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PART I

LARGE DEVIATIONS OF
STOCHASTIC PROCESSES WITH

RESETTING
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2. Large deviations for diffusions with resetting

CHAPTER 2
Large deviations for diffusions

with resetting

This chapter is based on:[92].

Abstract

Markov processes restarted or reset at random times to a fixed state or region
in space have been actively studied recently in connection with random searches,
foraging, and population dynamics. Here we study the large deviations of time-
additive functions or observables of Markov processes with resetting. By deriving a
renewal formula linking generating functions with and without resetting, we are able
to obtain the rate function of such observables, characterizing the likelihood of their
fluctuations in the long-time limit. We consider as an illustration the large deviations
of the area of the Ornstein-Uhlenbeck process with resetting. Other applications
involving diffusions, random walks, and jump processes with resetting or catastrophes
are discussed.
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§2.1 Introduction

Stochastic processes with restarting or reset events, corresponding to random trans-
itions in time to a given state or region in space, have been the subject of active
studies in physics and mathematics in recent years. In physics, such processes have
been studied as a mechanism for power-law distributions [89] and, more recently, as
random search models suggested by common experience (e.g., losing one’s keys) in
which periods of diffusive exploration are interspaced with random returns to a start-
ing point [48, 47, 50, 49, 74, 58, 87, 88]. In this context, a reset is also called a restart
[67] or a teleportation [11] and can be considered as part of more general intermittent
search strategies combining different exploration dynamics [97].

In mathematics, processes with reset have been studied mostly in the context
of birth-death processes modelling the evolution of populations in which partial or
complete extinction or emigration events happen at random times [101, 19, 18, 75, 102,
45, 43]. In this context, a reset is more often referred to as a catastrophe, disaster or
decimation and can also be seen as an absorbing or “killing” state that triggers, when
reached, a restart or “resurrection” of the process [102]. Similar jump processes have
been studied for modelling queues where random “failures” clearing the content or
occupation of a queue are followed by “repaired phases” in which the queue functions
normally [31, 29, 71].

The focus of these studies, both on the physical and mathematical sides, is on
determining time-dependent and stationary distributions, as well as survival and first-
passage time statistics using modified Master or Fokker-Planck equations that account
for the effect of resetting. Renewal representations of distributions and first-passage
time statistics have also been obtained for jump processes [75, 102, 45] and diffusion
equations [48, 47, 50]. First-passage times are especially important for search ap-
plications, as they provide a measure of the efficiency of adding resetting to random
walks.

Here, we consider a different problem involving resetting, namely, that of deriving
large deviation functions for additive observables. The study of large deviations for
“normal” Markov processes is an active area of probability theory having many ap-
plications in queueing theory, estimation, and control [20, 119, 39]. Large deviation
functions also play a fundamental role in statistical physics by providing rigorous ver-
sions of the notions of entropy and free energy for equilibrium systems [46], which can
be generalized to nonequilibrium systems driven in steady states [130, 40, 42, 15, 61].
In this context, an additive observable is simply a quantity integrated over time for a
physical system evolving stochastically due to the influence of noise, external forces,
and boundary reservoirs. It can represent, for example, the work done when pulling a
Brownian particle with laser tweezers [132], the stretch of a molecular motor attached
to a protein [91], or the total energy or particle current exchanged between different
reservoirs in a given time interval [42]. In all cases, the fluctuations of the observable
studied are characterized in the long-time limit by the so-called rate function, which
is the central function of large deviation theory [46, 39, 40, 130].

We obtain in the following large deviation functions for processes with resetting by
deriving two representations for the generating function of additive observables: one
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that is essentially a reset generalization of the Feynman-Kac formula and another that
links, via a renewal argument, the generating function of an observable with resetting
to its generating function without resetting. The derivation of rate functions follows
from these results by studying, as is common in large deviation theory, the long-time
asymptotics of generating functions. As an illustration of these results, we consider
in Sec. 2.4 the large deviations of the integral (area) of the reset Ornstein-Uhlenbeck
process, which can be considered as a simple model of molecular motor with resetting
[91]. Other applications related to birth-death processes and queues are mentioned
in the conclusion of the paper.

§2.2 Problem

To simplify the presentation, we consider the case of one-dimensional diffusions.
Higher-dimensional diffusions and jump processes such as birth-death processes can
be treated with minor changes of notation.

