →∞. (4.3.20)

This expression is a large sum of terms whose average with respect to the noise is
close to zero because of (4.3.8). Consequently, this sum behaves diffusively. Also the
second line in (4.3.18) behaves diffusively, because it is equal in distribution to

1

rN (Nt)

√√√√ 1

N

N∑
i=1

cos2
[
ψN (Nt)− θi(Nt)

]
dW∗(t). (4.3.21)
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It is shown in [14] that the two terms together lead to the first line of (4.1.24), i.e.,
in distribution

lim
N→∞

ψN (Nt) = ψ∗(t) (4.3.22)

with
ψ∗(t) = D∗W∗(t), ψ∗(0) = Φ = 0, (4.3.23)

where D∗ = D∗(K) is the renormalized noise strength given by (4.1.26) with D = 1.2

Note that the term under the square root in (4.3.21) converges to q defined in
(4.3.3). The latter holds because θi(Nt), i = 1, . . . , N , are asymptotically independent
and θi(Nt) converges in distribution to θ 7→ pλ(θ) relative to the value of ψN (Nt),
which itself evolves only slowly (on time scale Nt rather than t). �

0 2 4 6 8 10 12 14

1.00

1.01

1.02

1.03

1.04

2Kr

D
*

H2K
rL�D

*
H2K
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Figure 4.1: Plot of D̄∗/D∗ as a function of 2Kr.

The second line of (4.3.18) scales in distribution to the diffusion equation

lim
N→∞

dJ(N ;Nt) = D̄∗dW∗(t), D̄∗ = D∗(K) =

√
q

r
, r = r(K). (4.3.24)

Inserting (4.3.6) and recalling (4.2.7) and (4.3.3), we have

D̄∗ = D̄∗(K) =
1

r

√
I2(2Kr)

I0(2Kr)
. (4.3.25)

Clearly, D∗ 6= D̄∗. Interestingly, however,

1 ≤ D̄∗
D∗
≤ C uniformly in K with C = 1.0392 . . . (4.3.26)

2The proof is based on Hilbert-space techniques and is delicate. As pointed out below [14, Corol-
lary 1.3]: the proof requires control of the evolution of the empirical distribution of the oscillators,
and so (4.3.15)–(4.3.16) alone cannot provide an alternative route to the estimates that are needed
to prove the convergence and the persistence of proximity in (4.3.19) and (4.3.22).
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(G. Giacomin, private communication). Hence, not only does the first line of (4.3.18)
lower the diffusion constant, the amount by which it does so is less than 4 percent
(see Fig. 4.1). Further thoughts on the reason behind the discrepancy between D∗
and D̄∗ can be found in Dahms [32, Section 3.5].

§4.3.2 Multi-scaling of the block average phases for
hierarchical Kuramoto

We give the main idea behind Conjecture 4.2.1. The argument runs along the same
line as in Section 4.3.1, but is more involved because of the hierarchical interaction.

What is crucial for the argument is the separation of space-time scales:

• Each k-block consists of N disjoint (k − 1)-blocks, and evolves on a time scale
that isN times larger than the time scale on which the constituent blocks evolve.

• In the limit as N → ∞, the constituent (k − 1)-blocks in each k-block rapidly
achieve equilibrium subject to the current value of the k-block, which allows us
to treat the k-blocks as a noisy mean-field Kuramoto model with coefficients that
depend on their internal synchronization level, with an effective interaction that
depends on the current value of the synchronization level of the (k + 1)-block.

• The k-block itself interacts with the other k-block’s, with interaction strength
Kk+1, while the interaction with the even larger blocks it is part of is negligible
as N → ∞. This interaction occurs through an effective interaction with the
average value of the k-blocks which is exactly the value of the (k + 1)-block.

