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Chapter 3

The Brauer group of ample log
K3 surfaces

This chapter is based on the author’s article [10] written jointly with Martin
Bright.

In the previous chapter we have looked at the arithmetic of del Pezzo sur-
faces. Let us briefly discuss the more complicated arithmetic of K3 surfaces.
These surfaces will not play an important role in this chapter or even this thesis,
but we will use them to put this chapter in context.

Let X be a K3 surface over a number field k. Here Br X̄ is infinite, but it was
proved by Skorobogatov and Zarhin [49] that the quotient Br X/ Br1 X is finite.
The question then arises of trying to bound this finite group; there has been
quite a body of work on this in recent years. Ieronymou, Skorobogatov and
Zarhin proved in [34] that, when X is a diagonal quartic surface over the field Q

of rational numbers, the order of Br X/ Br Q divides 225 × 32 × 52. When X is the
Kummer surface associated to E × E, with E/Q an elliptic curve with full com-
plex multiplication, Newton [44] described the odd-order part of Br X/ Br Q.
When X is the Kummer surface associated to a curve of genus 2 over a number
field k, Cantoral Farfán, Tang, Tanimoto and Visse [11] described an algorithm
for computing a bound for Br X/ Br k. More generally, Várilly-Alvarado [56,
Conjectures 4.5, 4.6] has conjectured that there should be a uniform bound on
Br X/ Br k for any K3 surface X, depending only on the geometric Picard lat-
tice of the surface. Recent progress towards this conjecture has been made by
Várilly-Alvarado and Viray for certain Kummer surfaces associated to non-CM
elliptic curves [57, Theorem 1.8] and by Orr and Skorobogatov for K3 surfaces
of CM type [45, Corollary C.1].

So far we have been discussing proper varieties. However, non-proper vari-
eties are also of arithmetic interest. A particular case is that of log K3 surfaces;
the arithmetic of integral points on log K3 surfaces shows several features anal-
ogous to those of rational points on proper K3 surfaces. See [32] for an introduc-
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3.1. AMPLE LOG K3 SURFACES

tion to the arithmetic of log K3 surfaces. One example of a log K3 surface is the
complement of an anticanonical divisor on an ordinary del Pezzo surface, and it
is that case with which we concern ourselves in this chapter.

Some calculations of the Brauer groups of such varieties have already ap-
peared in the literature. In [16], Colliot-Thélène and Wittenberg computed ex-
plicitly the Brauer group of the complement of a plane section in certain cubic
surfaces. In [35], Jahnel and Schindler carried out extensive calculations in the
case of an ordinary del Pezzo surface of degree 4. In this chapter, we compute
the possible algebraic Brauer groups of these surfaces, and use uniform bound-
edness of torsion of elliptic curves to bound the possible transcendental Brauer
groups, resulting in Theorem 3.3.4, which is the main result of this chapter.

3.1 Ample log K3 surfaces

We defined a surface in Definition 2.1.1 as a geometrically integral variety over
a field k of dimension two. In this chapter all surfaces will be smooth over k.
By [33, Proposition 6.11] we see that this implies that we can identify Weil and
Cartier divisors and we will use the notions interchangeably.

The goal of this chapter is to describe the Brauer groups of certain surfaces
over a number field. With this in mind we may restrict to surfaces over a field of
characteristic 0 in the general definitions and statements leading up to the main
results. Note for example that this is a standing convention in [32].

DEFINITION 3.1.1. Let C be a divisor on a smooth surface X over a field k. Let Ci
be the geometrically irreducible components of C̄. We say that C has simple
normal crossings if the following three conditions are satisfied:

» each component Ci is smooth;

» every geometric point x of C lies on at most two components Ci; and

» any two distinct components Ci and Cj meet transversally.

Most of the divisors we will be interested in will only have one geometrically
irreducible smooth component. Such divisors obviously have simple normal
crossings. We have included this notion to give the general definition of log K3
surfaces.

DEFINITION 3.1.2. Let U be a smooth surface over a field k. A log K3 structure
on U is a triple (X, C, i) consisting of a proper smooth surface X over k, an ef-
fective anticanonical divisor C on X with simple normal crossings and an open
embedding i : U → X, such that i induces an isomorphism between U and X\C.
A log K3 structure is called ample if C is ample.
A log K3 surface is a simply connected, smooth surface U over k together with
a choice of log K3 structure (X, C, i) on U. An ample log K3 surface is a surface
together with an ample log K3 structure.
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We will often use the notation U for X\C and assume the log K3 structure is
understood.

PROPOSITION 3.1.3. Let U be a log K3 surface over a field k with log K3 structure
(X, C, i) such that C is not the trivial divisor on X. Then X̄ is a rational surface over k̄.

Proof. See Proposition 2.0.18 in [32]. The standing convention in this paper is
that k should be of characteristic 0. The proof works for log K3 surface over
general fields.