We thus consider an ergodic diffusion process Xt ∈ R described by the stochastic
differential equation (SDE)

dXt = F (Xt)dt+ σdWt, (2.2.1)

which is reset to the fixed position xr at random times distributed according to an
exponential distribution with parameter r ≥ 0. Considering the evolution of Xt

over an infinitesimal time dt, this means that Xt is either reset to Xt+dt = xr with
probability rdt or that Xt diffuses with probability 1−rdt according to the SDE 2.2.1,
which involves the drift F (Xt), the noise power σ > 0, and the Brownian motion or
Wiener process Wt.

As shown in [48, 47], the resetting modifies the Fokker-Planck equation governing
the evolution of the probability density p(x, t|x0) of Xt started at X0 = x0 by adding
a uniform sink and a source at xr:

∂

∂t
p(x, t|x0) = − ∂

∂x
F (x)p(x, t|x0) +

σ2

2

∂2

∂x2
p(x, t|x0)

−rp(x, t|x0) + rδ(x− xr). (2.2.2)

Alternatively, p(x, t|x0) can be obtained by noting that Xt can reach x 6= xr by
diffusing either from its last reset position xr, which occurred at the random time
t− τ , or from its initial state x0 without resetting, so that

p(x, t|x0) = e−rtp0(x, t|x0) +

∫ t

0

re−rτ p0(x, τ |xr)dτ, (2.2.3)

where p0(x, t|x0) is the free propagator solving the standard Fokker-Planck equation
(2.2.2) with r = 0 [48, 47]. Similar renewal formulae connecting time-dependent
distributions with and without resetting have been obtained in the context of jump
processes modelling population dynamics [19, 18, 75, 45] and queues [71, 31, 29].
Modified Fokker-Planck equations with resetting have also been obtained by studying
the diffusive or Kramers-Moyal limit of reset jump processes; see [31, 29, 43, 44].
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Here, we study the probability density not of the process itself but of functionals
or observables of Xt having the general time-additive form

AT =
1

T

∫ T

0

f(Xt)dt, (2.2.4)

where f is a real function of Xt. Such observables naturally arise in manmade and
physical systems, as mentioned, and are often characterized by a probability density
having the form

P (AT = a) = e−TI(a)+o(T ) (2.2.5)

in the limit of large integration times T , with o(T ) denoting any correction term that
grows slower than T . This scaling of probabilities is known in large deviation theory
as the large deviation principle (LDP) [46, 39, 40, 130] and implies that fluctuations
of AT are exponentially unlikely to be observed in the long-time limit. This applies
for all values AT = a such that the rate of decay or rate function I(a) is positive. In
general, I(a) also has (at least) one zero a∗ determining the typical value of AT around
which P (AT = a) concentrates exponentially as T → ∞. The rate function is thus
important as it characterizes in the long-time limit the typical value of AT , which
corresponds to its ergodic or stationary value, as well as the atypical fluctuations
around this ergodic value.

For processes with no resetting, the rate function is generally obtained by calcu-
lating the scaled cumulant generating function (SCGF) of AT defined by the limit

λ0(k) = lim
T→∞

1

T
lnE0

x

[
eTkAT

]
, (2.2.6)

where k ∈ R and E0
x[·] denotes the expectation with respect to the non-reset process

Xt started at X0 = x. For Markov processes, it is known that this function coincides
under general conditions with the dominant eigenvalue of the so-called tilted generator
[46, 39, 40, 130], which for the SDE (2.2.1) has the form

Lk = L+ kf, (2.2.7)

where

L = F
∂

∂x
+
σ2

2

∂2

∂x2
(2.2.8)

is the generator of the diffusion Xt without resetting. In this case, the calculation
of large deviations is therefore essentially a spectral problem. Assuming that λ0(k)

can be obtained and is differentiable, we then have from an important result of large
deviation theory, known as the Gärtner-Ellis Theorem [46, 39, 40, 130], that AT
satisfies an LDP with rate function I0(a) given by the Legendre-Fenchel transform of
the SCGF:

I0(a) = sup
k

{
ka− λ0(k)

}
. (2.2.9)

This method can be applied in principle to processes with resetting, but the gen-
erator of Xt in this case is not a pure differential operator: it is a mixed operator
involving the pure part (2.2.8) and a singular integral kernel accounting for the delta
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source in the Fokker-Planck equation. Finding the SCGF by spectral method then be-
comes a complicated and singular problem, so that other methods must be used. We
propose one in the next section based on the renewal representation of reset processes.

