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3. Properties of additive functionals of Brownian motion with resetting

CHAPTER 3
Properties of additive functionals of

Brownian motion with resetting

This chapter is based on:[41].

Abstract

We study the distribution of additive functionals of reset Brownian motion, a vari-
ation of normal Brownian motion in which the path is interrupted at a given rate and
placed back to a given reset position. Our goal is two-fold: (1) For general functionals,
we derive a large deviation principle in the presence of resetting and identify the large
deviation rate function in terms of a variational formula involving large deviation rate
functions without resetting. (2) For three examples of functionals (positive occupa-
tion time, area and absolute area), we investigate the effect of resetting by computing
distributions and moments, using a formula that links the generating function with
resetting to the generating function without resetting.
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§3.1 Introduction

In this paper we study a variation of Brownian motion (BM) that includes resetting
events at random times. Let (Wt)t≥0 be a BM on R and consider a Poisson process on
[0,∞) with intensity r ∈ (0,∞) and law P, producing N(T ) random points {σi}N(T )

i=1

in the time interval [0, T ], satisfying E[N(T )] = rT . From these two processes, we
construct the reset Brownian motion (rBM), (W r

t )t≥0, by ‘pasting together’ N(T )

independent trajectories of the BM, all starting from a reset position x∗ ∈ R and
evolving freely over the successive time lapses of length τi with

τi = σi+1 − σi, i = 0, . . . , N(T )− 1, (3.1.1)

with σ0 = 0. More precisely, W r
t = x∗ + W i

t for t ∈ [σi, σi+1) with (W i
t )t≥0, i =

0, . . . , N(T )−1, independent BMs starting at 0. Without loss of generality, we assume
that x∗ = 0. We denote by Pr the probability with respect to rBM with reset rate r.

The properties of rBM, and reset processes in general [95], have been the subject of
several recent studies, related to random searches and randomized algorithms [48, 50,
74, 79, 6, 7, 24, 10, 17] (which can be made more efficient by the addition of resetting
[47]), queueing theory (where resetting accounts for the accidental clearing of queues
or buffers), as well as birth-death processes [101, 18, 75, 102, 89, 43] (in which a
population is drastically reduced as a result of natural disasters or catastrophes). In
biology, the attachment, targeting and transcription dynamics of enzymes, proteins
and other bio-molecules can also be modelled with reset processes [11, 62, 133, 91,
108, 112, 104].

Resetting has the effect of creating a ‘confinement’ around the reset position, which
can bring the process from being non-stationary to being stationary. The simplest
example is rBM, which has a stationary density ρ given by [48]

ρ(x) =

√
r

2
e−
√

2r|x|, x ∈ R. (3.1.2)

The motivation for the present paper is to study the effect of the confinement on the
distribution of additive functionals of rBM of the general form

FT =

∫ T

0

f(W r
t ) dt, (3.1.3)

where f is a given R-valued measurable function. We are especially interested in
studying the effect of resetting on the large deviation properties of these functionals,
and to determine whether resetting is ‘strong enough’ to bring about a large deviation
principle (LDP) for the sequence of random variables (T−1FT )T>0 when it does not
satisfy the LDP without resetting.

For this purpose, we use a recent result [91, 92] based on the renewal structure
of reset processes that links the Laplace transform of the Feynman-Kac generating
function of FT with resetting to the same generating function without resetting. Ad-
ditionally, we derive a variational formula for the large deviation rate function of
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(T−1FT )T>0, obtained by combining the LDPs for the frequency of resets, the dur-
ation of the reset periods, and the value of FT in between resets. This variational
formula complements the result based on generating functions by providing insight
into how a large deviation event is created in terms of the constituent processes. These
two results are stated in Secs. 3.2–3.3 and, in principle, apply to any functional FT
of the type defined in (3.1.3). We illustrate them for three particular functionals:

AT =

∫ T

0

1[0,∞)(W
r
t ) dt, BT =

∫ T

0

W r
t dt, CT =

∫ T

0

|W r
t |dt, (3.1.4)

i.e., the positive occupation time, the area and the absolute area (the latter can also
be interpreted as the area of rBM reflected at the origin). These functionals are
discussed in Secs. 3.4, 3.5 and 3.6, respectively.

It seems possible to extend part of our results to general diffusion processes with
resetting, although we will not attempt to do so in this paper. The advantage of
focusing on rBM is that we can obtain exact results.

§3.2 Two theorems

In this section we present two theorems that will be used to study distributions (The-
orem 3.2.1) and large deviations (Theorem 3.2.2) associated with additive functionals
of rBM.

The first result is based on the generating function of FT :

Gr(k, T ) = Er
[
ekFT

]
, k ∈ R, T ∈ [0,∞), (3.2.1)

where Er denotes the expectation with respect to rBM with rate r. The Laplace
transform [135] of this function is defined as

G̃r(k, s) =

∫ ∞
0

dT e−sT Gr(k, T ), k ∈ R, s ∈ [0,∞). (3.2.2)

Both may be infinite for certain ranges of the variables. The same quantities are
defined analogously for the reset-free process and are given the subscript 0. The
following theorem expresses the reset Laplace transform in terms of the reset-free
Laplace transform.

3.2.1 Theorem. If k ∈ R and s ∈ [0,∞) are such that rG̃0(k, r + s) < 1, then

G̃r(k, s) =
G̃0(k, r + s)

1− rG̃0(k, r + s)
. (3.2.3)

Proof. Theorem 3.2.1 was proved in [91] with the help of a renewal argument relating
the process with resetting to the one without resetting. For completeness we write
out the proof. For fixed T , split according to whether the first reset takes place at
0 < t ≤ T or t > T :

Er[ekFT
]

=

∫ T

0

dt re−rt E0

[
ekFt

]
Er
[
ekFT−t

]
+

∫ ∞
T

dt re−rt E0

[
ekFT

]
. (3.2.4)
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Substitute this relation into (3.2.1) and afterwards into (3.2.2), and interchange the
integration over T and t, to get

G̃r(k, s) =

∫ ∞
0

dt re−rt E0

[
ekFt

]
e−st

∫ ∞
t

dT e−s(T−t) Er
[
ekFT−t

]
+

∫ ∞
0

dT e−rT e−sT E0

[
ekFT

]
= r

(∫ ∞
0

dt e−(r+s)t E0

[
ekFt

])(∫ ∞
0

dT ′ e−sT
′
Er
[
ekFT ′

])
+

∫ ∞
0

dT e−(r+s)T E0

[
ekFT

]
= rG̃0(k, r + s)G̃r(k, s) + G̃0(k, r + s).

