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Chapter 4

Order 5 obstructions to the
integral Hasse principle

In this chapter we will discuss new examples of the Brauer–Manin obstruction
to the integral Hasse principle. The most remarkable property of these obstruc-
tions is that they come from a single element of order 5. This is exceptional since
all other known examples of the Brauer–Manin obstructions use only elements
of order 2 and 3.

The results in this chapter all use an element of order 5 which can occur in
the Brauer group of ample log K3 surfaces of dP5 type described in Proposi-
tion 3.2.5. So let us write U = X\C where X is an ordinary del Pezzo surface of
degree 5 over Q and C is an effective anticanonical divisor. In Proposition 3.2.5
we have seen that U has a non-trivial algebraic Brauer group for a specific action
of the absolute Galois group Gk on the geometric Picard group Pic X̄. We will
first study this action and the induced action on the −1-classes. We will see for
example that Pic X̄ will be isomorphic to Pic XK for a specific number field K of
degree 5.

The next step in producing our examples is recovering an ample log K3 sur-
face U over Q from this action or even from only its splitting field K. We use the
construction described in [29] to first construct a del Pezzo surface X of degree 5
over Q. We start off with a conic Γ0 on the projective plane P

2
Q

and five distinct
geometric points Pi on the conic with a specific action of Galois. We blow up
these five points and recover an ordinary del Pezzo surface β : B → P

2
Q

of de-
gree 4. The strict transform Γ of Γ0 along the blowup morphism β is a −1-curve
on B. We contract this curve along the morphism B → X to obtain an ordi-
nary del Pezzo surface of degree 5 over Q. Now for any smooth anticanonical
curve C ⊆ X we see that U = X\C is an ample log K3 surface with an algebraic
Brauer group modulo constants of order 5. These are the surfaces for which we
will consider the set of integral points.

However, U is a surface over Q and it does not make sense to consider Z-
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4.1. THE INTERESTING GALOIS ACTION

points; the set of integral points on a scheme over a number field depends on
the choice of model over the ring of integers. We can obtain a model U/Z for U
in the following natural way: the anticanonical map embeds the ordinary del
Pezzo surface X into P

5
Q

which restricts to an embedding U → A
5
Q

. Consider
a set of equations defining the subscheme U ⊆ A

5
Q

. We rescale these equa-
tions such that they have integral coefficients. These equations now define a
subscheme U ⊆ A

5
Z

which is affine over Z.
In order to study the geometry of the model U it is useful to have another de-

scription. In the above construction of X we first blew up points and contracted
a curve defined over Q and then passed to a scheme over the integers. We will
now reverse the steps of this process: first we pass over to the integers and then
we blow up the projective plane over the integers in a subscheme which is flat
of relative dimension zero over Z. We obtain a scheme B over Z whose fibres
are peculiar del Pezzo surfaces over either a finite field or the rational numbers.
We proceed by contracting a subscheme Γ ⊆ B over Z to obtain a scheme X
over Z. This does not mean that Γ is contracted to a single point, but rather
that the image of Γ in X is a relative point of X → Z. This implies that a fibre
of Γ over a prime � ∈ Z is a curve of negative self-intersection on a peculiar del
Pezzo surface B�, and the morphism B� → X� is the contraction of this curve
to obtain another del Pezzo surface. The scheme X will naturally embed in P

5
Z

.
Now consider the complement U ⊆ A

5
Z

of a hyperplane section H ⊆ P
5
Z

in X .
We will show that this relative affine surface U/Z is naturally isomorphic

to the subscheme U ⊆ A
5
Z

constructed above. The first construction gives us
explicit equations while the second construction makes it easier to understand
the geometry of the closed fibres of U over Z.

Now that we have constructed a scheme U which is affine over Z we can
consider the integral points on U . Using our explicit geometric construction we
study the fibres of U over Z; almost all of which are ample log K3 surfaces of
dP5 type. We proceed by computing the invariant map at a prime � using our
description of the fibre U� and the factorization of � in the number field K. By
combining all these local results we obtain several examples of order 5 Brauer–
Manin obstructions to the integral Hasse principle.

4.1 The interesting Galois action

In this chapter we will construct an affine scheme U ⊆ A
5
Z

which has a Brauer–
Manin obstruction to the integral Hasse principle. This obstruction is given by
an element of order 5 in the Brauer group Br U of the generic fibre U = UQ. In all
our examples we will construct U in such a way such that U = X\C is an ample
log K3 surface of dP5 type. The existence of an element of order 5 in Br U/ Br Q

is then implied by Proposition 3.2.5 for a specific action of GQ on Pic X̄.
Let X be any del Pezzo surface of degree 5 over a field k. We recall some re-

sults about the action of Galois on the geometric Picard group Pic X̄. We defined
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CHAPTER 4. ORDER 5 OBSTRUCTIONS

W4 as the group of intersection-preserving automorphisms of Pic X̄ which map
the anticanonical class to itself. If C is geometrically irreducible this induces an
action of W4 on Pic Ū. In Proposition 3.2.5 we have seen that there is a special
conjugacy class W of subgroups of W4. This conjugacy class W is precisely the
set of all subgroups of W ⊆ W4 with the property that the cohomology group
H1(W, Pic Ū) is non-trivial. We will study the action of such a subgroup W on
Pic X̄, Pic Ū and the −1-curves on X more closely in this section. Let us first
define this interesting action.

DEFINITION 4.1.1. Let X be an ordinary del Pezzo surface of degree 5 over a
field k. Let K be the minimal Galois extension of k over which all −1-curves
on X are defined. We say that X is interesting if [K : k] = 5. A log K3 surface of
dP5 type U = X\C is called interesting if X is an interesting del Pezzo surface
and C is geometrically irreducible.

The field K is called the splitting field of the interesting surfaces X and U.

Consider an interesting log K3 surface U = X\C. By definition of a log K3
surface we see that C is smooth. The curve C is also geometrically irreducible
since U is interesting. The results in this chapter are also true for the complement
of a geometrically irreducible anticanonical curve C on an ordinary del Pezzo
surface X of degree 5. To be able to use the language of log K3 surface we do
keep the superfluous condition that C is smooth.

The following lemma shows that an interesting action corresponds to a unique
conjugacy class of subgroups of W4.

LEMMA 4.1.2. Consider an interesting del Pezzo surface X over a field k. The action
of Gk on Pic X̄ is uniquely determined up to conjugacy.

On an interesting del Pezzo surface there are two Galois orbits of geometric −1-
curves, each of size 5. The sum of the −1-curves in one such orbit is an anticanonical
divisor.

Proof. Let K be the minimal Galois extension of k such that all −1-curves on X
are defined over K. Since X is interesting the extension K/k is of degree 5.

We have seen in Proposition 2.3.1 that there is a basis (L0, L1, L2, L3, L4) of
Pic X̄ ∼= Z

5 such that L2
0 = 1, L0 · Li = 0 and L2

i = −1 for i �= 0. The −1-
classes are the classes Li for i �= 0 and Lij := L0 − Li − Lj for 1 ≤ i < j ≤ 4.
The intersection graph of the −1-curves on a generalized del Pezzo surface of
degree 5 is the so-called Petersen graph shown in Figure II.

Let us first prove that Gal(K/k) does not fix any of the ten geometric −1-
curves. If it does fix a −1-curve L consider the three −1-curves L intersects. The
Galois action then permutes these three −1-curves since the action preserves the
intersection pairing. However there are no non-trivial group homomorphisms
Z/5Z → S3 so the action of Galois actually fixes these three −1-curves. Since
the graph in Figure II is connected we conclude that all geometric −1-curves
are defined over k contradicting the minimality of K. So no geometric −1-curve
is fixed by Gk and there must be two orbits of size 5. After choosing a possible
different basis of Pic X̄ we see that these two orbits are the two regular pentagons
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L1

L12

L2

L23 L14

L13

L34

L24

L3 L4

Figure II: The intersection graph of −1-curves on a generalized del Pezzo surface
of degree 5.

in Figure II and that there is a σ ∈ Gal(K/k) which acts on the outer pentagon by
rotating counter-clockwise. Since σ preserves the intersection pairing it will also
rotate the inner pentagon counter-clockwise. This determines the action of σ on
the −1-classes

L1 �→ L12 �→ L2 �→ L23 �→ L14 �→ L1,

L3 �→ L4 �→ L13 �→ L34 �→ L24 �→ L3.

This proves that L0 = L12 + L1 + L2 gets mapped to 2L0 − L1 − L2 − L3. Since
a different choice of such a basis differs by an automorphism in W4 by Proposi-
tion 2.3.5 this determines an action of Gk on Pic X̄ up to conjugacy.

For the last statement one needs to check that both the divisor classes of
L1 + L12 + L2 + L23 + L14 and L3 + L4 + L13 + L34 + L24 equal the anticanonical
class 3L0 − L1 − L2 − L3 − L4.

If we consider a log K3 surface of geometrically irreducible dP5 type over
a number field k we can compute its algebraic Brauer group modulo constants
using Proposition 1.6.5. The following proposition shows that the action of Gk
on Pic X̄ is interesting precisely when Br1 U/ Br k is non-trivial. We conclude
that the actions mentioned in Proposition 3.2.5 are precisely the interesting ones.

PROPOSITION 4.1.3. Let U = X\C be a log K3 surface of geometrically irreducible
dP5 type over a number field k. We have

Br1 U/ Br k ∼=
�

Z/5Z if U is interesting;
1 otherwise.

74

42B_BW_PS Lyczak_Stand.job_Press Sheet Size 17x24 cm



CHAPTER 4. ORDER 5 OBSTRUCTIONS

Proof. Let the action of Gk on Pic X̄ factor through the minimal subgroup W
of W4. Lemma 3.2.2 states that Br1 U/ Br k only depends on the conjugacy class
of W ⊆ W4 and that for precisely one conjugacy class of subgroups of W4 the
algebraic Brauer group modulo constants is non-trivial. We have seen that every
interesting action of Gk on Pic X̄ factors through the same conjugacy class of sub-
groups of W4 of order 5. This means that it will suffice to prove that Br1 U/ Br k
is non-trivial for interesting del Pezzo surfaces. So suppose that X is an interest-
ing del Pezzo surface over k. We will fix a basis (L0, L1, L2, L3, L4) of Pic X̄ as in
the proof of Lemma 4.1.2.

In general, since C ⊆ X is geometrically irreducible we find the following
exact sequence of Galois modules

0 → Z
j→ Pic X̄ → Pic Ū → 0,

where j maps n to −nKX . This shows that Pic Ū ∼= Pic X̄/ZC ∼= Z
4, since the

anticanonical divisor class −KX = 3L0 − L1 − L2 − L3 is primitive. So Pic Ū
is torsion free and from the inflation–restriction sequence we conclude that the
inflation homomorphism induces an isomorphism

H1(Gal(K/k), Pic UK)
inf−→ H1(Gk, Pic Ū).

Given the basis of Pic X̄ we saw in the proof of Lemma 4.1.2 the specific
action of a generator σ ∈ Gal(K/k) on Pic X̄. We will compute the action of σ on
the quotient Pic Ū of Pic X̄. The classes [L0], [L1], [L2] and [L3] in Pic UK form a
basis and in this basis the class of L4 becomes [L4] = 3[L0]− [L1]− [L2]− [L3].
So σ acts on Pic Ū as

σ =





2 1 1 3
−1 −1 0 −1
−1 −1 −1 −1
−1 0 −1 −1





By results on group cohomology of cyclic groups [58, Theorem 6.2.2] we see that
we get

H1(G, Pic Ū) ∼= ker(1 + σ + σ2 + σ3 + σ4)/Im(1 − σ).

Since 1 + σ + σ2 + σ3 + σ4 = 0 and the image of 1 − σ is generated by (1, 0, 0, 2),
(0, 1, 0, 4), (0, 0, 1, 4) and (0, 0, 0, 5) we find

Br1 U/ Br k ∼= Z/5Z.

Consider an interesting log K3 surface U. On the compactification X of U
we have three important effective anticanonical divisors. First of all C = X\U,
but also the two divisors supported on −1-curves as described in Lemma 4.1.2.
We will associate to these effective divisors anticanonical sections using [33, II,
Proposition 7.7b] and we will use these elements to construct explicit generators
of Br1 U/ Br k for an interesting log K3 surface U = X\C.
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LEMMA 4.1.4. Let U = X\C be an interesting log K3 surface over a number field k.
Let K be the corresponding Galois extension of degree 5 of k. Fix a generator σ of
Gal(K/k) ∼= Z/5Z. Let h ∈ H0(X, ω∨

X) be a global section whose divisor of zeroes
is C, and let l1 and l2 be sections in H0(X, ω∨

X) associated to the two anticanonical
divisors supported in geometric −1-curves from Lemma 4.1.2.

The cyclic κ(X)-algebras
�

l1
h

, σ

�
and

�
l2
h

, σ

�

are similar over κ(X), their class lies in the subgroup Br U ⊆ Br κ(X) and gener-
ates Br1 U/ Br k.

Proof. As divU(
l1
h ) and divU(

l2
h ) are orbits of −1-curves defined over K it fol-

lows from Lemma 1.7.3 that the cyclic algebras lie in the subgroup Br U. From
Proposition 1.3.2 we see that the algebras

�
l1
h , σ

�
⊗

�
l2
h , σ

�opp
and

�
l1
l2

, σ
�

are

similar. Now divU(
l1
l2
) is the norm of a principal divisor on U since this is even

the case on X. Indeed, the divisors L14 + L1 − L2 and L24 are linearly equivalent
on X, and their norms NmK/k(L14 + L1 − L2) and NmK/k(L24) are the divisors
of zeroes of l1 and l2. It follows again from Lemma 1.7.3 that

�
l1
l2

, σ
�

is trivial
in Br U, and hence that the two cyclic algebras lie in the same class.

We have seen in Proposition 1.3.2 that A is split by the degree 5 extension K.
Now Corollary 1.2.13 implies that A is either trivial or of order 5. Suppose that
the class of A is trivial. Then by Lemma 1.7.3 any −1-curve L on UK in the
support of divUl1 is principal, i.e. there is a g ∈ κ(UK) such that divU g = L.
Consider g as a function on X. Then divX g = L + nC for some non-negative
integer n, since C is geometrically irreducible. We conclude that

0 = KX · divX g = KX · L + nKX · C = −1 + 5n,

which is a contradiction.

The anticanonical sections l1 and l2 are so important we will repeat their
definition.

DEFINITION 4.1.5. Let X ⊆ P
5
k be an anticanonically embedded interesting del

Pezzo surface of degree 5. Let l1, l2 ∈ O
P

5
k
(1) be the linear forms over k in six

variables which restrict to the anticanonical sections supported on geometric
−1-curves from Lemma 4.1.4.

Note that l1 and l2 are only defined up multiplication by an element of k×.
From now on we will denote the class in Lemma 4.1.4 by A ∈ Br1(U) which is
uniquely defined up to an element in Br k. Fix for the moment an interesting del
Pezzo surface X. We will consider the class Ah on Uh as h varies over all hyper-
plane sections. We have seen that Ah is of order 5 if h cuts out a geometrically
irreducible curve. The next lemma shows that this only fails for specific choices
of h.
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LEMMA 4.1.6. Let X ⊆ P
5
k be an interesting del Pezzo surface over a field k. A hyper-

plane section given by the vanishing of an h ∈ H0(P5
k ,O(1)) fails to be geometrically

irreducible if and only if h is a scalar multiple of either l1 or l2.

Proof. Consider a hyperplane section C ⊆ X. Let D be a k-irreducible compo-
nent of C and consider a geometric −1-curve L. It follows that L · D̄ = σ(L) · D̄
and as the Galois orbit of L is an anticanonical divisor, we find

5 ≥ −KX · D = 5L · D̄ > 0,

since the degree of D ⊆ P
5
k is positive and at most the degree of C, which

equals 5. This proves that L · D̄ = 1 for all geometric −1-curves L and hence
C − D is an effective divisor of degree 0. We conclude that C = D and this
proves that any anticanonical section C is irreducible over k.

If C is not geometrically irreducible, then it must have at least two geomet-
rically irreducible components of the same degree d since the Galois group acts
on the set of geometrically irreducible components of C. Since C is of degree 5
we find 2d ≤ 5 and hence d is either 1 or 2. But in both cases we see that C con-
tains a geometrically irreducible curve of degree 1, which must be a geometric
−1-curve L. Then C also contains all conjugates of L and hence C is the Galois
orbit of a geometric −1-curve. This proves that C is defined by the vanishing of
either l1 or l2.