§2.3 Results

We obtain the large deviations of AT for the process Xt with resetting by studying,
following the limit (2.2.6), the time evolution of the generating function:

Gr(x, k, t) = Ex
[
etkAt

]
= Ex

[
ek
∫ t
0
f(Xs)ds

]
, (2.3.1)

where Ex[·] denotes the expectation with respect to the process Xt with resetting
started at X0 = x. Without resetting (r = 0), this function is known to evolve
according to the Feynman-Kac (FK) formula

∂

∂t
G0 = LkG0, (2.3.2)

which is a parabolic linear partial differential equation for G0 = Gr=0 with initial
condition G0(x, k, 0) = 1 [84].

A modified FK formula that includes resetting can be derived similarly to the
reset-free case by considering an additional time step dt in the generating function,
so as to write

Gr(x, k, t+ dt) = Ex
[
e
∫ dt
0
f(Xs)dse

∫ t+dt
dt

f(Xs)ds
]

= ef(x)dtEx
[
e
∫ t+dt
dt

f(Xs)ds
]
, (2.3.3)

using X0 = x. From this initial state, the process can either reset to Xdt = xr with
probability rdt or diffuse to Xdt according to the SDE (2.2.1) with the complementary
probability 1− rdt, so that

Gr(x, k, t+ dt) = ef(x)dt

{
rdtGr(xr, k, t)

+ (1− rdt)
∫ ∞
−∞

dξ K(ξ)Gr(x+ ξ, k, t)

}
, (2.3.4)

whereK(ξ) is the probability distribution of the incrementXdt−X0 = ξ as determined
from (2.2.1). In this way, we separate the resetting from the pure diffusion (2.2.1).
Expanding Gr(x + ξ, k, t) up to second order in ξ and performing the integral then
yields

∂

∂t
Gr = (Lk − r)Gr + rGr(xr, k, t) (2.3.5)

with the initial condition Gr(x, k, 0) = 1.
This modified FK formula with uniform sink and source at xr is similar to equa-

tions obtained for the first-passage problem with resetting [48, 47, 50] and must be
solved, as for this problem, by considering the source term Gr(xr, k, t) as a constant
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and by matching the solution Gr(x, k, t) self-consistently for x = xr. This is a difficult
task in general, which does not suggest in our experience an efficient way to obtain
large deviations, especially since we need the generating function for large times in
order to obtain the limit

λr(k) = lim
T→∞

1

T
lnGr(x, k, T ), (2.3.6)

which is the reset version of (2.2.6).
For the purpose of calculating this limit, a more useful renewal representation of

Gr(x, k, t) similar to (2.2.3) can be derived. To this end, assume that the time interval
[0, T ] witnesses n resettings with periods τ1, τ2, . . . , τn such that

T =

n+1∑
i=1

τi (2.3.7)

and

TAT =

n+1∑
i=1

∫ τi

∑i
j=1 τj−1

f(Xs)ds, (2.3.8)

where τn+1 is the last period without resetting leading to T . Because of the additive
form of AT , it is clear that Gr can be decomposed, when conditioned on these n
resettings, into a product of generating functions G0 involving only pure diffusion
between resettings. To write the full Gr, we then have to sum over all possible reset
number and reset times. Since the probability of having a reset at time τ is re−rτ

and the probability of no reset until the time τ is e−rτ , we thus obtain

Gr(x, k, T ) =

∞∑
n=0

∫ T

0

dτ1 re
−rτ1G0(x, k, τ1)

∫ T

0

dτ2 re
−rτ2G0(xr, k, τ2) · · ·

×
∫ T

0

dτn+1 e
−rτn+1G0(xr, k, τn+1) δ

(
T −

n+1∑
i=1

τi

)
. (2.3.9)

Notice that the first G0 term starts at the initial condition X0 = x, while the
others start after resetting at xr. The probability of the last period τn+1 is also
different from the other periods, since it is determined by the prior n reset periods
and the constraint (2.3.7), included in (2.3.9) with the delta function.

