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1. Introduction

CHAPTER 1
Introduction

This thesis consists of two parts. Part I focusses on large deviations of stochastic
processes with resetting, Part II focusses on the Kuramoto model on networks with
community structure.
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1 Part I

Stochastic resetting is simple enough to be approached analytically, yet modifies
stochastic processes in a non-trivial way. It has recently received renewed atten-
tion in the mathematical physics literature. In part I of the thesis we study the effect
it has on the statistical properties of additive functionals of the Ornstein-Uhlenbeck
process and Brownian motion. In this introduction we define resetting, motivate its
study and summarize some recent results. Resetting occurs in a variety of contexts.
A discussion of these is given in the introduction of Chapter 2. One example is the
famous PageRank algorithm [8]. In this algorithm a random walker moves on a graph
representing the World Wide Web. An initial probability distribution is placed on the
set of nodes and, as the walker makes its way through the graph, the distribution is
updated. The walker restarts from a node drawn uniformly at random at a constant
rate r ∈ (0,∞).

§1.1 Stochastic Resetting

In this section we introduce resetting and collect some basic results following [6].
We consider a homogeneous continuous-time Markov process {Xt : t ∈ [0,∞)} taking
values in a Borel space (E, E), characterized by its initial position x0 and its transition
density P (t, x,dy), with the following properties:

(a) P (t, x, ·) is a probability measure on E.

(b) P (0, x,Γ) = 1{x ∈ Γ} for any Γ ⊂ E.

(c) For each Γ ∈ E and t ∈ [0,∞), P (t, x,Γ) is jointly measurable w.r.t. (t, x) ∈
[0,∞)× E.

(d) P (t, x,dy) satisfies the Chapman-Kolmogorov equation

P (t+ s, x,Γ) =

∫
E

P (s, y,Γ)P (t, x,dy). (1.1.1)

Throughout the sequel, all processes live on the same probability space (Ω,F , P ).
Resetting modifies {Xt : t ∈ [0,∞]} to a new Markov process {Xr(t) : t ∈ [0,∞)}
that restarts from a point in E drawn from a probability distribution γ(Γ) after an
exponentially distributed random time with mean 1/r, i.e., the number of restarts is
represented by a standard Poisson process with rate r > 0, independently of {X(t) :

t ∈ [0,∞)}. In the following theorem (Theorem 1 of [6]) we express the transition
function of the modified process in terms of the transition function of the original
process.

1.1.1 Theorem. The transition function for the modified Markov process
{Xr(t), t ∈ [0,∞)} is given by

P rγ (t, x,Γ) = e−rtP (t, x,Γ) +

∫
E

γ(dy)

∫ t

0

ds λe−rsP (s, y,Γ). (1.1.2)
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The proof of this theorem is instructive for understanding the effect of resetting.

Proof. If we define the number of resets up to time t to be N(t) and the times of
the resets to be {τi}N(t)

i=1 , then we can write the time since the last reset as t− τN(t).
The transition function of the modified process can be written as the sum of the
probability of reaching the set Γ without having been reset and the probability of
reaching this set having been reset at least once:

P rγ (t, x,Γ) =P
[
{Xr

t ∈ Γ} ∩ {N(t) = 0}|Xr
0 = 0

]
+ P

[
{Xr

t ∈ Γ} ∩ {N(t) > 0}|Xr
0 = 0

]
. (1.1.3)

The first term is the probability of the unmodified process reaching the set Γ multiplied
by the probability of not resetting up to time t, i.e.,

P
[
{Xr

t ∈ Γ} ∩ {N(t) = 0}|Xr
0 = 0

]
= e−rtP (t, x,Γ). (1.1.4)

For the second term we must integrate the transition function of the unmodified pro-
cess over all the possible starting positions after the last reset (distributed according
to γ) and integrate over all possible lengths of time since the last reset with the
appropriate probability density of this time occurring, i.e.,

P
[
{Xr

t ∈ Γ} ∩ {N(t) > 0}|Xr
0 = 0

]
=

∫
E

dy

∫ t

0

dF (s) P (s, y,Γ), (1.1.5)

where F (s) = P [t − τN(t) ≤ s|N(t) > 0]. Given that N(t) = n > 0, the reset times
{τi}ni=1 are distributed uniformly over the interval (0, t), so that

P [τn ≤ t− s|N(t) = n] =
( t− s

t

)n
, n ∈ N, (1.1.6)

or
P [t− τN(t) ≤ s|N(t) = n] = 1−

( t− s
t

)n
, n ∈ N. (1.1.7)

To calculate F (s) we must sum over n and multiply by the probability of seeing n
resets:

F (s) =

∞∑
n=1

(rt)n

n!
e−rt

[
1−

( t− s
t

)n]
= 1− e−rs. (1.1.8)

To complete the proof, we substitute (1.1.8) into (1.1.5) to obtain

P
[
{Xr

t ∈ Γ} ∩ {N(t) > 0}|Xr
0 = 0

]
=

∫
E

γ(dy)

∫ t

0

ds λ e−rsP (s, y,Γ). (1.1.9)

�

Considering the case where E = R, we can use (1.1.2) to obtain an expression for
the moments, namely,

Ex0
[(Xr

t )k] = e−rtEx0
[Xk

t ] +

∫
E

γ(dy)

∫ t

0

ds r e−rsEy[Xk
s ], (1.1.10)

where Ex0 is expectation w.r.t. the process with initial position x0. Here we assume
that the order of integration is interchangeable, which is the case for example when∫

E

γ(dy)

∫ t

0

ds r e−rsEy[|Xk
s |] <∞. (1.1.11)
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Figure 1.1: Brownian motion with drift µ = 0, noise intensity σ = 1, resetting rate r = 5
and reset position x0 = 0. The reset events are marked by red lines.

§1.2 Example

To illustrate Theorem 1.1.1, we take Brownian motion on R with drift µ and noise
intensity σ on R (see e.g., [113]). We also take the distribution of the reset point to
be a delta-measure concentrated at 0. The stochastic differential equation is

dXt = µdt+ σdWt, X0 = x0 = 0, (1.2.1)

whereWt is standard Brownian motion. Fig. 1.1 shows a simulation of reset Brownian
motion.