4.2 Constructions of degree 5 del Pezzo surfaces
We have seen that the action of Galois on the −1-curves on an ordinary del
Pezzo surface X over a field k determines many arithmetic properties of X. In
this section we will describe the results in [29] which state that for ordinary del
Pezzo surfaces of degree 5 a stronger result is true. Namely, there is a correspon-
dence between isomorphism classes of ordinary del Pezzo surfaces X over k and
conjugacy classes of group homomorphisms Gk → W4.

An isomorphism class of X over k induces an action of Gk on Pic X̄. Now
let W be the minimal subgroup of the Weyl group W4 such that the action of Gk
on the geometric Picard group factors through W. This gives us a homomor-
phism from Gk → W → W4. We will follow [29] in constructing an ordinary
del Pezzo surface X of degree 5 over a field k starting from a homomorphism
Gk → W4. Let us first show that W4 is a well understood finite group.

LEMMA 4.2.1. The group W4 is isomorphic to S5 and this isomorphism is unique up to
conjugacy.

Proof. We have seen in Proposition 2.3.5 that W4 is isomorphic to the automor-
phism group of the intersection graph of the −1-classes of a generalized del
Pezzo surface of degree 5. This graph is the Petersen graph shown in Figure II.
The computation of the automorphism group of this graph is more easily done
using the following interpretation. Consider the graph whose vertices are the
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ten subsets {a, b} ∈ {1, 2, 3, 4, 5} with precisely two elements. The vertices {a, b}
and {c, d} are connected precisely if the two sets are disjoint. This graph is easily
seen to be isomorphic to the Petersen graph.

It is clear that the elements of S5 induce different natural automorphisms on
this graph. Also, from an automorphism of the graph we can recover a per-
mutation of {1, 2, 3, 4, 5}; for example, the image of the element 1 is the unique
element in the intersections of the images of {1, 2} and {1, 3}.

The last statement follows from the fact that every automorphism of S5 is
inner.

Now fix an isomorphism W4 ∼= S5. We have remarked that such an isomor-
phism is unique up to conjugation. For our applications this will mean that the
actual choice of this isomorphism does not matter as long we consistently use
the same one.

DEFINITION 4.2.2. Let k be a field. Let ξ : Gk → S5 be a group homomorphism
and let m ∈ k[T] be a monic and square free polynomial of degree 5 with roots αi
for 1 ≤ i ≤ 5. We say that m is a seed for ξ if σ ∈ Gk acts on {α1, α2, α3, α4, α5}
as ξ(σ) acts on the set of indices {1, 2, 3, 4, 5}.

The following results shows that seeds always exist.

LEMMA 4.2.3. In the notation of Definition 4.2.2, there is a seed m ∈ k[T] for each
group homomorphism ξ : Gk → S5.

Proof. See Lemma 15 in [29].

Note that whether m is a seed of ξ depends on the indexing of the roots of m.
A different choice for the indices will produce a seed for an S5-conjugate of ξ.
This shows that we should consider m to be a seed of the S5-conjugacy class of
group homomorphisms Gk → S5.

Also note that we are actually interested in homomorphisms from Gk to W4.
Using an isomorphism between W4 and S5, which is unique up to conjugacy, we
see can define a seed of a conjugacy class of homomorphisms Gk → W4.

We can use this terminology to produce ordinary del Pezzo surface X of de-
gree 5.
Step 1. Suppose that a homomorphism ξ : Gk → S5 is given. Fix a seed m for ξ.
Step 2. Consider the projective plane P

2
k over k together with the five distinct

points Pi = (αi : α2
i : 1). Let Q ⊆ k[x, y, z] be the subset of quintic homogeneous

polynomials which are singular at each Pi.

LEMMA 4.2.4. The k-linear subspace Q ⊆ k[x, y, z] is of dimension 6.

Proof. See Theorem 5 in [29].

Step 3. Fix a k-basis q0, q1, . . . , q5 ∈ Q and define a rational map ϑ : P
2
k ��� P

5
k

by [x : y : z] �→ [qi(x, y, z)]i. Let X ⊆ P
5
k be the closure of the image of ϑ.
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PROPOSITION 4.2.5. The scheme X ⊆ P
5
k over k constructed above is an ordinary del

Pezzo surface of degree 5 over k which is anticanonically embedded. The morphism ϑ
defines a birational morphism P

2
k → X which we will also denote by ϑ.

We will call X the ordinary del Pezzo surface of degree 5 over k associated to the
seed m.

Proof. See Theorem 5 in [29].

We now have produced an ordinary del Pezzo surface of degree 5 over k
from a homomorphism Gk → S5. If we on the other hand start off with an
ordinary del Pezzo surface X of degree 5 over a field k we have seen that the
action of Gk on Pic X̄ defines a homomorphism Gk → S5. We would like these
maps to be inverses to each other. One sees that for this to be true one would
have to consider isomorphism classes of ordinary del Pezzo surfaces, because
isomorphic surfaces have isomorphic actions of Galois on the set of −1-curves.
Also, seeds can be defined for S5-conjugacy classes of group homomorphisms
Gk → S5. The following proposition shows that up to these equivalences the
maps constructed above are actually inverses to each other.

Recall that we have fixed an isomorphism between S5 and the automorphism
group of Pic X̄.

PROPOSITION 4.2.6. Let k be a perfect field. The map from the set of isomorphism
classes of ordinary del Pezzo surfaces of degree 5 over k to the set of conjugacy classes of
homomorphisms Gk → S5 defined by sending an ordinary del Pezzo surface X over k to
the action of Gk on the −1-curves is a bijection.

The inverse is given by mapping a homomorphism ξ : Gk → S5 to the isomorphism
class of the ordinary del Pezzo surface of degree 5 over k associated to a seed of ξ.

Proof. See Lemma 14 in [29].

We will now describe another construction of a del Pezzo surface X� using a
seed m. In Proposition 4.2.9 we will see that X� is isomorphic to the del Pezzo
surface X associated m. For now we will write X and X� to distinguish the two
constructions. Again we consider the five distinct points Pi = (αi : α2

i : 1) on P
2
k

associated to the seed m which lie on a unique conic Γ0 ⊆ P
2
k . Let B be the blow

up of P
2
k in the Galois-invariant set {Pi} and let Γ be the strict transform of Γ0

along B → P
2
k . By Corollary 2.7.14 B is an ordinary del Pezzo surface of degree 4

over k. Also, Γ ⊆ B is a −1-curve by Lemma 2.7.9. If we contract this −1-curve
using Proposition 2.2.5 we obtain an ordinary del Pezzo surface X� of degree 5.

Let us make this more precise. We will consider a line Λ0 ⊆ P
2
k which does

not meet any of the points Pi and pull it back to the effective divisor Λ ⊆ B. A
careful study of the proof of Castelnuovo’s theorem used in Proposition 2.2.5
shows that the morphism B → X� which contracts Γ ⊆ B is the morphism
associated to the complete linear system of the line bundle Λ + 2Γ.
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4.2. CONSTRUCTIONS OF DEGREE 5 DEL PEZZO SURFACES

PROPOSITION 4.2.7. The composition B
β−→ P

2
k

ϑ��� X ⊆ P
5
k extends to a morphism

on the whole of B. This morphism ρ : B → X ⊆ P
5
k corresponds to the complete linear

system of the divisor ∆ = Λ + 2Γ. Furthermore, the only curve contracted by this
morphism is Γ.

Proof. This proposition is proved in the proof of Theorem 5 of [29].

Note that Γ0 is the conic defined by the equation x2 = yz. We will also fix an
equation for Λ0. It is clear that the line z = 0 does not meet any of the points Pi.
We can now prove the following corollary.

COROLLARY 4.2.8. The morphism β is a birational morphism and induces an isomor-
phism β∗ : κ(P2

k) → κ(B). This isomorphism identifies the following two linear sub-
spaces

1
z(x2 − yz)2 Q ⊆ κ(P2

k) and H0(B,L(∆)) ⊆ κ(B).

Proof. Define the divisor ∆0 = Λ0 + 2Γ0 on P
2
k . We see that

β∗∆0 = ∆ + 2Eβ

where Eβ is the sum of the five exceptional curves of the blowup morphism
β : B → P

2
k . The spaces of global sections H0(P2

k ,L(∆0)) and H0(B,L(β∗∆0))
embed naturally in the respective function fields κ(P2

k) and κ(B). The isomor-
phism β∗ on these function fields respects these linear subspaces and we have a
natural morphism

β∗ : H0(P2
k ,L(∆0)) → H0(B,L(β∗∆0)).

By definition we have Q ⊆ H0(P2
k ,O(5)) and the isomorphism O(5) → L(∆0) is

uniquely defined up to multiplication by an invertible element of O
P

2
k
(P2

k) = k.
This implies that Q corresponds to the linear subsystem

1
z(x2 − yz)2 Q ⊆ H0(P2

k ,L(∆0)) ⊆ κ(P2
k)

for any isomorphism O(5) → L(∆0). The morphisms ϑ and ρ are defined by the
respective linear systems

1
z(x2 − yz)2 Q ⊆ H0(P2

k ,L(∆0)) and H0(B,L(∆)) ⊆ H0(B,L(∆)⊗L(2Eβ)).

B

P
5
k

P
2
k

ρ

β

ϑ

(4.1)
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From the commutative diagram in (4.1) we see that these linear systems are
identified under the isomorphism

β∗ : H0(P2
k ,L(∆0)) → H0(B,L(∆)⊗ L(2Eβ)).

PROPOSITION 4.2.9. Consider the surfaces X and X� over k constructed from the same
seed m. They are isomorphic over k.

These surfaces are isomorphic as subschemes of P
5
k up to an automorphism of P

5
k.

Proof. The schemes X and X� are the respective closures of the images of the
maps P

2
k ��� P

5
k and B → P

5
k defined by choosing bases of Q and H0(B,L(∆)).

If we pick bases corresponding to each other using the isomorphism in Corol-
lary 4.2.8 then X and X� are the same subscheme of P

5
k . If we make a different

choice of basis of Q then we recover an isomorphic k-scheme X, but the embed-
ding X ⊆ P

5
k changes by an automorphism of P

5
k . The same holds for X� and

the result follows.

Let us turn our attention back to interesting del Pezzo surfaces over k. We
can use the correspondence in Proposition 4.2.6 to classify interesting del Pezzo
surfaces over a field k.

PROPOSITION 4.2.10. Let k be a perfect field and fix an algebraic closure k̄. The map
which sends an isomorphism class of interesting del Pezzo surfaces over k to its splitting
field K ⊆ k̄ is a bijection to the set of degree 5 Galois extensions of k contained in k̄.

Proof. Let us first show that we have a correspondence between degree 5 Galois
extensions K ⊆ k̄ and conjugacy classes of homomorphisms Gk → S5 whose
image is of order 5.

To any homomorphism ξ : Gk → S5 whose image is of order 5, we can con-
sider the kernel which corresponds to a Galois extensions K/k of degree 5.

Now consider a Galois extension K/k of degree 5 and let GK ⊆ Gk be the
corresponding subgroup of index 5. We can construct a group homomorphism
Gk → Gk/GK → S5, by sending a generator of Gk/GK to any element s ∈ S5
of order 5. Since every element of order 5 in S5 is of the same cycle type, a
different choice of s ∈ S5 produces a conjugate homomorphism Gk → S5. So we
have assigned a conjugacy class of homomorphisms Gk → S5 with an image of
order 5 to a degree 5 Galois extension K/k.

It is easily checked that both procedures are inverse to each other.

Let us now prove the proposition by constructing an inverse to the described
map. So again, let K be a degree 5 Galois extension of k and let ξ : Gk → S5 be
a homomorphism in the corresponding conjugacy class of homomorphisms as
above. By Proposition 4.2.6 we can produce a del Pezzo surface X by choosing
a seed m of ξ, whose action on the −1-curves is uniquely determined by ξ. By
construction of ξ we see that the action of Gk on Pic X̄ is non-trivial, but the
corresponding action of GK on Pic X̄ is trivial. By definition we see that X is an
interesting del Pezzo surface.
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It is clear that these maps define a correspondence between interesting del
Pezzo surfaces over k and degree 5 Galois extensions of k.

DEFINITION 4.2.11. Let K/k be a Galois extension of degree 5. The isomorphism
class of interesting del Pezzo surfaces of degree 5 over k which are split by K is
denoted by dP5(K).

So the isomorphism class of an interesting del Pezzo surface over a field k is
uniquely determined by the splitting field K. We have also seen two construc-
tions for del Pezzo surfaces in such an isomorphism class. We will be interested
in how the geometric −1-curves can be found on such a surface.

PROPOSITION 4.2.12. Let m be a seed for a general homomorphism ξ : Gk → Sk.
Consider the five points Pi = (αi : α2

i : 1) constructed from the roots of m, and let
ϑ : P

2
k ��� X be the birational map from Proposition 4.2.5. Define Lij ⊆ P

2
k̄ as the line

through Pi and Pj for i �= j.
The strict transform of Lij along ϑ is a −1-curve on X̄.

Proof. See Theorem 5 in [29].

Note that this allows us to produce all 10 curves on X̄ of self-intersection −1.
For interesting del Pezzo surfaces this implies the following result.

PROPOSITION 4.2.13. Let X be an interesting del Pezzo surface of degree 5 over a
field k. Consider the divisors

L1 =
5

∑
i=1

Li,i+1 and L2 =
5

∑
i=1

Li,i+2

on P
2
k where the indices are considered modulo 5. These are quintic plane curves singular

at the Pi, so they correspond to hyperplane sections of X ⊆ P
5
k. These are precisely the

anticanonical sections given by l1 and l2.

Proof. The group Gk permutes the points Pi cyclically by definition. We see
that L1 and L2 are defined over k. This means that each divisor pulls back to
a divisor supported on a Galois-invariant set of five −1-curves on X̄. The only
such sets are cut out by l1 and l2.

4.3 Models of interesting del Pezzo surfaces

Let K be a cyclic number field of degree 5 and let X ⊆ P
5
Q

be the anticanon-
ical image of the del Pezzo surface over Q of degree 5 associated to the field
extension K/Q. We will construct a model X ⊆ P

5
Z

such that the generic fibre
XQ ⊆ P

5
Q

is isomorphic to X.
Note that although X only depends on the degree 5 extension K the model X

will definitely depend on an explicit generator α ∈ K. We will start by fixing an

82

46B_BW_PS Lyczak_Stand.job_Press Sheet Size 17x24 cm



CHAPTER 4. ORDER 5 OBSTRUCTIONS

element α ∈ K such that Q(α) = K and we will then give two constructions
for X . The first construction will be very useful in determining explicit equa-
tions for X as a subscheme of P

5
Z

; the second is of a more geometrical nature
and makes it easier to understand the fibres X = XQ and X� for a prime �.

4.3.1 Explicit equations for Xα

As said above we can construct a model X/Z of X over Q for each α ∈ K. To
simplify the construction we will assume that α is integral.

Step 1. Start with a cyclic extension K/Q of degree 5 and fix a generator of
Gal(K/Q). Next choose an element α ∈ OK such that Q(α) = K and let αi denote
the conjugates of α. We will write mα and mα2 for the minimal polynomials
of α and α2 over Z. Let Z ⊆ P

2
Q

be the reduced subscheme defined by the
homogeneous ideal

(x2 − yz, z5mα(x/z), z5mα2(y/z)) ⊆ Q[x, y, z].

This subscheme is zero-dimensional and supported in the five distinct points
Pi = (αi : α2

i : 1) on the projective plane defined over K.

Step 2. Let Q ⊆ Z[x, y, z] be the subset consisting of all quintic polynomials
q ∈ Z[x, y, z] such that the associated degree 5 curve C ⊆ P

2
Q

is singular at the
five points Pi, i.e. CK has multiplicity at least 2 at each point Pi.

Note that Q is the intersection of Z[x, y, z] and Q in Q[x, y, z].

LEMMA 4.3.1. The subset Q ⊆ Z[x, y, z] is a free Z-module of rank 6 and Z[x, y, z]/Q
is torsion free.

Proof. Since Z[x, y, z] is a free Z-module and Z is a principal ideal domain,
we find that the sub-Z-module Q is also a free Z-module. We have seen in
Lemma 4.2.4 that Q⊗Z Q is a 6-dimensional vector space over Q so Q is a free
of rank 6 over Z.

Now one has to check that if nq ∈ Q for an integer n �= 0 and q ∈ Z[x, y, z],
then q ∈ Q. Since nq ∈ Q and n �= 0 we see that q is a quintic polynomial. It is
clear that q is singular at the points Pi precisely when nq has this property.

Step 3. Fix a basis q0, q1, . . . , q5 ∈ Q and define the rational map ϑ : P
2
Z
��� P

5
Z

by [x : y : z] �→ [qi(x, y, z)]i.