If we want to observe the evolution of the k-blocks labeled 1 ≤ i ≤ N that make
up the (k + 1)-block (i.e., the Φ

[k]
i (t)’s) on time scale t), then we must scale the

actual oscillator time by Nk. The synchronization levels within the Φ
[k]
i (t)’s, given

by R[k]
i (Nt), are then moving over time Nt, since they must be synchronized before

the Φ
[k]
i (t)’s start to diffuse. This is taken care of by our choice of time scales in the

hierarchical order parameter (4.1.36).
Itô’s rule applied to (4.1.36) with η = 0N gives

dΦ
[k]
0 (t) =

∑
ζ∈Bk(0)

∂Φ
[k]
0

∂θζ
(t) dθζ(N

kt) +
1

2

∑
ζ∈Bk(0)

∂2Φ
[k]
0

∂θ2
ζ

(t)
(
dθζ(N

kt)
)2 (4.3.27)

where we have suppressed the N -dependence in order to lighten the notation, writing
Φ

[k]
0 = Φ

[k]
0,N and R[k]

0 = R
[k]
0,N . The derivatives are (compare with (4.3.14))

∂Φ
[k]
0

∂θζ
(t) =

1

NkR
[k]
0 (Nt)

cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
, (4.3.28)

∂2Φ
[k]
0

∂θ2
ζ

(t) = − 2[
N2kR

[k]
0 (Nt)

]2 sin
[
Φ

[k]
0 (t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
+

1

NkR
[k]
0 (Nt)

sin
[
Φ

[k]
0 (t)− θζ(Nkt)

]
. (4.3.29)
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Inserting (4.1.38), we find

dΦ
[k]
0 (t) =

[
I1(k,N ; t) + I2(k,N ; t)

]
dt+ dJ(k,N ; t) (4.3.30)

with

I1(k,N ; t) =
1

R
[k]
0 (Nt)

∑
`∈N

1

N `−1

(
K` −

K`+1

N2

)
×

∑
ζ∈Bk(0)

R
[`]
ζ (N1+k−`t) sin

[
Φ

[`]
ζ (Nk−`t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
,

I2(k,N ; t) = − 1

Nk
[
R

[k]
0 (Nt)

]2 ∑
ζ∈Bk(0)

sin
[
Φ

[k]
0 (t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
,

dJ(k,N ; t) =
1

Nk/2R
[k]
0 (Nt)

∑
ζ∈Bk(0)

cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
dWζ(t).

(4.3.31)
Our goal is to analyse the expressions in (4.3.31) in the limit as N → ∞, and

show that (4.3.30) converges to the SDE in (4.2.2) subject to the assumption that the
k-block converges to a partially synchronized state, i.e.,

lim
N→∞

R
[k]
0 (Nt) = R[k] > 0 ∀ t > 0. (4.3.32)

The key idea is that, in the limit as N → ∞, the average phases of the k-blocks
around ζ decouple and converge in distribution to θ 7→ p[k](θ) for all k ∈ N0, just
as for the noisy mean-field Kuramoto model discussed in Section 4.3.1, with p[k](θ)

of the same form as pλ(θ) in (4.3.6) for a suitable λ depending on k. This is the
reason why a recursive structure is in place, captured by the renormalization maps
TKk , k ∈ N.

Along the way we need the quantities

R
[k]
0 (Nt) =

1

Nk

∑
ζ∈Bk(0)

cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
,

Q
[k]
0 (Nt) =

1

Nk

∑
ζ∈Bk(0)

cos2
[
Φ

[k]
0 (t)− θζ(Nkt)

]
.

(4.3.33)

We also use that for all k ∈ N0,

p[k](θ) = p[k](−θ), (4.3.34)

as well as the fact that for all k ∈ N and ` ≥ k,

R
[`]
ζ (Nt) = R

[`]
0 (Nt),

Φ
[`]
ζ (Nt) = Φ

[`]
0 (Nt),

∀ ζ ∈ Bk(0). (4.3.35)

In addition, we use the trigonometric identities

sin(a+ b) = sin a cos b+ cos a sin b,
cos(a+ b) = cos a cos b− sin a sin b,

a, b ∈ R, (4.3.36)
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to simplify terms via a telescoping argument.

