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Chapter 2

Del Pezzo surfaces

In this chapter we will study the many different flavours of del Pezzo surfaces.
First we will define and classify generalized del Pezzo surfaces. These surfaces
are appropriately named as they generalize the important subclass of ordinary
del Pezzo surfaces which were studied by del Pezzo in 1887 [22]. Next we pro-
ceed by studying the Picard group of these smooth surfaces and certain effective
divisor classes with negative self-intersection. We will describe how to contract
a collection of curves in such classes and we will give conditions for the con-
structed surface to be normal or even smooth.

Using these results we define singular del Pezzo surfaces. These normal pro-
jective surfaces are obtained from a generalized del Pezzo surface by contracting
all curves with self-intersection equal to −2 and are the generalization of projec-
tively embedded ordinary del Pezzo surfaces using the anticanonical bundle.

The next section describes a novel type of algebraic surface, namely the class
of peculiar del Pezzo surfaces. These surfaces are again normal and obtained
from contracting a subset of the curves with self-intersection −2 on a general-
ized del Pezzo surface. This shows that peculiar del Pezzo surfaces fit in be-
tween generalized and singular del Pezzo surfaces. This new type of surface
was defined by the author to describe certain aspects of the geometry of both
generalized and singular del Pezzo surfaces in a simpler manner.

We will show that the minimal desingularization of both a singular and a pe-
culiar del Pezzo surface is a generalized del Pezzo surface. Using this result we
can prove that there is a correspondence between generalized, peculiar and sin-
gular del Pezzo surfaces. For the classical case of ordinary del Pezzo surfaces the
three notions coincide: an ordinary del Pezzo surface X is a generalized, pecu-
liar and singular del Pezzo surface. Note the inescapable confusion: a singular
del Pezzo need not be singular.

Now consider a projective family of ordinary del Pezzo surfaces over an
open U of some base space B. If one can extend the family to B the fibres
over B\U need not be ordinary del Pezzo surfaces as well. Depending on one’s
interpretation of ordinary del Pezzo surfaces these fibres can be generalized,
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2.1. PRELIMINARIES ON GEOMETRY

peculiar or singular del Pezzo surfaces. The properties of ordinary del Pezzo
surfaces with which we will work will be directly applicable to at least one of
these three more general notions.

In the last section we give a short summary of the arithmetic of ordinary del
Pezzo surfaces over a number field.

2.1 Preliminaries on geometry

Before we consider del Pezzo surfaces let us first define the following geometric
objects and concepts. Recall that we defined a variety over a field k to be a
scheme which is separated and of finite type over k.

DEFINITION 2.1.1. Let k be a field. A curve over k is a variety over k of pure
dimension 1. A surface over k is a geometrically integral variety of dimension 2
over k. By a curve C on a surface S over k we mean a closed subscheme C ⊆ S
which is a curve over k.

Note that our definition of curve is less restrictive than our definition of sur-
face. This stems from the fact that we will work with reasonably well-behaved
surfaces. Practically all surfaces we will encounter are normal, and in this chap-
ter all surfaces will be projective. A one-dimensional subscheme of such a sur-
face can definitely be less elegant from a geometric point of view. For this reason
we will want to allow curves to be reducible, non-reduced or singular.

Let us turn to our conventions on divisors. We will use the word divisor
to refer to Cartier divisors. Since surfaces are integral by definition the Picard
group Pic S of a surface S is isomorphic to both the group of isomorphism classes
of line bundles and the group of linear equivalence classes of divisors. For a
divisor D ∈ Pic X the associated line bundle is denoted by L(D). This line
bundle comes with a specified rational section 1D and the divisor D is effective
precisely if 1D lies in H0(S,L(D)).

Since most of our surfaces will be normal they are regular in codimension
one and this makes it more convenient to also consider Weil divisors. Recall
that a prime divisor on a surface S is just an integral curve on S, and a Weil divisor
on S is an element of the free abelian group generated by all prime divisors on S.
In this case Cartier divisors are precisely the locally principal Weil divisors. On
a surface which is also smooth the two notions of divisors coincide completely.

Let us state the definition of the intersection product between two divisors.

DEFINITION 2.1.2. Let S be a surface which is proper over a field k. For an
integral curve C on S and a divisor D on S their intersection product C · D is
defined as the degree of the restriction of the line bundle L(D) to C.

We recall the definition of the degree of a line bundle L on a, possibly sin-
gular, integral curve C which is projective over a field k. First associate a Weil
divisor to L following the procedure in Section 2.2 of [27]. This divisor is well-
defined up to rational equivalence and the proper map C → Spec k allows us to
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CHAPTER 2. DEL PEZZO SURFACES

push this Weil divisor class forward to a Weil divisor class on Spec k. The group
of Weil divisors on Spec k modulo rational equivalence is canonically isomor-
phic to Z. The integral number associated to L in this manner is what we define
as the degree of L on C.

A complete treatment of intersection cycles and Weil divisor class groups can
be found in [27]. We will use the following properties: the intersection product
is linear in both arguments, it is preserved under arbitrary field extensions, and
on a projective surface S the intersection pairing descends to a bilinear pairing
on Pic S.

Although it is not directly apparent the intersection product is important for
both notions in the following definition.

DEFINITION 2.1.3. Let D be a divisor on a projective surface over a field k. We
say that D is nef if for all integral curves C on X we have C ·D ≥ 0. The divisor D
is called big if the rational map X ��� P

N
k associated to the complete linear

system of a sufficiently large multiple of D defines a birational map from X to
its scheme-theoretic image.