DEFINITION 4.3.2. The closure of the image of the rational map ϑ : P
2
Z
��� P

5
Z

defined by q0, q1, . . . , q5 is denoted by Xα or simply X if no confusion is possible.
Denote the generic fibre of Xα by Xα or X.

Note that as a Z-scheme X only depends on α. As a subscheme of P
5
Z

it does
depend on the choice of basis of Q. This construction does however show that
for a given α the closed embedding X ⊆ P

5
Z

is unique up to an automorphism
of P

5
Z

.
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The following theorem tells us that this construction does what we want.

THEOREM 4.3.3. The scheme Xα ⊆ P
5
Z

is integral. The generic fibre of X/Z is
isomorphic to dP5(K) and every fibre of X ⊆ P

5
Z

over a finite prime � of Z is a singular
del Pezzo surface of degree 5 anticanonically embedded. A fibre X� over a prime � is an
ordinary del Pezzo surface precisely when the reduction of Z modulo � is reduced.

The above construction is convenient for computing explicit equations defin-
ing X as a subscheme of P

5
Z

. The MAGMA code which takes α ∈ K as an input
and computes the equations for X can be found at [39]. The computation uses
the following result which follows from the theorem.

COROLLARY 4.3.4. Consider the generic fibre X ⊆ P
5
Q

of X ⊆ P
5
Z

. The scheme X is
the flat closure of X in P

5
Z

.

Proof. It is clear that X is a closed subscheme of P
5
Z

which contains X. The result
follows from the fact that X is an integral scheme. The closure of a subscheme
of the generic fibre is always flat by [33, Proposition III.9.7].

To prove Theorem 4.3.3 we will consider a different construction of X ⊆ P
5
Z

.
We will prove that both constructions coincide while studying the fibres Xα,�
of Xα.

4.3.2 Geometric construction of Xα

The construction of Xα using the quintic polynomials is reminiscent of the con-
struction we have seen for Xα. Now consider the other construction of Xα; start
with five distinct points on the projective plane. Blow up these points and con-
sider the strict transform of the conic through the five points. This conic turns
into a −1-curve on the blowup. Now contract this −1-curve.

We will repeat this construction on the projective plane over the integers.

DEFINITION 4.3.5. Define Γ0 and Λ0 as the subschemes of P
2
Z

defined by the
respective equations x2 − yz = 0 and z = 0. Let Z ⊆ P

2
Z

be the closure of the
zero-dimensional scheme Z ⊆ P

2
Q
⊆ P

2
Z

.

Since we assumed that α is integral one can show that Z is actually defined
by the ideal

(x2 − yz, z5mα(x/z), z5mα2(y/z)) ⊆ Z[x, y, z].

If one thinks of P
2
Z

as a family of projective planes over F� and Q, then Λ0
and Γ0 are respectively a line and a conic on each fibre. In this setup Z is a family
over Z of five relative points on Γ0. These five points on the fibre P

2
F�

over � are
the points Pi on P

2
Q

reduced modulo a prime l of K which divides �. It is possible
that two points Pi and Pj reduce to the same point modulo l. This information
is captured by Z� which is a zero-dimensional scheme of degree 5 for all �. The
fact that Γ0,� passes through Z� helps to identify Z� in the following way: fix a
prime � and mark each point Q ∈ Γ0,�(Fl) ⊆ P

2
F�
(Fl) with the n(Q) number
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of points Pi ∈ P
2
Q

which reduce to Q. Then Z� is the unique zero-dimensional
degree 5 subscheme of Γ0,� whose degree at each point Q ∈ Γ0,�(Fl) equals
precisely n(Q).

PROPOSITION 4.3.6. The subscheme Z lies on Γ0. The subscheme Λ0 does not meet Z .
The fibre Z� over a finite prime � is a zero-dimensional subscheme of P

2
F�

of degree 5.

Proof. We know that Z is a subscheme of Γ0 and this implies that Z also lies
on Γ0. The second statement uses the defining equations for Λ0 and Z , and the
fact that α is an integral element of K.

We see, for example from Proposition III.9.7 in [33], that Z → Z is a flat
morphism. This proves that the Hilbert Polynomial P� of the fibre Z� over a
prime � ∈ Z is independent of � [33, Theorem III.9.9]. We know that over the
generic point (0) ∈ Spec Z the fibre Z = ZQ is zero-dimensional of degree 5 and
this proves that the result is true for all fibres.

We see that on each fibre P
2
F�

we have a zero-dimensional subscheme Z�

which lies on the conic Γ0,�. Because the intersection number between a line L
and the conic Γ0,� equals 2 we conclude from Definition 2.7.2 that Z� ⊆ P

2
F�

lies
in almost general position. We will consider the peculiar del Pezzo surface we
get by blowing up Z�.

DEFINITION 4.3.7. Let B be the blowup BlZ P
2
Z

. Write Λ and Γ for the strict
transforms of Λ0 and Γ0 along the blowup β : B → P

2
Z

. Define the divisor
∆ = Λ + 2Γ on B.

PROPOSITION 4.3.8. Let � be a rational prime. The fibre B� is integral and isomorphic
to the blowup of P

2
F�

in Z�.

For the generic fibre we have a similar statement which follows from the
fact that blowing up commutes with flat base change. This shows that the
blowup βQ on the generic fibre B → P

2
Z

, where B = BQ is the generic fibre
of B, is the blowup in the zero-dimensional subscheme Z.

Proof of Proposition 4.3.8. Let us first deduce some preliminary results. Let E ⊆
B be the exceptional divisor of the blowup B → P

2
Z

. Since P
2
Z

is a Cohen–
Macaulay scheme and Z ⊆ P

2
Z

is locally defined by a regular embedding we
deduce that E → Z is locally a P

1-bundle. Since Z is faithfully flat over Spec Z

we see that the same is true for E . These results also allow us to prove that both
Z and E are Cohen–Macaulay schemes. Following the proof of Theorem II.8.24
in [33] we conclude that B is Cohen–Macaulay as well.

Define F = P
2
F�

to be the fibre of P
2
Z

over �. The blowup BlZ�
F is the scheme-

theoretic closure of F\Z� in B� by [24, Proposition IV-21]. We will first show that
B� is irreducible. This proves that BlZ�

F is isomorphic to the topological closure
of F\Z� in B� with its reduced scheme structure, since F is reduced. Then we
continue by proving that B� is also reduced and we conclude that the closed
embedding BlZ�

F → B� is actually an isomorphism.
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So we will first prove that B� is integral. By Krulls Hauptidealsatz we see that
every irreducible component of B� is of codimension 1 in B, and the same holds
for irreducible components of E� in E . Since E is of pure codimension 1 in B,
we see that E� is of pure codimension 2 in B. This proves that the generic point
of an irreducible component of B� does not lie in E� and since B�\E� ∼= F\Z� is
irreducible we conclude that B� is irreducible.

To prove that B� is also reduced we first note that it is Cohen–Macaulay
since it is a Cartier divisor on the Cohen–Macaulay scheme B. In particular B�
satisfies Serre’s condition S1 and we see that being reduced is equivalent to being
generically reduced. The result now follows from the fact that B� is birational to
the reduced scheme F.

This shows that the each B� is a peculiar del Pezzo surface over F�. Let
ρ� : B̃� → B� be the associated generalized del Pezzo surface, i.e. the minimal
desingularization of B�. We will show that actually all −2-curves on B̃� are con-
tracted by ρ�. This proves that B� is even a singular del Pezzo surface over F�.
For all but a finite number of primes � the fibre B� will even be an ordinary del
Pezzo surface. In this case the morphism ρ� will actually be an isomorphism
and we can identify B̃� and B�. This will in particular be the case for the generic
fibre BQ.

We will also look into the divisor Γ� on B� by computing the self-intersection
of the strict transform of Γ̃� on B̃�.

COROLLARY 4.3.9. The fibres of B/Z are singular del Pezzo surfaces of degree 4. The
strict transform Γ̃� of Γ� is a −1-curve on the minimal desingularization B̃� of B� and
so is ΓQ on BQ.

As mentioned above, we will show that actually all but finitely many fibres
of B → Spec Z are ordinary del Pezzo surfaces.

Proof. We will prove the corollary for fibres over finite primes �. The statements
over the generic fibre (0) ∈ Spec Z are similar or even simpler.

By Proposition 4.3.8 we see that B� is isomorphic to BlZ�
(P2

F�
). We know

that Z� lies on the conic Γ0,� ⊆ P
2
F�

. It follows from Proposition 2.7.15 that
BlZ�

(P2
F�
) is a singular del Pezzo surface.

Now consider Γ0,� ⊆ P
2
F�

. We know that deg(Γ0,� ∩Z�) = degZ� = 5, so the
strict transform Γ̃� ⊆ B̃� of the conic Γ0,� has self-intersection −1 by Lemma 2.7.9.

We would like to contract Γ�. Of course we can contract Γ̃� on B̃, but this
only descends to B� if Γ̃� does not meet any −2-curves on B̃�.

LEMMA 4.3.10. The divisor Γ� does not pass through any singular points on B�.

Proof. We will prove that on the minimal desingularization B̃� the −1-curve Γ̃�
does not meet any −2-curves.
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Fix a basis L0, . . . , L5 as in Proposition 2.3.1 for the geometric Picard group of
the generalized del Pezzo surface B̃�. Note that by Corollary 4.3.9 all −2-curves
on B̃� are contracted by β̃ : B̃� → B� → P

2
Z

. So any −2-curve lies in the support
of the exceptional divisor Eβ̃ and we conclude that it must be linear equivalent
to a divisor of the form Li − Lj for distinct and positive i and j. The class of Γ̃�

is 2L0 − L1 − L2 − L3 − L4 − L5 which proves that the intersection number of Γ̃�
with any −2-curve is zero.

We will now consider the image of the map to a projective space associated
to the divisor ∆ = Λ + 2Γ on B.

PROPOSITION 4.3.11. The Z-module H0(B, ∆) is free of rank 6. The composition

δ : B → P
2
Z

ϑ��� X

is a map associated to the complete linear system of the divisor ∆.
The map δ extends to a birational morphism B → X . Furthermore, δ is an isomor-

phism on an open dense subset of each fibre of B over Z.

We will prove this proposition in the next section, together with Theorem 4.3.3.

4.3.3 Comparison of the two constructions
We have seen two ways to construct X ; as the scheme-theoretic closure of the
image of ϑ : P

2
Z

��� P
5
Z

and as the scheme-theoretic closure of the image of
a map associated to the complete linear system of the divisor ∆ on B. In this
section we will prove Theorem 4.3.3 and Proposition 4.3.11. We will first prove
the following proposition which is the integral version of Corollary 4.2.8.

PROPOSITION 4.3.12. Consider the blowup morphism β : B → P
2
Z

. The pullback
morphism β∗ is an isomorphism on the function fields κ(P2

Z
) → κ(B). This morphism

induces an isomorphism on the sub-Z-modules

1
z(x2 − yz)2 Q ⊆ κ(P2

Z
) and H0(B,L(∆)) ⊆ κ(B).

Proof. The inclusion of the generic fibre P
2
Q

→ P
2
Z

induces an isomorphism
κ(P2

Q
) → κ(P2

Z
). We will identify these two fields along this isomorphism. In

the same way we will identify κ(B) and κ(B). Since β is a birational morphism
of integral schemes it does indeed induce an isomorphism κ(P2

Z
) → κ(B) and

we have seen in Corollary 4.2.8 that under this isomorphism we can identify

1
z(x2 − yz)2 Q ⊆ κ(P2

Q
) and H0(B,L(∆Q)) ⊆ κ(B).

Since β� : B� → P
2
F�

is a birational morphism of integral varieties over F� by
Proposition 4.3.8 we see that β induces an isomorphism of the local rings OB,B�
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and O
P

2
Z

,P2
F�

which proves that β∗ : κ(P2
Z
) → κ(B) preserves the valuations

along the prime divisors B� on B and P
2
F�

on P
2
Z

.
This implies that β∗ identifies the submodule of 1

z(x2−yz)2 Q consisting of the

elements with a non-negative valuation along P
2
F�

for all primes � with the sub-
module of H0(B,L(∆Q)) with a no poles along B� for all �. Let us prove these
submodules are precisely 1

z(x2−yz)2 Q and H0(B,L(∆)).
By definition we see that H0(B,L(∆)) ⊆ H0(B,L(∆Q)) ⊆ κ(B) after identi-

fying the function fields of B and its generic fibre B. This identifies the prime di-
visors of B with the horizontal prime divisors of B and we see that H0(B,L(∆))
consists precisely of the elements in H0(B,L(∆Q)) with a non-negative valua-
tion along the vertical prime divisors B�.

We also have 1
z(x2−yz)2 Q ⊆ 1

z(x2−yz)2 Q ⊆ κ(P2
Z
) using the identification of

κ(P2
Z
) with κ(P2

Q
). Let q

z(x2−yz)2 be a quotient of quintics in Q[x, y, z], it can be

written as c q�
z(x2−yz)2 with c ∈ Q and q� ∈ Z[x, y, z] a quintic polynomial with

coprime coefficients. The valuation along P
2
F�

is now simply the valuation of c
at �. This means that a q

z(x2−yz)2 has non-negative valuation along all vertical
fibres if and only if q actually has integral coefficients.

This allows us to prove Proposition 4.3.11.

Proof of Proposition 4.3.11. The scheme Xα ⊆ P
5
Z

is defined as the image of a
rational map ϑ : P

2
Z

��� P
5
Z

defined by the chosen basis elements qi ∈ Q. By
definition we have δ = ϑ ◦ β and using the identification in Proposition 4.3.12
we see that δ is defined using the basis of H0(B,L(∆)) corresponding to the
chosen basis of Q. By functoriality of maps to projective spaces coming from
divisors [24, Theorem III-37], we see that the morphism B� → P

5
F�

coming from
the divisor ∆� is simply the fibre of δ : B → P

5
Z

.
Let γ� : B̃� → B� be the minimal desingularization of B� and define Γ̃�, Λ̃�

and ∆̃� to be the pullbacks of Γ�, Λ� and ∆� along γ�. By Lemma 2.5.1 we have
an isomorphism between the global sections of L(∆�) and L(∆̃�). This proves
that the composition δ�� = δ� ◦ γ� is the map associated to the complete linear
system of ∆̃�. We will first prove that δ�� is actually a morphism, i.e. the linear
system of ∆̃� is base point free.

Note that Λ0,� + Γ0,� ⊆ P
2
F�

is a cubic plane curve passing through Z� and
this curve is smooth in the support of Z�. Proposition 2.5.4 shows that Λ� + Γ�
is an anticanonical divisor on B� and Λ̃� + Γ̃� is an anticanonical divisor on B̃�.
Since B̃� is a generalized del Pezzo surface of degree 4 we see that the complete
linear system of Λ̃� + Γ̃� defines a birational morphism which contracts the −2-
curves on B̃�. In particular, we see that L(Λ̃� + Γ̃�) is globally generated. This
proves that L(Λ̃� + Γ̃� + Γ̃�) is globally generated away from Γ�. To see that
L(∆̃�) is globally generated on Γ� one can proceed as in Step 2 of the proof of
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Theorem 5.7 in [33]. For this one needs H1(B̃�, ω∨) = 0. The vanishing of this
cohomology group follows for example from the Riemann–Roch theorem for
smooth surfaces over a field.

So far we have the commutative diagram shown in (4.2).

B̃�

X� B�

ρ
δ�

δ

(4.2)

We will now prove that δ� contracts Γ̃� and all −2-curves on B̃�. We know
that the complete anticanonical linear system on a generalized del Pezzo sur-
face of degree 4 separates points and tangent vectors away from the −2-curves.
We have seen that Λ̃� + Γ̃� is an effective anticanonical divisor on B̃� and we
will write ∆̃� = −KB̃�

+ Γ̃�. We conclude that the complete linear system of ∆̃�

separates points and tangent vectors away from the −2-curves and Γ̃�. This
implies that ∆̃� is big and nef and the only possible curves contracted by the
associated birational map are the −2-curves and Γ̃�. We saw in Lemma 4.3.10
that any −2-curve on B̃� does not intersect Γ̃�. So for any −2-curve R we have
∆̃� ·R = −KB̃�

·R+ Γ̃� ·R = 0. We also have ∆̃� · Γ̃� = −KB̃�
·Γ�+ Γ̃2

� = 1− 1 = 0,
since Γ̃� is a −1-curve on B̃�. This proves that δ�� is the morphism that contracts
precisely Γ̃� and the −2-curves on B̃�. So δ� is defined off Γ�.

We also know that ρ� also contracts all −2-curves. This allows us to deduce
that δ� is defined away from the singularities and we conclude that δ� is a mor-
phism.

This proof also shows that δ� is an isomorphism away from Γ�.