Before we embark on our multi-scale analysis, we note that the expressions in
(4.3.30)–(4.3.31) simplify somewhat as we take the limit N →∞. First, in I1(k,N ; t)

the term K`+1/N
2 is asymptotically negligible compared to K`, while the sum over `

can be restricted to 1 ≤ ` ≤ k+1 because |Bk(0)| = Nk. Second, I2(k,N ; t) is asymp-
totically negligible because of (4.3.34) and the fact that sin θ cos θ = − sin(−θ) cos(−θ).
Thus, we have, in distribution,

dΦ
[k]
0 (t) =

{
[1 + o(1)] I

[k]
N (t) + o(1)

}
dt+ dJ

[k]
N (t), N →∞, (4.3.37)

with

I
[k]
N (t) =

1

R
[k]
0 (Nt)

k+1∑
`=1

K`

N `−1

×
∑

ζ∈Bk(0)

R
[`]
ζ (N1+k−`t) sin

[
Φ

[`]
ζ (Nk−`t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
,

dJ
[k]
N (t) =

1

R
[k]
0 (Nt)

√
Q

[k]
0 (Nt) dW [k](t).

(4.3.38)
In the last line we use that (Wζ(t))t≥0, ζ ∈ Bk(0), are i.i.d. and write (W [k](t))t≥0 to
denote an auxiliary Brownian motion associated with level k.

The truncation approximation consists of throwing away the terms with 1 ≤ ` ≤ k
and keeping only the terms with ` = k + 1.

• Level k = 1

For k = 1, by (4.3.35) the first line of (4.3.38) reads

I
[1]
N (t) = K1

∑
ζ∈B1(0)

sin
[
Φ

[1]
0 (t)− θζ(Nt)

]
cos
[
Φ

[1]
0 (t)− θζ(Nt)

]
(4.3.39)

+K2
R

[2]
0 (t)

R
[1]
0 (Nt)

1

N

∑
ζ∈B1(0)

sin
[
Φ

[2]
0 (N−1t)− θζ(Nt)

]
cos
[
Φ

[1]
0 (t)− θζ(Nt)

]
.
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We telescope the sine. Using (4.3.36) with a = Φ
[2]
0 (N−1t)−Φ

[1]
0 (t) and b = Φ

[1]
0 (t)−

θζ(Nt), we obtain

I
[1]
N (t) = K1

∑
ζ∈B1(0)

sin
[
Φ

[1]
0 (t)− θζ(Nt)

]
cos
[
Φ

[1]
0 (t)− θζ(Nt)

]
(4.3.40)

+K2
R

[2]
0 (t)

R
[1]
0 (Nt)

sin
[
Φ

[2]
0 (N−1t)− Φ

[1]
0 (t)

]
× 1

N

∑
ζ∈B1(0)

cos2
[
Φ

[1]
0 (t)− θζ(Nt)

]
+K2

R
[2]
0 (t)

R
[1]
0 (Nt)

cos
[
Φ

[2]
0 (N−1t)− Φ

[1]
0 (t)

]
× 1

N

∑
ζ∈B1(0)

sin
[
Φ

[1]
0 (t)− θζ(Nt)

]
cos
[
Φ

[1]
0 (t)− θζ(Nt)

]
.

On time scale Nt, the oscillators in the 1-block have synchronized, and hence the last
sum vanishes in the limit N → ∞ by the symmetry property in (4.3.34) for k = 1.
Therefore we have

I
[1]
N (t) = K1

∑
ζ∈B1(0)

sin
[
Φ

[1]
0 (t)− θζ(Nt)

]
cos
[
Φ

[1]
0 (t)− θζ(Nt)

]
(4.3.41)

+K2
R

[2]
0 (t)Q

[1]
0 (Nt)

R
[1]
0 (Nt)

sin
[
Φ

[2]
0 (N−1t)− Φ

[1]
0 (t)

]
+ o(1).