Solving for G̃r(k, s), we get (3.2.3). �

As shown in [91], Theorem 3.2.1 can be used to study the effect of resetting on
the distribution of FT . In particular, if the dominant singularity of G̃r(k, s) is a
single pole, then Theorem 3.2.1 can be used to get the LDP with resetting, under the
assumption that

∀T > 0: G0(k, T ) exists for k in an open neighbourhood of 0 in R. (3.2.5)

In Theorem 3.2.2 below we show that, for every r > 0, (T−1FT )T>0 satisfies the LDP
on R with speed T . Informally, this means that

∀φ ∈ R :
Pr(T−1FT ∈ dφ)

dφ
= e−Tχr(φ)+o(T ), T →∞, (3.2.6)

where χr : R→ [0,∞) is the rate function. See Appendix 3.A for the formal definition
of the LDP.

Theorem 3.2.2 below provides a variational formula for χr in terms of the rate
functions of the three constituent processes underlying FT , namely (see [40, Chapters
I-II]):

(1) The rate function for (T−1N(T ))T>0, the number of resets per unit of time:

Ir(n) = n log
(n
r

)
− n+ r, n ∈ [0,∞). (3.2.7)

(2) The rate function for (N−1
∑N
i=1 δτi)N∈N, the empirical distribution of the dur-

ation of the reset periods:

Jr(µ) = h(µ | Er), µ ∈ P([0,∞)). (3.2.8)

Here, P([0,∞)) is the set of probability distributions on [0,∞), Er is the ex-
ponential distribution with mean 1/r, and h(· | ·) denotes the relative entropy

h(µ | ν) =

∫ ∞
0

µ(dx) log

[
dµ

dν
(x)

]
, µ, ν ∈ P([0,∞)). (3.2.9)
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(3) The rate function for (N−1
∑N
i=1 Fτ,i)N∈N, the empirical average of i.i.d. copies

of the reset-free functional Fτ over a time τ :

Kτ (u) = sup
v∈R
{uv −Mτ (v)}, u ∈ R, τ ∈ [0,∞). (3.2.10)

Here, Mτ (v) = logE0

[
evFτ

]
is the cumulant generating function of Fτ without

reset and we require, for all τ ∈ [0,∞), thatMτ exists in an open neighbourhood
of 0 in R (which is equivalent to (3.2.5)). It is known that Kτ is smooth and
strictly convex on the interior of its domain (see [40, Chapter I]).

3.2.2 Theorem. For every r > 0, the family (Pr(T−1FT ∈ · ))T>0 satisfies the LDP
on R with speed T and with rate function χr given by

χr(φ) = inf
(n,µ,w)∈Φ(φ)

{
Ir(n) + nJr(µ) + n

∫ ∞
0

µ(dt)Kt(w(t))
}
, φ ∈ R, (3.2.11)

where

Φ(φ) =

{
(n, µ,w) ∈ [0,∞)× P([0,∞))× B([0,∞);R) : n

∫ ∞
0

µ(dt)w(t) = φ

}
(3.2.12)

with B([0,∞);R) the set of Borel-measurable functions from [0,∞) to R.

Proof. The LDP for (T−1FT )T>0 follows by combining the LDPs for the constituent
processes and using the contraction principle [40, Chapter III]. The argument that
follows is informal. However, the technical details are standard and are easy to fill in.

First, recall that N(T ) is the number of reset events in the time interval [0, T ]. By
Cramér’s Theorem [40, Chapter I], (T−1N(T ))T>0 satisfies the LDP on [0,∞) with
speed T and with rate function Ir in (3.2.7), because resetting occurs according to a
Poisson process with intensity r. This rate function has a unique zero at n = r and
takes the value r at n = 0.

Next, consider the empirical distribution of the reset periods,

Lm =
1

m

m∑
i=1

δτi . (3.2.13)

By Sanov’s Theorem [40, Chapter II], (Lm)m∈N satisfies the LDP on P([0,∞)), the
space of probability distributions on [0,∞), with speed m and with rate function Jr
in (3.2.8). This rate function has a unique zero at µ = Er.

Finally, consider the empirical average of N independent trials {Fτ,i}Ni=1 of the
reset-free process of length τ ,

mN =
1

N

N∑
i=1

Fτ,i. (3.2.14)

By Cramér’s Theorem, (mN )N∈N satisfies the LDP on [0,∞) with speed N and with
rate function Kτ in (3.2.10). This rate function has a unique zero at u = E0(Fτ ).
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Now, the probability that nt µ(dτ) excursion times of length τ contribute an
amount unt µ(dτ) to the integral equals

e−nt µ(dτ)Kτ (u)+o(nt) (3.2.15)

for any u ∈ R. If we condition on N(T ) = nT and LN(T ) = µ, and pick w ∈
B([0,∞);R), then the probability that nT duration times contribute an amount φnT
to the integral, with

φ = n

∫ ∞
0

µ(dt)w(t), (3.2.16)

equals

e−nT
∫∞
0
µ(dt)Kt(w(t))+o(nT ). (3.2.17)

Therefore, by the contraction principle [40, Chapter III],

Pr(T−1FT ∈ dφ)

dφ
= e−Tχr(φ)+o(T ), (3.2.18)

where χr(φ) is given the variational formula in (3.2.11). �

3.2.3 Remark. A priori, Theorem 3.2.2 is to be read as a weak LDP: the level
sets of χr need not be compact, e.g. it is possible that χr ≡ 0. Under additional
assumptions, χr has compact level sets, in which case Theorem 3.2.2 can be read as
a strong LDP. See Appendix 3.A for more details.

We will see that the three functionals in (3.1.4) have rate functions of different
type, namely, χr is:

AT : zero at 1
2 , strictly positive and finite on [0, 1] \ { 1

2}, infinite on R \ [0, 1] (strong
LDP).

BT : zero on R (weak LDP).

CT : zero on [1/
√

2r,∞), strictly positive and finite on (0, 1/
√

2r), infinite on (−∞, 0]

(strong LDP).

§3.3 Two properties of the rate function

The variational formula in (3.2.11) can be used to derive some general properties of
the rate function with resetting. In this section, we show that the rate function is flat
beyond the mean with resetting provided the mean without resetting diverges, and is
quadratic below and near the mean with resetting. Both properties will be illustrated
in Sec. 3.6 for the absolute area of rBM.
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§3.3.1 Zero rate function above the mean
For the following theorem, we define

φ∗r = lim
T→∞

Er[T−1FT ], r ≥ 0. (3.3.1)

Moreover, we must assume that f ≥ 0 in (3.1.3), and that there exists a C ∈ (0,∞)

such that
E[f(Wt)

2] ≤ C E[f(Wt)]
2 ∀t ≥ 0. (3.3.2)

3.3.1 Remark. Assumption (3.3.2) holds for f(x) = |x|γ , x ∈ R, and any γ ∈
[0,∞), and for f(x) = 1[0,∞)(x), x ∈ R.

3.3.2 Theorem. Suppose that f satisfies (3.3.2) and that φ∗0 =∞. For every r > 0,
if φ∗r <∞, then

χr(φ) = 0 ∀φ ≥ φ∗r . (3.3.3)

In order to prove the theorem we need the following.