It is indeed clear that it can be checked numerically whether a divisor is nef.
Corollary 2.2.8 in [36] shows that the same is true for big. We will however
use the following proposition which gives a sufficient and necessary numerical
condition for a divisor to be big and nef. It is similar to the Nakai–Moishezon
criterion [33, Theorem V.1.10] for checking if a divisor on a surface is ample.

PROPOSITION 2.1.4. Let D be a divisor on a projective surface X over a field k. The
line bundle L(D) is big and nef precisely if D2 > 0 and for all integral curves C on X
we have C · D ≥ 0.

Proof. Let us first prove the statement in the case that k is algebraically closed.
We apply Theorem 2.2.16 of [36] to see that D is big and nef if and only if D2 > 0
and C · D ≥ 0 for all integral curves C on X. Note that although the standing
convention in [36] is that schemes are defined over C one can check that the
statement is true over any algebraically closed field.

It is clear from the definition that being big is preserved under arbitrary field
extensions. The same holds for being nef. We will prove this for the field exten-
sion k̄/k.

Assume that the pullback D̄ of D to X̄ = X ×k k̄ is nef. Let C be an integral
curve on X and write C̄ for its pullback to X̄. Note that C̄ defines an effective
Weil divisor W on X̄ and hence we find

C · D = W · D̄ ≥ 0.

Now consider the case that D is nef on X and let C� be an integral curve on X̄.
The scheme-theoretic image C of C� under X̄ → X pulls back to a Weil divisor W
on X̄ which is supported on the finitely many conjugates C�

i of C� under the
absolute Galois group Gk. Notes that this group acts transitively on the set of C�

i
since C� is irreducible and trivially on W. Hence D̄ · C�

i and the multiplicity mi
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2.2. GENERALIZED AND ORDINARY DEL PEZZO SURFACES

of C�
i in W is independent of i. Since the intersection pairing is preserved under

base change we find that there exists a positive constant m such that

m(C�
i · D̄) = W · D̄ = C · D ≥ 0

for all i. This proves that D̄ is nef on X.
The result now follows from the fact that the intersection pairing is also pre-

served under field extensions.

This property shows that an ample divisor on a projective surface is both big
and nef. The converse is not true; it need not even be the case that a big and nef
line bundle is semiample. This means that no rational map S ��� P

N
k associated

to a multiple of a big and nef divisor extends to a morphism on the whole of
S. For an example the reader is referred to [36, Section 2.3.A]. Practically all big
and nef divisors we will encounter will however be semiample. Once we know
that generalized del Pezzo surfaces are rational smooth projective surfaces with
a big anticanonical divisor this can be explained by Lemma 2.6 in [54].

Now consider a semiample, big and nef divisor D on a surface X. This de-
fines a birational morphism X → X� ⊆ P

N
k . One can show that the curves C

on X which are contracted by this birational morphism are precisely those for
which C · D = 0.

We will need one more geometric concept. Recall that any smooth scheme X
admits a canonical line bundle ωX . We will write the associated divisor class
as KX . Now consider a normal scheme Y. The singular locus Σ is of codimension
at least 2. This proves that there is an isomorphism between Weil divisors on Y
and Y\Σ. This allows us to define the canonical Weil divisor on the normal
scheme Y. Take the closure of a canonical divisor KY\Σ in Y as a Weil divisor. We
will denote this Weil divisor on Y by KY.

If the Weil divisor KY on a normal scheme is actually a Cartier divisor, then
we denote the associated line bundle L(KY) by ωY.

2.2 Generalized and ordinary del Pezzo surfaces

We now have the terminology to define generalized and ordinary del Pezzo
surfaces.

DEFINITION 2.2.1. A generalized del Pezzo surface is a smooth projective surface X
over a field k for which the anticanonical divisor −KX is big and nef. The sur-
face X is an ordinary del Pezzo surface if the anticanonical divisor is moreover
ample.

The degree d of a generalized del Pezzo surface is defined as the canonical
self-intersection number d = KX · KX .

The following theorem classifies generalized del Pezzo surfaces over alge-
braically closed fields.
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CHAPTER 2. DEL PEZZO SURFACES

THEOREM 2.2.2. Let X be a generalized del Pezzo surface over an algebraically closed
field k. The surface X is rational and isomorphic to either P

2
k, P

1
k × P

1
k, the Hirzebruch

surface F2, or there exists an integer 1 ≤ r ≤ 8 such that X can be written as

X = Xr → Xr−1 → . . . → X1 → X0 = P
2
k

where each map is the blowup in a reduced closed point which does not lie on a curve of
self-intersection −2. The degree of these four types of generalized del Pezzo surfaces are
respectively 9, 8, 8 and 9− r. In particular, the degree of a generalized del Pezzo surface
is a positive integer d ≤ 9.

Proof. The main ingredients for this proof come from [23], but in the classifica-
tion the Hirzebruch surface F2 is erroneously left out. A corrected and com-
pleted classification can be found in [19, Proposition 0.4].

In this last case we say that X is the blowup of P
2
k in r points in almost general

position. If we strengthen the condition that none of the centres of the blowups
lies on a curve of self-intersection −2, to curves of self-intersection −1 we say
that X is the blowup of the projective plane in r points in general position. Using
this terminology we can identify the ordinary del Pezzo surfaces in the previous
theorem.

THEOREM 2.2.3. Let X be an ordinary del Pezzo surface over an algebraically closed
field k. The surface X is isomorphic to either P

2
k, P

1
k × P

1
k or a blowup of P

2
k in r points

in general position for some 1 ≤ r ≤ 8.