Recalling (4.3.38) we further have

dJ
[1]
N (t) =

1

R
[1]
0 (Nt)

√
Q

[1]
0 (Nt) dW [1](t) (4.3.42)

with
Q

[1]
0 (Nt) =

1

N

∑
ζ∈B1(0)

cos2
[
Φ

[1]
0 (t)− θζ(Nt)

]
. (4.3.43)

The first term in the right-hand side of (4.3.41) is the same as that in (4.3.20) with
K = K1 and ψN (Nt) = Φ

[1]
0 (t). The term in the right-hand side of (4.3.42) is the

same as that of (4.3.21) with rN (Nt) = R
[1]
0 (Nt) andW∗(t) = W [1](t). Together they

produce, in the limit as N → ∞, the same noise term as in the mean-field model,
namely,

D[1] dW [1](t) (4.3.44)

with a renormalized noise strength

D[1] = D∗(K1) (4.3.45)

given by (4.1.26) with D = 1, where we use that

lim
N→∞

R
[1]
0 (Nt) = R[1] = R[1](K1), lim

N→∞
Q

[1]
0 (Nt) = Q[1] = Q[1](K1) ∀ t > 0.

(4.3.46)
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The second term in the right-hand side of (4.3.41) is precisely the Kuramoto-type
interaction term of Φ

[1]
0 (t) with the average phase of the oscillators in the 2-block at

time Nt. Therefore, in the limit as N →∞, we end up with the limiting SDE

dΦ
[1]
0 (t) = K2 E [1]R

[2]
0 (t) sin

[
Φ− Φ

[1]
0 (t)

]
+D[1] dW [1](t) (4.3.47)

with

E [1] =
Q[1]

R[1]
. (4.3.48)

If we leave out the first term in the right-hand side of (4.3.41) (which as shown in
(4.3.26) may be done at the cost of an error of less than 4 percent), then we end up
with the limiting SDE

dΦ
[1]
0 (t) = K2 Ē [1]R

[2]
0 (t) sin

[
Φ− Φ

[1]
0 (t)

]
+ D̄[1] dW [1](t) (4.3.49)

with Ē [1] = E [1] and

D̄[1] = D̄∗(K1) =

√
Q[1]

R[1]
(4.3.50)

given by (4.3.25) with D = 1. Thus we have justified the SDE in (4.2.10) for k = 1.
After a transient period we have limt→∞R

[2]
0 (t) = R

[2]
0 .

Note that, in the approximation where we leave out the first term in the right-
hand side of (4.3.41), the pair (R[1], Q[1]) takes over the role of the pair (r, q) in the
mean-field model. The latter are the unique solution of the consistency relation and
recursion relation (recall (4.2.7), (4.3.6), (4.3.7) and (4.3.24))

r =
I1(2Kr)

I0(2Kr)
, q =

I2(2Kr)

I0(2Kr)
. (4.3.51)

These can be summarised as saying that (r, q) = TK(1, 1), with TK the renormalization
map introduced in Definition 4.2.2. Thus we see that

(R[1], Q[1]) = TK1
(1, 1), (4.3.52)

which explains why TK1
comes on stage.

• Levels k ≥ 2

For k ≥ 2, by (4.3.35) the term with ` = k + 1 in I [k]
N (t) in the first line of (4.3.38)

equals

I
[k]
N (t)|`=k+1

= Kk+1
R

[k+1]
0 (t)

R
[k]
0 (Nt)

1

Nk

∑
ζ∈Bk(0)

sin
[
Φ

[k+1]
0 (N−1t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
.

(4.3.53)
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We again telescope the sine. Using (4.3.36), this time with a = Φ
[k+1]
0 (N−1t)−Φ

[k]
0 (t)

and b = Φ
[k]
0 (t)− θζ(Nkt), we can write

I
[k]
N (t)|`=k+1 = Kk+1

R
[k+1]
0 (t)

R
[k]
0 (Nt)

sin
[
Φ

[k+1]
0 (N−1t)− Φ

[k]
0 (t)

]
× 1

Nk

∑
ζ∈Bk(0)

cos2
[
Φ

[k]
0 (t)− θζ(Nkt)

]
+Kk+1

R
[k+1]
0 (t)

R
[k]
0 (Nt)

sin
[
Φ

[k+1]
0 (N−1t)− Φ

[k]
0 (t)

]
× 1

Nk

∑
ζ∈Bk(0)

sin
[
Φ

[k]
0 (t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
.