To deal with this constraint, it is natural to consider the Laplace transform in
time of the generating function

G̃r(x, k, s) =

∫ ∞
0

Gr(x, k, T )e−sT dT, (2.3.10)

which yields, after integration over the τi’s,

G̃r(x, k, s) = G̃0(x, k, s+ r)

∞∑
n=0

rnG̃0(xr, k, s+ r)n, (2.3.11)
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where G̃0 denotes the Laplace transform of G0. Assuming that

rG̃0(xr, k, s+ r) < 1, (2.3.12)

we therefore obtain

G̃r(x, k, s) =
G̃0(x, k, s+ r)

1− rG̃0(xr, k, s+ r)
. (2.3.13)

This is our main result connecting the generating function of AT with resetting
to its generating function without resetting. It can be verified that this formula
is equivalent (by Laplace transform) to the modified FK equation (2.3.5), though
(2.3.13) is simpler, as it expresses Gr explicitly in terms of the free generating function
G0.

This is more convenient for obtaining large deviations. Assuming that the limit
(2.3.6) defining the SCGF λr(k) of AT exists implies the following scaling of the
generating function:

Gr(x, k, T ) ∼ eλr(k)T (2.3.14)

as T →∞, which translates in Laplace space into

G̃r(x, k, s) ∼
1

s− λr(k)
. (2.3.15)

As a result, we see that the SCGF of AT for the resetting process can be determined by
locating the largest (simple and real) pole of the right-hand side of (2.3.13), which is
also a zero (in s) of the denominator 1−rG̃0 when G̃0 is finite. If λr(k) is differentiable
as a function of k, we then obtain the rate function Ir(a) of AT similarly to (2.2.9)
by taking the Legendre-Fenchel transform of λr(k).

These calculations are based only on the knowledge of the generating function G0

of AT without resetting. In some cases, the large-time asymptotics of that generating
function proves to be sufficient to obtain the desired pole λr(k), which means that the
large deviations of AT for the process with resetting can be obtained directly from the
large deviations of AT without resetting. This important result is illustrated next.

§2.4 Example

We consider in this section the reset Langevin equation (or reset Ornstein-Uhlenbeck
process) obtained by adding resettings at xr with rate r to the diffusion

dXt = −γXtdt+ σdWt, (2.4.1)

where γ is the friction coefficient, σ is the noise strength, and Wt is the Wiener
process. The stationary distribution of this model was studied recently in [103]. The
observable that we consider is the integral of the state,

AT =
1

T

∫ T

0

Xtdt. (2.4.2)

35



2. Large deviations for diffusions with resetting

C
h
a
pt

er
2

This reset process can be considered physically as a simple model of filament
dynamics in motility assays [116, 115, 126], wherein filaments are pulled by spring-
like motor proteins attached to a substrate at one end and moving on filaments at
the other [9]. In this context, AT represents the mean force exerted on one filament
over a time T , which is proportional to the stretch Xt of the motor protein attached
to it, while resetting happens when the motor randomly detaches from the filament
and a new motor attaches itself with zero stretch [91].

The generating function G0 of AT for the reset-free Langevin equation is known
in closed form, but its Laplace transform is relatively complicated to work with. For
our purpose, it is more convenient to expand G0, following the FK formula (2.3.2), in
spectral form as

G0(x, k, T ) =

∞∑
i=0

ψk,i(x)eλ0,i(k)T , (2.4.3)

where λ0,i(k) are the eigenvalues of the tilted generator Lk without resetting and ψk,i
are the corresponding eigenfunctions. Such a spectral decomposition can be obtained
in principle for any Markov process. By symmetrization to the quantum oscillator
(see the Appendix), we explicitly find here

λ0,i(k) =
k2σ2

2γ2
− iγ, i = 0, 1, . . . (2.4.4)

and

ψk,i(x) =
(−1)iγ−3i/2kiσie

kx
γ − 3k2σ2

4γ3 Hi

(√
γx

σ − kσ
γ3/2

)
√

2ii!
√

(2i)!!
(2.4.5)

where Hi is ith Hermite polynomial. The SCGF λ0(k) of AT corresponds to the
largest eigenvalue:

λ0(k) = max
i
λ0,i(k) =

σ2k2

2γ2
. (2.4.6)

From the Legendre-Fenchel transform (2.2.9), we thus find the rate function of AT
without resetting to be

I0(a) =
γ2a2

2σ2
, (2.4.7)

which implies that the fluctuations of AT are Gaussian-distributed around AT = 0 1.
To determine the effect of resetting on these fluctuations, we insert the Laplace

transform of the spectral representation (2.4.3),

G̃0(x, k, s) =

∞∑
i=0

ψk,i(x)

s− λ0,i(k)
, (2.4.8)

into the Laplace formula (2.3.13) and locate the largest pole of the resulting expression
for a given truncation 0 ≤ i ≤ m. The result is shown for xr = 1, r = 2, and various
truncation orders m in Fig. 2.1 and compared with the reset-free SCGF λ0(k). As