If C is the trivial divisor then U
∼=−→ X is a proper smooth surface. These

types of surfaces are precisely the K3 surfaces touched upon in the introduction
of this chapter. We will however be interested in log K3 structures for which the
divisor is not trivial. We will usually even assume that C is an ample divisor.
Proposition 3.1.3 shows that in this case the compactification X is an ordinary
del Pezzo surface.

DEFINITION 3.1.4. Let 1 ≤ d ≤ 9 be an integer. A log K3 surface of dP(d) type
or an ample log K3 surface of degree d is a log K3 surface U with log K3 struc-
ture (X, C, i) such that X is an ordinary del Pezzo surface of degree d. If the
locally principal subscheme of X associated to the effective divisor C is geomet-
rically irreducible, we say that U is a log K3 surface of geometrically irreducible type.

We will be concerned with ample log K3 surfaces, and in particular those of
geometrically irreducible type.

Note that if (X, C, i) is a log K3 structure such that C is geometrically irre-
ducible, then C̄ has a unique irreducible component which must be smooth by
the definition of normal crossing divisor. Equivalently we could assume that C
is geometrically integral or geometrically connected.

3.2 The algebraic Brauer group
In the next sections we will compute Brauer groups of certain log K3 surfaces or
bound the order of these groups. If an ample log K3 surface is of geometrically
irreducible type we can compute the algebraic Brauer group modulo constants
using Proposition 1.6.5.

PROPOSITION 3.2.1. Let k be a number field and U = X\C an ample log K3 surface
of geometrically irreducible type of degree d at most 7 over k, i.e. X is an ordinary del
Pezzo surface of degree d and U ⊆ X is the complement of a geometrically irreducible
curve C ∈ |−KX |. Then Br1 U/ Br k depends only on Pic X̄ as a Galois module and its
order is at most 256. For d = 1, the natural map Br1 X → Br1 U is an isomorphism.
For 2 ≤ d ≤ 7, the possible combinations of Br X/ Br k = Br1 X/ Br k and Br1 U/ Br k
are as shown in Table C.

We will see that the proof does not use the fact that the geometrically irre-
ducible C is smooth. The result is also true for any geometrically irreducible
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Degree Br1 X/ Br k Possibilities for Br1 U/ Br k
d = 7 1 1
d = 6 1 1 2 3 6
d = 5 1 1 5
d = 4 1 1 2 22 23 24 4 2 · 4

2 2 22 23 24 2 · 4
22 23 24 22 · 4

d = 3 1 1 3 32

2 2 6
22 22 2 · 6
3 3 32

32 33

d = 2 1 1 2
2 2 22 2 · 4 4
22 22 23 2 · 4 22 · 4 42

23 23 24 22 · 4
24 24 25 23 · 4
25 26

26 27

3 3 6
32 32 3 · 6
2 · 4 2 · 4 22 · 4 42

22 · 4 22 · 4 23 · 4
4 2 · 4 4
42 2 · 42

Table C: Possible group structures of Br1 U/ Br k. The notation is the same as in
Table B on page 59. For example, 2 · 42 means Z/2Z × (Z/4Z)2.
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CHAPTER 3. THE BRAUER GROUP OF AMPLE LOG K3 SURFACES

effective anticanonical divisor C on a del Pezzo surface X over a number field k.
Note that our computations agree with those of Jahnel and Schindler [35,

Remark 4.7i)] on ordinary del Pezzo surfaces of degree 4.
To prove Proposition 3.2.1 we will use the following lemma.

LEMMA 3.2.2. Let U = X\C be a log K3 surface of geometrically irreducible type over
a number field k of degree d ≤ 7. Let W be the minimal subgroup of the Weyl group
W9−d such that the action of Gk on Pic X̄ factors through the induced action of W on
Pic X̄. The group Br1 U/ Br k only depends on the conjugacy class of W as a subgroup
of W9−d.

Proof. As C is geometrically irreducible, a section of Gm on Ū corresponds to
a rational function on X̄ whose divisor is a multiple of C. The intersection of
this principal divisor with C must be zero and we see that H0(Ū, Gm) = k̄×.
This means that we can apply Proposition 1.6.5 to compute the algebraic Brauer
group modulo constants.

By definition of W we have a surjective group homomorphism Gk � W,
such that Gk acts on Pic X̄ through W ⊆ W9−d. We also find that the action of the
kernel of Gk → W on Pic X̄ is trivial. Now we will determine the induced action
of these groups on Pic Ū. By [33, Proposition II.6.5] we have an exact sequence
of Galois modules

0 → Z → Pic X̄ → Pic Ū → 0

where the first map sends 1 to the anticanonical class in Pic X̄. This shows that
the Galois module Pic Ū only depends on the Galois module Pic X̄, since the
class of C is the anticanonical class.