The probability density function of the process defined by (1.2.1) is

p(t, 0, z) =
1√

2πσ2t
exp

(
− (z − µt)2

2σ2t

)
, (1.2.2)

which does not converge to a proper probability density as t→∞. By formula (1.1.2),
we have

pr(t, 0, z) = exp(−rt) 1√
2πσ2t

exp

(
− (z − µt)2

2σ2t

)
+ r

∫ t

0

exp(−rs) 1√
2πσ2s

exp

(
− (z − µs)2

2σ2s

)
ds, (1.2.3)

which has limiting probability density function

pr(z) = r
1√

2rσ2 + µ2
exp

[
z
(
µ−

√
2rσ2 + µ2

)
/σ2
]
. (1.2.4)
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Figure 1.2: z 7→ pr(z) for different values of the resetting rate r (with µ = 1, σ = 1).

Plotting this for different values of r, we see that resetting has a confining effect on
the process, as can be seen in Fig. 1.2.

Let us now consider x ∈ R and restarting according to the distribution γ(dy). If
γ has a finite second moment, then we can calculate the first and second moment of
the modified process by using formula (1.1.10) with Ex[X(t)] = x+ µt:

Ex[Xr(t)] = e−rt(x+ µt) +

∫
E

γ(dy)

∫ t

0

ds r e−rs(y + µs)

= e−rt(x+ µt) + [1− e−rt]
∫
E

γ(dy) y + [1− (1 + rt)e−rt]
µ

r
. (1.2.5)

Here

lim
t→∞

Ex[Xr
t ] =

∫
E

γ(dy) y +
µ

r
. (1.2.6)

A similar calculation gives

lim
t→∞

Ex[(Xr
t )2] =

σ2

r
+

2µ2

r2
+

∫
E

γ(dy)
(2µy

r
+ y2

)
, (1.2.7)

so that

lim
t→∞

Varx[(Xr
t )2] =

∫
E

γ(dy) y2 −
(∫

E

γ(dy) y
)2

+
σ2

r
+
µ2

r2
. (1.2.8)

Note that the first two terms in the r.h.s. of (1.2.8) equal the variance of the distribu-
tion γ for the reset point. These results are similar in nature to the results presented
in Chapter 3.
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The recent work on resetting is difficult to summarize, as the perspectives and con-
texts in which it is being carried out are so varied. We will focus on two of these
perspectives here. The first is the use of resetting in order to improve the efficiency of
diffusive searchers and the second is the use of resetting as a mechanism modeling the
accidental or deliberate clearing of queues or catastrophes wiping out a population of
individuals in a birth-death process.

Search efficiency

In [48] the authors consider the hitting time of a target of a diffusive searcher un-
dergoing resets at rate r. They consider three generalizations of the reset mechanism
outlined above. The first is to have a resetting rate dependent on the spatial position
of the searcher. The second is to have the reset position be random by drawing it
from a distribution every time a reset occurs. The third is to have the target drawn
from a distribution. The first result in [48] is the mean first-passage time (at the
origin) of a diffusive searcher being reset to position xr, which is shown to be

T (xr) =
1

r

[
exp

(√
r/σxr

)
− 1
]
, (1.3.1)

where σ is the noise intensity. For a given xr, one can calculate the optimal resetting
rate in order to minimize the mean first-passage time. Having a space-dependent
resetting rate makes it difficult to solve the problem of the mean first-passage time
in general. A solvable example is when the resetting rate is set to zero in a window
of width a around the reset position xr and set to a constant outside this window.
This leads to an expression for T (xr) from which one can obtain the optimal resetting
rate. In this case it is advantageous to have the window around the reset point only
when the target is sufficiently far away from the reset position.

The last generalization is to both have the process reset to a position drawn from
a distribution P(xr) and to draw the target site xT from the distribution PT (xT ).
It is convenient to draw the initial position from the same distribution as the reset
position. The stationary distribution is

p∗(x) =
α0

2

∫
R

dz P(z) exp(−α0|x− z|), (1.3.2)

where α0 =
√
r/σ. The mean first-passage time of a target site xT is

T (xT ) =
1

r

[α0

2

1

p∗(xT )
− 1
]
, (1.3.3)

which, after we average over possible target sites, gives

T =
1

r

[α0

2

∫
R

dxT
PT (xT )

p∗(xT )
− 1
]
. (1.3.4)
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As an example one can take the target to be distributed exponentially

PT (x) =
β

2
e−β|x|, (1.3.5)

where β > 0 is a parameter. If β < 2α0, then the optimal resetting distribution is

P(x) =
β

4
e−β|z|/2

[
1− β2

4α2
0

]
+

β2

4α2
0

δ(z). (1.3.6)

If β > 2α0, then the authors can prove that taking the reset distribution as
P(x) = δ(x) is an optimal solution, at least locally.

Birth-death processes with catastrophes

In contrast to the paper discussed before, where the state space is continuous, the
birth-death process with catastrophes is an example of a discrete process with re-
setting. There have been many recent studies on these types of processes [30] [29],
[127], [23], [43]. An instructive paper is [30], which studies the first occurrence of an
effective catastrophe, i.e., a catastrophe while the process is in a state other than the
zero state. To make this more concrete, consider the process {N(t) : t ∈ [0,∞)} that
takes values in S = {0, 1, 2, . . .}. Births occur with rate an, n = 0, 1, . . . and deaths
with rate bn, n = 1, 2, . . .. Catastrophes occur with rate ξ, and immediately place the
process in the state 0. Define the transition probabilities

pj,n(t) = P[N(t) = n|N(0) = j] (1.3.7)

and denote by p̂j,n(t) the same probability, but for N̂(t), which is the same as N(t)

with ξ = 0, i.e., without catastrophes. Denote the Laplace transform of pj,n(t) and
p̂j,n(t) by πj,n(λ) and π̂j,n(λ), respectively. The process, N(t), allows catastrophes
to occur while in the zero state. Paper [30] considers only effective catastrophes, by
which are meant catastrophic transitions from a positive state. A modified process
{M(t); t ≥ 0} on the state space {−1, 0, 1, . . .}, is introduced that is identical to
N(t), except that catastrophes place the process in the state −1. Denote by hj,n(t)

and ηj,n(λ) the analogue of pj,n(t) and πj,n(λ), respectively. The following theorem
[30, Theorem 3.1] gives a relation between the modified process and the birth-death
process without catastrophes.