Proof. See [41, Theorem 24.3].

The following proposition shows that a surface remains a del Pezzo surface
after base extension. This means in particular that Theorem 2.2.2 and Theo-
rem 2.2.3 can be used to classify del Pezzo surfaces over any field.

PROPOSITION 2.2.4. Let X be a surface over a field k, and let K/k be a field exten-
sion. The surface X is a generalized del Pezzo surface precisely if XK = X ×k K is a
generalized del Pezzo surface. The same statement holds for ordinary del Pezzo surfaces.

Proof. We have seen in the proof of Proposition 2.1.4 that both bigness and nef-
ness are preserved under field extensions. A similar proof shows that the same
holds for ampleness.

We have seen that blowing up closed points is a principal operation one uses
to produce generalized del Pezzo surfaces. The following proposition shows
that we can always invert this process.

PROPOSITION 2.2.5. Let X be a generalized del Pezzo surface X of degree d over a
field k, and let L be a geometrically integral rational curve on X of self-intersection −1.
There exists a generalized del Pezzo surface X� of degree d+ 1 together with a morphism
X → X� such that the following properties are satisfied:

» L maps to a point p ∈ X�(k); and
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2.3. DIVISOR CLASSES OF NEGATIVE SELF-INTERSECTION

» the morphism X → Blp X� obtained from the universal property of the blowup is
an isomorphism.

If X is an ordinary del Pezzo surface, then so is X�.

Proof. By Castelnuovo’s Theorem [33, Theorem V.5.7] there is a smooth sur-
face X� over k, a morphism X → X� and a point p ∈ X� such that X → Blp X�

is an isomorphism and L is the exceptional curve of this blowup π : X → X�.
We only need to check that X� is indeed a generalized (respectively ordinary)
del Pezzo surface. For generalized del Pezzo surfaces this can be done using
Proposition 2.1.4.

The line bundle L − KX is the pullback of the line bundle −KX� by Propo-
sition V.3.3 in [33]. Let C be an integral curve on X�. The intersection number
−KX� · C equals π∗(−KX�) · π∗C = (L − KX) · π∗C. Since L is the exceptional
curve of π we have L · π∗C = 0, and since −KX is big and nef and π∗C is an
effective divisor we find −KX · π∗C ≥ 0. We also see that

K2
X� = (π∗KX�)2 = (L − KX)

2 = L2 − 2L · KX + K2
X = −1 + 2 + d = d + 1 > 0.

Proposition 2.1.4 now implies that −KX� is big and nef and hence X� is a gener-
alized del Pezzo surface.

For ordinary del Pezzo surfaces we use the Nakai–Moishezon criterion [33,
Theorem V.1.10]. The proof is similar to the proof above, but the inequality
should be replaced by a strict inequality.

These curves of negative self-intersection will turn out to be important. Be-
fore looking into them we will first consider their divisor classes in the next
section.

2.3 Divisor classes of negative self-intersection

Since the Picard group of the blowup of a surface in a point is well understood,
we can describe the Picard group of a generalized del Pezzo surface over an
algebraically closed field.

PROPOSITION 2.3.1. Let X be a generalized del Pezzo surface of degree d over an alge-
braically closed field k. If X is not isomorphic to P

1
k × P

1
k or F2, then there exist 10 − d

divisor classes L0, L1, . . . , Lr ∈ Pic X such that

» L2
0 = 1;

» L2
i = −1 for i > 0;

» Li · Lj = 0 for i �= j; and

» Pic X is freely generated by the Li.
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CHAPTER 2. DEL PEZZO SURFACES

The class of the anticanonical bundle −KX equals 3L0 − ∑r
i=1 Li.

For any generalized del Pezzo surface X of degree d we have Pic X ∼= Z
10−d.

Note that this proves that the lattice isomorphism class of the geometric Pi-
card group Pic X̄ of a generalized del Pezzo surface X over any field only de-
pends on the degree d.

Proof. See [23, II, Section 4].

The classes Li for i > 0 have negative self-intersection, but these need not be
all of them. Generalized del Pezzo surfaces do not have prime divisors of self-
intersection smaller than −2 by nefness of −KX and the adjunction formula.
With this in mind we will consider classes of self-intersection −1 and −2. To
control the behaviour of curves representing these classes under the anticanon-
ical embedding we add a condition on the intersection number of these classes
with the canonical class.

DEFINITION 2.3.2. Suppose that X is a generalized del Pezzo surface over a
field k and let s be either −1 or −2. An s-class is a divisor class D on X̄ such
that D2 = s and D · KX = −2 − s.

The following proposition shows that we could equally consider the base
change to the separable closure.

PROPOSITION 2.3.3. Let X be a smooth rational surface over a field k. The natural
map Pic Xsep → Pic X̄ is an isomorphism.

Proof. Lemma 3.1 of [9] contains the same statement for K3 surfaces. The proof
only uses that H1(X,OX) = 0. This is however also true for smooth rational
surfaces.

The following lemma shows that there are only finitely many s-classes on
any generalized del Pezzo surface.

LEMMA 2.3.4. Let X be a generalized del Pezzo surface over an algebraically closed
field k. Then X has only finitely many s-classes.

There are no s-classes on P
2
k and P

1
k × P

1
k. The only s-classes on the Hirzebruch

surface F2 are the class of the base curve and its negative. The number of s-classes on
the projective plane blown up in r points in almost general position can be found in
Table A.

Now suppose that X is written as the blowup π : X → P
2
k of the projective plane in

r ≤ 7 points in almost general position. The pushforward of an s-class on X to P
2
k is

either trivial, O(1) or O(2).