Now we can prove Theorem 4.3.3.

Proof of Theorem 4.3.3. We see from either construction that the generic fibre of X
is isomorphic to dP5(K) by Proposition 4.2.9. We will prove that the fibres X�
are anticanonically embedded del Pezzo surfaces using the second construction
of X . We have already seen in Corollary 4.3.9 that the fibres of B are singular del
Pezzo surfaces of degree 4. In the proof of Proposition 4.3.11 we have seen that
δ� : B� → X� contracts the curve Γ� to a point. The composition B̃�

ρ−→ B�
δ−→ X�

first contracts the −2-curves and then the curve Γ�. We can also do so in the
opposite order. So let us first contract the −1-curve Γ̃� on B̃�. This gives us
a morphism δ̃ : B̃� → X̃� to a generalized del Pezzo surface of degree 5. By
Lemma 4.3.10 the −1-curve Γ� does not meet any −2-curve and so contracting it
does not change the set of −2-curves. The pullback of an anticanonical divisor
on X̃� is the divisor ∆̃� on B̃� so the anticanonical morphism γ� : X̃� → X� makes
the diagram in (4.3) commutative.
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X̃� B̃�

X� B�

γ�

δ̃�
ρ�

δ�

(4.3)

This proves that X� is a singular del Pezzo surface of degree 5 over F�.
Note that X� is the fibre of the scheme X over Z. On the other hand, the

scheme X̃� is defined as a scheme over F� and we have not constructed the
scheme X̃ over Z. Although it exists we will not need it. The same holds for the
scheme B̃� and for the morphisms ρ�, γ� and δ̃�.

We see that X� is smooth precisely when B� is smooth, since the image of the
contracted −1-curve Γ� is a smooth point. We see from Corollary 2.7.14 that B�
is an ordinary del Pezzo surface precisely when Z� is reduced. So if Z� is non-
reduced we see that B� is singular. We already saw in Corollary 4.3.9 that B� is a
singular del Pezzo surface, so in this case B� and hence also X� are singular del
Pezzo surfaces.

Now that we have our model X/Z of X/Q we would like to extend some
objects we have on X to X . Recall the two anticanonical sections l1 and l2 on X
from Proposition 4.2.13 which cut out the −1-curves. We will redefine l1 and l2
as sections of O

P
5
Z

(1).

DEFINITION 4.3.13. The elements l1, l2 ∈ O
P

5
Q

(1) can be rescaled using an ele-

ment of Q
× to obtain elements l1, l2 ∈ O

P
5
Z

(1). We will assume that l1 and l2 are
rescaled such that they do not vanish on vertical prime divisors of X/Z.

Before we could think of each li as a linear form over Q in six variables. From
now on li will be rescaled such that the six coefficients are integral and coprime.

We will now look more closely at the fibre of X over a prime � ∈ Z. We have
seen that this depends on Z� and this scheme depends heavily on the factoriza-
tion of � in K. So let us first study the splitting field K more closely.

4.4 The splitting field of the interesting action
The action of Galois on the geometric Picard group of an interesting del Pezzo
surface X factors through a quotient Z/5Z which must be Gal(K/k) for a cyclic
degree 5 extension of k. We will restrict to the case that the base field k is the
field of rational numbers. First we will classify such number fields and then we
will look at the arithmetic of monogenic number rings Z[α] in OK.

4.4.1 Number fields of degree 5
Let K be a Galois extension of Q of degree 5. By the Kronecker–Weber theorem
we get that the field K is contained in a cyclotomic extension Q(ζn) for some
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integer n. So the isomorphism classes of del Pezzo surfaces of degree 5 over Q

split by a degree 5 extension correspond to open subgroups of index 5 in �Z×. In
particular we see that every subgroup of (Z/nZ)× of index 5 gives us such a
surface.

DEFINITION 4.4.1. Consider an open subgroup N ⊆ �Z× of index 5 and de-
fine K ⊆ Q

cyc to be the associated number field of degree 5. The isomorphism
class of the corresponding del Pezzo surface of degree 5 over Q will be denoted
by dP5(N).

If n is a positive integer such that (Z/nZ)× has a unique subgroup N� of
index 5, then we get such a subgroup N by taking the pre-image under the
projection �Z× → (Z/nZ)×. In this situation we will write dP5(n) for dP5(N).

The conductor of a dP5(N) is the minimal n such that N is the pullback of a
subgroup N� ⊆ (Z/nZ)×.

Note that the conductor will always exist since we are considering open sub-
groups of �Z×.

The construction of these degree 5 fields also gives us information about the
splitting of rational primes.

PROPOSITION 4.4.2. Let K be the number field associated to the open subgroup N
of �Z× of index 5 and let n be the conductor. The primes � ∈ Q which ramify in K are
precisely those which divide n.

Proof. Consider a prime l above a prime � ∈ Z. We have the commutative dia-
gram shown in (4.4) from [53, Section 6] relating the global and local reciprocity
maps.

Q
×
� Gal(Kl/Q�)

IQ
�Z× Gal(K/Q)

(4.4)

We have used that the bottom map factors through Gal(Qcyc/Q) ∼= �Z×. The
composite map Q

×
� → �Z× is on Z

×
� given by the inclusion Z

×
� �→ �Z× [53,

Example 5.7].
Let φ be the diagonal map Q

×
� → Gal(K/Q). We know that l/� is un-

ramified exactly when the inertia subgroup of l is trivial. This group is equal
to φ(Z×

� ) by [47, Theorem 1, Section 4.1]. So we see that l is unramified pre-
cisely when #φ(Z×

� ) = 1 or equivalently Im(Z×
� → �Z×) lies in N. Now pick

the minimal n such that N ⊆ �Z× is the pullback of a subgroup N� of (Z/nZ)×.
Then we see that l is unramified when Im(Z×

� → (Z/nZ)×) lies in N� which by
the minimality of n happens precisely for the � which do not divide n.

COROLLARY 4.4.3. In the notation of Proposition 4.4.2, the conductor is the product
of distinct primes p ≡ 1 mod 5 and possibly a factor 25.
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For the proof of this corollary we will use the following result.

LEMMA 4.4.4. Let p ≡ 1 mod 5 be a prime. An element in Z
×
p is a fifth power

precisely when it is modulo p. The fifth powers in Z
×
5 are precisely the lifts of the fifth

powers modulo 25.

Proof. The first statement follows directly from Hensel’s lemma. For the proof of
the second statement one need to work modulo 53 to be able to apply Hensel’s
lemma. The fifth powers in Z/125Z are easily checked to be all the classes
which reduce to ±1,±7 mod 25.

Proof of Corollary 4.4.3. We saw that � is unramified precisely when the image of
Z

×
� → �Z× is a subgroup of N ⊆ �Z×. This means that � is ramified exactly if

the group homomorphism Z
×
� → �Z×/N ∼= Z/5Z is not constant, and hence

surjective. The kernel of this morphism is an open index 5 subgroup of Z
×
� . This

implies that it is the pullback of an index 5 subgroup of (Z/�e
Z)× for some e ≥ 1

and we find 5 | ϕ(�e) = �e−1(�− 1). So the only possible ramified primes are
the primes p ≡ 1 mod 5 and 5.

Now let N� be the kernel of Z
×
� → �Z×/N. To prove the statement, we will

show if � is either 5 or 1 mod 5 the index 5 subgroup N� ⊆ Z
×
� must be equal

to
�
Z

×
�

�5. Since N� is of index 5, we see that
�
Z

×
�

�5 ⊆ N�. For � ≡ 1 mod 5
we see that Z

×
� /(Z×

� )
5 → F

×
� /(F×

� )
5 is an isomorphism by Lemma 4.4.4. This

implies that N� and
�
Z

×
�

�5 are both of index 5 in Z
×
� . So N� is the subgroup of

fifth powers in Z
×
� and by Lemma 4.4.4 it is the inverse image of the fifth powers

modulo �.
For � = 5 we can compute the index of

�
Z

×
5
�5 in Z

×
5 in a similar manner

to conclude that N5 can only be the pullback of the subgroup of fifth powers
modulo 25 along the reduction morphism Z

×
5 → Z/25Z.

Now consider the surfaces for which the conductor has only one prime di-
visor p. If p ≡ 1 mod 5 then the conductor must be equal to p by Corol-
lary 4.4.3. In this case there is a unique such number field K since the Galois
group Gal(Q(ζp)/Q) ∼= (Z/pZ)× is cyclic. So for each prime p ≡ 1 mod 10
there is an isomorphism class dP5(p) of interesting del Pezzo surfaces over Q. In
the last section we will also consider a surface in the isomorphism class dP5(25).
This class exists because also Gal(Q(ζ25)/Q) ∼= (Z/25Z)× has a unique sub-
group of index 5.

4.4.2 Number rings Z[α] of degree 5
We have seen that an interesting del Pezzo surface X is uniquely determined
by its splitting field K. The model X over Z however depends on the choice of
α ∈ OK. Many arithmetic and geometric properties of X can be described in
terms of the number ring Z[α]. Let us look at the primes of Z[α] and relate this
to the possible factorizations of mα modulo a prime �.
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Recall that the inertia degree of a prime l of a number ring R ⊆ OK over a
prime � ∈ Z is defined as the degree of the residue field Fl = R/l as a field
extension of F�.

THEOREM 4.4.5. Let m ∈ Z[s] be an irreducible monic polynomial with integral co-
efficients. Let α ∈ Q̄ be a root of m and let � be a prime. Pick monic polynomials
mi ∈ Z[s] whose reductions modulo � are irreducible and pairwise distinct such that
there exist integral numbers ei > 0 with the property that

m ≡ ∏
i

mei
i mod �.

(a) The prime ideals of Z[α] which lie above � are li = (�, mi(α)). The inertia degree
of the prime ideal li over � equals the degree of mi.

(b) Let ri ∈ Z[s] be the remainder of m upon division by mi. The ideal li is invertible
precisely if ei = 1 or ri �≡ 0 mod �2.

(c) The identity
�Z[α] = ∏

i
lei
i

holds if and only if each ideal li is invertible.

Proof. See Theorem 8.2 in [51].

Every prime l̃ of K lies above a single prime l of Z[α]. The following lemma
is useful in going from primes of Z[α] to primes of K.

LEMMA 4.4.6. Consider the inclusion Z[α] ⊆ OK and let l be an invertible prime of
Z[α]. There exists a unique prime l̃ of OK lying above l.

Proof. Let l̃ be a prime above l. We get an extension of local rings Z[α]l ⊆ OK,l̃ ⊆
K. Since l is invertible we see that Z[α]l is a discrete valuation ring with field of
fraction K. Since OK,l̃ is not a field we conclude that Z[α]l = OK,l̃. This shows
that l̃ = OK ∩ l Z[α]l is uniquely determined by l.

The following result will also be useful.

LEMMA 4.4.7. The inertia degree of a prime l of Z[α] is either 1 or 5.

Proof. Let � be the prime l∩Z and let l̃ be a prime of K lying above l. Since K/Q

is a Galois extension of degree 5 we know that the inertia degree of l̃ divides 5.
So we have a the following extensions of fields

F� ⊆ Fl ⊆ Fl̃.

This proves the statement.

Note that this also proves that the reduction of mα modulo a prime � is either
irreducible or it splits in linear factors. Note however that these linear factors
need not be distinct. The extremal case where mα mod � is the fifth power of a
linear polynomial over F� will play a special role
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4.5 The fibres X�

In Section 4.3 we used the two constructions of the interesting del Pezzo sur-
face X over Q to produce a model X of X over Z. In this section we study the
fibres of X over a prime �. We will also come across the fibres B� of the scheme B
defined in Definition 4.3.7.

4.5.1 The construction of X�

We will start by exhibiting the relation between the fibres X�, B� and P
2
F�

.

PROPOSITION 4.5.1. Let � be a rational prime and let l be a prime of K which divides �.
The geometrically irreducible components of Z� are defined over the residue field Fl.

The fibre X� can be constructed as follows: we will define generalized del Pezzo
surfaces B�,i for 0 ≤ i ≤ 5 of degree 9 − i over the field Fl. Simultaneously we define a
curve Γi on B�,i. We start off with B�,0 = P

2
Fl

together with Γ0 = Γ0,�. Now consider
the reduction Qi of the point Pi = (αi : α2

i : 1) modulo l on P
2
Fl

. There is a unique Fl-
point Ri on Γi ⊆ B�,i whose image under the morphism B�,i → P

2
Fl

is Qi. Let B�,i+1
be the blowup of B�,i in Ri and let Γi+1 be the strict transform of Γi along this blowup.
Then B�,5 is a generalized del Pezzo surface of degree 4 over Fl which descends to the
minimal desingularization B̃� of B� over F�.

The strict transform Γ of Γ0 to B� can be contracted to obtain X�. This shows that
the composition

B̃� → B� → X�

first contracts the −2-curves and then the −1-curve Γ̃�. We can also first contract Γ̃� to
obtain a generalized del Pezzo surface X̃� of degree 5 and then contract the −2-curves
to recover X�.

Proof. Proposition 4.3.8 states that B� is the blowup of the projective plane in the
curvilinear subscheme Z�. We have seen in Lemma 2.7.7 that the composition
B̃� → B� → P

2
F�

decomposes into blowups in closed points at least when the
geometrically irreducible components of Z are defined over the base field. This
is the case over the field Fl.

The fact that δ� : B� → X� is the contraction of the curve Γ� was shown in the
proof of Proposition 4.3.11.

This result does not only help us to understand the geometry of X�, but also
its arithmetic.

LEMMA 4.5.2. Consider a finite prime � and let r be the number of distinct roots of mα

in F�. Then we have
#X (F�) = �2 + r�+ 1.

Proof. Factor mα in F̄� as ∏(s − βi)
ei and consider the blowup β : B� → P

2
F�

.
This map is an isomorphism away from the points (βi : β2

i : 1) and the fibre over
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each of these points is a projective line defined over F�(βi). We see that each
root of mα in F� adds exactly � points and other roots do not change the number
of F�-points. Finally we contract the −1-curve Γ� which is defined over F� and
see that

#X (F�) = (�2 + �+ 1) + r�− � = �2 + r�+ 1.

4.5.2 The −1-curves on X�

Let us also study the curves of negative self-intersection of X�. We will do this
by first considering the s-curves on B̃� and on the minimal desingularization X̃�
of X�.

PROPOSITION 4.5.3. Let Qi ∈ Z(Fl) be the reduction of the point Pi ∈ Z(K) modulo
a prime l of K lying above �. These 5 points need not be all distinct.

Consider the minimal desingularization X̃� of the fibre of X over a prime �. A −1-
curve on X̃� is the strict transform of the line through Qi and Qj along the birational
morphisms X̃� ← B̃� → P

2
F�

. Let us write Li,j,� for this −1-curve, both on X̃� and
on B̃�.

If Qi = Qj, then Li,j,� is the tangent line at Qi to Γ0,�.

Proof. Since intersection numbers can only go up when blowing down a −1-
curve B̃� → X̃� we will first determine the s-curves on the minimal desingular-
ization B̃� → B� of the fibre of B over �. Consider the composition β̃ : B̃� →
B� → P

2
F�

. By Proposition 2.4.4 we have s-curves in the support of the excep-
tional divisor Eβ̃. Recall that each component of Eβ̃ has a unique −1-curve. This
implies that Γ̃� intersects every component of Eβ̃ in this −1-curve since Γ̃� does
not intersect any −2-curves by Lemma 4.3.10. This means that after contract-
ing Γ̃� we lose these −1-curves in the sense that their images on X̃� have self-
intersection zero. On the other hand, the −2-curves on X̃� remain −2-curves
when considering their strict transforms on B̃�.

Any other s-curve on B̃� is the strict transform of a line or a conic on P
2
F�

.
Since we blow up five points we see from Lemma 2.7.9 that apart from Γ̃� there
are only −1-curves on B̃� and each is the strict transform of a line L with the
property that deg(L ∩Z�) = 2. These are precisely the lines through Qi and Qj
or the tangent line of Γ0,� in Qi = Qj.

For a line L through Qi �= Qj we see that its strict transform L̃ to B̃� does not
meet Γ̃� since blowing up once separates curves which intersect transversally.
For the tangent in Qi = Qj we will need to blow up at least two times, which is
precisely what happens since Pi and Pj both reduce to Qi = Qj. This proves that
these −1-curves on B̃� remain −1-curves on X̃� after contracting Γ̃�.

Other important objects are the sections l1 and l2. We will now describe the
subscheme on X� and B� cut out by these forms.
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PROPOSITION 4.5.4. The reduction of l1 modulo � cuts out an effective divisor of X�
supported in geometric −1-curves.

Obviously the result also holds for l2.