3.3.3 Lemma. If (3.3.2) holds, then the following zero-one law applies:

P
(

lim
T→∞

T−1FT =∞
)

= 1 ⇐⇒ φ∗0 =∞. (3.3.4)

Proof. Because (Wt)t≥0 has a trivial tail sigma-field, we have

P
(

lim
T→∞

T−1FT =∞
)
∈ {0, 1}. (3.3.5)

It suffices to exclude that the probability is 0. First note that (3.3.2) implies

E[(T−1FT )2] ≤ C E[T−1FT ]2 ∀T > 0. (3.3.6)

Indeed,

T 2E[(T−1FT )2] =

∫ T

0

ds

∫ T

0

dt E[f(Ws)f(Wt)]

≤
∫ T

0

ds

∫ T

0

dt
√
E[f(Ws)2]E[f(Wt)2]

≤ C
∫ T

0

ds

∫ T

0

dt E[f(Ws)]E[f(Wt)]

= C T 2 E[T−1FT ]2, (3.3.7)

where the first inequality uses Cauchy–Schwarz and the second inequality uses (3.3.2).
Armed with (3.3.6), we can use the Paley–Zygmund inequality

P(T−1FT ≥ δE[T−1FT ]) ≥ (1− δ)2 E[T−1FT ]2

E[(T−1FT )2]
∀ δ ∈ (0, 1)∀T > 0, (3.3.8)

to obtain

P
( T−1FT
E[T−1FT ]

≥ δ
)
≥ (1− δ)2 1

C
∀ δ ∈ (0, 1)∀T > 0. (3.3.9)
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Hence if limT→∞ E[T−1FT ] =∞, then

P
(

lim
T→∞

T−1FT =∞
)
≥ (1− δ)2 1

C
> 0 ∀ δ ∈ (0, 1), (3.3.10)

which completes the proof. �

We now turn to proving Theorem 3.3.2. Again, the argument that follows is
informal, but the technical details are standard.

Proof of Theorem 3.3.2. The variational formula for the rate function in (3.2.11) is a
constrained functional optimization problem that can be solved using the method of
Lagrange multipliers. For fixed n and µ, the Lagrangian reads

L(w(·)) = Ir(n) + nJr(µ) + n

∫ ∞
0

µ(dt)Kt(w(t))− λn
∫ ∞

0

µ(dt)w(t), (3.3.11)

where λ is the Lagrange multiplier that enforces the constraint

n

∫ ∞
0

µ(dt)w(t) = φ. (3.3.12)

We look for solutions wλ(·) of the equation ∂L
∂w(t) (·) = 0 for all t ≥ 0, i.e.,

K ′t(wλ(t)) = λ, t ≥ 0, (3.3.13)

where wλ(·) must satisfy the constraint n
∫∞

0
µ(dt)wλ(t) = φ. To that end, let Lt(·)

be the inverse of K ′t(·), i.e.,

K ′t(Lt(λ)) = λ, λ ∈ R, t > 0. (3.3.14)

Then (3.3.13) becomes
wλ(t) = Lt(λ), t ≥ 0, (3.3.15)

and so

χr(φ) = inf
n∈[0,∞), µ∈P([0,∞))

{
Ir(n) + nJr(µ) + n

∫ ∞
0

µ(dt)Kt(Lt(λ))
}
, (3.3.16)

where λ = λ(n, µ) must be chosen such that

n

∫ ∞
0

µ(dt)Lt(λ) = φ. (3.3.17)

Our task is to show that χr is zero on [φ∗r ,∞) when φ∗0 =∞. To do so, we perturb
χr(φ) around φ∗r . To see how, we first rescale time. The proper rescaling depends on
how FT scales with T without resetting. For the sake of exposition, we first consider
the case where there exists an α ∈ (1,∞) such that

T−αFT
d
= F1 ∀T > 0, (3.3.18)
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where d
= means equality in distribution. For example, for the area and the absolute

area we have α = 3
2 , while for the positive occupation time we have α = 1. (Note,

however, that neither the area nor the positive occupation time qualify for the theorem
because φ∗0 = 0, respectively, φ∗0 = 1

2 .) Afterwards we will explain how to deal with
the general case.

By (3.2.10), (3.3.14) and (3.3.18), we have

Kt(u) = K1(ut−α), u ∈ R, t > 0, Lt(λ) = L1(λtα) tα, λ ∈ R, t > 0. (3.3.19)

The rescaling in (3.3.19) changes the integral in (3.3.16) to

n

∫ ∞
0

µ(dt)K1(L1(λtα)) (3.3.20)

and the constraint in (3.3.17) to

n

∫ ∞
0

µ(dt)L1(λtα) tα = φ. (3.3.21)

We claim that, for every n ∈ (0,∞), we can find a minimising sequence of prob-
ability distributions (µm)m∈N (depending on n) such that λ = λ(n, µm) = 0 for all
m ∈ N and such that µm converges as m → ∞ to Er pointwise and in the L1-norm,
but not in the Lα-norm. We will show that this implies that χr(φ) = 0 for φ > φ∗r .
We will construct the sequence (µm)m∈N by perturbing Er slightly, adding a small
probability mass near some large time and taking the same probability mass away
near time 0.

u∗r
u

K1(u)

r
u∗r

u

K ′1(u)

λ

L1(λ)
r

r

Figure 3.1: Qualitative plot of u 7→ K1(u) and u 7→ K′1(u) on R. The domain of K1 is a
subset of R. In the interior of this domain, K1 is smooth and strictly convex.