1This is also evident from the fact that AT is a linear integral of a linear Gaussian process.
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Figure 2.1: (Color online) Dominant pole of G̃r(x, k, s) for increasing truncation orders:
m = 0 (blue), m = 2 (purple), m = 4 (green). Black curve: Convex λr(k) obtained for
m ≥ 6. Dashed black curve: Non-reset λ0(k). Dashed gray curve: Tail approximation of
λr(k) shown in (2.4.11). Parameters: xr = 1, r = 2, γ = 1, σ = 1.

can be seen, the dominant pole is nonconvex in k for low truncation orders, which
means that it does not represent a valid SCGF, since SCGFs are always convex by
definition [46, 39, 40, 130]. By increasing however the truncation order, the pole does
converge to a convex function, identified from (2.3.15) as λr(k). For the parameter
values used in Fig. 2.1, convergence is attained essentially for m & 6; for larger values
of |xr| or r, more modes are generally required.

This applies to the part of λr(k) close to k = 0, which describes the small fluctu-
ations of AT . For the large fluctuations associated with the tails of λr(k), convergence
appears immediately for one mode, as can be seen in Fig. 2.1, which implies the fol-
lowing approximation:

λr(k) ≈ λ0(k)− r + rψk,0(xr). (2.4.9)

Here, we have explicitly

ψk,0(x) = ekx/γ−3k2σ2/(4γ3), (2.4.10)

so that (2.4.9) can be simplified in fact to

λr(k) ≈ λ0(k)− r (2.4.11)

for |k| → ∞.
This simple tail behavior of λr(k) can be understood by noting that very large

fluctuations of AT are brought about, for relatively small reset positions xr, by long
excursions of the process far away from xr having very few or no reset events. As a
result, the renewal representation (2.3.9) is dominated by purely diffusive trajectories
whose large deviations are determined by the dominant mode of G0 as T →∞. The r
factor in (2.4.11) only accounts for the probability of seeing such trajectories without
resetting. Conversely, more modes of G0 are needed to describe the small fluctuations
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Figure 2.2: Black curves: Ir(a) for xr = 0, 1, 2 (from left to right). The first two curves
were obtained for m = 10, while the last for xr = 2 was obtained for m = 20. Dashed black
curve: Non-reset rate function I0(a). Dashed gray curve: Tail approximation of Ir(a) shown
in (2.4.12). Parameters: r = 2, γ = 1, σ = 1.

of AT close to xr because such fluctuations are brought about by trajectories that
have many resettings and, therefore, many short diffusive trajectories for which the
large deviation limit is not effective. The number of modes m that must be used to
recover the correct λr(k) depends on the parameters used: generally, the larger r or
|xr| is, the higher m should be since resetting takes place more often.

Once that number is set, the rate function Ir(a) can be computed as the Legendre-
Fenchel transform of λr(k). The result is shown in Fig. 2.2 for r = 2 and different
resetting positions xr. As expected, the rate function Ir is narrower than I0 and shifts
towards the resetting position xr, since Xt is more likely with resetting to stay near
xr. Note, however, that the minimum a∗ of the rate function, corresponding to the
most probable value of AT in the ergodic limit T →∞, is not exactly xr because the
friction in the Langevin equation brings Xt near x = 0. It is difficult to study this
competing effect analytically, since it is strongly linked to resetting, and so cannot be
treated perturbatively using a mode expansion of G0. Numerically, we find that a∗

varies linearly with xr with a slope c(r) shown in Fig. 2.3. As r →∞, c(r)→ 1, and
thus a∗ → xr, as expected.

Looking back at Fig. 2.2, we can also see that the tails of Ir(a) are mostly un-
affected by resetting, except for a constant shift. This comes again from the large
fluctuations of AT being the result of large diffusive excursions that have very few or
no resetting events, so that (2.4.11) holds. Inserting this tail approximation into the
Legendre-Fenchel transform leads to the dual approximation

Ir(a) ≈ I0(a) + r (2.4.12)

as |a| → ∞. This gives a good approximation of the rate function, as can be seen in
Fig. 2.2.