Let G� be the kernel of the group homomorphism Gk → W. The inflation-
restriction sequence for the actions of Gk and its normal subgroup G� on Pic Ū
gives the exact sequence

0 → H1(Gk/G�, (Pic Ū)G�
) → H1(Gk, Pic Ū) → H1(G�, Pic Ū)Gk/G�

.

The kernel G� of Gk → W acts trivially on Pic X̄ and hence also on its quo-
tient Pic Ū. Since G� is a torsion group and Pic Ū is a free Z-module we see that
H1(G�, Pic Ū) is trivial. From the minimality of W we derive that Gk → W is
surjective and hence Gk/G� is isomorphic to W. We conclude that

H1(W, Pic Ū) → H1(Gk, Pic Ū)

is an isomorphism.
Similarly to the proof of Proposition 2.8.6 using [58, Example 6.7.7] we see

that the cohomology group H1(W, Pic Ū) only depends on the conjugacy class
of W in W9−d and by Proposition 1.6.5 this determines Br1 U/ Br k.

Proof of Proposition 3.2.1. By the discussion following Proposition 2.3.5 there are
essentially finitely many Galois actions on Pic X̄ as each action factors through
a unique minimal subgroup W of the finite Weyl group W9−d. Enumerating all
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possible subgroups W of W9−r, or even just the conjugacy classes of subgroups,
and computing the induced actions of W on Pic Ū allows us to calculate the
possible cohomology groups. For MAGMA code to accomplish this calculation,
see [39]. In the case d = 1, the following lemma, its corollary and the Table B on
page 59 spares us from what would be a lengthy calculation.

LEMMA 3.2.3. The natural map H1(k, Pic X̄) → H1(k, Pic Ū) is injective and the
cokernel has exponent dividing δ, where δ is the minimal non-zero value of |D · KX |
for D a divisor on X.

Proof. Let D be a divisor with D · KX = δ. As above, we have the exact sequence
of Galois modules

0 → Z
j−→ Pic X̄ → Pic Ū → 0.

The map E �→ E · D gives a map s : Pic X̄ → Z with the property that s ◦ j is
multiplication by −δ. Consider the following part of the long exact sequence
associated to this short exact sequence:

0 → H1(k, Pic X̄) → H1(k, Pic Ū) → H2(k, Z)
j
�
s

H2(k, Pic X̄)

We see that the cokernel of H1(k, Pic X̄) → H1(k, Pic Ū) is isomorphic to the
kernel of j, which is contained in the kernel of s ◦ j; but this map is multiplication
by −δ.

COROLLARY 3.2.4. If X is an ordinary del Pezzo surface of degree 1 or X contains a
−1-curve defined over k, then the map Br X/ Br k = Br1 X/ Br k → Br1 U/ Br k is an
isomorphism.

We draw special attention to the possible algebraic Brauer groups modulo
constants for log K3 surfaces of dP5 type. The following proposition gives a
criterion for computing Br1 U/ Br k.

PROPOSITION 3.2.5. Let X be a del Pezzo surface of degree 5 and let W be the minimal
subgroup of W4 through which the action of Gk on Pic X̄ factors. The group Br1 U/ Br k
is cyclic of order 5 precisely for W in one conjugacy class of subgroups of W4. In all other
cases Br1 U/ Br k is trivial.

One can check that W4 has 19 conjugacy classes of subgroups and only in
one of those cases we find a non-trivial algebraic Brauer group modulo con-
stants. We will study this specific action more in Chapter 4 and use it to produce
examples of Brauer–Manin obstructions of order 5 to the integral Hasse princi-
ple.

3.3 Uniform bound for the order of the Brauer group
Next we will study the whole Brauer group of ample log K3 surfaces. The Brauer
group modulo constants was computed for some instances of these surfaces by
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CHAPTER 3. THE BRAUER GROUP OF AMPLE LOG K3 SURFACES

Colliot-Thélène and Wittenberg [16], Jahnel and Schindler [35] and Harpaz [32].
For ample log K3 surfaces U over a number field k we will use the techniques
used by Colliot-Thélène and Wittenberg [16] to give a bound for the order of
Br U/ Br k in terms of the degree of k.

We will use the following important result.

PROPOSITION 3.3.1 (Merel). Let m be a positive number. There exists an effective
computable number N(m) such that for an elliptic curve E over a number field of de-
gree m the order of a torsion point in E(k) is bounded by N(m).

Proof. See [42].

This bound will be the basis for practically all bounds in this section. Now
let us first look at the case where at least one of the −1-curves on X̄ is defined
over k. Note that in this situation by Corollary 3.2.4 the image of Br X in Br U
coincides with the algebraic Brauer group Br1 U.