The last statement is not true for s-classes on generalized del Pezzo surfaces
of degree 1 or 2; the pushforward of an s-class to the projective plane can also be
the line bundle O(3).
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2.3. DIVISOR CLASSES OF NEGATIVE SELF-INTERSECTION

r 8 7 6 5 4 3 2 1
s = −1 240 56 27 16 10 6 3 1
s = −2 240 126 72 40 20 8 2 0

Table A: The number of s-classes on the projective plane blown up in r points in
almost general position.

Proof. The numbers of s-classes in the table follow from the description in Propo-
sition 2.3.1 of the Picard group of the projective plane blown up in r points in
almost general position. The details can be found in [23, II, Section 5]. Enumer-
ating all s-classes on a generalized del Pezzo surface of degree d ≥ 3 shows that
for an s-class R ∈ Pic X̄ we have 0 ≤ R · L0 ≤ 2, where L0 is the first element of
a basis of Pic X̄ as given in Proposition 2.3.1.

For the remaining cases the geometric Picard group is either Z, Z
2 with

the Euclidean intersection pairing, or Z · C + Z · F with the pairing given by
C2 = −2, C · F = 1 and F2 = 0, see for example Proposition 2.3 and Propo-
sition 2.9 in [33]. In these cases the computation of the number of s-classes is
straightforward.

Now let X be a generalized del Pezzo surface over a general field k. The
absolute Galois group Gk of k acts naturally on X̄ and this endows the geometric
Picard group Pic X̄ with the structure of a Gk-module. An element σ ∈ Gk acts
on Pic X̄ in a specific way; it will preserve KX and the intersection pairing. The
following theorem shows that this cannot happen in many ways.

PROPOSITION 2.3.5. Let X be a generalized del Pezzo surface of degree d over an alge-
braically closed field k and let AX be the subgroup of Aut(Pic X) consisting of the ele-
ments which preserve the canonical class KX and the intersection pairing. The group AX
is finite.

Now suppose that X is the blowup of P
2
k in r = 9 − d points in almost general

position. The group AX permutes the −1-classes in Pic X and the induced map from AX
to the group consisting of the intersection pairing preserving permutations of the −1-
classes is an isomorphism.

Proof. The finiteness of AX is part a) of Théorème 2 in [23, II]. This result does
not address the surfaces F2 and P

1
k × P

1
k , but for those cases the statement is

easily verified.
For the second statement recall that s-classes are defined in terms of their

self-intersection and the intersection with the anticanonical class. It follows
that AX preserves s-classes by definition. Now consider the group homomor-
phism from AX to the group consisting of the intersection pairing preserving
permutations of the −1-classes. The surjectivity of this homomorphism follows
from part b) of Proposition 5 in [23, II]. The injectivity is trivial if d ≥ 8 and
follows for d ≤ 7 from the fact that the −1-classes generate Pic X.
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CHAPTER 2. DEL PEZZO SURFACES

The second statement is also true for F2, but not for P
1
k × P

1
k .

Note that for generalized del Pezzo surfaces which are the blowup of the pro-
jective plane in r points in almost general position the group AX only depends
on the degree d, or equivalently r. For r ≤ 6 this group has been identified in
[41, Theorem 25.4] as the Weyl group Wr of a certain root system. For these del
Pezzo surface we will write Wr instead of AX , although one should be careful
since Wr does not come with a fixed action on Pic X. For more information about
the groups Wr one can refer to §26 in [41].

Let X be a generalized del Pezzo surface over a general field k which is geo-
metrically the blowup of the projective plane in r ≥ 3 points in almost general
position. After fixing the action of Wr on Pic X̄ the action of Gk on Pic X̄ induces
a group homomorphism Gk → Wr. The image of this homomorphism is the
smallest subgroup W of Wr such that the action of Gk factors through the in-
duced action of W on Pic X̄. This subgroup of Wr contains much information
about the action of Galois on the geometric Picard group. An important corol-
lary to Proposition 2.3.5 is that in this sense there are only finitely many possible
actions of Galois on the geometric Picard group.

2.4 Curves of negative self-intersection
In the previous section we have studied the s-classes in the Picard group of a
generalized del Pezzo surface. In this section we will study the integral curves
in such divisor classes.

DEFINITION 2.4.1. Let X be a generalized del Pezzo surface over a field k. An
integral curve C on X̄ whose class in Pic X̄ is an s-class will be called a geometric
s-curve. A curve C on X is called an s-curve if its base change C̄ ⊆ X̄ to an
algebraic closure k̄ is a geometric s-curve.

Similar to Proposition 2.3.3 we could equivalently have used the separable
closure of k instead of an algebraic closure. This fact becomes important once
we start looking at the action of Gk on the geometric s-curves.

PROPOSITION 2.4.2. Let X be a smooth rational surface over a field k. Any geometric
s-curve is defined over ksep.

Proof. We again refer to [9]. The proof of Corollary 3.2 also proves this statement.

By the adjunction formula we see that every s-curve is rational and the fol-
lowing results directly from Lemma 2.3.4.

LEMMA 2.4.3. Let X be a generalized del Pezzo surface over a field k. Each s-class
contains at most one geometric s-curve and in particular we see that there are finitely
many geometric s-curves on X.

Now suppose that X is a generalized del Pezzo surface which is written as the blowup
π : X → P

2
k of the projective plane in r ≤ 7 points in almost general position. Any
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2.4. CURVES OF NEGATIVE SELF-INTERSECTION

s-curve on X is contracted by π or it is the strict transform along π of a line or an
integral conic on P

2
k.