Proof. The section l1 cuts out five geometric −1-curves on the generic fibre X
of X . By definition of l1 over Z we see that l1 cuts out the flat closure of these
five geometric −1-curves over K in P

5
OK

. Let us consider the closure L in P
5
OK

of one of these −1-curves L over Q. The scheme L is flat over OK, so the fibre
Ll over l will be a degree 1 curve on Xl ⊆ P

5
Fl

of genus 0. This shows that
on the minimal desingularization (X̃OK )l = X̃� ×F�

Fl this curve Ll is a −1-
curve on (X̃OK )l. This proves that l1 vanishes on five, not necessarily distinct,
geometric −1-curves on X̃�. Since the degree of the divisor of zeroes of l1 equals
five, it vanishes only on these curves.

Note that this proves that l1 vanishes on the strict transform along the bira-
tional morphisms X̃� ← B̃� → P

2
F�

of the line through Qi and Qi+1. Here we
consider the indices modulo 5. Similar l2 vanishes on the strict transform of the
line through Qi and Qi+2.

Understanding the sections which are cut out by l1 and l2 on the fibre of X/Z

over a prime � is also important for the following reason.

LEMMA 4.5.5. Let Q be a singular F̄�-point on the fibre X�. Then Q lies on the divisor
of zeroes of both l1 and l2.

We will see in Proposition 4.5.8 that all singular points on X� are already
defined over the base field F�.

Proof. A singular point Q corresponds to a connected set of −2-curves on X̃� or
equivalently B̃�. This is a chain of −2-curves which lies above a geometric point
Qi = (βi : β2

i : 1) of Z� ⊆ P
2
F�

. Now let ei be the local degree of Z� at Qi. Since
there is a singular point above Qi we have that ei > 1.

If ei = 2, then assume without loss of generality that P1 and P2 reduce to
the same point Q1 = Q2 modulo l, but the points P3, P4 and P5 do not reduce
to Q1 modulo l. Now l1 vanishes on the secant L2,3,� and l2 vanishes on the
secant L1,3,�. By Corollary 2.7.10 these lines intersect a −2-curve on B̃� above Q1.

If ei > 2, then assume without loss of generality that Q1 = Q2 = Q3. This
proves that the tangent lines L1,2,� and L1,3,� in Qi at Γ0,� are the same line and
this line is cut out by both l1 and l2. We again use Corollary 2.7.10 to conclude
the statement.

We have now seen that the geometry of the fibre X� is determined by the
factorization of mα modulo �. We will look into how factors of this factorization
determine the singular points on X�.
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4.5.3 The singularities of X�

We have seen that B� and hence X� is smooth precisely if Z� is reduced. This
result can be directly related to the splitting of mα in F̄�.

LEMMA 4.5.6. A fibre X� is non-singular precisely if mα is separable over F̄�.

Proof. We have seen in Theorem 4.3.3 that X� is an ordinary del Pezzo surface
precisely if Z� is reduced. Now write mα = ∏i(s− βi)

ei over F̄�. Recall that Z� is
supported in the points (βi : β2

i : 1) and the geometrically irreducible component
supported in this point is of degree ei. This shows that Z� is reduced precisely
when mα is separable in F̄�.

Although the factorization over F̄� determines the geometry of X� we have
also seen that arithmetic properties are determined by the factors of mα over F�.
From Lemma 4.4.7 we deduce that mα is either irreducible modulo � or it splits
into, not necessarily distinct, linear factors over F�. Let us describe X� in both
cases.

LEMMA 4.5.7. Let � be a prime such that mα is irreducible modulo �. The fibre X� is a
smooth del Pezzo of degree 5 with two Galois orbits of exceptional curves of size 5.

Proof. In this case the procedure to determine X� is similar to how we got X
starting with the projective plane over Q; we blow up five conjugate points and
then contract the strict transform of the unique conic through these five points.
The result follows.

PROPOSITION 4.5.8. Suppose that mα splits into linear factors modulo �. The fibre
of X above � has a singular point of type Aei−1 for each factor with multiplicity ei > 1
in this factorization. In particular we see that there are at most 2 singular points on X�
and these are defined over F�.

Proof. Write mα = ∏i(x − βi)
ei where βi are the distinct roots of mα in F�. The

morphism B� → P
2
F�

restricts to an isomorphism on the complement of the
points (βi, β2

i , 1). Using the procedure described in Proposition 4.5.1 we see that
the fibre above such a point is obtained by contracting the −2-curves from a
chain of ei − 1 curves with self-intersection −2 and one −1-curve. This shows
that B� has a singularity of type Aei−1 above the point (βi, β2

i , 1).
Contracting the −1-curve Γ� ⊆ B� does not produce additional singular

points or change the type of singularities on B�, since these points do not lie
on Γ� by Lemma 4.3.10.

As a quintic polynomial can have at most 2 multiple irreducible factors we
see this is the maximal number of singularities.

Let us now relate the possible factorization of mα modulo � to the factoriza-
tion of � in OK. Let us first treat the unramified primes.

LEMMA 4.5.9. Let � ∈ Z be a prime which is inert in K. The fibre X� either
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» is smooth, in the case that mα is irreducible modulo �, or

» has a single singular point which is of type A4, when mα is a fifth power of a linear
function modulo �.

In particular, we see that X� has at most one singular point if � is inert.

Proof. By assumption K has a unique prime l̃ lying above �. This implies that
l = l̃∩ Z[α] is the unique prime of Z[α] lying above �. The inertia degree of this
prime is either 5 or 1. This corresponds precisely to the two cases described in
the lemma.

LEMMA 4.5.10. Let � ∈ Z be a prime which splits completely in K. This implies
that mα splits into linear factors over F�, and X� is a surface as described in Proposi-
tion 4.5.8.

Proof. As � splits completely we have an isomorphism of residue fields F� → Fl̃
for any prime l̃ of K lying above �. This implies that in the tower Z ⊆ Z[α] ⊆ OK
each prime of OK which divides � comes from a prime l in Z[α] with the same
inertia degree. So all primes l/� have inertia degree 1 and by the Kummer–
Dedekind theorem, Theorem 4.4.5, we see that mα must split into linear factors
modulo �.

We now consider the case that � is ramified in K. We will usually denote such
a prime by p.

LEMMA 4.5.11. Let p be a prime which is ramified in K. The minimal polynomial mα

is the fifth power of a linear polynomial over Fp. The fibre Xp is a singular del Pezzo
surface of degree 5 with a single singular point which is of type A4. This surface contains
precisely one line.

Proof. We will need to prove that the first statement. The last statements then
follow from Propositions 4.5.8 and 4.5.3.

Let p̃ be the prime of OK dividing p. Since it is ramified and K/Q is a Galois
extension we find e(p̃/p) = 5. This proves that p totally ramifies in K and that p̃
is the unique prime of OK dividing p. Now let p be the prime p̃ ∩ Z[α] of Z[α].
Since the inertia degree of p̃ is one, so must the inertia degree of p. This proves
the statement.

Note that mα can be a fifth power modulo � in all three cases and this will
always yield a singular del Pezzo surface of degree 5 with one singular point of
type A4, and one −1-curve. We will look more closely at this surface.
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4.5.4 Fibres with an A4-singularity

Consider a fibre of X over Z with a singularity of type A4. We can encounter
such a fibre over any prime �, but we have seen in Lemma 4.5.11 that the fibre
over any ramified prime p will be of this type. Since we will mainly discuss this
fibre over ramified primes we will write p for the prime in this section, although
theses results are true for any fibre with a singularity of type A4.

PROPOSITION 4.5.12. Let Xp be a fibre of X over Z with a singularity of type A4.
The surface Xp is the unique singular del Pezzo surface of degree 5 with a single −1-
curve E4 and one singular point which is of type A4. Furthermore, the complement of
this −1-curve E4 in Xp is isomorphic to A

2
Fp

.
Let Z� be a curvilinear subscheme of degree 4 supported in the inflection point p0 of

a cubic plane curve C ⊆ P
2
Fp

. The surface Xp is the singular del Pezzo surface over Fp

associated to Z�.

The choice for notation of this unique −1-curve will become clear during the
proof.

Proof of Proposition 4.5.12. Let us prove the first statement. It follows from Propo-
sition 4.5.8 that Zp is a degree 5 subscheme of Γ0,p supported in a single point Q.
The procedure described in Proposition 4.5.1 shows that we can find B̃p by first
blowing up P

2
Fp

five times to get a configuration of three −1-curves and four −2-
curves as shown in Figure III.

−1 −1 −2 −2 −2 −2

−1

Γ̃p Eβ̃

Figure III: Curves of negative self-intersection on B̃p.

The −1-curve on the left is Γ̃p ⊆ B̃p. Consider the tangent line L0,p ⊆ P
2
Fp

to Γ0,p in Q. The strict transform L of L0,p on B̃p is a −1-curve by Lemma 2.7.9.
The position of L in Figure III is determined by Lemma 2.7.10. This accounts
for the −1-curve on top. The remaining four −2-curves and the −1-curve are
the components of the exceptional divisor Eβ̃. Then we contract Γ̃p, which be-
comes a smooth point and makes the unique −1-curve on Eβ̃ into a curve of
self-intersection 0. Finally we contract all the −2-curves which gives an A4 sin-
gularity lying on the remaining curve of negative self-intersection.

We see that all s-curves on X̃p are defined over Fp. This proves that there
is an Fp-morphism π̃ : X̃p → P

2
Fp

which is the blowup of the projective plane
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in 4 points in almost general position. Let Z� ⊆ P
2
Fp

be the associated zero-
dimensional subscheme of this composition of blowups. Since we have only
one −1-curve on X̃p we conclude from Proposition 2.4.4 that Z� is supported in
only one point p0. This accounts for the −1-curve and three −2-curves, because
they occur in the exceptional divisor Eπ̃ . Let us rename these divisors as in
Proposition 2.4.4; the −2-curves are E1, E2 and E3, and the −1-curve is E4. Let
us call the remaining −2-curve R. The intersection graph on s-classes on X̃p is
now shown in Figure IV.

E1 E2 E3 R

E4

Eπ̃

Figure IV: Curves of negative self-intersection on X̃p.

Let L be the image of R in P
2
Fp

. We will now prove that L is a line. We know
that

−2 = R2 = L2 − deg(Z� ∩ L) ≥ L2 − 3

since Z� is supported on a cubic curve C which is smooth at p0. This proves
that L2 ≤ 1 and hence deg L = 1 and deg(Z� ∩ L) = 3. This proves that L is
the tangent line at an inflection point of C. In the diagram in (4.5) of birational
morphisms we get isomorphisms after removing the −1-curve on Xp, which by
abuse of notation will also be denoted by E4, in the middle all the Ei and R, and
on the right the line L.

Xp X̃p P
2
Fp

(4.5)

This proves that the complement of the −1-curve E4 in Xp is isomorphic to A
2
Fp

.

COROLLARY 4.5.13. The surface X̃p is the generalized del Pezzo surface associated
to Z�. Write π̃ : X̃p → P

2
Fp

for the associated blowup of the projective plane in 4 points
in almost general position.

The generalized del Pezzo surface X̃p has five s-curves. Three −2-curves and a −1-
curve form the support of the exceptional divisor Eπ̃ , and a −2-curve R is the strict
transform of the tangent line L in p0 to C along π̃.

We will fix coordinates for p0 and the equation for the line L. This does not
determine the equation for C uniquely. It does however uniquely determine the
zero-dimensional ideal Z� up to an automorphism of P

2
Fp

which fixes p0 and L.
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LEMMA 4.5.14. Assume without loss of generality that p0 is the point (0 : 1 : 0) and
that L is given by z = 0. Let C be a cubic curve which passes through x, is smooth
there, has L as the tangent line to C at x, and has an inflection point at x. Let Z� be the
curvilinear subscheme associated to IC,p0,4.

There is a unique λ ∈ F
×
p such that the cubic curve x3 −λy2z = 0 passes through Z�.

Proof. Consider the homogeneous cubic fhom ⊆ Fp[x, y, z] defining C. We will
consider the corresponding affine curve defined by f = fhom(x, 1, z). Since this
polynomial f (x, z) defines a inflection point at (0, 0) it must contain the mono-
mial x3 and no other monomials which only contain x. Since L is the unique
tangent line at (0, 0) the linear term of f is given by a multiple of z. So we
can rescale f to f = x3 + zκ(x, z) − λz where the degree of every monomial
of κ is at least 1. Now note that xz and z2 pass through Z� so this means that
f − zκ(x, z) = x3 − λz defines a cubic curve which passes through Z�.

Now if we had two such curves given by x3 = λy2z and x3 = λ�y2z for
different λ and λ�, then we would find that the line L defined by (λ − λ�)z = 0
passes through Z�. This would mean that deg(Z� ∩ L) = deg Z� = 4, which is
impossible since Z� lies in the intersection of L and C.

We can assume without loss of generality that λ = 1 by rescaling the coordi-
nate z. The curve defined by x3 = y2z has a inflection point at the smooth point
(0 : 1 : 0) so we can take this curve to be C.

COROLLARY 4.5.15. The subscheme Z� is defined by the homogeneous ideal

(x3 − y2z, xz, z2) ⊆ Fp[x, y, z].

The birational map ψ : P
2
Fp

��� X̃p → Xp ⊆ P
5
Fp

is defined by a basis of the vector
space over Fp of cubic polynomials in the ideal (x3 − y2z, xz, z2).

Proof. It is clear that the subscheme defined by (x3 − y2z, xz, z2) lies on C. Also,
any point on this scheme would have to satisfy z2 = 0 and x3 = yz2. This shows
that the subscheme defined by (x3 − y2z, xz, z2) is only supported in p0. Let us
compute the degree of this subscheme on the local chart y = 1. We can rewrite
the ideal as (x3 − z, xz, z2) = (x3 − z, x4, x6) = (x3 − z, x4), which clearly defines
a degree 4 subscheme.

The last statement follows from Lemma 2.7.20.

COROLLARY 4.5.16. We have the following equality of effective divisors

divXp l1 = divXp l2 = 5E4.

Proof. We know that the divisor of zeroes of l1 is of degree 5 and supported in
−1-curves. By Proposition 4.5.12 we know that there is a unique −1-curve E4
on X� and this implies the result.
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Since the map ψ : P
2
Fp

��� Xp ⊆ P
5
Fp

is given by a basis of the cubics in the
ideal (x3 − y2z, xz, z2) we see that there is a correspondence between the cubics
in the ideal (x3 − y2z, xz, z2) ⊆ Fp[x, y, z] and the sections in H0(Xp, ω∨).

LEMMA 4.5.17. The hyperplane section on Xp cut out by l1 corresponds to the cubic z3

up to a factor of F
×
p .

Proof. Note that l1 does not vanish on Xp\E4. This proves that the associated
cubic curve on P

2
Fp

does not meet A
2
Fp

= P
2
Fp
\L. We see that this cubic curve

must be given by a multiple of z3.

After fixing a multiple of z3 which corresponds to l1 we get an actual cor-
respondence between the elements of H0(Xp, ω∨) and the homogeneous cubic
polynomials in (x3 − y2z, xz, z2).

DEFINITION 4.5.18. Let h be a linear form on X ⊆ P
5
Z

with coprime coefficients
and let p be a prime for which Xp has a singular point of type A4. The birational
map π : Xp ��� X̃p → P

2
Fp

induces an isomorphism κ(P2
Fp
) ∼= κ(Xp). Let fhom

be the homogeneous polynomial over Fp such that h
l1

corresponds to fhom
z3 under

this isomorphism. We will call fhom and f = fhom(x, y, 1) the associated homoge-
neous and inhomogeneous polynomials of h at p.

We will study hyperplane sections on Xp ⊆ P
5
Fp

by looking at the corre-
sponding cubic polynomial in three variables.

The following lemma is the first example and identifies the effective anti-
canonical divisors of Xp as cubic plane curves.

LEMMA 4.5.19. The hyperplane sections of Xp ⊆ P
5
Fp

which contain E4 are those for
which the associated homogeneous polynomial lies in the ideal

(zx2, z2).

Proof. Let us work on the affine part given by y = 1. We see from Lemma 2.7.19
that the cubic forms for which the associated anticanonical divisor is supported
on E4 lie in the ideal

(x, z)(x3 − z, xz, z2) = (x4 − xz, z2, x2z).

The homogeneous part of this ideal of degree 3 is clearly generated by zx2

and z2.

4.6 Setup for the following sections
We have introduced a lot of notation over the last few sections. For convenience
of the reader we will group the notation we will fix for the remainder of this
chapter.
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SETUP 4.6.1. We start by fixing one, hence both, of the following equivalent ob-
jects

» N, a subgroup of �Z of index 5;

» K, a degree 5 Galois extension of Q.