1.3.1 Theorem. For all j ∈ S and λ > 0,

ηj,−1(λ) =
ξ

λ+ ξ

[ 1

λ
− π̂j,0(λ+ ξ)

1− ξπ̂0,0(λ+ ξ)

]
, (1.3.8)

ηj,n(λ) = π̂j,n(λ+ ξ) + ξπ̂0,n(λ+ ξ)
π̂j,0(λ+ ξ)

1− ξπ̂0,0(λ+ ξ)
. (1.3.9)

Let Cj,0 denote the time of the first effective catastrophe given that the process started
in state j. The following proposition [30, Proposition 3.2] gives the expected value
and variance of Cj,0.
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1.3.2 Proposition. For all j ∈ S,

E[Cj,0] =
1

ξ
+

π̂j,0(ξ)

1− ξπ̂0,0(ξ)
, (1.3.10)

Var[Cj,0] =
1

ξ2

{
1−

ξ2π̂2
j,0(ξ)

(1− ξπ̂0,0(ξ))2
− 2ξ2

1− ξπ̂0,0(ξ)

d

dξ
π̂j,0(ξ)

− 2ξ3π̂j,0(ξ)

(1− ξπ̂0,0(ξ))2

d

dξ
π̂j,0(ξ)

}
. (1.3.11)

Taking the first visit time Tj,0 = inf{t ≥ 0 : N(t) = 0} given that the process started
in state j, in contrast we get

E[Tj,0] =
1

ξ
[1− γ̂j,0(ξ)], (1.3.12)

Var[Tj,0] =
1

ξ2

[
1− γ̂2

j,0(ξ) + 2ξ
d

dξ
γ̂j,0(ξ)

]
, (1.3.13)

where γ̂j,0 denotes the Laplace transform of the probability density function ĝj,0(t) =
d
dtP[T̂j,0 ≤ t] of the first visit time of the process N̂(t), i.e., without catastrophes.
These results are similar in nature to the main result of Chapter 2 and serve to
illustrate how delicate discrete versions of processes with resetting are to even slight
changes in their definition.

§1.4 Main results of Part I

Modification of a diffusion process by resetting has interesting consequences. Most of
the studies so far have investigated the effect on the distribution of the position, or
moments thereof. The focus of part I of the thesis is to derive some general results in
the spirit of (1.1.2) for additive functionals of the process, namely,

FT =

∫ T

0

dt f(Xr
t ), (1.4.1)

with f an R-valued measurable function. From the proof of Theorem 1.1.1 it is clear
that the distribution of the position only depends on when the last reset took place.
The history of the process before the last reset is irrelevant. This is not the case when
we consider the distributions of additive functionals, and this complicates the analysis.

Results of Chapter 2

In Chapter 2, using a renewal argument, we derive a relationship between the Laplace
transformed generating functions for additive observables of processes with and without
resetting. Let FT be as above. Then its generating function is

Gr(k, T ) = Er
[
ekFT

]
, k ∈ R, T ∈ [0,∞), (1.4.2)

8
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where Er is the expectation with respect to the reset process with reset rate r. The
Laplace transform of this function is defined as

G̃r(k, s) =

∫ ∞
0

dT e−sT Gr(k, T ), k ∈ R, s ∈ [0,∞). (1.4.3)

The main result is

1.4.1 Theorem. If rG̃0(k, s+ r) < 1, then

G̃r(k, s) =
G̃0(k, s+ r)

1− rG̃0(k, s+ r)
. (1.4.4)

This allows us to make statements about the large deviation behaviour of the process
with resetting based on the behaviour of the process without resetting. We illustrate
the usefulness of this theorem by applying it to the average area covered by the
Ornstein-Uhlenbeck process defined as

AT =
1

T

∫ T

0

dtXt (1.4.5)

where the Orsntein-Uhlenbeck process is

dXt = −γXtdt+ σdWt, (1.4.6)

γ is the friction coefficient, σ is the noise intensity and Wt is standard Brownian
motion. The probability of seeing rare events is characterized by the large deviation
rate function Ir(a) through the large deviation principle

P (AT = a) = e−TIr(a)+o(T ). (1.4.7)

We are able to identify the large deviation rate function with resetting for different
reset positions xr, and compare it to the rate function without resetting as seen in
Fig. 1.3.

Chapter 2 is based on [92] and differs in style from the rest of the thesis as it is
written for a physics journal.

Results of Chapter 3

In Chapter 3 we identify the large deviation rate function for additive functionals
of Brownian motion with reset (rBM), χr, in the form of a variational formula in
terms of the rate functions of the three constituent processes underlying FT (where
we replace Xr

t by the standard Brownian motion with reset W r
t ), namely (see [40,

Chapters I-II]):

(1) The rate function for (T−1N(T ))T>0, the number of resets per unit of time:

Ir(n) = n log
(n
r

)
− n+ r, n ∈ [0,∞). (1.4.8)

9
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Figure 1.3: Black curves: Ir(a) for xr = 0, 1, 2 (from left to right). Dashed black curve:
Non-reset rate function I0(a). Dashed gray curve: Tail approximation of Ir(a). Parameters:
r = 2, γ = 1, σ = 1.

(2) The rate function for (N−1
∑N
i=1 δτi)N∈N, the empirical distribution of the dur-

ation of the reset periods:

Jr(µ) = h(µ | Er), µ ∈ P([0,∞)). (1.4.9)

Here, P([0,∞)) is the set of probability distributions on [0,∞), Er is the ex-
ponential distribution with mean 1/r, and h(· | ·) denotes the relative entropy

h(µ | ν) =

∫ ∞
0

µ(dx) log

[
dµ

dν
(x)

]
, µ, ν ∈ P([0,∞)). (1.4.10)

(3) The rate function for (N−1
∑N
i=1 Fτ,i)N∈N, the empirical average of i.i.d. copies

of the reset-free functional Fτ over a time τ :

Kτ (u) = sup
v∈R
{uv −Mτ (v)}, u ∈ R, τ ∈ [0,∞). (1.4.11)

Here, Mτ (v) = logE0

[
evFτ

]
is the cumulant generating function of Fτ without

reset and we require, for all τ ∈ [0,∞), thatMτ exists in an open neighbourhood
of 0 in R. It is known that Kτ is smooth and strictly convex on the interior of
its domain (see [40, Chapter I]).