Let u∗r be such that K1(u∗r) = 0, i.e.,

r

∫ ∞
0

Er(dt)u∗r tα = φ∗r (3.3.22)
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(see Fig. 3.1; recall that Er(dt) = re−rt dt). Since u∗r = L1(0), if we require the
probability distribution µ over which we minimise to satisfy

n

∫ ∞
0

µ(dt)u∗r t
α = φ, (3.3.23)

then the scaled version of the optimisation problem in (3.3.16) reduces to

inf
n∈[0,∞)

{
Ir(n) + n inf

µ∈P([0,∞))
Jr(µ)

}
. (3.3.24)

Our goal is to prove that this infimum is zero for all φ > φ∗r when φ∗0 =∞.
We get an upper bound by picking n = r and

µm(dt) = Er(dt) + νm(dt) (3.3.25)

with
νm(dt) = −εmδ0(dt) + εmδθm(dt), (3.3.26)

where εm, θm will be chosen later such that limm→∞ εm = 0 and limm→∞ θm = ∞.
Substituting this perturbation into (3.3.23) and using (3.3.22), we get

ru∗r εm(θm)α = φ− φ∗r , (3.3.27)

which places a constraint on our choice of εm, θm. On the other hand, substituting
the perturbation into the expression for Jr(µ), we obtain

Jr(µm) =

∫ ∞
0

(Er − εmδ0 + εmδθ)(dt) log
(Er − εmδ0 + εmδθ

Er

)
(t)

=

∫ ∞
0

Er(dt) log
(

1 +
−εmδ0 + εmδθ

Er

)
(t)

− εm
∫ ∞

0

δ0(dt) log
(

1 +
−εmδ0 + εmδθ

Er

)
(t)

+ εm

∫ ∞
0

δθm(dt) log
(

1 +
−εmδ0 + εmδθ

Er

)
(t).

(3.3.28)

For a proper computation, δ0 and δθ must be approximated by η−1 1[0,η] and
η−1 1[θ,θ+η], followed by η ↓ 0. Doing so, after we perform the integrals, we see
that the three terms in the right-hand side of (3.3.28) become

rη log
(1− εm/η

r

)
+ re−rθmη log

(
1 +

εm/η

re−rθm

)
,

− εm log
(

1− εm/η

r

)
,

+ εm log
(

1 +
εm/η

re−rθm

)
.

(3.3.29)

For all of these terms to vanish as m→∞ followed by η ↓ 0, it suffices to pick εm and
θm such that limm→∞ εm = 0, limm→∞ θm = ∞ and limm→∞ θmεm = 0. Clearly,
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this can be done while matching the constraint in (3.3.27) for any φ > φ∗r , because
α ∈ (1,∞), and so we conclude that indeed the infimum in (3.3.24) is zero.

It is easy to check that the same argument works when, instead of (3.3.18), there
exists a T 7→ L(T ) with limT→∞ L(T ) =∞ such that

(TL(T ))−1FT
d
= F1 ∀T > 0. (3.3.30)

Indeed, then the constraint in (3.3.22) becomes ru∗r εmθmL(θm) = φ− φ∗r , which can
be matched too. It is also not necessary that the scaling in (3.3.18) and (3.3.30) hold
for all T > 0. It clearly suffices that they hold asymptotically as T → ∞. Hence,
all that is needed is that T−1FT without resetting diverges as T → ∞, which is
guaranteed by Lemma 3.3.3. �

The interpretation of the above approximation is as follows. The shift of a tiny
amount of probability mass into the tail of the probability distribution µ has a neg-
ligible cost on the exponential scale. The shift produces a small fraction of reset
periods that are longer than typical. In these reset periods large contributions occur
at a negligible cost, since the growth without reset is faster than linear. In this way
we can produce any φ that is larger than φ∗r at zero cost on the scale T of the LDP.

3.3.4 Remark. Theorem 3.3.2 captures a potential property of the rate function
to the right of the mean. A similar property holds to the left of the mean, when
φ∗0 = −∞ and φ∗r > −∞ for r > 0.

§3.3.2 Quadratic rate function below the mean
3.3.5 Theorem. Suppose that φ∗0 =∞. For every r > 0, if φ∗r <∞, then

χr(φ) ∼ Cr(φ∗r − φ)2, φ ↑ φ∗r , (3.3.31)

with Cr ∈ (0,∞) a constant that is given by the variational formula in (3.3.39)–
(3.3.40) below. (The symbol ∼ means that the quotient of the left-hand side and the
right-hand side tends to 1.)

Proof. We perturb (3.2.11) around its zero by taking

n = r +mε, µ(dt) = Er(dt) [1 + ν(t)ε], w(t) = u∗r + v(t)ε, (3.3.32)

subject to the constraint
∫∞

0
Er(dt) ν(t) = 0, with ν(·), v(·) Borel measurable, to

ensure that µ ∈ P([0,∞)). This gives

Ir(r +mε) = F ∗r (m)ε2 +O(ε3), F ∗r (m) =
m2

2r
. (3.3.33)

Next, we have

Jr(µ) =

∫ ∞
0

Er(dt) [1 + ν(t)ε] log[1 + ν(t)ε]. (3.3.34)
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Expanding the logarithm in powers of ε and using the normalisation condition, we
obtain

Jr(µ) = G∗r(ν)ε2 +O(ε3), G∗r(ν) =
1

2

∫ ∞
0

Er(dt) ν2(t). (3.3.35)

Lastly, we know that (see Fig. 3.1)

K1(u∗r + v(t)ε) ∼ 1
2 v(t)2K ′′1 (u∗r)ε

2. (3.3.36)

(As observed below (3.2.10), K1 is strictly convex and smooth on the interior of its
domain.) Hence the last term in the variational formula becomes

(r +mε)

∫ ∞
0

Er(dt) [1 + ν(t)ε]K1(u∗r + v(t)ε) = H∗r (v)ε2 +O(ε3),

H∗r (v) =
r

2
K ′′1 (u∗r)

∫ ∞
0

Er(dt) v(t)2.

(3.3.37)

It follows that
χ(φ∗r + ε) = Crε

2 +O(ε3) (3.3.38)

with
Cr = inf

(m,ν,v)∈Φ

{
F ∗r (m) +G∗r(ν) +H∗r (v)

}
, (3.3.39)

where

Φ =

{
(m, ν, v) :

∫ ∞
0

Er(dt) ν(t) = 0, r

∫ ∞
0

Er(dt)
[m
r

+ ν(t) + v(t)
]
tα = 1

}
.

(3.3.40)
The last constraint guarantees that n

∫∞
0
µ(dt)w(t) = φ∗r + ε+O(ε2), and arises from

(3.3.22)–(3.3.23) after inserting (3.3.32) and letting ε ↓ 0, all for the special case in
(3.3.18). Finally, it is easy to check that the same argument works when (3.3.18) is
replaced by (3.3.30). In that case, tα in (3.3.40) becomes tL(t).

Note that F ∗r , G∗r and H∗r need not be finite everywhere. However, for the vari-
ational formula in (3.3.39) clearly only their finite values matter. Also note that the
perturbation is possible only for ε < 0 (φ < φ∗r), since there is no minimiser to expand
around for ε > 0 (φ > φ∗r), as is seen from Theorem 3.3.2.