For generalized del Pezzo surfaces of degree 1 and 2 an s-curve can also be
the strict transform of a cubic plane curve.

Proof. In general, a class of negative self-intersection has at most one irreducible
representative. This proves the first statement together with Lemma 2.3.4. The
second statement follows from the same lemma.

Lemma 2.3.4 also shows that the study of geometric s-curves is trivial on a
generalized del Pezzo surface which is geometrically isomorphic to P

2
k , P

1
k × P

1
k

or F2. So in this section X will be a surface given as the composition of blowups.
In this case we can easily identify at least some of the geometric s-curves on X.

PROPOSITION 2.4.4. Let X be a generalized del Pezzo surface over an algebraically
closed field k, which is written as the blowup π : X → P

2
k of the projective plane in r

points in almost general position. Let Xp be the fibre of π above a point p ∈ X(k).
Then Xp is either a single point or there exists a positive integer m ≤ r such that Xp is
the union of −2-curves E1, E2, . . . , Em−1 and a −1-curve Em which satisfy

Ei · Ej =

�
1 if |i − j| = 1;
0 otherwise.

More precisely, if Xp is a positive-dimensional fibre of π : X → P
2
k, then π−1 p is

a locally principal subscheme of X. The associated Cartier divisor of this subscheme
equals

E1 + E2 + . . . + Em−1 + Em.

Proof. This follows by induction. It is obviously true for the generalized del
Pezzo surface P

2
k . Now suppose that the statement is true for a generalized del

Pezzo surface Xr−1 obtained from blowing up the projective plane in r− 1 points
in almost general postion. We know that Xr is the blowup of Xr−1 in a closed
point pr−1. Let p0 be the image of pr−1 in P

2
k . The fibre of Xr → P

2
k over any

point p� �= p0 is isomorphic to the fibre over p� of Xr−1 → P
2
k .

Now consider the fibre of Xr over p0. The fibre Fr−1 of Xr−1 → P
2
k over p0

is a chain of a non-negative number of −2-curves and one −1-curve E. By The-
orem 2.2.2 we see that pr−1 cannot lie on one of the −2-curves, so it lies on the
−1-curve E. Blowing up this point, the strict transform of E becomes a −2-curve
and the exceptional curve of the blowup Xr → Xr−1 becomes the new −1-curve
in the fibre Xr → P

2
k over p0.

The last statement follows again by induction.

In the notation of this proposition, we will be more interested in the divisor

(π−1 p)pec = E1 + 2E2 + . . . + (m − 1)Em−1 + mEm

above the point p than in the divisor π−1 p. The reason for these unlikely multi-
plicities will become apparent in the following sections.
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CHAPTER 2. DEL PEZZO SURFACES

DEFINITION 2.4.5. Let X be a generalized del Pezzo surface over a field k, given
as the blowup π : X → P

2
k of the projective plane in r points in almost general

position. The sum of the positive-dimensional fibres of π is denoted by Eπ and
is called the exceptional divisor of π. The sum of (π−1 p)pec over all points p with a
positive-dimensional fibre is called the peculiar divisor of π and denoted by Epec

π .

Note that the exceptional and the peculiar divisor of π have the same sup-
port. The number of prime divisors in this support equals 9 − d, where d is the
degree of X. By comparing with the numbers in Table A on page 32 we see
that there can be more s-curves than those in the support of Eπ . However, any
s-curve which is not in Eπ will be the strict transform of a plane curve C. This
curve C is either a line or a smooth conic by Lemma 2.4.3. Assume for a mo-
ment that k is an algebraically closed field. We can decompose the morphism
into blowups X = Xr → Xr−1 → . . . → X0 = P

2
k with centres xi ∈ Xi(k) and

consider the strict transform Ci ⊆ Xi of C ⊆ P
2
k at every level. By induction we

see that the self-intersection of C̃ = Cr can be computed as follows

C̃2 = C2 − #{i | xi ∈ Ci(k)}

since C2
i+1 = C2

i − 1 if xi ∈ Ci(k) and C2
i+1 = C2

i otherwise. Here we have used
that C and hence each Ci is a smooth curve.

So if X is given as a composition of blowups of the projective plane, then we
can usually identify the remaining s-curves. For ordinary del Pezzo surfaces,
this is even more straightforward as the following proposition shows.

PROPOSITION 2.4.6. On ordinary del Pezzo surfaces every −1-class contains a geo-
metric −1-curve and there are no geometric −2-curves.

Proof. It is enough to assume that k is algebraically closed. For an ordinary del
Pezzo surface π : X → P

2
k , written as the blowup of r points in general position,

each −1-class is either one of the r irreducible components of Eπ or the strict
transform of a plane curve of prescribed degree and multiplicities at the blowup
centres. These curves are all different and one can count that the number of these
curves equals the number of −1-classes. For details see [41, Theorem 26.2].

With a little more work one can adapt the proof to show that all −1-classes on
a generalized del Pezzo surface are effective over an algebraic closure. However,
not every −1-class needs to be represented by a prime divisor, i.e. an integral
curve. For example, the class of a connected component of the divisor Eπ in
Definition 2.4.5 represents a −1-class. However, such a component need not be
a prime divisor.

Now let us consider the same problem for −2-classes. We will restrict to gen-
eralized del Pezzo surfaces of degree d ≤ 7 to ensure that there are −2-classes.
We already saw that there are no −2-curves on ordinary del Pezzo surfaces. For
generalized del Pezzo surfaces we see in general that not all −2-classes will be
effective; the negative −R of a −2-class R is also a −2-class, and R and −R
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cannot both be effective. The following lemma gives an upper bound for the
number of −2-curves.