1.4.2 Theorem. For every r > 0, the family (Pr(T−1FT ∈ · ))T>0 satisfies the LDP
on R with speed T and with rate function χr given by

χr(φ) = inf
(n,µ,w)∈Φ(φ)

{
Ir(n) + nJr(µ) + n

∫ ∞
0

µ(dt)Kt(w(t))
}
, φ ∈ R, (1.4.12)

10
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where

Φ(φ) =

{
(n, µ,w) ∈ [0,∞)× P([0,∞))× B([0,∞);R) : n

∫ ∞
0

µ(dt)w(t) = φ

}
(1.4.13)

with B([0,∞);R) the set of Borel-measurable functions from [0,∞) to R.

A general result deduced from the variational formula shows that the rate func-
tion for functionals of rBM (under the additional assumption that the mean without
resetting diverges) is zero above the mean and quadratic below but close to the mean.
Define

φ∗r = lim
T→∞

Er[T−1FT ], r ≥ 0. (1.4.14)

1.4.3 Theorem. Suppose that f is such that

E[f(Wt)
2] ≤ CE[f(Wt)]

2 ∀t ≥ 0 (1.4.15)

and that φ∗0 =∞. For every r > 0, if φ∗r <∞, then

χr(φ) = 0 ∀φ ≥ φ∗r . (1.4.16)

1.4.4 Theorem. Suppose that φ∗0 =∞. For every r > 0, if φ∗r <∞, then

χr(φ) ∼ Cr(φ∗r − φ)2, φ ↑ φ∗r , (1.4.17)

with Cr ∈ (0,∞) a constant that is given by a variational formula. (The symbol ∼
means that the quotient of the left-hand side and the right-hand side tends to 1.)

For the positive occupation time of rBM defined by

AT =

∫ T

0

1[0,∞)(W
r
t ) dt (1.4.18)

we find an explicit expression of the density.

1.4.5 Theorem. The positive occupation time of rBM has density

pAr (a) =
r

T
e−rT W

(
r
√
a(T − a)

)
, a ∈ (0, T ), (1.4.19)

where

W (x) =
1

x

∞∑
j=0

xj

Γ( j+1
2 )2

= I0(2x) +
1

xπ
1F2

(
{1}, { 1

2 ,
1
2}, x2

)
, x ∈ (0,∞), (1.4.20)

with I0(y) the modified Bessel function of the first kind with index 0 and
1F2({a}, {b, c}, y) the generalized hypergeometric function [2, Section 9.6, Formula
15.6.4].

For the area covered by rBM defined by

BT =

∫ T

0

W r
t dt (1.4.21)

we prove the following central limit theorem.

11
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1.4.6 Theorem. The area of rBM satisfies the central limit theorem,

lim
T→∞

σ
√
T pBr

(
b

σ
√
T

)
= N(0, 1) (1.4.22)

with N(0, 1) the standard Gaussian distribution and σ = 2/r2.

Here we denote by pBr (b), b ∈ R, the density of the area of rBM with respect to the
Lebesgue measure.

For the absolute area of rBM, defined as

CT =

∫ T

0

|W r
t |dt, (1.4.23)

whose density with respect to the Lebesgue measure is denoted by pCr (c), c ∈ [0,∞),
we calculate the mean and variance.

1.4.7 Theorem. The absolute area of rBM has a mean and a variance given by

Er[CT ] = T 3/2f1(rT ), Varr[CT ] = T 3f2(rT ), r > 0, (1.4.24)

where

f1(ρ) =
1√
2π

[
e−ρ

ρ
+

√
π

2(ρ)3/2
(2ρ− 1) erf[

√
ρ ]

]
(1.4.25)

and

f2(ρ) =
1

8π(ρ)3

[
2π
(
2ρ2 + ρ− 6 + (5ρ+ 6)e−ρ

)
−
(
2
√
ρ e−ρ +

√
π(2ρ− 1) erf[

√
ρ]
)2]

.

(1.4.26)

Furthermore we give an explicit representation of the rate function of (T−1CT )T>0

for values below its mean.

1.4.8 Theorem. Let c∗r = 1/
√

2r, and let s∗k be the largest real root in s of the
equation

r

(−k)2/3
H

(
21/3(s+ r)

(−k)2/3

)
= 1, k < 0. (1.4.27)

Then (T−1CT )T>0 satisfies the LDP on (0, c∗r) with speed T and with rate function
given by the Legendre transform of s∗k.

Here the function H(·) is defined by

H(x) = −21/3 AI(x)

Ai′(x)
, (1.4.28)

where

AI(x) =

∫ ∞
x

Ai(t) dt (1.4.29)
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is the integral Airy function and Ai(x) is the Airy function [2, Section 10.4] defined,
for example, by

Ai(x) =
1

π

∫ ∞
0

cos
(

1
3 t

3 + xt
)

dt. (1.4.30)

Chapter 3 is based on [52].

Open Problems

The most interesting challenge is to extend the above theorems to additive functionals
of random walks on random graphs with reset. This is particularly interesting in
the context of the PageRank algorithm, which computes the stationary distribution
of webpages through a random walk with reset along these webpages. The large
deviation rate function for the local time of this random walk gives information on
the rate of convergence of the random walk.

An open problem stated in Chapter 3 is to prove that the rate function for the
area of Brownian motion is identically zero. This problem seems deceptively simple,
but actually is not.

13
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The Kuramoto model is a classical model that is used to describe the phenomenon
of synchronization of phase oscillators. It has been studied extensively from differ-
ent perspectives, including mathematics, theoretical physics, computer science and
neuroscience. Recently, much heuristic and numerical work has been done on the
Kuramoto model on complex networks [110]. Due to the non-linearity of the interac-
tion, analytic results have been scarce. Part of the work has focused on identifying the
effect of communities in the underlying network structure of the interactions between
the phase oscillators, which determines their ability to synchronize. In Part II of the
thesis we study the effect of community structure analytically in two simple cases,
namely, a hierarchical network and a two-community network. In this introduction
we define the Kuramoto model, outline some of the recent results in the mathematical
literature, and summarize what has been done in the context of complex networks.