We have Cr > 0, because the choice m = 0, ν(·) ≡ 0, v(·) ≡ 0 does not match
the last constraint. We also have Cr <∞, because we can choose m = rα/Γ(1 + α),
ν(·) ≡ 0, v(·) ≡ 0, which gives F ∗r (m) = r2α−1/2(Γ(1 + α))2, G∗r(ν) = 0, H∗r (v) = 0.
�

§3.4 Positive occupation time

We now apply the results of Sec. 3.3 to the three functionals of rBM defined in (3.1.4).
We start with the positive occupation time, defined as

AT =

∫ T

0

1[0,∞)(W
r
t ) dt. (3.4.1)
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This random variable has a density with respect to the Lebesgue measure, which we
denote by pAr (a), i.e.,

pAr (a) =
Pr(AT ∈ da)

da
, a ∈ (0, T ). (3.4.2)

Without resetting, this density is

pA0 (a) =
1

π
√
a(T − a)

, a ∈ (0, T ), (3.4.3)

which is the derivative of the famous arcsine law found by Lévy [78]. The next theorem
shows how this result is modified under resetting.

3.4.1 Theorem. The positive occupation time of rBM has density

pAr (a) =
r

T
e−rT W

(
r
√
a(T − a)

)
, a ∈ (0, T ), (3.4.4)

where

W (x) =
1

x

∞∑
j=0

xj

Γ( j+1
2 )2

= I0(2x) +
1

xπ
1F2

(
{1}, { 1

2 ,
1
2}, x2

)
, x ∈ (0,∞), (3.4.5)

with I0(y) the modified Bessel function of the first kind with index 0 and
1F2({a}, {b, c}, y) the generalized hypergeometric function [2, Section 9.6, Formula
15.6.4].

Proof. In what follows, the regions of convergence of the generating functions will be
obvious, so we do not specify them.

The non-reset generating function in (3.2.1) for the occupation time started at
X0 = 0 is known to be [84]

G̃0(k, s) =
1√

s(s− k)
. (3.4.6)

This can be explicitly inverted to obtain the density in (3.4.3).
To find the Laplace transform of the reset generating function, we use The-

orem 3.2.1. Inserting (3.4.6) into (3.2.3), we find

G̃r(k, s) =
1√

(s+ r)(s+ r − k)− r
. (3.4.7)

This can be explicitly inverted to obtain the density in (3.4.4), as follows. Write

pAr (a) = e−rTH(aT, (1− a)T ), (3.4.8)

where H is to be determined. Substituting this form into (3.2.2), we get

G̃r(k, s) =

∫ ∞
0

dT

∫ 1

0

da ekTa e−(s+r)T H(aT, (1− a)T ). (3.4.9)
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Performing the change of variable t1 = aT and t2 = (1− a)T , we get

G̃r(k, s) =

∫ ∞
0

dt1

∫ ∞
0

dt2 e−(r+s−k)t1e−(r+s)t2H(t1, t2). (3.4.10)

Let λ1 = r + s − k and λ2 = r + s. Then (3.4.10), along with the right-hand side of
(3.4.7), gives ∫ ∞

0

dt1

∫ ∞
0

dt2 e−λ1t1−λ2t2H(t1, t2) =
1√

λ1λ2 − r
. (3.4.11)

To invert the Laplace transform in (3.4.11), we expand the right-hand side in r,∫ ∞
0

dt1

∫ ∞
0

dt2 e−λ1t1−λ2t2H(t1, t2) =

∞∑
j=0

rj

(λ1λ2)(j+1)/2
, (3.4.12)

and invert term by term using the identity

1

Γ(α)

∫ ∞
0

dt tα−1e−λt =
1

λα
, α > 0. (3.4.13)

This leads us to the expression

H(t1, t2) =

∞∑
j=0

rj

Γ( j+1
2 )2

(t1t2)(j−1)/2 = r

∞∑
j=0

(r
√
t1t2)j−1

Γ( j+1
2 )2

. (3.4.14)

Substituting this expression into (3.4.8), we find the result in (3.4.4)–(3.4.5). �

The arcsine density in (3.4.3) is recovered in the limit r ↓ 0 by noting thatW (x) ∼
(πx)−1 as x ↓ 0. On the other hand, we have

W (x) ∼ 1

2
√
πx

e2x, x→∞ (3.4.15)

Consequently,

T pAr (aT ) ∼
√
r

2
√
π T (a(1− a))

1/4
e
−r T

(
1−2
√
a(1−a)

)
, a ∈ (0, 1), T →∞.

(3.4.16)
Keeping only the exponential term, we thus find that (T−1AT )T>0 satisfies the LDP
with speed T and with rate function χAr given by

χAr (a) = r
(

1− 2
√
a(1− a)

)
, a ∈ [0, 1]. (3.4.17)

The rate function χAr is plotted in Fig. 3.1. As argued in [91], (3.4.17) can also be
obtained by noting that the largest real pole of G̃(k, s) in the s-complex plane is

λr(k) =
1

2

(
k − 2r +

√
k2 + 4r2

)
, k ∈ R, (3.4.18)
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Figure 3.1: Rate function a 7→ χAr (a) for the positive occupation time of rBM.

which defines the scaled cumulant generating function of AT as T →∞ (see (3.6.24)
below). Since this function is differentiable for all k ∈ R, we can use the Gärtner–Ellis
Theorem [40, Chapter V] to identify χAr as the Legendre transform of λr.

Note that the positive occupation time does not satisfy the LDP when r = 0,
since pA0 (a) is not exponential in T and does not concentrate as T →∞. Thus, here
resetting is ‘strong enough’ to force concentration of T−1AT on the value 1

2 , with
fluctuations around this value that are determined by the LDP and the rate function
χAr in (3.4.17). In particular, since χAr (0) = χAr (1) = r, the probability that rBM
always stays positive or always stays negative is determined on the large deviation
scale by the probability e−rT of having no reset up to time T .

Note that φ∗r = 1
2 for r ≥ 0. Hence the positive occupation time does not satisfy

the condition in Theorem 3.3.2.

§3.5 Area

We next consider the area of rBM, defined as

BT =

∫ T

0

W r
t dt. (3.5.1)

Its density with respect to the Lebesgue measure is denoted by pBr (b), b ∈ R. The full
distribution for T fixed is not available, and therefore we start by computing a few
moments.