(4.3.54)
By the symmetry property in (4.3.34), the last term vanishes as N → ∞, and so we
have

I
[k]
N (t)|`=k+1 = Kk+1

R
[k+1]
0 (t)Q

[k]
0 (Nt)

R
[k]
0 (Nt)

sin
[
Φ

[k+1]
0 (N−1t)−Φ

[k]
0 (t)

]
+ o(1). (4.3.55)

Using that

lim
N→∞

R
[k]
0 (Nt) = R[k], lim

N→∞
Q

[k]
0 (Nt) = Q[k] ∀ t > 0, (4.3.56)

we obtain

I
[k]
N (t)|`=k+1 = Kk+1

Q[k]

R[k]
R

[k+1]
0 (t) sin

[
Φ− Φ

[k]
0 (t)

]
+ o(1), (4.3.57)

which is the Kuramoto-type interaction term of Φ
[k]
0 (t) with the average phase of the

oscillators in the (k + 1)-block at time Nkt. The noise term in (4.3.38) scales like

dJ
[k]
N (t) =

1

R[k]

√
Q[k] dW [k](t) + o(1). (4.3.58)

Hence we end up with

I
[k]
N (t)|`=k+1dt+dJ

[k]
N (t) = Kk+1

Q[k]

R[k]
R

[k+1]
0 (t) sin

[
Φ−Φ

[k]
0 (t)

]
+

√
Q[k]

R[k]
dW [k](t)+o(1).

(4.3.59)
Thus we have justified the SDE in (4.2.10) for k ≥ 2, with Ē [k] and D̄[k] given by
(4.2.11). Note that

(R[k], Q[k]) = TKk(R[k−1], Q[k−1]), (4.3.60)

in full analogy with (4.3.52).
For k ≥ 2 the term with ` = k equals

I
[k]
N (t)|`=k = Kk

N∑
i=1

1

Nk−1

∑
ζ∈Bk−1(i)

(4.3.61)

sin
[
Φ

[k]
0 (t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
, (4.3.62)
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where Bk−1(i), 1 ≤ i ≤ N , are the (k − 1)-blocks making up the k-block Bk(0), and
we use that (R

[k]
ζ (t),Φ

[k]
ζ (t)) = (R

[k]
0 (t),Φ

[k]
0 (t)) for all ζ ∈ Bk−1(i) and all 1 ≤ i ≤ N .

The sum in (4.3.61) has a similar form as the first term in the right-hand side of
(4.3.41), but now with the 1-block replaced by N copies of (k− 1)-blocks. This opens
up the possibility of a finer approximation analogous to the one obtained by using
(4.3.45) instead of (4.3.50). As we argued in Section 4.3.1, the improvement should
be minor (recall (4.3.26)).

§4.4 Universality classes and synchronization levels

In Section 4.4.1 we derive some basic properties of the renormalization map (Lem-
mas 4.4.1–4.4.3 below). In Section 4.4.2 we prove Theorem 4.2.5. The proof relies on
convexity and sandwich estimates (Lemmas 4.4.4–4.4.6 below).

§4.4.1 Properties of the renormalization map
For λ ∈ [0,∞), define

V (λ) =

∫ 2π

0

dθ cos θ pλ(θ) =
I1(λ)

I0(λ)
, (4.4.1)

W (λ) =

∫ 2π

0

dθ cos2 θ pλ(θ) =
I2(λ)

I0(λ)
, (4.4.2)

where the probability distribution pλ(θ) is given by (4.1.16) with ω ≡ 0 and D = 1.
The renormalization map TK in (4.2.8) can be written as (R̄, Q̄) = TK(R,Q) with

R̄ = RV (λ),

Q̄− 1
2 = (Q− 1

2 )
[
2W (λ)− 1

]
, (4.4.3)

and λ = 2KR̄
√
Q. It is known that λ 7→ V (λ) is strictly increasing and strictly

convex, with V (0) = 0 and limλ→∞ V (λ) = 1.