LEMMA 2.4.7. Let X be a generalized del Pezzo surface of degree d over a field k. The
number of −2-curves on X is at most 9 − d.

Proof. We will prove the result in the case that k is algebraically closed. The
general results follow directly from there.

The result is trivial if d = 9 and for d = 8 there is at most one −2-curve in
all possible cases as one can easily check. If d ≤ 7 then X is the blowup of the
projective plane in r = 9 − d points in almost general position and the geomet-
ric Picard group Pic X only depends on the degree d. The intersection product
on Pic X defines a negative definite pairing on the orthogonal complement K⊥

X
in R ⊗ Pic X by Proposition 25.2 in [41]. Now let R1, . . . Rt be t distinct inte-
gral curves with self-intersection −2 on X. We will prove that they are linearly
independent in K⊥

X ⊆ R ⊗ Pic X.
Suppose that ∑i∈I αiRi = ∑j∈J αjRj in K⊥

X where all αi and αj are positive and
the index sets I, J ⊆ {1, 2, . . . , t} are disjoint. This implies that Ri · Rj ≥ 0 for all
i ∈ I and j ∈ J and we find

�

∑
i∈I

αiRi

�2

=

�

∑
i∈I

αiRi

��

∑
j∈J

αjRj

�
≥ 0.

We see that ∑i∈I αiRi = 0 and hence αi = 0 for all i. Similarly we find that αj = 0
for all j ∈ J.

We conclude that R1, . . . Rt are linearly independent in K⊥
X which is of di-

mension 9 − d.

Now that we have discussed the number of s-classes on generalized del
Pezzo surfaces we will look at the possible geometric configurations. Let X be
a generalized del Pezzo surface of degree d ≤ 7 over an algebraically closed
field k. Consider the graph whose vertices are the −1-curves on X. Between two
distinct vertices corresponding to the −1-curves L and L� we have precisely L · L�

edges. Since L and L� are integral and different we see that this is a non-negative
integer. This graph is called the intersection graph of −1-curves on X.

We could also have looked at the intersection graph of the −1-classes on X. It
follows from Lemma 2.3.1 that the Picard groups of two generalized del Pezzo
surfaces of the same degree are isomorphic as lattices. This proves that the inter-
section graph of the −1-classes on a generalized del Pezzo surface depends only
on the degree of X. We conclude that the intersection graph of all −1-curves is
a subgraph of the intersection graph of all −1-classes. Proposition 2.4.6 implies
that these graphs even coincide on an ordinary del Pezzo surface.

We could have also defined these objects starting from all s-curves or even
all s-classes on X. Note that for the s-classes this does not produce a graph; the
intersection number between two different −2-classes can be negative. Because
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of the obvious analogy with the situation of −1-classes we will stick with the
terminology of graphs.

It follows as above that this intersection graph of the s-classes again only
depends on the degree d of X if d ≤ 7. This need no longer be true if we consider
the intersection graph of all s-curves on X; note that this is an actual graph. We
do have the following result if we restrict to the −2-curves.

LEMMA 2.4.8. Let R be a set of −2-curves on a generalized del Pezzo surface over a
field k. Any connected component of the intersection graph on the elements of R is a
subgraph of the graph G shown in Figure I.

Figure I: The graph G.

Note that the complete graph G is not possible by Lemma 2.4.7.

Proof. Again we can assume that k is algebraically closed. Since k is algebraically
closed we can find a point on X which does not lie on any s-curve. We blow up X
in this point and by induction we see that there is a generalized del Pezzo surface
W → X of degree 1 with the same intersection graph of −2-curves as X. This
shows that we can assume that X is a generalized del Pezzo surface of degree 1.

The anticanonical map of X has a single base point p ∈ X(k) [23, Proposi-
tion III.2] and hence all effective anticanonical divisors on X pass through p. The
anticanonical map on X defines a rational map X ��� P

1
k which is defined away

from p. If we blow up p on X we find a smooth surface X� = Blp X ��� P
1
k . Since

blowing up separates the effective anticanonical divisors at p, the rational map
on X extends to a morphism X� → P

1
k . This makes X� into an elliptic surface

with a section given by the exceptional divisor of the blowup X� → X.
Now let R be a −2-curve on X and let R� be the pullback of R back to X�.

Since R · KX = 0 we see that p does not lie on R. This also proves that R� lies in
a fibre of X� → P

1
k . This fibre is the strict transform of an effective anticanonical

divisor D on X. By Corollaire IV.2 in [23] this effective anticanonical divisor
contains the connected component of R in the intersection graph of −2-curves
on X. Let us write S for the sum of all −2-curves in this connected component
of R. The same corollaire also shows that there is a unique −1-curve L on X such
that D = S + L. Since p does not lie on any −2-curve it lies on L and this shows
that the fibre of X� → P

1
k containing R� is a sum of −2-curves, namely the sum

of the strict transform of S and the strict transform of L.
The possible singular fibres of elliptic surfaces are classified and can for ex-

ample be found in [48, Table 15.1]. To recover the connected components of
−2-curves one still has to remove one component: the strict transform of L. We
find the possible graphs An and Dn for any positive integer n, and E6, E7 and E8.
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One now uses Lemma 2.4.7 to conclude the proof.

Now consider a del Pezzo surface over a general field k. We have looked
at the action of the absolute Galois group Gk on the s-classes. This action in-
duces an action on the geometric s-curves on X. Understanding this action is
important for the following two results.