3.5.1 Theorem. For every T ∈ (0,∞), the area of rBM for r > 0 has vanishing
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odd moments and non-vanishing even moments. The first two even moments are

Er[B2
T ] = 2

r3

(
rT − 2 + e−rT (2 + rT )

)
, (3.5.2)

Er[B4
T ] = 1

r6

(
12(rT )2 + 120rT − 840 + e−rT [9(rT )4

+68(rT )3 + 288(rT )2 + 720 rT + 840]
)
. (3.5.3)

Proof. The result follows directly from the renewal formula (3.2.3) and the Laplace
transform of the generating function of BT without resetting,

Q̃0(k, s) =

∫ ∞
0

dT e−sTE0[ekBT ] =

∫ ∞
0

dT e
1
6k

2T 3−sT , (3.5.4)

because BT is a Gaussian random variable with mean 0 and variance 1
3T

3. Expanding
the exponential in k and using (3.2.3), we obtain the following expansion for the
Laplace transform of the characteristic function with resetting:

Q̃r(k, s) =
1

s
+

1

s2(r + s)2
k2 +

(r + 10s)

s3(r + s)5
k4 +O(k6). (3.5.5)

Taking the inverse Laplace transform, we find that the odd moments are all zero,
because there are no odd powers of k, and that the even moments are given by the
inverse Laplace transforms L−1 of the corresponding even powers of k. Thus,

Er[B2
T ] = L−1

[ 2!

s2(r + s)2

]
,

Er[B4
T ] = L−1

[4!(r + 10s)

s3(r + s)5

]
, (3.5.6)

which yields the results shown in (3.5.2). �

The second moment, which gives the variance, shows that there is a crossover in
time from a reset-free regime characterized by

Er[B2
T ] ∼ 1

3T
3, T ↓ 0, (3.5.7)

which is the variance obtained for r = 0, to a reset regime characterized by

Er[B2
T ] ∼ 2T

r2
, T →∞. (3.5.8)

The crossover where the two regimes meet is given by T =
√

6/r, which is proportional
to the mean reset time. This gives, as illustrated in Fig. 3.1, a rough estimate of the
time needed for the variance to become linear in T because of resetting.

The small fluctuations ofBT of order
√
T around the origin are Gaussian-distributed.

This is confirmed by noting that the even moments of BT scale like

Er[BnT ] ∼ (2n)!

n!

(√
T

r

)n
, T →∞, (3.5.9)

58



§3.5. Area

C
h
a
pter

3

�✁✂ ✄ ☎✆ ✝✞✟
✠✡-☛

☞✌✍✎

✏

✑✒✓

✔✕✖

✗✘✙

T

E r
[B

2 T
]

r = 0.2
r = 0.4
r = 0.6
r = 0.8
r = 1.0

Figure 3.1: Log-log plot of the variance of the area BT of rBM, showing the crossover from
the T 3-scaling (black line) to the T -scaling (dashed lines) for various values of r. The filled
circles show the location of the crossover time T =

√
6/r.

so that

Er
[(

BT√
T

)n]
∼ (2n)!

n!rn
, T →∞, (3.5.10)

for n even. This implies that the cumulants all asymptotically vanish, except for the
variance. Indeed, it can be verified that

κ2 = lim
T→∞

Er[T−1B2
T ] =

2

r2
, (3.5.11)

while

κ4 = lim
T→∞

Er[T−2B4
T ]− 3Er[T−1B2

T ]2 =
12

r4
− 3

(
2

r2

)2

= 0. (3.5.12)

and similarly for all higher even cumulants. This suggests the following central limit
theorem.

3.5.2 Theorem. The area of rBM satisfies the central limit theorem,

lim
T→∞

σ
√
T pBr

(
b

σ
√
T

)
= N(0, 1) (3.5.13)

with N(0, 1) the standard Gaussian distribution and σ = 2/r2.

Proof. We start from the Laplace inversion formula of the renewal formula,

pBr (b) = e−rT
∫
R

dk

2π
e−ikb

∫ c+i∞

c−i∞

ds

2πi
esT

Q̃0(k, s)

1− rQ̃0(k, s)
, (3.5.14)
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where c is any value in the region of convergence of Q̃0(k, s) in the s-complex plane.
Rescaling b by b = b̄

√
T , as is standard in proofs of the central limit theorem, we

obtain

pBr (b̄
√
T ) =

e−rT√
T

∫
R

dl

2π
e−ilb̄

∫ c+i∞

c−i∞

ds

2πi
esT

Q̃0(l/
√
T , s)

1− rQ̃0(l/
√
T , s)

, (3.5.15)

where l = k/
√
T . Given a fixed l and letting T → ∞, we use the known expression

of E0[eikBT ] in (3.5.4) to Taylor-expand Q̃0(k, s) around k = 0,

Q̃0(k, s) =
1

s
− k2

s4
+O(k4), (3.5.16)

to obtain
Q̃0(l/

√
T , s)

1− rQ̃0(l/
√
T , s)

=
1 +O(l2/T )

s− r + rl2

s3T +O(l4/T 2)
. (3.5.17)

This expression has a simple pole at

s∗ = r − l2

r2T
+O(l4/T 2), (3.5.18)

so that, deforming the Bromwich contour through that pole, we get

√
T pBr (b̄

√
T ) = e−rT

∫
R

dl

2π
e−ilb̄es

∗T =

∫
R

dl

2π
e−ilb̄e−l

2/r2+O(l4/T ). (3.5.19)

As T → ∞, only the quadratic term remains in the exponential, which yields a
Gaussian distribution with variance 2/r2. �

The convergence to the Gaussian distribution can be much slower than the mean
reset time, as can be seen in Fig. 3.1, especially for small reset rates. From simulations,
we have found that the distribution of T−1/2BT is well approximated by a Gaussian
distribution near the origin. However, the tails are strongly non-Gaussian, even for
large T , indicating that there are important finite-time corrections to the central limit
theorem, related to rare events involving few resets and, therefore, to large Gaussian
excursions characterised by the T 3-variance.

These corrections can be analysed, in principle, by going beyond the dominant
scaling in time of the moments shown in (3.5.9), so as to obtain corrections to the
cumulants, which do not vanish for finite T . It also seems possible to obtain inform-
ation about the tails by performing a saddle-point approximation of the combined
Laplace–Fourier inversion formula for values of BT scaling with T 3/2. We have at-
tempted such an approximation, but have found no results supported by numerical
simulations performed to estimate pBr (b). More work is therefore needed to find the
tail behavior of this density in the intermediate regime where T 1/2 . b . T 3/2.

At this point, we can only establish that (T−1BT )T>0 follows a weak LDP with
χBr ≡ 0, implying that pBr (b) decays slower than exponentially on the scale T . This
follows from the general upper bound

χr(φ) ≤ χ0(φ) + r ∀φ ∈ R, r > 0 (3.5.20)
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found in [92]. We know that χB0 ≡ 0, since for every M ∈ (0,∞) the probability that
the Brownian motion stays above M after a time of order M2 decays like 1/

√
T as

T →∞. Hence it follows that χBr ≤ r. Since rate functions are typically convex, the
latter can only mean that χBr ≡ 0.