4.4.1 Lemma. The map K 7→ R̄(R,K) is strictly increasing.

Proof. The derivative of R̄ w.r.t. K exists by the implicit function theorem, so that

dR̄

dK
= 2RV ′(2KR̄)

[
R̄+K

dR̄

dK

]
,

dR̄

dK

[
1− 2KRV ′(2KR̄)

]
= 2RR̄V ′(2KR̄). (4.4.4)

Note that R̄ is the solution to R̄ = RV (2KR̄), which is non-trivial only when 1 <

2RKV ′(2KR̄) due to the concavity of the map R 7→ RV (2KR̄). This implies that
2KRV ′(2KR̄) < 1 at the solution, which makes the term in (4.4.4) between square
brackets positive. The claim follows since we proved previously that R, R̄ ∈ [0, 1) and
V ′(2KR̄) > 0. �
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4.4.2 Lemma. The map K 7→ Q̄(R̄,K,Q) is strictly increasing.

Proof. The derivative of Q̄ w.r.t. K exists by the implicit function theorem, so that

dQ̄

dK
= (Q− 1

2 ) 4
√
QW ′

(
2
√
QKR̄

) [
R̄+K

dR̄

dK

]
. (4.4.5)

We have that (Q− 1
2 )
√
Q ≥ 0 because Q ∈ [ 1

2 , 1), W ′(2
√
QKR̄) > 0 as proven before,

and [R̄+K dR̄
dK ] > 0 as in the proof of Lemma 4.4.1. The claim therefore follows. �

4.4.3 Lemma. The map (R,Q) 7→ (R̄, Q̄) is non-increasing in both components,
i.e.,

(i) R 7→ R̄(K,R) is non-increasing.

(ii) Q 7→ Q̄(K, R̄,Q) is non-increasing.

Proof. (i) We have
R̄ = RV

(
2
√
QKR̄

)
. (4.4.6)

But V (
√
QKR̄) ∈ [0, 1), and so R̄ ≤ R.

(ii) We have
Q̄− 1

2 = (Q− 1
2 )
[
2W
(
2
√
QKR̄

)
− 1
]
. (4.4.7)

But W (2
√
QKR̄) ∈ [ 1

2 , 1), and so Q̄ ≤ Q. In fact, since both V (2
√
QKR̄) and

W (2
√
QKR̄) are < 1, both maps are strictly decreasing until R = 0 and Q = 1

2 are
hit, respectively. �

§4.4.2 Renormalization
Recall (4.2.7). To prove Theorems 4.2.5 we need the following lemma.

4.4.4 Lemma. The map λ 7→ log I0(λ) is analytic, strictly increasing and strictly
convex on (0,∞), with

I0(λ) = 1 + 1
4λ

2 [1 +O(λ2)], λ ↓ 0, I0(λ) =
eλ√
2πλ

[1 +O(λ−1)], λ→∞.
(4.4.8)

Proof. Analyticity is immediate from (4.2.7). Strict convexity follows because the
numerator of [log I0(λ)]′′ equals

I2(λ)I0(λ)− I1(λ)I1(λ) =
1

2π

∫ 2π

0

dφ

∫ 2π

0

dψ [cos2 φ− cosφ cosψ] eλ(cosφ+cosψ)

=
1

2π

∫ 2π

0

dφ

∫ 2π

0

dψ [cosφ− cosψ]2 eλ(cosφ+cosψ) > 0,

(4.4.9)
where we symmetrize the integrand. Since log I0(0) = 0, log I0(λ) > 0 for λ > 0 and
limλ→∞ log I0(λ) =∞, the strict monotonicity follows. The asymptotics in (4.4.8) is
easily deduced from (4.2.7) via a saddle point computation. �
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Since V = I1/I0 = [log I0]′, we obtain from (4.4.8) and convexity that

V (λ) ∼ 1
2λ, λ ↓ 0, (4.4.10)

1− V (λ) ∼ 1

2λ
, λ→∞. (4.4.11)

This limiting behaviour of V (λ) inspires the choice of bounding functions in the next
lemma.

4.4.5 Lemma. V +(λ) ≥ V (λ) ≥ V −(λ) for all λ ∈ (0,∞) with (see Fig. 4.1)

V +(λ) =
2λ

1 + 2λ
,

V −(λ) =
1
2λ

1 + 1
2λ
.