This tail result implies with (2.4.7) that AT has large Gaussian fluctuations, re-
flecting with a shift its Gaussian fluctuations (2.4.7) seen without resetting. The small
fluctuations of AT around its typical value and mean a∗ are also Gaussian, as can
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Figure 2.3: Proportionality coefficient c(r) between the minimum a∗ of Ir(a) and the resetting
position xr. Parameters: γ = 1, σ = 1.

be seen by expanding Ir(a) around its minimum a∗, but with a reset-modified vari-
ance determined by λ′′r (0) or I ′′r (a∗)−1 [130]. Finally, in the intermediate region away
from a∗, where (2.4.12) is not an accurate approximation of Ir(a), the competition
between resetting and diffusion leads to non-Gaussian fluctuations, characterized by
the non-parabolic rate function seen in Fig. 2.2.

§2.5 Conclusion

We have derived in this paper a general renewal formula (2.3.13) that can be used to
obtain the large deviation functions of additive observables of Markov processes with
resetting, and have illustrated this result for the Langevin equation with resetting.
Other applications should follow this example either via the exact calculation of the
generating function or via the general spectral expansion (2.4.3), keeping in mind for
this expansion to include enough modes, as demonstrated, to obtain properly scaled
convex cumulant generating functions in the long-time limit.

Although we have considered reset diffusions, it is clear that our main results ex-
pressed in terms of generating functions also hold for birth-death and jump processes
in general, in addition to Markov chains with resetting or catastrophes, thus open-
ing the way for many other applications. In birth-death processes, for example, one
could consider as an observable the total number of births over a given time period
or any birth-related cost (e.g., insurances) accumulated in that period. Similarly, for
queueing models with resetting, the observable may represent the number of clients
entering a queue or any cost associated with clients which is additive in time.

For these examples, we expect the main results that we have obtained for the reset
Langevin equation to hold. In particular, it is clear that as long as large fluctuations
of AT are the results of long trajectories involving few resetting, as is the case for
the Langevin equation, then the large deviations functions obtained with reset are
a shift of the large deviations obtained without reset, following the approximations
(2.4.11) and (2.4.12) that we have derived, with the shift coming from the probability
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of having few or no resettings over the time T .
For future work, it would be interesting to study whether observables that do

not have a large deviation principle without resetting acquire that principle when
resetting is introduced. It is known that resetting adds an effective confinement that
can transform a non-stationary process (e.g., Brownian motion [48]) into a stationary
one, but this might not be enough on its own to force a large deviation principle.
Another interesting problem is to generalize our results to observables involving an
integral of the increments of the process considered (in the case of pure diffusions)
or a sum over its jumps (in the case of pure jump processes); see [25] for more
detail. These observables represent physically quantities, such as particle currents and
entropy production, playing an important role in nonequilibrium statistical physics.

Appendix

§2.A Spectral decomposition of the generating func-
tion

The generating function G0(x, k, T ) evolves without resetting according to the lin-
ear partial differential (2.3.2) and can therefore be decomposed in the eigenbasis of
the tilted generator Lk, shown in (2.2.7). For the Ornstein-Uhlenbeck process, Lk
is not hermitian, but can be mapped via a unitary transformation to a hermitian,
Schrödinger-type operator, so its spectrum is real. This transformation or symmet-
rization is the same as the one used for the Fokker-Planck equation; see, e.g., Sec. 5.4
of [109].

Denote by ρ(x) = e−U(x) the stationary distribution of Xt satisfying L†ρ = 0.
The symmetrization of Lk is given by

Hk = ρ1/2Lkρ−1/2 = e−U/2LkeU/2. (2.A.1)

For the Ornstein-Uhlenbeck process, we have U(x) = γx2/σ2 up to a constant, which
leads to

Hk =
σ2

2

d2

dx2
− γ2x2

2σ2
+
γ

2
+ kx. (2.A.2)

This is the Schrödinger operator of a shifted and inverted quantum harmonic oscillator
with massm = 1 and ~ = σ [85]. From the known spectrum of the harmonic oscillator,
we therefore arrive at the eigenvalues (2.4.4). As for the eigenfunctions ψk,i, they are
obtained by

ψk,i(x) = ρ(x)−1/2Ψk,i(x) = eU(x)/2Ψk,i(x), (2.A.3)

where Ψk,i are the eigenfunctions of Hk, normalized in the usual quantum way.
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