Note, incidentally, that (3.5.20) is satisfied by the rate function χAr of the positive
occupation time (see (3.4.17) and Fig. 3.1).

§3.6 Absolute area

We finally consider the absolute area of rBM, defined as

CT =

∫ T

0

|W r
t |dt, (3.6.1)

which can also be seen as the area of an rBM reflected at the origin. Its density with
respect to the Lebesgue measure is denoted by pCr (c), c ∈ [0,∞). This density was
studied for pure BM (r = 0) by Kac [68] and Takács [128] (see also [129]). It satisfies
the LDP with speed T , when CT is rescaled by T , but with a divergent mean, which
translates into the rate function tending to zero at infinity (see Fig. 3.1). The effect
of resetting is to bring the mean of T−1CT to a finite value. Below the mean, we
find that the LDP holds with speed T and a non-trivial rate function derived from
Theorem 3.2.1, whereas above the mean we find that the rate function vanishes, in
agreement with Theorem 3.3.2. This indicates that the upper tail of T−1CT decays
slower than exponentially in T .

As a prelude, we show how the mean and variance of CT are affected by resetting.
We do not know the full distribution, and also the scaling remains elusive.

3.6.1 Theorem. The absolute area of rBM has a mean and a variance given by

Er[CT ] = T 3/2f1(rT ), Varr[CT ] = T 3f2(rT ), r > 0, (3.6.2)

where

f1(ρ) =
1√
2π

[
e−ρ

ρ
+

√
π

2(ρ)3/2
(2ρ− 1) erf[

√
ρ ]

]
(3.6.3)

and

f2(ρ) =
1

8π(ρ)3

[
2π
(
2ρ2 + ρ− 6 + (5ρ+ 6)e−ρ

)
−
(
2
√
ρ e−ρ +

√
π(2ρ− 1) erf[

√
ρ]
)2
Big]. (3.6.4)

Proof. The absolute area of pure BM (r = 0) is known to scale as T 3/2, so it is
convenient to rescale CT as

CT = T 3/2

∫ 1

0

dt |W r
t | = T 3/2D, (3.6.5)
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which defines a new random variable D. Expanding (3.2.2) in terms of k, we get

G̃0(k, s) =

∫ ∞
0

dT e−sT
[
1 + kT 3/2 E0[D] + 1

2k
2T 3 E0[D2] +O(k3)

]
=

1

s
+

E0[D] Γ( 5
2 ) k

s5/2
+

3E0[D2] k2

s4
+O(k3). (3.6.6)

Abbreviate a = E0[D] Γ( 5
2 ) and b = E0[D2] [66]. Inserting (3.6.6) into (3.2.3), we find

G̃r(k, s) =

1
s+r + ak

(s+r)5/2
+ 3bk2

(s+r)4 +O(k3)

1− r
[

1
s+r + ak

(s+r)5/2
+ 3bk2

(s+r)4 +O(k3)
]

=

1
s

[
1 + ak

(s+r)3/2
+ 3bk2

(s+r)3 +O(k3)
]

1− rak
s(s+r)3/2

− 3rbk2

s(s+r)3 +O(k3)
. (3.6.7)

Inserting (1 + ck + dk2)−1 = 1− ck + (c2 − d)k2 +O(k3), we obtain

G̃r(k, s) =
1

s
+

a

s2(s+ r)1/2
k +

(
b

s2(s+ r)2
+

ra2

s3(s+ r)2

)
k2 +O(k3). (3.6.8)

We can also expand G̃r(k, s) directly from its definition:

G̃r(k, s) =
1

s
+ k

∫ ∞
0

dT e−sT Er[CT ] +
k2

2

∫ ∞
0

dT e−sT Er[C2
T ] +O(k3). (3.6.9)

Comparing (3.6.7) and (3.6.9), we find∫ ∞
0

dT e−sT Er[CT ] =
a

s2(s+ r)1/2
,

1

2

∫ ∞
0

dT e−sT Er[C2
T ] =

b

s2(s+ r)2
+

ra2

s3(s+ r)2
. (3.6.10)

To calculate the first and the second moment, we simply need to invert the Laplace
transforms. For the mean we find

Er[CT ] = T 3/2f1(rT ), (3.6.11)

where we use that E0[D] = 4
3
√

2π
by [128, Table 3]. For the second moment we use

E0[D2] = b = 3
8 from the same reference to find

Er[C2
T ] = T 3f3(rT ) (3.6.12)

with
f3(rT ) =

1

4(rT )3

[
2(rT )2 + rT − 6 + (5rT + 6)e−rT

]
. (3.6.13)

The variance is therefore found to be

Varr[CT ] = T 3f3(rT )− T 3f2
1 (rT ) = T 3f2(rT ). (3.6.14)

�
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The result for the mean converges to E0[D] when rT ↓ 0 and scales like
3
4E0[D]

√
π
rT when rT →∞. Therefore

lim
T→∞

Er[T−1CT ] = c∗r =
1√
2r
. (3.6.15)

The same analysis for the variance yields

lim
T→∞

T−1 Varr[CT ] = lim
T→∞

T Varr[T
−1CT ] =

3

4r2
. (3.6.16)

These two results suggest that (T−1CT )T>0 satisfies the LDP. To compute the cor-
responding rate function, we define the function

H(x) = −21/3 AI(x)

Ai′(x)
, (3.6.17)

where
AI(x) =

∫ ∞
x

Ai(t) dt (3.6.18)

is the integral Airy function and Ai(x) is the Airy function [2, Section 10.4] defined,
for example, by

Ai(x) =
1

π

∫ ∞
0

cos
(

1
3 t

3 + xt
)

dt. (3.6.19)

The next theorem gives an explicit representation of the rate function of (T−1CT )T>0

for values below its mean.

3.6.2 Theorem. Let c∗r = 1/
√

2r, and let s∗k be the largest real root in s of the
equation

r

(−k)2/3
H

(
21/3(s+ r)

(−k)2/3

)
= 1, k < 0. (3.6.20)

Then (T−1CT )T>0 satisfies the LDP on (0, c∗r) with speed T and with rate function
given by the Legendre transform of s∗k.