The correspondence between these objects is described in Definition 4.4.1.
Then we fix

» σ, a generator of Gal(K/Q);

» α, an element of OK generating K.

This produces the following intermediate objects, which we will refer to

» mα and mα2 , the minimal polynomials of α and α2;

» Z , the subscheme of P
2
Z

defined by

(x2 − yz, z5mα(x/z), z5mα2(y/z)) ⊆ Z[x, y, z];

» Γ0, the subscheme of P
2
Z

defined by x2 = yz;

» B, the blowup of P
2
Z

in Z ;

» β, the blowup morphism B → P
2
Z

;

» Γ, the strict transform of Γ0 along β : B → P
2
Z

.

These objects were used in the process of defining

» Xα or X , which is a subscheme of P
5
Z

;

» ϑ, the birational map ϑ : P
2
Z
��� X ;

» δ, the morphism δ : B → X which contracts Γ.

We also fix the following notation for schemes and morphisms defined over
either Q or F�.

» Xα or X, the generic fibre of X ;

» Z and B, the generic fibres of Z and B;

» B̃�, the minimal desingularization of B�;

» X̃�, the minimal desingularization of X�;

» Γ̃�, the strict transform of β̃� : B̃ → P
2
F�

;

» δ̃�, the morphism B̃� → X̃� which contracts the −1-curve Γ̃�;
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» ρ�, the contraction of −2-curves B̃� → B�;

» γ�, the contraction of −2-curves X̃� → X�.

It is even possible to define schemes B̃ and X̃ over Z, such that their fi-
bres over Z are the minimal desingularizations of the corresponding fibres of X
and B. Also the morphisms ρ�, γ� have δ̃� relative versions over Z. We will
not define these objects and one should keep in mind that part of the diagram
in (4.6) is only defined on the fibres over Z.

X̃ B̃

X B

P
2
Z

.

γ

δ̃

ρ

β̃δ

β

ϑ

(4.6)

Other notation which will reappear in this chapter:

» n, the conductor of N and K;

» αi, the conjugates of α in K;

» Pi = (αi : α2
i : 1), the K-points on P

2
Q

in the support of Z;

» dP5(N), dP5(K) or when it makes sense dP5(n), for the isomorphism class
of X;

» l1 and l2, linear forms over Z with coprime coefficients considered as ele-
ments of O

P
5
Z

(1).

We will want to consider integral points on an affine open of X by choosing

» h, a linear form over Z with coprime coefficients considered as an element
of O

P
5
Z

(1);

» C, the hyperplane section on X defined by h = 0;

» U , the complement of C in U ;

» C and U, the generic fibres of C and U .

This allows us to consider

» A, the class of the Azumaya algebra
�

l1
h , K/k, σ

�
in Br U.

We will also write
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» �, for a general prime number;

» p, for a prime number which is totally ramified in K;

» l, a prime of K lying above �;

» p, the prime of K lying above p.

Let Xp be a fibre with a singular point of type A4. When dealing with such a
fibre we use the following notation introduced in Section 4.5.4

» C, the cubic curve on P
2
Fp

given by x3 = y2z;

» p0, the Fp-point (0 : 1 : 0) on C;

» L, the line z = 0 tangent to C in p0;

» Z�, the curvilinear subscheme associated to the ideal sheaf IC,p0,4;

» π, the birational map Xp ��� P
2
Fp

associated to Z�;

» ψ, the birational inverse of π;

» Ei and R, the −2-curves E1, E2, E3 and R, and the −1-curve E4 on X̃p;

» E4, the image of E4 ⊆ X̃p along δp : X̃p → Xp;

» f and fhom, the associated inhomogeneous and homogeneous polynomial
of h at p.

4.7 Arithmetic of U
Using the projective model X we can construct a model for affine surfaces with
non-trivial algebraic Brauer group as described in Lemma 4.1.4.

DEFINITION 4.7.1. Let h be a primitive linear form defining a hyperplane in P
5
Z

.
Denote by C the curve on X defined by this hyperplane and write U for the
complement of C in X . We will denote the generic fibres of these objects by C
and U. If we want to stress the dependence on h we might add it as a subscript.

Note that if C is geometrically irreducible then Br1 U/ Br k is a cyclic group of
order 5 by Proposition 4.1.3. To determine whether this might give an obstruc-
tion to the Hasse principle for integral points we are first interested in points
on U over all completions of Z.

LEMMA 4.7.2. We have that U(Q) is not empty and the same holds for U (Z�) if � is a
prime which is at least 7. The same is true for all odd � for which the fibre X� is smooth.
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Proof. Rational points on an ordinary del Pezzo surface of degree 5 are Zariski
dense by Proposition 2.8.2. We conclude that the set of rational points on X
cannot be contained in C. This proves the first statement.

Now let � ≥ 7 be a prime. Since h is primitive we find that C� is a degree 5
curve of arithmetic genus 1 in P

5
F�

. From the degree we see that C� consists of at
most 5 geometrically irreducible components. From the genus we deduce that at
most one of these components is of arithmetic genus 1. The number of F�-points
on an irreducible genus 0 curve is bounded by �+ 1 and for a genus 1 curve it is
at most �+ 1 + 2

√
�. It now follows using the result in Lemma 4.5.2 that

#U (F�) = #X (F�)− #C(F�) ≥ (�2 + 1)− (5�+ 5 + 2
√
�). (4.7)

It is easily checked that the right hand side is at least 4 for � ≥ 7. As there are
at most two singular points on each fibre by Proposition 4.5.8 we find a smooth
F�-point on U� which lifts using Hensel’s lemma to a Z�-point.

Now assume that X� is smooth. That implies that mα modulo � is separable
and either all roots are defined over F� or over F�5 . In the first case the approach
in (4.7), using the exact count #X (F�) = �2 + 5�+ 1, yields #U (F�) ≥ 1. In the
second case the fibre X� is an interesting del Pezzo surface of degree 5 over F�.
It follows from Lemma 4.1.6 that the geometrically irreducible components of a
hyperplane section are all of degree 1 or 5. In the first case we find that C� is the
orbit of a geometric −1-curve which is defined over F�5 and there are obviously
no F�-points on C. In the latter case we find that the hyperplane section is a
geometrically irreducible curve of arithmetic genus 1. So we find

#U (F�) = #X (F�)− #C(F�) ≥ (�2 + 1)− (�+ 1 + 2
√
�)

which is positive for � ≥ 3.

For primes over which the fibre X� is singular there might be better bounds
if one fixes the multiplicities of the factors of mα modulo �. We will only need
the following result.

LEMMA 4.7.3. Let p be an odd prime such that Xp has a singularity of type A4. The
set U (Zp) is non-empty.

In particular using Corollary 4.4.3 we see that if p is ramified in K, then Up
admits a Zp-point

Proof. Recall that Xp ⊆ P
5
Fp

is a singular del Pezzo surface and Up is the inter-
section of Xp with a fixed affine chart A

5
Fp

defined by h �= 0. Furthermore, E4 is
a line in P

5
Fp

which lies on Xp.

From the isomorphism between Xp\E4 and A
2
Fp

we see that any Fp-point
of Up\E4 is smooth. So we can lift such a point to a Zp-point. So let us prove
that (Up\E4)(Fp) ∼= (A2

Fp
\V( f ))(Fp) is non-empty, where f is the associated
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inhomogeneous polynomial associated to h. So it is enough to prove that this
associated polynomial f of h is non-zero at some point of the affine plane. We
know that f is non-zero and of degree at most 3. A geometrically irreducible
affine plane cubic, conic or line with a rational point at infinity contains at
most p + 2√p, p or p points respectively. So we see that f vanishes in at most 2p
points which happens when f cuts out two parallel lines. Since #A

2(Fp) = p2

there is an Fp-point on the affine plane which is not a zero of f .

On the other hand, the bound for the smooth fibres cannot be sharpened in
general; we will see examples where X2 is smooth but U (Z2) is empty.

4.8 Computation of the invariant maps
The following section is about computing the invariant maps for the element A
of the Brauer group of U. At the infinite prime of Q we see that the map

inv∞ A : U(R) → 1
2

Z/Z

is zero because A is of odd order. So from now on we will only consider the
finite primes. At points in U (Z�) for a finite prime � we have the following
result.

LEMMA 4.8.1. Fix a prime � and let P be a point in U (Z�) such that l1
h (P) is defined

and invertible modulo �. Then
inv� A(P)

is 0 ∈ Q/Z precisely if the image of l1
h (P) ∈ Z

×
� under the homomorphism Z

×
� → �Z×

lies in N.

Proof. Let P be such a point. Then A(P) ∈ Br(Q�) is simply the class of the cyclic
algebra

�
l1
h (P), σ

�
. Proposition 1.3.2 tells us that the cyclic algebra

�
l1
h (P), σ

�

over Q� is trivial in the Brauer group precisely when l1
h (P) is a norm in the

extension Kl/Q� for a prime l lying above l. The group NKl/Q�
(K×

l ) is the kernel
of the top map in (4.4) in the proof of Proposition 4.4.2. This group is exactly the
kernel of Q

×
� → Gal(K/Q) ∼= �Z×/N since the map Gal(Kl/Q�) → Gal(K/Q)

is an inclusion.

Since the image of Z
×
� → �Z× is a subset of N for all but finitely primes we

have the following result.

COROLLARY 4.8.2. Consider a model U/Z as before of conductor n. Let � be a prime
which does not ramify in K and P ∈ U (Z�) be a point where l1 or l2 is invertible
modulo �. Then we have inv� A(P) = 0.

Proof. We saw in the proof of Proposition 4.4.2 that � is unramified in K precisely
when the image of Z

×
� → �Z× lies in N. This proves the claim.
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For primes p ≡ 1 mod 5 which divide the conductor of such a subgroup N,
i.e. the tamely ramified primes of K, we have the following result.

COROLLARY 4.8.3. Let p a prime which is tamely ramified in K. This implies that
p ≡ 1 mod 5. Write W for the set of Zp-points P on U where l1

h (P) is invertible
in Zp and let q : W →

�
Up\E4

�
(Fp) be the reduction map. This map is surjective and

the invariant map invp A on W can be computed as

W
q
�

�
Up\E4

�
(Fp)

l1
h→ F

×
p /(F×

p )
5 �→ Q/Z

where the second map sends a point P to the class of l1
h (P) modulo fifth powers and the

last map is a group isomorphism onto the unique subgroup of Q/Z of order 5.
In particular we see that for a point P ∈ U (Zp) which does not reduce modulo p to

a point on E4 that invp A(P) = 0 precisely if l1
h (P) is a fifth power modulo p.

Proof. Consider an Fp-point P̄ in Up\E4. As l1
h (P̄) is invertible the point P̄ cannot

lie in the zero locus of l1. By Lemma 4.5.5 all singular points lie on the intersec-
tion of the zero loci of l1 and l2. So by assumption P̄ must be a smooth point.
This implies that P̄ lifts using Hensel’s lemma to a point P in W. This shows
that q is surjective.

The last statement follows from Lemma 4.4.4.

These last two results are a restatement of the fact that in unramified exten-
sions of local fields every norm is a unit, and agrees with the fact that in a totally
but tamely ramified extension every principal unit is a norm.

For the wildly ramified prime 5 the situation is a little different.

COROLLARY 4.8.4. Suppose that 5 is ramified in K and let P ∈ U (Z5) be a point
which does not lie in the zero locus of both l1 and l2 modulo 5. Then P lies in the
kernel of inv5 A precisely if for one i, or equivalently both, we have li

h (P) ∈ {±1,±7}
modulo 52.

Proof. This proof is similar to the proof of the previous corollary and again relies
on Lemma 4.4.4.

We see that in a point P over Z� not reducing to the zero locus of both l1
and l2 modulo � the value of inv� A(P) follows from these three corollaries. We
will now show how to compute the invariant map on the remaining points or
why we should not bother to do so.

4.8.1 The invariant map for unramified primes

The invariant map is often best understood at unramified primes. This is also
the case here.
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LEMMA 4.8.5. Suppose a prime � splits completely in K. The map

inv� A : U (Z�) → Q/Z

is identically equal to zero.

Proof. Let P be a Z�-point of U . The evaluation map Br U → Br Q�,A �→ A(P)
factors through Br UQ�

. For a prime l̃ above a completely split prime � we find
that Kl̃ = Q�. Since AQ�

∈ Br UQ�
is split by Kl̃ we see that it is trivial and so is

the image A(P) in Br Q�.

For inert primes we have similar, but slightly weaker, result.

LEMMA 4.8.6. Suppose that � is an inert prime. The map inv� is identically equal to
zero if U� is smooth over F�. If U� is singular, then inv� is zero on the points in U (Z�)
which do not reduce to the singular point of U�.

Note that by Lemma 4.5.9 that X� has at most one singular point. So the same
is true for U�.

Proof. Note that inv� being constant on the indicated point sets follows from [6,
Theorem 1]. We will however need to prove a stronger result.

There is a correspondence between the factors of mα over Q� and primes of K
dividing �. Since � is inert in K there is a unique prime l in K lying above �. This
shows that mα is irreducible over Q� and hence UQ�

is an interesting del Pezzo
surface. In particular, there are no Q�-points on U in the zero locus of both l1
and l2.

Consider a point P ∈ U (Z�). By the above discussion we see that li
h (P) �=

0 ∈ Z� for at least one i. Assume without loss of generality that i = 1. We will
use the representation

�
l1
h , σ

�
of A to prove that inv� A(P) is equal to zero if P

does not reduce to a singular point on U�. We will have to show that l1
h (P) is the

of an element in OKl
. We have seen in Corollary 4.8.2 that only the valuation of

l1
h (P) matters. We will show that this valuation is always a multiple of 5.

If l1
h (P) is a unit in Z� then this is clear. So suppose � divides l1

h (P) and let
P̄ ∈ U (F�) be the reduction of P modulo �. This means that P̄ lies on the zero
locus of l1 on U� ⊆ X�. By Lemma 4.5.9 there are two possibilities for this zero
locus.

If mα is irreducible in F� then X� is an interesting del Pezzo surface. So the
zero locus of l1 consists of five conjugate lines. In particular there are no F�-
points in the zero divisor of l1.

If mα reduces to the fifth power of a linear function modulo � then X� con-
tains one line E4 and one singular point which lies on this line. Locally around P̄
the closed subscheme E4 is Cartier since P̄ is assumed to be smooth. This proves
that in the local ring at P̄ the function l1

h is the fifth power of the function defin-
ing E4, since divX�

l1 = 5E4. This proves that the valuation of l1
h (P) is a multiple

of 5.
We conclude that inv� A(P) = 0 for all indicated points P ∈ U (Z�).
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4.8.2 The invariant map for tamely ramified primes

Let us consider the case of a prime p which is ramified in K. By construction of
the field K, the only primes which can be ramified are the primes 5 and the ones
which are 1 mod 10. The prime 5 is wildly ramified, but we will first consider
the tamely ramified primes. By Corollary 4.8.3 we see that the invariant map
on Zp-points is largely determined by the Fp-points of Up (see also [6, Theo-
rem 1]).

Unlike for the unramified primes we will see that invp A is only constant in
an obvious situation and in all other cases it takes many values. To prove these
results we will first look at the following lemmas on affine curves over Fp which
we will translate back to Xp using the isomorphism in Proposition 4.5.12.

LEMMA 4.8.7. Fix a prime p ≥ 5 and let f ∈ Fp[x, y] be a non-constant irreducible
polynomial of degree d ≤ 3. Also assume that

» if d = 3 the projective closure of the corresponding affine curve is geometrically
integral and intersects the line at infinity in a single point with multiplicity 3;

» if d = 2 the corresponding curve either has two distinct rational points at infinity,
or it has a single point at infinity and is geometrically integral.

Then the map f : F
2
p → Fp is surjective.

Proof. Let us write fhom ∈ Fp[x, y, z] for the homogenization of f . We can now
consider the following cases depending on the degree of f .

Case 1: f is a linear polynomial. In this case f is a non-constant linear map,
and it is clear that it takes all values in Fp on F

2
p.

Case 2: f is a quadratic polynomial. There are two cases to consider. First
assume fhom has two distinct rational solutions at z = 0. Without loss of gen-
erality these points are (1 : 0 : 0) and (0 : 1 : 0) and then f must be of the form
κxy + λx + µy + ν, where κ �= 0. Now fix y0 such that κy0 + λ is non-zero. Then
we see that f (x, y0) = x(κy0 + λ) + µy0 + ν assumes all values in Fp.

Now consider the case where fhom is geometrically integral and has a sin-
gle solution with z = 0. Assume without loss of generality that this point
is (0 : 1 : 0). This implies that f can be written as f = κx2 + λx + µy + ν. Since
the curve defined by fhom is geometrically integral we find µ �= 0 which directly
implies that f is surjective.

