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Summary

This thesis concerns the mathematical area of arithmetic geometry. I will first
give a general introduction to this field before touching upon the more specific
topics and results discussed in this thesis.

What is arithmetic geometry?

In number theory it is common to study rational solutions to equations such as
x? 4+ 3 = 5. This means that one is interested in pairs of rational numbers x
and y for which this equation is true. Some of these solutions can be found by
simply trying some small values for x and y. For example, the solutions x = 2
and y = 1, and x = —2 and y = 1 could be found by simple inspection.

In arithmetic geometry one approaches such questions using geometric tech-
niques and terminology. For example, one can draw all the real points on the
xy-plane for which the equation x? + y® = 5 is satisfied. We recover the curved
line as shown in the diagram on the next page and we see that the solution x = 2
and y = 1 corresponds to the point (2,1) on this geometric object. This interpre-
tation shows why a solution to an equation is often called a point; it is a point on
the geometric object defined by the equation. We will use the terms point and
solution interchangeably.

We will now show that the equation x? + y® = 5 has infinitely many solutions
over the rational numbers. It has been shown that if (x, y) is a rational solution,
then another solution is given by

Y410 37y +40 yy’ +40
2x 8x y3’—5"4y3-5)"

If we start with the point (x,y) = (2,1) we can iterate this procedure to find the
following points

2,1) 299 41\ [ 29624702641 3891679\
' 64" 16 13686220288 5721664

A suspicious reader is invited to check that these pairs are really solutions to the
equation x% + % = 5.
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_ 29624702641 3891679 \~
136862202887 5721664

These formulas for determining new solutions are as ugly as they are mysteri-
ous, but this procedure has a very nice geometric interpretation: consider the
geometric object defined by x> + y> = 5. Then draw the tangent line in the
point (2,1) and intersect it again with the curve. This new intersection point is

(%, - %) ; precisely the point obtained from applying the procedure described

above. To compute the next point one draws the tangent line in this new point

(26%9/ - %) and again intersects it with the curve. We can repeat this procedure

indefinitely to find infinitely many rational points.

This is a first example of how geometric techniques are used to study equa-
tions. We also use geometric properties to classify equations. The equation
above describes a ‘bent line’, which is called a curve. This thesis however is
about surfaces which look more like ‘bent, twisted or curved planes’ such as on
the cover of this thesis.

Surfaces

There are several ways to move from equations describing curves to equations
describing surfaces. The first way is to add a third variable, for which we will
use z. For example, the equation x* + y® + z> = 4 describes a surface which has

many solutions such as
156
213" 7)°
Another way to write down equations for surfaces is by not only increasing the

number of variables, but also the number of equations. Consider the system of
equations with the four variables w, x, y en z:

w? +x2 + 2 =6,
w? + xy +yz =2.
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We can then also study the quadruple (w, x,y, z) for which both equations are

satisfied simultaneously. One can check that (1,2,1, —1) and (%, —2,-17 —%)

are solutions to this set of equations. ’
These two surfaces are examples of so-called ample log K3 surfaces. Occasion-
ally, ample log K3 surfaces are referred to, albeit slightly imprecisely, as affine del
Pezzo surfaces which is the term used in the title of this thesis.
Another example of an ample log K3 surface is given by the system of five
equations

1+ 1952wy + 412071wz =
1210 + 492x + 52838z + vx + 220y + 971038xz + 177111022,
w + 88wy + 20504wz + 16xy =
11v + 22x + 4y + 3267z 4 vy + 39017xz + 7808922, (%)
v+ x + 169z + 22022 = w? + 4wy + 451wz + 500xz,
y + 121wz = 11z + wx + 4xy + 363xz + 59422,
z + x? +40xz + 5522 = wy + 11wz

in the five variables v, w, x, y and z. The surface it describes has many rational

points, such as
1 1 23 11 1
-20,-,<,—,0 d —, —=,=—=0].
( /4/ 4 16/ ) an ( 5 4 5/ 5/ 5/ >

Although the equations are quite hideous this surface is geometrically very
pleasing. One of its geometrically interesting features of this surface is even
shown on the cover: although the surface is very twisted it is possible to walk in
a straight line along this surface. Note that there are precisely ten such straight
lines.

The number of lines is an aspect that distinguishes this surface from the pre-
vious two examples, since one can show that those surfaces contain respectively
27 and 16 lines. The reader is advised at this point to look up a picture of the 27
lines on the ‘Clebsch surface’ online.

We will consider ample log K3 surfaces with 10 lines. There are technical
reasons we will not go into to call these surfaces ample log K3 surfaces of degree
5. In contrast the other examples are log K3 surfaces of degree 3 and 4, respec-
tively. So now we used the geometric property of the number of lines to classify
equations.

X =

Integral points

Let us now focus on the ample log K3 surface of degree 5 defined by the sys-
tem (x). We saw that it has rational points. A next question is whether some of
these rational solutions are in fact solutions in integers. In this case will speak
of integral points and integral solutions.
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The two rational solutions mentioned above are clearly not integral, but this
is in no way a guarantee that all rational solutions are not integral. But one
would do well to also consider the possibility that there are no integral solutions
at all!

Any technique which proves that there can not be any points is called an
obstruction. One possible obstruction to the existence of solutions was developed
by Manin. He used a technical object called the Brauer group of the system of
equations. If such an obstruction excludes the existence of integral solutions
one says that there is a Brauer—Manin obstruction to the existence of integral points.
In that case we can conclude that there are no integral solutions. This is what I
did in this thesis for the system (x).

THEOREM 1. There is a Brauer—Manin obstruction to the existence of integral solu-
tions to the system of equations (x). This proves that the system does not have an inte-
gral solution.

Chapter 4 gives a general method for deciding whether an ample log K3 sur-
face of degree 5 admits a Brauer-Manin obstruction. Using this method, I found
infinitely many systems of equations which do not admit an integral solution.

Bounding the Brauer group

One can now also wonder if it would be possible to have a computer determine
whether or not a system of equations has a Brauer-Manin obstruction. Usually
this depends on the complexity of the Brauer group. Unfortunately it is known
that the Brauer group of surfaces can be arbitrarily complex, in the sense that
for every surface there is another surface for which the Brauer group is more
complex. The main theorem of Chapter 3 states that this is not the case for
ample log K3 surface.

THEOREM 2. There is a bound on the complexity of the Brauer group of ample log K3
surfaces.

This bound shows that the Brauer group of an ample log K3 surface can
not be arbitrarily complex. This is important information for developing an
algorithm that determines whether there is Brauer-Manin obstruction to the ex-
istence of integral solutions to complicated systems of equations such as the
system (x).

134