PROPOSITION 2.4.9. Let X be a generalized del Pezzo surface of degree d over a field k.
Suppose that L is a Galois-invariant set of −1-curves on X̄ such that the curves in L are
pairwise skew, i.e. L1 · L2 = 0 for all L1 �= L2 in L. There exists a unique generalized
del Pezzo surface X� defined over k such that X̄� is obtained from X̄ by contracting the
curves in L. The degree of X� is d + #L.

If X is an ordinary del Pezzo surface, then so is X�.

By contracting curves which are not defined over the base field k, we mean
that X̄� is obtained from X̄ by contracting the elements of L. The proof is by
contracting the −1-curves on X̄ and then descending this surface back along
Spec k̄ → Spec k. We actually need not pass to an algebraic closure k̄ of k; any
field K over which all the lines in L are defined will do. This ensures that we
can assume that K/k is a finite Galois extension and this makes the morphism
Spec K → Spec k into an fpqc cover.

We will use the following equivalent formulation of an fpqc descent datum
along a Galois extension of fields.

PROPOSITION 2.4.10. Let K/k be a finite Galois extension and let G be the Galois
group Gal(K/k). Let σ∗ : Spec K → Spec K be the isomorphism induced by the ele-
ment σ ∈ G.

Let X̃ be a scheme over K. An fpqc descent datum on X̃ relative to K/k is equivalent
to a set of isomorphisms of schemes

σ̃ : X̃ → X̃,

indexed by σ ∈ G such that

X̃ X̃

Spec K Spec K

σ̃

σ∗

commutes and σ̃τ̃ = �τσ for all σ and τ in G.

Proof. See Proposition 4.4.2 in [46].

Let X be a scheme over the field k. In this interpretation the morphisms σ̃
corresponding to the effective descent datum on the base change XK are given
by the base change of σ∗ : Spec K → Spec K along XK → Spec K.
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Proof of Proposition 2.4.9. Let K/k be a finite Galois extension over which all the
lines in L are defined. On the surface XK we can blow down each curve in L to
obtain a smooth surface X̃ over K [33, Theorem V.5.7] with xi ∈ X̃(K) the image
of the contracted curves. Let γ : XK → X̃ be the morphism which contracts all
curves in L.

We will make the effective descent datum of XK into a descent datum on X̃.
The morphism σ̃ : XK → XK associated to an element σ ∈ Gal(K/k) fits into the
commutative diagram in (2.1).

XK XK

X̃ X̃

Spec K Spec K

γ

σ̃

γ

σ∗

(2.1)

Since γ is a birational morphism and σ̃ an isomorphism we find a birational
map σ̃ : X̃ ��� X̃ which makes the diagram in (2.1) commute. This map σ̃ is
clearly defined on the complement of the points xi and the composition γ ◦ σ̃
contracts each curve in L to a closed point. We conclude from [50, Tag 0C5J]
that σ̃ descends to an actual morphism σ̃ : X̃ → X̃. This morphism makes the
diagram in (2.2) commute.

X̃ X̃

Spec K Spec K

σ̃

σ∗

(2.2)

The morphisms σ̃τ̃ and �τσ restrict to the same automorphisms on X̃\{xi}. This
proves that the morphisms themselves are the same, since they agree on an open
dense subset.

This proves both conditions of Proposition 2.4.10 for the set of isomorphisms
σ̃ : X̃ → X̃. It follows that there is a surface X� over k such that X�

K is isomor-
phic to X̃ over K. The surface X� is a generalized del Pezzo surface by Proposi-
tion 2.2.4, because X�

K is a generalized del Pezzo surface. The same proposition
also proves that X� is an ordinary del Pezzo surface if X is an ordinary del Pezzo
surface.

The morphism γ : XK → X̃ commutes with the Galois descent morphisms
σ∗ : X̃ → X̃ and hence descends to a morphism X� → X [46, Theorem 4.3.5(i)].
It follows directly that on the complement of the −1-curves in L this morphism
is an isomorphism onto its image, because this is the case for its base change
morphism XK → X̃.

We also have the following result about contracting −2-curves, but unlike the
case of −1-curves the constructed surface can be singular. Because the possible
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configurations of contracted curves is limited by Proposition 2.4.9 the surface
will however still be normal.

PROPOSITION 2.4.11. Let R be a Galois-invariant set of −2-curves on a generalized
del Pezzo surface X over a field k. There is a normal surface Y together with a birational
proper morphism γ : X → Y such that

» the integral curves on X̄ which are contracted by γ are precisely the elements
R ∈ R;

» the Weil divisor KY on Y is a Cartier divisor; and

» the pullback of the associated line bundle ωY along γ is the canonical line bun-
dle ωX on X.

Proof. The proof is similar to the proof of Proposition 2.4.9. Let K be a finite
Galois extension over which all the −2-curves in R are defined. We will first
contract the −2-curves on XK.

Let us consider the intersection matrix (Ri · Rj) of the −2-curves of R. We
will prove that this matrix is negative definite. This statement is true for −2-
curves with intersection graph A8, D8 and E8. It is easily checked that any con-
nected subgraph of the graph G in Figure I is a subgraph of one of these three
graphs. Using Lemma 2.4.8 and the fact that any principal minor of a negative
definite matrix is again negative definite we see that this property is satisfied for
any collection of geometric −2-curves on a generalized del Pezzo surface.