§1.5 The Stochastic Kuramoto model

The Kuramoto model was introduced by Yoshiki Kuramoto in 1975 to model the phe-
nomenon of synchronization. Synchronization had fascinated scientists since Chris-
tiaan Huygens observed ‘an odd kind of sympathy’ between the pendulums of his
clocks designed for time-keeping on ships in the 17th century. The novelty of the Kur-
amoto model was that it captured the essence of synchronization while being simple
enough to be exactly solvable. Examples of synchronization in nature are copious
and consequently the number of models proposed to describe them is overwhelming.
To mention but a few, synchronization is often observed among populations of in-
sects, for example crickets chirping and fireflies flashing. It also controls circadian
rhythms, power-grids and, to end with the most relevant example for this thesis, the
suprachiasmatic nucleus (the body-clock), which is a cluster of neurons in the brain
of mammals.

The stochastic version of the model describes the evolution of oscillators on a
one-dimensional sphere S that interact in a mean-field way. Each oscillator θi has its
own intrinsic frequency ωi, which is drawn from a common distribution µ(ω) on R.
The interaction between two oscillators is given by the sine of their phase difference.
Mathematically this is given by a system of coupled stochastic differential equations:

dθi(t) = ωidt+
K

N

N∑
j=1

sin(θj(t)− θi(t))dt+DdWi(t), i = 1, . . . , N. (1.5.1)

Here,K is the interaction strength,D > 0 is the noise strength, and (Wi(t))t≥0,i=1,...,N

are independent standard Brownian motions. The oscillators are initially identically
distributed according to some law on S.

The elegance of this model comes from the choice of the order parameter:

14
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1.5.1 Definition (Order parameter).

rN (t)eiψN (t) =
1

N

N∑
j=1

eiθj(t). (1.5.2)

This enables one to write the evolution equations as

dθi(t) = ωidt+KrN (t) sin(ψN (t)− θi(t))dt+DdWi(t), i = 1, . . . , N. (1.5.3)

The order parameter can be understood as measuring the amount of synchronization,
given by r(t) ∈ [0, 1], and the average phase angle, given by ψ(t) ∈ [0, 2π). Equation
(1.5.3) shows that the amount of synchronization modulates the strength at which
oscillators interact with the average phase angle.

In the thesis we deal mainly with the non-disorderd case, which corresponds to
the choice µ(ω) = δ0 i.e., all oscillators have natural frequency 0. In this case the
model is reversible, which is a major simplification. The Gibbs measure under which
it is reversible is given by

1

ZN,K
exp

(
− 2KHN (θ1, . . . , θN )

)
dθ1 . . . dθN , (1.5.4)

where the Hamiltonian is

HN (θ1, . . . , θN ) = − 1

2N

N∑
j=1

N∑
i=1

cos(θj − θi). (1.5.5)

1.5.2 Definition (Empirical measure).

νN,t(dθ) =
1

N

N∑
i=1

δθi(t)(dθ). (1.5.6)

This empirical measure converges weakly to a deterministic process that is absolutely
continuous w.r.t. the Lebesgue measure with a density p(θ) that solves the McKean-
Vlasov equation

∂p(t; θ)

∂t
=
D

2

∂2p(t; θ)

∂θ2
− ∂

∂θ

[
Kr(t) sin(ψ(t)− θ)p(t; θ)

]
, (1.5.7)

where r(t) and ψ(t) are the limits of the order parameter defined in (1.5.2), which
satisfy the self-consistency relation

r(t)eiψ(t) =

∫
S

dθ eiθp(t; θ). (1.5.8)

The stationary solutions of the McKean-Vlasov equation exhibit a phase transition in
the synchronization level. There is a threshold value for the interaction strength Kc,
below which only the stationary solution with zero synchronization is possible and
above which synchronization takes on non-zero values as well. This is formalized in
the following proposition taken from [80, Section 4.2].
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1.5.3 Proposition. The non-disordered Kuramoto model exhibits a phase transition
in the interaction strength parameter K:

(a) K ≤ Kc: There is a unique stationary solution to (1.5.7), called the incoherent
solution

p(θ) =
1

2π
, θ ∈ S. (1.5.9)

(b) K > Kc: A circle of synchronized solutions appears in addition to the incoherent
solution, namely,

{p(·+ θ0) : θ0 ∈ S} (1.5.10)

with
p(θ) =

1

Z
e2Kr cos θ, θ ∈ S, (1.5.11)

where Z =
∫
S dθ e2Kr cos θ.

§1.6 Recent Results

Complex Networks

Studies of the stochastic Kuramoto model on complex networks have appeared only
recently. Most are not mathematically rigorous. There have, however, been more
general (rigorous) works on interacting diffusions on complex networks [16, 28, 38, 82,
100]. In order to study the Kuramoto model on a complex network, the interaction
strength parameter K is replaced by KAi,j with Ai,j , i, j = 1, . . . , N , the adjacency
matrix of the network. To circumvent technical difficulties it is convenient to consider
an annealed version of the model as in [121]. The idea is to approximate the complex
network by a complete graph with edge weights given by Ãi,j , in such a way that
the weights in the complete graph conserve the degrees of the nodes in the original
network, i.e.,

ki =

N∑
j=1

Ãij , (1.6.1)

where ki is the degree of node (oscillator) i in the original network. Typically, ki
are independently and identically distributed according to a probability distribution
γ, and the network is taken to be undirected. If the degrees of the network are
uncorrelated, then this is simply achieved by setting the edge weights equal to the
probability of a node with degree ki being connected to a node with degree kj , i.e.,

Ãij = ki
kj∑N
l=1 kl

. (1.6.2)

Using this approximation in the stochastic Kuramoto model, we get

dθi(t) = ωidt+
K

N

ki∑N
l=1 kl

N∑
j=1

kj sin(θj(t)− θi(t))dt+DdWi(t), i = 1, . . . , N,

(1.6.3)
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for which we can define the alternative order parameter

rN (t)eiψN (t) =

∑N
j=1 kje

iθj(t)∑N
l=1 kl

. (1.6.4)

Again this simplifies the model:

dθi(t) = ωidt+KrN (t)
ki
N

sin(ψN (t)− θi(t))dt+DdWi(t), i = 1, . . . , N. (1.6.5)

Note that how strongly each node is coupled to the mean-field is determined by its
degree. Under the additional assumption that phase correlations can be disregarded,
the large N limit can be analyzed. In this limit, the density p(t; θ|ω, k) of oscillators
for a fixed natural frequency ω and a fixed degree k follows a Fokker-Planck equation:

∂p(t; θ|ω, k)

∂t
=
D

2

∂2p(t; θ|ω, k)

∂θ2
− ∂

∂θ

[
{ω+ K̃r(t)k sin(ψ(t)− θ)}p(t; θ|ω, k)

]
. (1.6.6)

Here, K̃ = K/N and we have the self-consistency equation

r(t)eiψ(t) =
1

〈k〉

∫
S

dθ

∫
R
µ(dω)

∫ ∞
kmin

γ(dk) eiθ k p(t; θ|ω, k) (1.6.7)

with kmin the minimum degree in the network and 〈k〉 =
∫∞

0
kγ(dk) the average

degree.
When the natural frequency distribution µ(ω) is symmetric and has mean zero,

then the critical coupling strength is

Kc = 2N〈k〉
[ ∫

R
µ(dω)

∫ ∞
kmin

γ(dk)
Dk2

D2 + ω2

]−1

, (1.6.8)

which is divergent with N .

Two-community model

The same authors considered the stochastic Kuramoto model without disorder on
a two-community network [120], assigning an in-degree and an out-degree to each
node i (oscillator), Ki and Gi, respectively. Grouping these into two populations, one
with interaction parameters (K1, G1) and one with interaction parameters (K2, G2),
we get a two-community version. In this case we can define an order parameter and
a density for each community. The limiting densities evolve according to

∂p1,2(t; )θ

∂t
= D

∂2p1,2(t; θ)

∂θ2
− ∂

∂θ

[
K1,2R(t) sin(Ψ(t)− θ)p1,2(t; θ)

]
, (1.6.9)

where R(t) and Ψ(t) are defined by

R(t)eiΨ(t) =
1

2

[
r1(t)G1eψ1(t) + r2(t)G2eiψ2(t)

]
. (1.6.10)
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The community synchronization levels r1,2(t) and average phases ψ1,2(t) are defined
analogously as before. The phase difference between the average phases is defined
by δ(t) = ψ1(t) − ψ2(t). Approximating the populations of the oscillators to be dis-
tributed according to a Gaussian distribution (‘Gaussian Approximation’) amounts
to expanding the densities p1,2(t; θ) in a Fourier series, and replacing real and ima-
ginary components by their Gaussian counterparts, where the mean and variance of
the Gaussian are assumed to be time-dependent. Under such an approximation the
dynamics of the system can be described by a set of three equations:

ṙ1 = −r1D +
1− r4

1

4
K1[r1G1 + r2G2 cos δ], (1.6.11)

ṙ2 = −r2D +
1− r4

2

4
K2[r2G2 + r1G1 cos δ], (1.6.12)

δ̇ = − sin δ

4

[
(r−1

1 + r3
1)K1r2G2 + (r−1

2 + r3
2)K2r1G1

]
. (1.6.13)

To find the possible stationary states, this set of equations, must be solved with the
restriction that ṙ1,2 = δ̇ = 0. This leads to the phase diagram given in Fig. 2 of [120],
which shows the existence of traveling waves and of states where there is a constant
phase lag between the two populations. Further numerical analysis shows that the
model is significantly richer when considered on a two-community network.

Superficial hierarchical Kuramoto model

The previous two examples rely on approximations that may well be justified by
simulations, but cannot be considered rigorous. Reference [32] considers N copies of
the stochastic Kuramoto model and introduces a mean-field interaction between their
average phases after they have sufficiently synchronized. This is used as Kuramoto
model on the second level. Taking N copies of the second level Kuramoto model with
a mean-field interaction of the Kuramoto type gives the third level Kuramoto model.
This is repeated. We refer to this as the superficial hierarchical Kuramoto model in
order to distinguish it from what we will consider later. The name refers to the fact
that the interaction is imposed at the level of the average phases, which is more on
the surface than what we will consider. We define the coupling strength at the nth

level to be K(n) and the synchronization at the nth level to be r(n)(t). The result
relevant to our work is one giving a necessary and sufficient condition for r(n) to be
positive in the limit as n→∞ and t→∞ ([32] Theorem 1.4.3).

1.6.1 Theorem.
lim
n→∞

r(n) > 0⇐⇒
∑
m∈N

1

γ(m)
<∞, (1.6.14)

where

γ(n) =
K(n)(r(n−1))2

D2
, n ∈ N. (1.6.15)

This seems a strong result, but since the γ(n) depend sequentially on the previous
levels of synchronization, it is not easy to calculate the sum of their inverses.
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§1.7 Discrepancy

The nonlinearity of the interaction in the Kuramoto model greatly increases the dif-
ficulty in analyzing the model. This can be illustrated by a discrepancy that arises
when considering the Kuramoto model at times of order Nt, i.e., time is scaled by
the number of oscillators. Both [32] and [14] prove that the average phase ψ(t) per-
forms a diffusion on this time scale. It is, however, remarkable that the calculation
of the quadratic variation of the resulting diffusion via standard Itô-calculus gives an
incorrect prediction. Itô’s rule applied to (1.5.2) yields the expression

dψN,t =

N∑
i=1

∂ψN,t
∂θi

dθi(t) +
1

2

N∑
i=1

∂2ψN,t
∂θ2
i

(
dθi(t)

)2 (1.7.1)

with

∂ψN,t
∂θi

=
1

NrN,t
cos
[
ψN,t − θi(t)

]
, (1.7.2)

∂2ψN,t
∂θ2
i

= − 2(
NrN,t)2

sin
[
ψN,t − θi(t)

]
cos
[
ψN,t(t)− θi(t)

]
+

1

NrN,t
sin
[
ψN,t − θi(t)

]
.