(4.4.12)

Proof. Segura [118, Theorem 1] shows that

V (λ) < V +
∗ (λ) =

λ

1
2 +

√
( 1

2 )2 + λ2
, λ > 0. (4.4.13)

Since λ <
√

( 1
2 )2 + λ2, it follows that V +

∗ (λ) < V +(λ). Laforgia and Natalini [76,
Theorem 1.1] show that

V (λ) > V −∗ (λ) =
−1 +

√
λ2 + 1

λ
, λ > 0. (4.4.14)

Abbreviate η =
√
λ2 + 1. Then λ =

√
(η − 1)(η + 1), and we can write

V −∗ (λ) =

√
η − 1

η + 1
=

λ

η + 1
=

λ

2 + (η − 1)
. (4.4.15)

Since λ > η − 1, it follows that V −∗ (λ) > V −(λ). �

Note that both V + and V − are strictly increasing and concave on (0,∞), which
guarantees the uniqueness and non-triviality of the solution to the consistency relation
in the first line of (4.4.3) when we replace V (λ) by either V +(λ) or V −(λ).

In the sequel we write V,W,Rk, Qk instead of Vδ0 ,Wδ0 , R
[k], Q[k] to lighten the

notation. We know that (Rk)k∈N0
is the solution of the sequence of consistency

relations
Rk+1 = RkV

(
2
√
QkKk+1Rk+1

)
, k ∈ N0. (4.4.16)

This requires as input the sequence (Qk)k∈N0 , which is obtained from the sequence of
recursion relations

Qk+1 − 1
2 = (Qk − 1

2 )
[
2W
(
2
√
QkKk+1Rk+1

)
− 1
]
. (4.4.17)

By using that Qk ∈ [ 1
2 , 1] for all k ∈ N0, we can remove Qk from (4.4.16) at the cost

of doing estimates. Namely, let (R+
k )k∈N0

and (R−k )k∈N0
denote the solutions of the

sequence of consistency relations

R+
k+1 = RkV

+
(
2Kk+1R

+
k+1

)
, k ∈ N0,

R−k+1 = RkV
−(2√ 1

2Kk+1R
−
k+1

)
, k ∈ N0.

(4.4.18)
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Figure 4.1: Plots of the tighter bounds in the proof of Lemma 4.4.5 and the looser bounds
needed for the proof of Theorem 4.2.5.

4.4.6 Lemma. R+
k ≥ Rk ≥ R−k for all k ∈ N.

Proof. If we replace V (λ) by V +(λ) (or V −(λ)) in the consistency relation for Rk+1

given by (4.4.16), then the new solution R+
k+1 (or R−k+1) is larger (or smaller) than

Rk+1. Indeed, we have

Rk+1 = RkV (2Kk+1Rk+1

√
Qk) ≤ RkV +(2Kk+1Rk+1). (4.4.19)

Because V + is concave, it follows from (4.4.19) and the first line of (4.4.18) that
Rk+1 ≤ R+

k+1. �

We are now ready to prove Theorems 4.2.5–4.2.6.

Proof. From the first lines of (4.4.12) and (4.4.18) we deduce

Rk >
1

4Kk+1
⇐⇒ R+

k+1 > 0 =⇒ Rk −R+
k+1 =

1

4Kk+1
. (4.4.20)

Hence, with the help of Lemma 4.4.6, we get

Rk >
1

4Kk+1
=⇒ Rk −Rk+1 ≥

1

4Kk+1
. (4.4.21)

Iteration gives (recall that R0 = 1)

1−Rk ≥ min

{
1,

k∑
`=1

1

4K`

}
. (4.4.22)

As soon as the sum in the right-hand side is ≥ 1, we know that Rk = 0. This gives
us the criterion for universality class (1) in Theorem 4.2.5. Similarly, from the second
lines of (4.4.12) and (4.4.18) we deduce

Rk >
2
√

2

Kk+1
⇐⇒ R−k+1 > 0 =⇒ Rk −R−k+1 =

√
2

Kk+1
. (4.4.23)
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Hence, with the help of Lemma 4.4.6, we get

Rk >

√
2

Kk+1
=⇒ Rk −Rk+1 ≤

√
2

Kk+1
. (4.4.24)

Iteration gives

1−Rk ≤ max

{
1,

k∑
`=1

√
2

K`

}
. (4.4.25)

As soon as the sum in the right-hand side is < 1, we know that Rk > 0. This gives
us the criterion for universality class (3) in Theorem 4.2.5.