LEMMA 3.3.2. Let U = X\C be an ample log K3 surface of geometrically irreducible
type such that a −1-curve L ⊆ X is defined over k. Let m denote the degree [k : Q].
Then the restriction map Br X → Br U is injective, and the order of its cokernel is
bounded by N(m)2.

Proof. Since U of geometrically irreducible type we see that C is geometrically
integral. Because C is a strict normal crossings divisor it is smooth, and we have
the exact sequence

0 → Br X → Br U
∂C−→ H1(C, Q/Z)

from Proposition 1.7.5. So it is enough to bound the image of the residue map ∂C.
We have C · L = 1 and this implies that C ∩ L is geometrically integral zero-

dimensional subscheme P on X. This means that we can apply Proposition 1.7.6
and we find the commutative diagram shown in (3.1).

Br X Br U H1(C, Q/Z)

Br L Br(L \ P) H1(P, Q/Z)

∂C

α

∂C

(3.1)

We have L ∼= P
1
k and L \ P ∼= A

1
k , both of which have Brauer group isomor-

phic to Br k by Proposition 1.4.12; exactness of the bottom row shows that ∂P is
the zero map. This implies that the image of ∂C is contained in the kernel of
the homomorphism α. The first cohomology group H1(C, Q/Z) classifies cyclic
Galois covers of C, and ker α corresponds to those cyclic Galois covers D → C
for which the fibre above P is a trivial torsor for the structure group Z/nZ. So
we consider such covers whose kernel is a disjoint union of k-points.

We first bound the degree of such a cover. Let π : D → C be a cyclic cover of
degree n, and suppose that the fibre F = π−1(P) is trivial, so that F consists of
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n distinct k-points. The Riemann–Hurwitz formula shows that D has genus 1.
Pick a point Q in the fibre F. If we regard D and C as elliptic curves with base
points Q and P respectively, then π is an isogeny of elliptic curves, and F(k) =
ker π is a cyclic subgroup of order n in D(k). In particular, since D is an elliptic
curve over k with a point of order n, we have n ≤ N(m).

We now fix n to be the maximal order of an element of ker α. The exponent
of a finite abelian group is equal to the maximal order of its elements, so every
element of ker α has order dividing n.

Looking at the long exact sequence in cohomology associated to the short
exact sequence of sheaves

0 → Z/nZ → Q/Z
×n−→ Q/Z → 0

shows that the natural map H1(C, Z/nZ) → H1(C, Q/Z) is injective. This iden-
tifies H1(C, Z/nZ) with the n-torsion in H1(C, Q/Z), which contains ker α. The
Hochschild–Serre spectral sequence gives a short exact sequence

0 → H1(k, Z/nZ)
β−→ H1(C, Z/nZ) → H1(C̄, Z/nZ)

in which the map α induces a left inverse to β. Thus ker α is identified with a
subgroup of H1(C̄, Z/nZ), which is isomorphic to the n-torsion in Pic C̄ and
so has order n2. Combining this with the above bound on n gives the claimed
bound.

COROLLARY 3.3.3. Under the conditions of Lemma 3.3.2, the order of Br U/ Br k is
bounded by 26N(m)2.

Proof. If we blow down the −1-curve on X we find a del Pezzo surface X� of
degree d + 1, such that Br X ∼= Br X�. So we see in Table B on page 59 that
#(Br X/ Br k) = #(Br X�/ Br k) ≤ 64 since deg X� ≥ 2. Corollary 3.2.4 gives an
isomorphism Br X/ Br k ∼= Br1 U/ Br k. Combining this with Lemma 3.3.2 gives
the bound for Br U/ Br k.

Now we can prove a bound for a general ample log K3 surface of geometri-
cally irreducible type over a number field.

THEOREM 3.3.4. Let k be a number field of degree m. For an ample log K3 surface of
geometrically irreducible type U = X\C of degree d at most 7 the order of Br U/ Br k
is bounded by

214N(240m)2.

Proof. Let K be a finite extension of k such that at least one −1-curve L on X̄ is
defined over K. The orbit-stabilizer theorem shows that we can always take the
degree [K : k] no larger than the number of −1-curves on X̄. Since the maximal
number of −1-curves on a del Pezzo surface is 240, we find [K : Q] ≤ 240m.
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By Corollary 3.3.3 we have a bound on Br UK/ Br K. On the other hand, the
kernel of the morphism Br U/ Br k → Br UK/ Br K is contained in Br1 U/ Br k
and hence bounded by 256 by Proposition 3.2.1.

Combining these two bounds, we find that

# (Br U/ Br k) < 214N(240m)2.

Remark. There are, of course, many ways in which the constants appearing in
this bound could be improved, especially if we were to separate the various
different degrees. For example, the group Br UK/ Br K and the kernel of the
homomorphism Br1 U/ Br k → Br1 UK/ Br K are far from independent. Our in-
terest here has been in showing the existence of a uniform bound, rather than in
making that bound as small as possible.
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