Inserting (1.5.3) into (1.7.1)–(1.7.3), we get

dψN,t = I(N ; t) dt+ dJ(N ; t) (1.7.3)

with

I(N ; t) =

[
K

N
− 1(

NrN,t
)2
]

N∑
i=1

sin
[
ψN,t − θi(t)

]
cos
[
ψN,t − θi(t)

]
,

dJ(N ; t) =
1

NrN,t

N∑
i=1

cos
[
ψN,t − θi(t)

]
dWi(t),

(1.7.4)

where we use that
∑N
i=1 sin[ψN,t − θi(t)] = 0 by (1.5.2). Since the last term is a sum

of independent Brownian motions, the asymptotic variance should be given by t/N
times

1

r2

∫ 2π

0

dθ p(θ) cos2 θ, (1.7.5)

where

p(θ) =
e2Kr cos θ∫

S dθ′ e2Kr cos θ′
(1.7.6)

is the stationary density of the Kuramoto model so that

lim
t→∞

lim
N→∞

νN,t(dθ) = p(θ)dθ. (1.7.7)
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Another way of calculating this variance is to compute the quadratic variation of the
random variable that arises when projecting the fluctuations of the measure onto the
tangent space of the steady-state manifold. This random variable is defined as

Yt :=
〈〈νN,t − νN,0, p′〉〉

〈〈p′, p′〉〉 , (1.7.8)

where 〈〈·, ·〉〉 is the scalar product in the Hilbert space H−1,1/p, so that

〈〈u, v〉〉 =

∫
S

dθ
U(θ)V(θ)

p(θ)
(1.7.9)

and U is such that u = U ′ with the convention that
∫
S
U(θ)
p(θ) dθ = 0. To calculate

〈〈p′, p′〉〉, we define P so that P ′ = p′. This means that P(θ) = p(θ) + C, where the
constant C has to be determined by the convention, which gives

C = − 2π∫
S dθ 1

p(θ)

. (1.7.10)

Using this formula, we have

〈〈p′, p′〉〉 =

∫
S

dθ
P2(θ)

p(θ)
= 1− (2π)2∫

S dθ 1
p(θ)

. (1.7.11)

To calculate the quadratic variation we follow [14] from equation (2.8) to (2.9). We
apply Itô’s formula to

〈〈νN,t − νN,0, p′〉〉 =

∫
S

dθ
1

p(θ)
P(θ)VN (θ), (1.7.12)

where P and VN are the appropriate primitives. We can write this as

〈〈νN,t − νN,0, p′〉〉 =

∫
S

dθ VN (dθ)∂θK(θ), (1.7.13)

where K is the primitive of 1− c/p(θ), so that

〈〈νN,t − νN,0, p′〉〉 = −
∫
S

dθK(θ)[νN,t(dθ)− p(θ)]. (1.7.14)

Applying Itô’s formula, we get∫
S
K(θ)νN,t(dθ)−

∫
S

dθK(θ)p(θ) = −K
∫ t

0

ds

∫
S2
νN,s(dθ

′)νN,s(dθ
′)K′(θ′) sin(θ − θ′)

(1.7.15)

−
∫ t

0

ds

∫
S
νN,s(dθ)K′′(θ) +

N∑
j=1

1

N

∫ t

0

K′(θj(s))dWj(s),
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which is a sum of a drift term and a martingale. We can compute the quadratic
variation of the martingale as

MN,K(t) =

N∑
j=1

1

N

∫ t

0

K′(θj(s))dWj(s), (1.7.16)

so

〈MN,K〉t =

N∑
j=1

∫ t

0

ds
1

N2
(K′(θj(s)))2 =

1

N

∫ t

0

ds

∫
S
νN,s(dθ)(K′(θ))2. (1.7.17)

The integral over S converges:

lim
N→∞

∫
S
νN,s(dθ)(K′(θ))2 =

∫
S

dθ (K′(θ))2p(θ), (1.7.18)

and since we are starting in the stationary distribution this gives

〈MN,K〉t =
t

N

∫
S

dθ (K′(θ))2p(θ), (1.7.19)

as also stated in [14]. Since K is the primitive, this says that∫
S

dθ
(

1− c

p(θ)

)2

=

∫
S

dθ p(θ)− 2c

∫
S

dθ + c2
∫
S

dθ

p(θ)
(1.7.20)

= 1− 2
(2π)2∫

S dθ/p(θ)
+

(2π)2∫
S dθ/p(θ)

. (1.7.21)

The quadratic variation of Yt is therefore t/N times

1− (2π)2
[ ∫

S
dθ
p(θ)

]−1

〈〈p′, p′〉〉2 =
1

〈〈p′, p′〉〉 =
1

1− (2π)2∫
dθ/p(θ)

=
1

1− I0(2Kr)−2
, (1.7.22)

where I0(·) is the modified Bessel function of the first kind

In(x) =
1

2π

∫ 2π

0

dθ cos(nθ) ex cos θ, n = 0, 1, 2, . . . (1.7.23)

The last equality follows since

(2π)2∫
S

dθ
p(θ)

=
(2π)2∫

S dθe2Kr cos θ
∫
S dθe−2Kr cos θ

=
1

I2
0 (2Kr)

. (1.7.24)

Using the definition of the Bessel function and the expression for q(θ), (1.7.5) we can
rewrite

I0(2Kr) + I2(2Kr)

2r2I0(2Kr)
=

1

2r2
+

I2(2Kr)

2r2I0(2Kr)
. (1.7.25)

But we also know that (by the self-consistency relation)

r =
I1(2Kr)

I0(2Kr)
, (1.7.26)
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and so (1.7.5) becomes

I2
0 (2Kr)

2I2
1 (2Kr)

+
I0(2Kr)I2(2Kr)

2(I1(Kr))2
, (1.7.27)

which is certainly not equal to (1.7.22). Surprisingly, the difference between (1.7.27)
and (1.7.22) is numerically very small, a fact that is crucial in Chapter 4 where we
will use the term calculated via Itô-calculus as an approximation.

§1.8 Main results of Part II

Results of Chapter 4

In Chapter 4 we consider the Kuramoto model on the hierarchical lattice and make a
conjecture on the scaling behaviour of the system at each hierarchical level based on
the folklore of renormalization theory. After that we approximate the renormalization
scheme and argue that the approximation is good based on the observation that
the discrepancy at the first hierarchical level is small. The approximate system can
be analyzed exactly, and so we proceed by proving classification criteria for three
universality classes in the behaviour of the system, in the hierarchical mean-field
limit. The possible universality classes are:

(1) Synchronization is lost at a finite level:
R[k] > 0, 0 ≤ k < k∗, R[k] = 0, k ≥ k∗ for some k∗ ∈ N.

(2) Synchronization is lost asymptotically:
R[k] > 0, k ∈ N0, lim

k→∞
R[k] = 0.

(3) Synchronization is not lost asymptotically:
R[k] > 0, k ∈ N0, lim

k→∞
R[k] > 0.