Case 3: f is a cubic polynomial. We know that f has a single point at infinity
of multiplicity 3. Assume that this point is (0 : 1 : 0). We will show that f is
surjective by proving that the projective cubic plane curve Cλ defined by the
cubic form fhom − λz3 has an Fp-point satisfying z �= 0 for all λ ∈ Fp.

We will first show that each of these p plane curves Cλ does not split into
three lines over F̄p. Note that a cubic plane curve defined by a cubic homoge-
neous polynomial F passes through (0 : 1 : 0) with multiplicity three and splits
into three lines precisely when F is independent of y. Since C0 is geometrically
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integral by assumption we see that fhom does depend on y. So the same holds
for all fhom − λz3 and none of the curves Cλ splits into three lines over F̄p.

So each plane curve Cλ is either geometrically integral or factors into a linear
and quadratic factor. We will prove in each case that the curve Cλ has at least
two Fp-points, and since it has single point (0 : 1 : 0) at infinity it will have an
Fp-points satisfying z �= 0.

A geometrically integral cubic curve has at least p + 1 − 2√p points and
as p ≥ 5 there must be a point away from infinity. In the second case we have
a projective curve consisting of line and a conic defined over Fp, both with the
given point (0 : 1 : 0) at infinity. Either component will have rational points on
the affine part defined by z �= 0.

We see that for all λ ∈ Fp the curve Cλ has a point satisfying z �= 0 and we
conclude that f is surjective on the affine plane.

If f defines a non-reduced conic we have the following weaker statement.

LEMMA 4.8.8. Let f ∈ Fp[x] be the square of a non-constant linear function over Fp
with root ρ. The map f : Fp\{ρ} → F

×
p /(F×

p )
5 is surjective.

LEMMA 4.8.9. Fix a prime p and let fhom be a homogeneous cubic polynomial in the
ideal (x3 − y2z, xz, z2) over Fp. The polynomial f = fhom(x, y, 1) either

» is constant;

» vanishes on two distinct parallel lines on A
2
Fp

;

» satisfies the conditions in Lemma 4.8.7, or

» is independent of y and satisfies the conditions in Lemma 4.8.8.

In the second case we allow the lines to be conjugated over Fp.

Proof. Let us write fhom = κx3 + z(µ(x, y)x + ν(x, y, z)z − κy2) where µ and ν
are homogeneous linear polynomials in the indicated variables. In the case that
κ = 0 the polynomial f is of degree at most 2 and all points with z = 0 are
rational points. All these polynomials are covered among the four cases.

If κ �= 0 we have a cubic polynomial f = κx3 + (µ(x, y)x + ν(x, y, 1)− κy2),
which has an inflection point at (0 : 1 : 0) and the result of Lemma 4.8.7 holds for
such f .

We have seen a surjectivity statement for the last two of these four cases.
In the first case we will not find such a result and in the second we have the
following proposition, which applies since f is going to be the product of two
distinct lines precisely when it is independent of y.

LEMMA 4.8.10. Let p be a prime and f ∈ Fp[x] a quadratic polynomial with distinct
roots ρ1 and ρ2 in F̄p. The homomorphism f : Fp\{ρ1, ρ2} → F

×
p /(F×

p )
5 is surjective

when p ≥ 31.
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Proof. Write f = ax2 + bx + c with a �= 0 and fix a λ ∈ F
×
p . We will prove

that if p ≥ 31 there exist u, v ∈ Fp with v invertible, such that f (u) = λv5.
Consider the affine hyperelliptic curve f (x) = λy5, which is smooth because f
has distinct roots. The smooth birational model for this curve is of genus 2 and
has at least p + 1 − 4√p points, one of which does not lie on the affine part
given by f (x) = λy5 and at most two points satisfy y = 0. So the number
of u, v ∈ Fp with v invertible satisfying f (u) = λv5 is at least p + 1 − 4√p − 3.
This is positive if p ≥ 31, which proves the statement.

Remark. One can check that if p = 11 the map f : Fp\{ρ1, ρ2} → F
×
p /(F×

p )
5 is

never surjective; the image of f : F11\{ρ1, ρ2} → F
×
11/(F×

11)
5 for any separable

quadratic polynomial f is of size 4.

We have seen that the cubics in (x3 − y2z, xz, z2) correspond to the effec-
tive divisors of degree 3 on P

2
Fp

which pull back to effective anticanonical divi-
sors on Xp. Considering the different bounds in Lemma 4.8.7, Lemma 4.8.8 and
Lemma 4.8.10 we get a trichotomy of effective anticanonical divisors on X .

DEFINITION 4.8.11. Let p be a prime which is ramified in K, h an irreducible
linear form on X ⊆ P

5
Z

and f the associated inhomogeneous polynomial of h
at p. We say that h at the prime p is of

» class I if f is constant;

» class II if f vanishes on two distinct parallel lines in A
2
Fp

;

» class III in all other cases.

We have seen that these three classes partition the five-dimensional projec-
tive space of linear forms on Xp over Fp. As the invariant map for tamely ram-
ified primes is determined by the reduction of a point modulo p we get the
following result.

THEOREM 4.8.12. Let h be a linear form on the surface X ⊆ P
5
Z

constructed using a
degree 5 number field K. Let p be a prime which is tamely ramified in K.

The invariant map invp A : Uh(Zp) → 1
5 Z/Z

» is constant if h is of class I;

» misses exactly one value in 1
5 Z/Z if h is of class II and p = 11;

» is surjective if h is of class II and p ≥ 31;

» is surjective if h is of class III.

Since p is congruent to 1 modulo 10 this covers all possible cases.

Proof. We have a birational map π : Xp ��� P
2
Fp

such that the isomorphism on

function fields identifies l1
h on Xp with z3

fhom
on P

2
Fp

. On the projective plane we
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have the line L given by z = 0 and on Xp the −1-curve E4 given by l1 = 0, such
that the birational map π restricts to an isomorphism Xp\E4 ∼= P

2
Fp
\L ∼= A

2
Fp

as
we saw in Proposition 4.5.12.

This proves the following chain of isomorphisms

Up\E4 ∼= Xp\(V(h) ∪ E4) ∼= P
2
Fp\(V( fhom) ∪ L) ∼= A

2
Fp\V( f ).

Define the set W of Zp-points P on U where l1
h (P) is invertible in Zp. The reduc-

tion map q : W →
�
Up\E4

�
(Fp) is surjective by Corollary 4.8.3.

We dehomogenize the function fields on the affine schemes Up and A
2
Fp

us-
ing l1 = 1 and z = 1 to find the commutative diagram in (4.8) which can be used
to compute the invariant map for points in W.

W
�
Up\E4

�
(Fp) F

×
p /(F×

p )
5

Q/Z

�
A

2
Fp
\V( f )

�
(Fp) F

×
p /(F×

p )
5

Q/Z

q

∼=

l1
h = 1

h

1
f

(4.8)

Now if h is of class I or II we get from Lemma 4.5.19 that h vanishes along E4
and so W = Up(Zp). By the surjectivity of q : Up(Zp) →

�
Up\E4

�
(Fp) and the

injectivity of F
×
p /(F×

p )
5 → Q/Z we see that invp A : Up(Zp) → Q/Z has the

same image as the map 1
f :

�
A

2
Fp
\V( f )

�
(Fp) → F

×
p /(F×

p )
5. If h is of class I

at p, then f is constant by definition. The statements for h of class II follow from
Lemma 4.8.10 and the remark following this lemma.

Now assume that h is of class III. The surjectivity of q, Lemma 4.8.7 and
Lemma 4.8.8 combine to show that invp A is surjective on the set W of Zp-points
of U not reducing to E4 so it is definitely surjective on U (Zp).

In the cases where invp A : U (Zp) → 1
5 Z/Z is surjective we cannot get a

Brauer–Manin obstruction to the integral Hasse principle. In particular we have
the following result coming from Lemma 4.5.19.

COROLLARY 4.8.13. Let p be a prime which is tamely ramified in K and let h define a
hyperplane section on X ⊆ P

5
Z

such that the −1-curve E4 ⊆ Xp does not lie in the zero
locus of the reduction of h modulo p. The invariant map invp A : Uh(Z) → 1

5 Z/Z is
surjective.

This shows that a Brauer–Manin obstruction to the integral Hasse principle
will not exist if h does not cut out the unique −1-curve over each tamely ram-
ified prime. If it does then by the isomorphism in Proposition 4.5.12 we see
that Up is isomorphic to an open subscheme of A

2
Fp

which generally simplifies
the situation.
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4.8.3 The invariant map for the wildly ramified prime 5
We have looked at the invariant maps at unramified and tamely ramified primes.
The last case is that of wildly ramified primes. The only prime which can be
wildly ramified in our number fields K of degree 5 is the prime 5 which hap-
pens precisely if 5 divides the conductor n.

We have already seen a useful result in Corollary 4.8.4. We will also make
frequent use of the following easy lemma.

LEMMA 4.8.14. Two different lifts to (Z/25Z)× of an element (Z/5Z)× lie in dif-
ferent cosets of the subgroup {±1,±7} ⊆ (Z/25Z)×.

Now let us show that in many cases the invariant map is surjective.

LEMMA 4.8.15. Suppose that 5 is ramified in K. Then

inv5 A : Uh(Z5) →
1
5

Z/Z

is surjective if h is not of class I.

Proof. Pick coordinates ui on P
5
F5

and x, y and z on P
2
F5

such that the birational
map

ψ : P
2
F5

��� X5

is given by (x, y, z) �→ (z3, xz2, yz2, x2z, xyz, y2z − x3) and we find an isomor-
phism after restricting to the affine opens A

2
F5

and X5\E4 respectively given
by z = 1 and u0 = 1. The size of the image of inv5 A : Uh(Z5) → 1

5 Z/Z only
depends on A up to constants. Since we also know that l1 mod 5 is a multiple
of u0, we can assume without loss of generality that u0 ≡ l1 mod 5.

Pick an F5-point P̄ on V := U5\E4. Recall that the map ψ restricts to an
isomorphism on V to an open subscheme of A

5
F5

. Then P̄ is an F5-point of X
which does not lie in the zero locus of h and l1. This guarantees that P̄ is a
smooth point and λ := l1

h (P̄) is defined and invertible modulo 5. We will show
that at the Z5-points P reducing to P̄ the function l1

h assumes either one or five
values modulo 25.

Let us work with h
l1

which on V becomes

haff = a0 + a1u1 + a2u2 + a3u3 + a4u4 + a4u5.

Now let �x = (x1, x2, x3, x4, x5) be a 5-tuple of integers reducing to P̄ ∈ V . We
will first show that the lifts of P̄ to points in X (Z/25Z) are �x + 5�w where �w is
any vector in a translation of the tangent space of V at P̄.

Suppose that X is given by polynomials gj in the variables ui. The tangent
space at P̄ is by definition

TP̄V =

�
�v ∈ F

5
5 :

5

∑
i=1

dgj

dui
(P̄)vi ≡ 0 mod 5

�
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and if �x + 5�w ∈ X (Z/25Z) then for all j

0 ≡ gj(�x + 5�w) ≡ gj(�x) + 5
5

∑
i=1

dgj

dui
(�x)wi mod 25

which proves the claim.
To compute haff at these lifts, let us write �a = (a1, a2, a3, a4, a5) ∈ Z

5. Then
we find

haff(�x + 5�w) ≡ haff(�x) + 5�a · �w mod 25.

So we find all possible lifts modulo 25 of haff(�x) mod 5 when �a · �w is not con-
stant modulo 5 or equivalently that there exists a �v ∈ TPV such that 5 � �a · �v.
This clearly does not happen when �a ≡ 0 mod 5, so let us assume that one of
the components of�a is not divisible by 5.

We will prove that under this assumption we can find a point P̄ ∈ V(Fp)
and a tangent vector �v ∈ TP̄V such that 5 � �a ·�v. Using ψ we can translate this
problem to A

2
F5
\{ f = 0}. Using the equations of ψ we see that the tangent

space at ψ(x, y) is generated by the vectors �v1 = (1, 0, 2x, y,−3x2) and �v2 =
(0, 1, 0, x, 2y). We are looking for a point (x, y) such that f (x, y) = haff ◦ψ(x, y) �=
0 and�a ·�v1 or�a ·�v2 is non-zero.

Note that the degrees of�a ·�v1 and�a ·�v2 as polynomials in x and y are at most 2
and 1 and that at least one is non-zero since we assumed that�a �= 0 mod 5. If
the linear equation�a ·�v2 is non-zero it vanishes in at most five points of A

2(F5).
If it is the zero polynomial then �a ·�v1 is a non-zero linear polynomial. We see
that�a ·�v1 and�a ·�v2 vanish simultaneously in at most 5 points. We have seen in
the proof of Lemma 4.7.3 that f vanishes in at most 2p = 10 points on A

2
Fp

. So
if�a �≡ 0 mod 5 then there exists a point P̄ ∈ V(F5) and a vector �v in its tangent
space such that�a ·�v �≡ 0 mod 5.

In particular if�a �≡ 0 mod 5 we see that there exists a point P̄ ∈ V(F5) such
that�a ·�v mod 5 is surjective on the tangent space of P̄, proving that haff assumes
five values modulo 25 on Z5-points P reducing to P̄. We see from Lemma 4.8.14
that haff assumes all values in (Z/25Z)× modulo fifth powers and so do h

l1
on U5

and l1
h on U . This proves the surjectivity of inv5 A in this case.

If on the other hand�a ≡ 0 mod 5 we find that haff assumes only one value
modulo 25 on Zp-points reducing to a fixed point P̄ ∈ V(F5). We also see
that 5 cannot divide the coefficient of u0 in h since it already divides all the other
coefficients and so h is of class I.

In particular we have proved the following result similar to Lemma 4.8.13.

COROLLARY 4.8.16. Suppose that 5 divides the conductor n and consider a hyperplane
section given by h = 0 on X ⊆ P

5
Z

such that the −1-curve E4 ⊆ X5 does not lie on the
zero locus of the reduction of h modulo 5. The invariant map inv5 A : Uh(Z) → 1

5 Z/Z

is surjective.
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We can even classify all of the remaining hyperplane sections for which the
evaluation map is not surjective.

THEOREM 4.8.17. Suppose that 5 is ramified in K. Then inv5 A : U (Z5) → 1
5 Z/Z

is not surjective precisely when there exist integers λ, c1 and c3 satisfying 5 � λ, and
5 | c1, c3 or 5 � c1 such that

h ≡ λl1 + 5(c1u1 + c3u3) mod 25

for specific hyperplane sections u1, u3 ∈ O
P

5
Z

(1). The invariant map is constant
when 5 | c1, c3 and otherwise the size of its image is 3.

Proof. Let us again fix coordinates ui for 1 ≤ i ≤ 5 on X5 ⊆ P
5
F5

such that
their reduction modulo 5 corresponds to (z3, xz2, yz2, x2z, xyz, y2z − x3) under
the isomorphism of function fields described in Proposition 4.5.12.

Since l1 and h are both of class I at 5 we see that there exist an integer λ such
that 5 � λ and h ≡ λl1 mod 5. This implies the existence of a polynomial k
over Z such that h − λl1 = 5k.

It follows for any point P ∈ U (Z5) that h
l1
(P) ≡ λ mod 5 and that h

l1
(P)

mod 25 only depends on the image of P in U (F5).
Let us compute h

l1
at P modulo 25:

h
l1
(P) =

λl1 + 5k
l1

(P)

= λ + 5
k
l1
(P).

We know that z3 k
l1

corresponds to a homogeneous cubic polynomial fhom in
the ideal (x3 − y2z, xz, z2) of F5[x, y, z]. Now write

k = c0u0 + c1u1 + c2u2 + c3u3 + c4u4 + c5u5

such that the cubic polynomial becomes

fhom = c0z3 + c1xz2 + c2yz2 + c3x2z + c4xyz + c5(y2z − x3).

Now consider f = fhom(x, y, 1). We have seen in Lemma 4.8.7 that f is surjective
to F

×
5 if it describes a line, a conic with two distinct rational points at infinity,

a geometrically integral conic with a single point at infinity, or a cubic curve.
The remaining cases are the constant functions and the quadratics which are
independent of y. This shows that k ≡ c0u0 + c1u1 + c3u3 mod 5. Let us show
that we can assume that c0 = 0. First note that l1 reduces to a multiple of u0
modulo 5. Let us write λ�l1 ≡ u0 mod 5 where λ� ∈ F

×
5 . This gives

(λ + 5c0λ�)l1 ≡ λl1 + 5c0λ�l1 ≡ λl1 + 5c0u0 mod 25.