Proof. With the same rescaling as in (3.6.5), the generating function for CT can be
written as

G0(k, T ) = E0[ekT
3/2D]. (3.6.21)

Using [66, Eq. (173)], we have∫ ∞
0

e−sTE0[e−
√

2T 3/2ξCT ]dT = − AI[ξ−2/3s]

ξ2/3Ai′[ξ−2/3s]
, ξ > 0, (3.6.22)

so that the Laplace transform of G0(k, T ) has the explicit expression

G̃0(k, s) =
1

(−k)2/3
H

(
21/3s

(−k)2/3

)
, k < 0, (3.6.23)

where H(x) is the function defined in (3.6.17).
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Figure 3.1: Left: SCGF of the absolute area of rBM as a function of k for r = 1 (full line)
and r = 0 (dashed line). Right: Corresponding rate function obtained by Legendre transform
for r = 1 (full line) and r = 0 (dashed line). Above the mean c∗r = 1/

√
2r, χCr (c) is flat.

With this result, we follow the method detailed in [91]: we insert the expression
for G̃0(k, s) into (3.2.3) to find the expression for G̃r(k, s) and locate the largest real
pole of that function, which is known to determine the scaled cumulant generating
function (SCGF) of CT , defined as

λr(k) = lim
T→∞

1

T
logGr(k, T ). (3.6.24)

Due to the form of G̃r(k, s) in (3.2.3), this pole must be given by the largest real root
of the equation rG̃0(k, s+ r) = 1, which yields the equation shown in (3.6.20). From
there we apply the Gärtner–Ellis Theorem [40] by noting that λr(k) = s∗k is finite and
differentiable for all k < 0. Consequently, the rate function is given by the Legendre
transform

χCr (ck) = kck − λr(k), (3.6.25)

where ck = λ′r(k) for all k < 0. It can be verified that λ′r(k) → 0 as k → −∞ and
λ′r(k)→ c∗r as k ↑ 0. Thus, the rate function is identified on (0, c∗r). �

The plot on the left in Fig. 3.1 shows the SCGF λr(k), while the plot on the
right shows the rate function χCr (c) obtained by solving (3.6.20) numerically and by
computing the Legendre transform in (3.6.25). The rate function is compared with
the rate function without resetting, which is given by

χC0 (c) =
2|ζ ′0|3
27 c2

, (3.6.26)

where ζ ′0 is the first zero of the derivative of the Airy function. The derivation of χC0
also follows from the Gärtner–Ellis Theorem and is given in Appendix 3.B.

Comparing the two rate functions, we see that T−1CT has a finite mean c∗r with
resetting. Above this value, it is not possible to obtain χCr (c) from Gr(k, T ), since
the latter function is not defined for k > 0, which indicates that χCr (c) is either non-
convex or has a zero branch for c > c∗r (see [130, Sec. 4.4]). Since this is a special case
of Theorem 3.3.2, the second alternative applies, i.e., χCr (c) = 0 for all c > c∗r , which
implies that the right tail of T−1CT decays slower than e−T .
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Similar rate functions with zero branches also arise in stochastic collision models
[107, 57], as well as in non-Markovian random walks [60], and are related to a speed
in the LDP that grows slower than T . For the absolute area of rBM, we do not know
what the exact decay of the density of T−1CT is above the mean or whether, in fact,
this density satisfies the LDP. This is an open problem.

§3.7 Conclusion

In this paper, we have studied the statistical properties of additive functionals of a
variant of Brownian motion that is reset at the origin at random intervals, and have
provided explicit results for three specific functionals, namely, the occupation time,
the area, and the absolute area. Functionals of standard Brownian motion have been
studied extensively in the past, and come with numerous applications in physics and
computer science [84, 86]. In view of these applications, we expect our results for
reset Brownian motion to be relevant in a variety of different contexts, in particular,
in search-related problems, queuing theory, and population dynamics, which have all
been analysed in the last few years in connection with resetting.

Appendix

§3.A Large deviation principle

Let S be a Polish (i.e., complete separable metric) space. A family (PT )T>0 of prob-
ability distributions on S is said to satisfy the strong large deviation principle (LDP)
with speed T and with rate function I when the following three properties hold:

(1) I 6≡ ∞. The level sets of I, defined by {s ∈ S : I(s) ≤ c}, c ∈ [0,∞), are
compact.

(2) lim supT→∞ T−1 logPT (C) ≤ −I(C) for all C ⊂ S Borel and closed.

(3) lim infT→∞ T−1 logPT (O) ≥ −I(O) for all O ⊂ S Borel and open.

Here
I(S) = inf

s∈S
I(s), S ⊂ S. (3.A.1)

The family (PT )T>0 is said to satisfy the weak LDP when in (1) we only require
the level sets to be closed and in (2) we only require the upper bound to hold for
compact sets. The weak LDP together with exponential tightness, i.e.,

lim
K↑S

K compact

lim sup
T→∞

T−1 logPT (S \K) = −∞, (3.A.2)

implies the strong LDP. For further background on large deviation theory, the reader
is referred to [40, Chapter III] and [40, 130].
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§3.B Rate function of the absolute area for BM

The SCGF, defined in (3.6.24), is known to be given for BM without resetting by the
principal eigenvalue of the following differential operator:

Lk =
σ2

2

d2

dx2
+ k|x|, x ∈ R, (3.B.1)

called the tilted generator, so that

(Lkψk)(x) = λ(k)ψk(x), (3.B.2)

where ψk(x) is the associated eigenfunction satisfying the natural (Dirichlet) boundary
conditions ψ(x) → 0 as x → ±∞ [131]. Since |Wt| has the same distribution as BM
reflected at zero, we can also obtain λ(k) as the principal eigenvalue of

Lk =
σ2

2

d2

dx2
+ kx, x ≥ 0, (3.B.3)

with the Neumann boundary condition ψ′k(0) = 0, which accounts for the fact that
there is no current at the reflecting barrier, in accordance with the Dirichlet boundary
condition ψk(∞) = 0.

The solution ψk(x) of both eigenvalue problems is given in terms of the Airy
function, Ai(ζ), with

ζ =
(−2k

σ2

)1/3(
x− λ(k)

k

)
. (3.B.4)

Imposing the boundary conditions, we get a discrete eigenvalue spectrum, given by

λ(i)(k) =
(σ2

2

)1/3

(−k)2/3ζ ′i, (3.B.5)

where ζ ′i is the ith zero of Ai′(x).
The largest eigenvalue λ(0)(k) corresponds to the SCGF λ0(k) without resetting

(see Fig. 3.1), which yields the rate function χC0 shown in (3.6.26), after applying the
Legendre transform shown in (3.6.25). The function λ0(k) is defined only for k ≤ 0,
but since it is steep at k = 0, the Gärtner–Ellis Theorem can be applied in this case.

Note that the spectral method can also be used to find the rate function χCr of the
absolute area of rBM, following the method explained in [91]. However, the expression
for the generating function G̃0(k, s) in this case is explicit, so it is more convenient
to use this expression, as is done in the proof of Theorem 3.6.1, in combination with
the renewal formula of Theorem 3.2.1.
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