Here R[k] gives the synchronization in the k-block around the origin. The first main
result gives the following criteria:

1.8.1 Theorem. (Criteria for the universality classes)

•
∑
k∈NK

−1
k ≥ 4 =⇒ universality class (1),

•
∑
k∈NK

−1
k ≤ 1√

2
=⇒ universality class (3),

where Kk is the interaction strength between oscillators at hierarchical distance k.

This result is reminiscent of that in Theorem 1.6.1 without the complication of the
sequential dependence on lower levels. The second main result gives bounds on the
synchronization levels in different universality classes:

1.8.2 Theorem. (Bounds for the block synchronization levels)

• In universality classes (2) and (3),
1
4σk ≤ R[k] −R[∞] ≤

√
2σk, k ∈ N0, (1.8.1)

with σk =
∑
`>kK

−1
` .
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• In universality class (1), the upper bound in (1.8.1) holds for k ∈ N0, while the
lower bound in (1.8.1) is replaced by

R[k] −R[k∗−1] ≥ 1
4

k∗−1∑
`=k+1

K−1
` , 0 ≤ k ≤ k∗ − 2. (1.8.2)

The latter implies that

k∗ ≤ max

{
k ∈ N :

k−1∑
`=1

K−1
` < 4

}
, (1.8.3)

because R[0] = 1 and R[k∗−1] > 0.

The last part of Chapter 4 gives some numerical calculations demonstrating the res-
ults above. Chapter 4 is based on [52].

Results of Chapter 5

In Chapter 5 we consider the Kuramoto model on a simpler network, consisting of two
communities, and allow the interaction between the communities, L, to be negative.
The negative interaction between the communities enriches the model significantly.
In particular, the synchronization levels in the two communities can be different. We
conjecture that the only possible steady states of the system occur when the phase
difference between the average phases of the communities is 0 or π. The nonsymmetric
solutions bifurcate from the symmetric solution in both cases. Chapter 5 has three
key results. The first is a full classification of the phase diagram of the model, which
is summarized in Fig. 1.4 for the case where the phase difference is 0 .

The second result is a characterization of the bifurcation point.

1.8.3 Theorem (Characterization of the bifurcation line). The existence of
non-symmetric solutions requires L < 0, in which case the bifurcation point
K∗ = K∗(L) is the unique solution to the equation√

1− 2K

K2 − L2
= V

(
(K + L)

√
1− 2K

K2 − L2

)
, (1.8.4)

and the synchronization level at the bifurcation point is given by

r∗(K∗, L) =

√
1− 2K∗

K∗2 − L2
. (1.8.5)

Here, the function V (x) is defined as

V (x) =

∫
S dθ cos θ ex cos θ∫

S dθ ex cos θ
, (1.8.6)

K is the intra-community interaction strength, and r∗ is the synchronization level of
the bifurcation point.
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Figure 1.4: In the light red region there is one solution: unsynchronized. In the light green
region there are two solutions: unsynchronized and symmetric synchronized. In the light blue
region there are three solutions: unsynchronized, symmetric synchronized and non-symmetric
synchronized.

The third result consists of a pair of theorems, the first listing properties of the
line r∗(K) and the second giving the asymptotics of L∗(K), obtained by fixing K,
solving (1.8.4), and letting K →∞ and K ↓ 2.

1.8.4 Theorem (Properties of K 7→ r∗(K)).
(a) limK↓2 r∗(K) = 0.

(b) limK→∞ r∗(K) = 1.

(c) r∗(K) ∼
√

K−2
2 as K ↓ 2.

(d) 1− r∗(K) ∼ 1
2
√
K

as K →∞.

(e) ∂r∗(K)
∂K > 0 for all K > 2.

(f) ∂2r∗(K)
∂K2 < 0 for all K > 2.

1.8.5 Theorem (Asymptotic properties of the bifurcation line).
(a) limK→∞

∂L∗(K)
∂K = −1.

(b) limK↓2
∂L∗(K)
∂K = − 1

2 .

The model we consider is a special case of the more general model discussed in
[120], but we do not rely on a Gaussian approximation. Chapter 5 is based on [93].
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§1.8. Main results of Part II
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Results of Chapter 6

The final chapter of this thesis is an application of the results in Chapter 5 in the
field of neuroscience. The results hint at the mechanisms that could be driving a
phenomenon observed in some hamsters called phase splitting. In experiments [96],
[56], [55] hamsters are entrained to a light-dark cycle. In this simulation of night
and day, the hamsters are active for a few consecutive hours, once every 24 hours.
The hamsters are then switched to a state of constant light. After some time the
hamsters exhibit a behavior in which they are active for two periods during the day.
How precisely this happens is not know, although many models have been proposed
to explain it [117], [98], [65]. In Chapter 6 we propose that the community network
structure of the suprachiasmatic nucleus (the body clock) plays a significant role in
producing the phase split state. The model in Chapter 5 predicts precisely this phase
split state when the interaction between the two communities is negative.

In experiments the phase split state does not seem to be completely stable, as the
hamsters switch back to a single active period after some time. Delving deeper into
the experiments, we find that the transition to the phase split state can occur in one
of two ways. The transition can be smooth, so that the communities change to the
phase split state while remaining relatively well synchronized within the communities.
The transition can also be quite chaotic, meaning that one or both of the communities
become desynchronized before changing to the phase split state. One explanation of
this observation could be the nonexistence or existence of nonsymmetric synchronized
states found in Chapter 5 that the system might have to pass through before reaching
the phase split state. Chapter 6 does not offer new mathematical results and also does
not present new experimental findings however, it does offer an interpretation of the
mathematical results of Chapter 5 in a specific context and provides data that corrob-
orates this interpretation. The goal of Chapter 6 is to entice experimental researchers
to design experiments in order to prove or disprove the predictions made in Chapter 6.

Open Problems

Open problems are numerous. The most challenging is to write down and analyze the
true renormalization map for the Kuramoto model on the hierarchical lattice. An-
other, slightly more realistic, extension would be to include disorder in the hierarchical
Kuramoto model and finding an appropriate approximation to the renormalization
map with disorder. For the two-community Kuramoto model it would be interesting
to analyze the stability properties of the stationary states and to study the dynamics
of the system as it moves from one state to the other. Another problem would be to
see whether the system bifurcates in the disordered case as well, which we expect to
be the case.
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