In universality classes (2) and (3) we have R+
k ≥ Rk > 0 for k ∈ N, and hence

Rk −R∞ =
∑
`≥k

(R` −R`+1) ≥
∑
`≥k

(R` −R+
`+1) =

∑
`≥k

1

4K`+1
, k ∈ N0. (4.4.26)

In universality class (1), on the other hand, we have R+
k ≥ Rk > 0 for 1 ≤ k < k∗

and Rk = 0 for k ≥ k∗, and hence

Rk−Rk∗−1 =

k∗−2∑
`=k

(R`−R`+1) ≥
k∗−2∑
`=k

(R`−R+
`+1) =

k∗−2∑
`=k

1

4K`+1
, 0 ≤ k ≤ k∗−2.

(4.4.27)
Finally, with no assumption on (Rk)k∈N, we have

Rk −R∞ =
∑
`≥k

(R` −R`+1) ≤
∑
`≥k

(R` −R−`+1) ≤
∑
`≥k

√
2

K`+1
, (4.4.28)

where the last inequality follows from (4.4.23). The bounds in (4.4.26)–(4.4.28) yields
the sandwich in Theorem 4.2.6. �

4.4.7 Remark. In the proof of Theorem 4.2.5–4.2.6 we exploited the fact that Qk ∈
[ 1
2 , 1] to get estimates that involve a consistency relation in only Rk. In principle we
can improve these estimates by exploring what effect Qk has on Rk. Namely, in
analogy with Lemma 4.4.5, we have W+(λ) ≥W (λ) ≥W−(λ) for all λ ∈ (0,∞) with
(see Fig. 4.2)

W+(λ) =
1 + λ

2 + λ
, W−(λ) =

1− λ+ λ2

2 + λ2
. (4.4.29)

This allows for better control on Qk and hence better control on Rk. However, the
formulas are cumbersome to work with and do not lead to a sharp condition anyway.
�
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Figure 4.2: Bounding functions for W (λ).

Appendix

§4.A Numerical analysis

In this appendix we numerically compute the iterates of the renormalization map in
(4.2.8) for two specific choices of (Kk)k∈N, belonging to universality classes (1) and
(3), respectively.

In Fig. 4.A.1 we show an example in universality class (1): Kk = 3
2 log 2 log(k+ 1).

Synchronization is lost at level k = 4. When we calculate the sum that appears in
our sufficient criterion for universality class (1), stated in Theorem 4.2.5, up to level
k = 4, we find that

4∑
k=1

2 log 2

3 log(k + 1)
= 1.70774. (4.A.1)

This does not exceed 4, which shows that our sufficient criterion is not tight. It only
gives us an upper bound for the level above which synchronization is lost for sure
(recall (4.2.15)), although it may be lost earlier.
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Figure 4.A.1: A plot of the renormalization map (R[k], Q[k]) for k = 0, . . . , 7 (left) and the
corresponding values of R[k] (right) for the choice Kk = 3

2 log 2
log(k + 1).

In Fig. 4.A.2 we show an example of universality class (3), where Kk = 4 ek. There
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is synchronization at all levels. To check our sufficient criterion we calculate the sum∑
k∈N

1

4 ek
≈ 0.145494 <

1√
2
≈ 0.7071. (4.A.2)
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Figure 4.A.2: A plot of the renormalization map (R[k], Q[k]) for k = 0, . . . , 7 (left) and the
corresponding values of R[k] (right) for the choice Kk = 4 ek.

To find a sequence (Kk)k∈N for universality class (2) is difficult because we do
not know the precise criterion for criticality. An artificial way of producing such a
sequence is to calculate the critical interaction strength at each hierarchical level and
taking the next interaction strength to be 1 larger.
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