So we can indeed assume that c0 = 0.
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The hyperplane section of P
5
F5

defined by k ≡ c1u1 + c3u3 mod 5 corre-
sponds to the polynomial c1x+ c3x2 on A

2
F5

which is quadratic if c3 �= 0 and con-
stant if c1 = c3 = 0. By symmetry we see that a quadratic in one variable over F5
assumes exactly 3 values. And obviously if h ≡ λl1 mod 25 then c1u1 + c3u3 is
constant modulo 5.

So we see that h
l1
(P) is constant modulo 5, and assumes either one, three or

five values modulo 25. By Lemma 4.8.14 we see that h
l1
(P) and hence l1

h (P) also
assumes one, three or five values in (Z/25Z)× modulo fifth powers and so the
same holds for inv5 A by Lemma 4.4.4.

This proves that precisely in the specified cases the invariant map is not sur-
jective.

4.9 Actual examples of obstructions
We will now combine the results on the invariant maps to produce some explicit
examples of Brauer–Manin obstructions of order 5 and discuss some cases in
which no algebraic obstruction can exist.

4.9.1 Obstructions for U of large conductor
Let us first show that in most cases there does not exist an algebraic obstruction
to integral points if the conductor has a large prime divisor.

PROPOSITION 4.9.1. Let Uh/Z be a model as before of an interesting log K3 sur-
face U = X\C of conductor n. If h is not of class I at a prime divisor p > 11 of n,
then the invariant map invp A : Up(Zp) → 1

5 Z/Z is surjective. This implies that
in these cases there does not exist an algebraic Brauer–Manin obstruction to the Hasse
principle for integral points on Uh.

Proof. It follows from Theorem 4.8.12 that invp A : Uh(Zp) → 1
5 Z/Z is surjec-

tive. This also proves that ∑� inv� A : U (AZ) → 1
5 Z/Z is surjective so in par-

ticular X (AQ,∞)A is not empty.

If h is of class I at a prime divisor p ≡ 1 mod 5 of the conductor n, then it is
possible to get an obstruction.

THEOREM 4.9.2. Fix a prime p ≡ 1 mod 5. There exists a scheme Uh/Z such that h
is of class I at p which divides the conductor such that the surface Uh is locally soluble,
but there is a Brauer–Manin obstruction to the Hasse principle for integral points.

Proof. We will describe how to produce such examples.
Start off with a model X for dP5(p) for p by picking an α ∈ Z[ζp] such

that K = Q(α) is a number field of degree 5. Such an α is not unique and a
different choice of α will yield a different model for dP5(p) over Z. We will use
the relatively large degree of freedom in the choice of h.
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For � ∈ {2, 3, 5} pick a smooth point P� ∈ X (Z�) and a linear form h� ∈
F�[u0, u1, u2, u3, u4, u5] such that h�(P�) �≡ 0 mod �. For inert primes � which
divide the discriminant of mα we have a unique singular point S� on X�. We
also impose the conditions h�(S�) ≡ 0 mod �, i.e. S� does not lie on U�. Note
that these conditions can be satisfied simultaneously in the case that � is a small
inert prime for which X� has an A4-singularity.

Now fix an invertible quintic non-residue q modulo p and let hp be a linear
form over Fp which satisfies hp ≡ ql1 mod p. Let h be a primitive linear form
over Z which is a lift of these h�.

By the condition modulo p we see that h is different from ±l1 and ±l2 so by
Lemma 4.1.6 the hyperplane section defined by h is geometrically irreducible.
Furthermore, Uh is locally soluble as it is has Z�-points for � ≤ 5 by choice of h
and it has local points for the remaining primes by Lemma 4.7.2.

Let us prove the theorem by showing that ∑ inv� A is constant and non-zero.
For primes � �= p we see from Lemmas 4.8.5 and 4.8.6 that inv� A is identically
zero. For the ramified prime p we use Lemma 4.8.3, and as l1

h ≡ 1
q mod p is

constant and not a fifth power modulo p we see that invp A is constant and
non-zero.

For p = 11, there are examples of such obstructions of a different nature.

4.9.2 Obstructions for U of conductor 11
We will use the model of dP5(11) constructed using the element

α = ζ11 + ζ−1
11 − 2 ∈ Q(ζ11)

with minimal polynomial mα = s5 − 11s4 + 44s3 − 77s2 + 55s− 11. This model X
over Z is given by the five equations

u2
0 − 492u0u3 − 52838u0u5 − u1u3 − 22u1u4 − 121u1u5

+ 1952u2u4 + 412071u2u5 − 971038u3u5 − 1771110u2
5,

u0u2 − 22u0u3 − 4u0u4 − 3267u0u5 − u1u4 − 11u1u5

+ 88u2u4 + 20504u2u5 + 16u3u4 − 39017u3u5 − 78089u2
5,

u0u3 + 169u0u5 + u1u5 − u2
2 − 4u2u4 − 451u2u5 − 500u3u5 + 220u2

5,

u0u4 − 11u0u5 − u2u3 + 121u2u5 − 4u3u4 − 363u3u5 − 594u2
5,

u0u5 − u2u4 + u2
3 − 11u2u5 + 40u3u5 + 55u2

5.

As disc(mα) = 114 we see that all fibres X� are smooth for � �= 11, and since
mα ≡ s5 mod 11 we see that X11 has one singular point.
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One can check that each of the two hyperplane sections given by

l1 = u1 + 187u0 − 759u2 + 693u3 − 979u4 + 4114u5,

l2 = u1 + 187u0 − 770u2 + 792u3 − 1199u4 + 4840u5

consist of five conjugate exceptional curves defined over the degree 5 number
field K = Q(ζ11)+ = Q(ζ11 + ζ−1

11 ) and the only ramified prime is 11.
Let us group the results on local solubility and computing the invariant maps

on this surface for a general h. Again we consider the affine surface U over Z

given by the complement of a hyperplane section C = {h = 0}. The generic
fibres of these two schemes are denoted by X and U.

LEMMA 4.9.3. The affine surface Uh is everywhere locally soluble precisely when

h �≡ u2 + u3 mod 2.

Proof. A quick computer check shows that X (F2) consists of five points which
lie on a unique hyperplane given by u2 + u3. Local solubility at 11 is given in
Lemma 4.7.3 and the existence of points over the other completions is precisely
Lemma 4.7.2, since all the fibres over � �= 11 are smooth.

LEMMA 4.9.4. Consider a geometrically irreducible hyperplane section given by a prim-
itive h. Let � be a prime and let A be a generator for Br Uh/ Br Q. We consider the
invariant map

inv� A : Uh(Z�) → Q/Z.

(a) If � �= 11, then the invariant map is identically zero.

(b) If � = 11, then h is of

» class I precisely when h is a multiple of u1;
» class II precisely when h is not of class I, but it is in the F11-span of u0, u1

and u3;
» class III in all other cases.

The value 0 ∈ Q/Z does not lie in the image of inv11 A precisely when h is class
I or II and the associated polynomial

f = h(x + 4x2, 1, y, x2, xy, y2 − x3).

does not assume the values ±1 modulo 11 for x, y ∈ F11.

Note that for h of class I the associated polynomial f is constant and whether
or not ±1 lies in the image of f is immediate. If h is of class II, then f is indepen-
dent of y and one only needs to evaluate f at 11 points.

Proof. We treat the cases of unramified and the ramified prime separately.
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(a) This follows directly from Lemmas 4.8.5 and 4.8.6 since X11 is the only
singular fibre of X over Z.

(b) One can check that the rational map ψ : P
2
F11

��� X11 is defined by

(x, y, z) �→ (xz2 + 4x2z, z3, yz2, x2z, xyz, y2z − x3).

Its inverse π is given by

(u0 : u1 : u2 : u3 : u4 : u5) �→ (u0 + 7u3 : u2 : u1).

This shows that the associated polynomial of h at 11 is given by f (x, y) =
h(x + 4x2, 1, y, x2, xy, y2 − x3). It follows that h is of

» class I precisely when f is constant;
» class II precisely when f is independent of y, but not of x; and
» class III otherwise.

For an h of class III the map inv11 A : U (Z11) → 1
5 Z/Z is surjective, so

there is a Z11-point P such that inv11 A(P) = 0.
We saw in Lemma 4.8.3 how to compute the invariant map on the set W ⊆
U (Z11) of Z11-points P such that l1

h (P) is defined and invertible in Z11.
In the proof of Theorem 4.8.12 we saw that for h of class I or II these are
all Z11-points on U , so we see that 0 does not lie in the image of inv11 A
precisely if f does not assume a fifth power modulo 11 on A

2
F11

\V( f ), or
equivalently f does not assume the values ±1 on the whole of A

2
F11

.

We can now apply the above results to compute the Brauer–Manin obstruc-
tion for a fixed h and find actual algebraic obstructions of order 5 to the integral
Hasse principle.

THEOREM 4.9.5. Let H be the hyperplane in P
5
Z

given by the vanishing of u0. The
complement U = X\H has points over Q and every Z�, but there is an algebraic
Brauer–Manin obstruction to the existence of integral points.

Proof. The local solubility follows from Lemma 4.9.3 and the invariant map
for � �= 11 is identically zero by Lemma 4.9.4.

Let us consider the only remaining prime 11. We will follow the outline in
Lemma 4.9.4 to check for a possible obstruction. The associated inhomogeneous
polynomial of h = u0 is found to be f = 4x2 + x, which is easily checked to
never assume the values ±1. So the element 0 ∈ 1

5 Z/Z does not lie in the image
of inv11 A. This shows that for all (P�)� ∈ U (AQ,∞) we have ∑� inv� A(P�) =
inv11 A(P11) �= 0 and hence

U (AQ,∞)A = ∅

and so U (Z) = ∅.
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A careful analysis of the above proof yields the following result.

THEOREM 4.9.6. Let Uh be the complement in X of a geometrically irreducible hyper-
plane section given by a primitive linear form h ∈ Z[u0, u1, . . . , u5]. The class of h
modulo 2 determines whether the affine surface Uh is locally soluble. The existence of
an algebraic obstruction to the Hasse principle for integral points depends only on the
reduction of h modulo 11. Out of the 116 − 1 = 1771560 possible reductions of h
modulo 11 precisely 228 give an obstruction.

Note that this does not mean that the reduction of h modulo 2 and 11 is the
only condition; the proof still uses the assumption that h is primitive. It follows
from Lemma 4.1.6 that the condition that the section is geometrically irreducible
is immediately satisfied if h does not reduce to ±u1. For hyperplanes h reducing
to either of these two form it is easily shown that inv11 A is identically equal to 0
on Uh(Z11).

Proof of Theorem 4.9.6. We already saw the statement about local solubility in
Lemma 4.9.3 and in Lemma 4.9.4 we saw that the existence of an obstruction
only depends on the associated polynomial f which only depends on the reduc-
tion of h modulo 11.

Let us count the non-zero linear forms h over F11 for which such an obstruc-
tion exists. In Theorem 4.8.12 we saw that we get no obstruction unless h is of
class I or class II. Let f ∈ F11[x, y] be the associated polynomial of h. We must
consider the cases where f is constant or a separable quadratic polynomial.

If f is constant then we see that inv11 A is constant and we get an obstruction
if f is one of the 8 non-fifth powers modulo 11.

For h of class II we see that f : F11\{ρ1, ρ2} → F
×
11/(F×

11)
5, x �→ f (x) misses

exactly one value. If f misses the value q ∈ F
×
11/(F×

11)
5 we see that λ f for

λ ∈ F
×
11 misses the class of λq.

There are 10 · 112 quadratic polynomials over F11 and 10 · 11 of these are
inseparable. The group F

×
11 acts on the remaining 102 · 11 quadratic polynomials

by multiplication. All orbits have size 10 and in such an orbit exactly 2 miss the
unit element in F

×
11/(F×

11)
5. This proves that for an h of class II at 11 there is

an obstruction if h reduces to one of these 2 · 10 · 11 = 220 separable quadratic
polynomials.

4.9.3 Obstructions for U of conductor 25

It is also possible to find obstructions of order 5 to the integral Hasse principle
when X is a model of dP5(25) so then K has 5 as a ramified prime. For example,
define the field K ⊆ Q(ζ25) as the splitting field of the polynomial

mα = s5 − 20s4 + 100s3 − 125s2 + 50s − 5.
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This produces the projective surface X over the integers given by the five equa-
tions

u2
1 − u0u3 − 1600u1u3 − 40u0u4 − 400u0u5 − 524950u1u5

+ 7251005u2u5 − 30039800u3u5 − 16150000u2
5,

u1u2 − 40u1u3 − u0u4 − 20u0u5 − 18125u1u5

+ 200050u2u5 − 750995u3u5 − 403750u2
5,

u2
2 − u1u3 − u0u5 − 500u1u5 + 1875u2u5,

u2u3 − u1u4 + 20u1u5 − 400u2u5 + 1875u3u5 + 995u2
5,

u2
3 − u2u4 + u1u5 − 20u2u5 + 100u3u5 + 50u2

5.

The two hyperplane sections over Z cutting out the two quintuples of −1-curves
are

l1 = u0 + 575u1 − 3550u2 + 8650u3 − 4285u4 + 10475u5,
l2 = u0 + 525u1 − 2575u2 + 4325u3 − 2285u4 + 11100u5.

As in the previous case, local solubility is immediate at most primes.

LEMMA 4.9.7. The surface Uh is everywhere locally soluble precisely when

h �≡ u2 + u3 + u5 mod 2.

Proof. Since disc(mα) = 5876, there are only two singular fibres and the local
solubility at primes � ≥ 3 follows from Lemmas 4.7.2 and 4.7.3. For the prime 2
we find, just like in the proof of Lemma 4.9.3, that the five points on X2 lie on a
unique hyperplane in P

5
F2

. This hyperplane is given by u2 + u3 + u5 ≡ 0.

THEOREM 4.9.8. Consider the invariant map

inv� A : Uh(Z�) → Q/Z.

(a) If � �= 5, then the invariant map is identically zero.

(b) If � = 5 then either Im (inv5 A) = 1
5 Z/Z or there are integers λ, c1 and c3

satisfying 5 � λ and either 5 | c1, c3 or 5 � c1 such that h ≡ λ(u0 + 15u4) +
5(c1u1 + c3u3) mod 25. In this case the value 0 ∈ Q/Z lies in the image
of inv11 A precisely when λ1 + 5(c1x + c3x2) assumes one of values ±1,±7
modulo 25 for x ∈ Z.

Proof. The first statement follows as before. For the second statement one checks
that the birational map X5 ��� P

2
F5

which restricts to the isomorphism from
Proposition 4.5.12 is given by (u0, u1, u2, u3, u4, u5) �→ (u1, u2, u0) and the in-
verse by (x, y, z) �→ (z3, xz2, yz2, x2z, xyz, y2z − x3). We see that under this map
the hyperplanes u1 and u3 reduce to x2 and x on the affine plane over F5.
The statement now follows from Lemma 4.8.17 since l1 ≡ u0 + 15u4 mod 25
and h

l1
(P) reduces to one of ±1,±7 modulo 25 precisely when l1

h (P) does.
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For completeness we will give an example of a hyperplane for which the
associated affine scheme over the integers does not have integral solutions.

THEOREM 4.9.9. Consider an h which cuts out a geometrically irreducible hyperplane
section such that 0 does not lie in the image of inv5 A. The reduction of h modulo 25
is one of 176 out of the (52)6 − 56 = 244125000 possible hyperplanes over Z/25Z.
For example, the surface Uh/Z for h = 2u0 + 10u3 + 5u4 admits a Brauer–Manin
obstruction of order 5 to the existence of integral points.

Proof. Let (Z/25Z)× act on the hyperplanes modulo 25 for which inv5 A is not
surjective by multiplication. This translates the image of the invariant map by an
element of 1

5 Z/Z depending on the class of (Z/25Z)× modulo fifth powers. So
if the size of the image of an invariant map corresponding to a hyperplane has
one element, then 4

5 of the scalar multiples of h do not have 0 in the image. For
invariant maps whose image is of size 3 precisely 2

5 of the scalar multiples have
this property. This means that the number of hyperplanes modulo 25 for which 0
does not lie in the image of the invariant map is 4

5 · 20 + 2
5 · 20 · 4 · 5 = 176.

Now consider the hyperplane h = 2u0 + 10u3 + 5u4. The affine surface Uh is
locally soluble by Lemma 4.9.7. The result follows from the previous theorem;
take λ = 2, c1 = 0 and c3 = 2 and note that 2(1 + 5x2) only assumes the val-
ues 2, 12, 17 mod 25. So 0 does not lie in the image of the invariant map at 5
and the invariant maps at the other primes are all constant zero.
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