Since the matrix (Ri · Rj) is negative definite we can apply Theorem 2.7 in [1].
This produces a normal surface X̃ together with a proper birational morphism
γ̃ : XK → X̃ which contracts precisely the −2-curves in R. As before we can
descend this to a morphism X → Y over k, which is an isomorphism away from
the contracted −2-curves. Using Corollaire 9.10 in [31] we see that Y is normal,
because X̃ is.

The statements about the canonical divisor and canonical line bundle on Y
also follow from Theorem 2.7 in [1].

2.5 Effective anticanonical divisors

In this section we will give several characterizations of the effective anticanon-
ical divisors on a generalized del Pezzo surface X. We will need the following
result which we will state as a lemma.

LEMMA 2.5.1. Let π : S� → S be a proper birational morphism of projective surfaces
and assume that S is normal. The natural map OS → π∗OS� is an isomorphism.

More generally, the natural morphism F → π∗π∗F coming from the adjunction
between π∗ and π∗ is an isomorphism for any quasi-coherent sheaf F on S.
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Proof. The isomorphism OS → π∗OS� follows from [50, Tag 0AY8]. This proves
the first claim. We now have the following chain of isomorphisms

π∗π∗F ∼= π∗ (π∗F ⊗OS�)
∼= F ⊗ π∗OS�

∼= F ⊗OS
∼= F ,

where we have used the projection formula [33, Exercise III.8.3] in the second
isomorphism. One can check locally that this isomorphism is given by the natu-
ral morphism F → π∗π∗F coming from the adjunction between π∗ and π∗.

We can now prove the following proposition and state the main definition
of this section. This also explains the coefficients in the definition of Epec

π in
Definition 2.4.5.

PROPOSITION 2.5.2. Let X be a generalized del Pezzo surface of degree d over a field k
together with a birational morphism π : X → P

2
k.

There is an isomorphism of line bundles π∗ω
P

2
k
= ωX ⊗ L(−Epec

π ) over X and an
isomorphism of k-vector spaces

H0(P2
k , ω∨) → H0(X, ω∨

X ⊗ L(Epec
π )).

This last map is given on divisors by mapping a divisor C to its total transform π∗C.
Here we have identified the complete linear system |D|X of a divisor D on X with the
global sections H0(X,L(D)) up to scaling by elements in k×.

The morphism H0(X, ω∨
X) → H0(X, ω∨

X ⊗ L(Epec
π )) defined by taking the tensor

product with the designated global section 1Epec
π

∈ H0(X,L(Epec
π )) is injective. This

injection is given on divisors by adding the effective divisor Epec
π on X.

Proof. The statement is purely geometric so we can assume that π decomposes
as the blowup X = Xr → Xr−1 → . . . → X1 → P

2
k of the projective plane in

r = 9 − d points in almost general position, where the centre of each blowup is
a closed k-point.

Define πi : Xi → P
2
k to be the composition of the first i blowups. So we get

that π0 is the identity on the projective plane and that πr = π. One can now
prove by induction that π∗

i ω
P

2
k
= ωXi ⊗ L(−Epec

πi ). The base case is trivial and
for the induction step one uses Proposition V.3.3 in [33].

We apply Lemma 2.5.1 to the quasi-coherent sheaf ω∨
P

2
k
. We find an isomor-

phism ω∨
P

2
k
→ π∗π∗ω∨

P
2
k
. Since the global sections of the pushforward π∗F are

the same as the global sections of the original sheaf F we conclude that there is
an isomorphism on global sections

H0(P2
k , ω∨

P
2
k
) → H0(X, π∗ω∨

P
2
k
)
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induced by π. If we consider the associated divisors of a global section in the
domain and codomain of this isomorphism we see that a Cartier divisor asso-
ciated to a global section in H0(P2

k , ω∨) gets sent to the Cartier divisor on X
locally defined by the same functions after identifying κ(X) and κ(P2

k) along π.
This maps a divisor C on P

2
k to the divisor on X which by definition is the total

transform of C along π.
Now consider the inclusion OX �→ L(Epec

π ) which maps the unit of OX
to 1Epec

π
. A locally free sheaf is flat so we find the inclusion of line bundles

ω∨
X �→ ω∨

X ⊗ L(Epec
π ). This induces an inclusion on global sections. The last

statement about divisors follows from considering the inclusion H0(X, ω∨
X) →

H0(X, ω∨
X ⊗ L(Epec

π )) locally.

DEFINITION 2.5.3. Let VX ⊆ H0(P2
k , ω∨) be the image of the composition of the

inclusion H0(X, ω∨) �→ H0(X, ω∨ ⊗ L(Epec
π )) with the isomorphism

H0(X, ω∨ ⊗ L(Epec
π ))

∼=−→ H0(P2
k , ω∨).

Since ω
P

2
k

is isomorphic to O
P

2
k
(−3) we can identify global sections of the

anticanonical bundle with homogeneous cubic polynomials in three variables.
We will consider the linear subsystem of cubic plane curves associated to these
polynomials. The next proposition describes the relation between this linear
subsystem |VX |P2

k
of cubics on P

2
k and the effective anticanonical divisors on X.

Note that by Definition 2.5.3 both linear systems are of dimension 9 − d.

PROPOSITION 2.5.4. Let π : X → P
2
k be a birational morphism from a generalized del

Pezzo surface to the projective plane. Let C ⊆ P
2
k be a cubic plane curve and let C̃ be

the strict transform of C along π. The following three statements are equivalent.

(i) The divisor C lies in the linear subsystem |VX |P2
k
.

(ii) The anticanonical divisor π∗C − Epec
π on X is effective.

(iii) There exists an effective divisor D on X supported on the peculiar divisor Epec
π

of π such that the class of C̃ + D in the Picard group of X is the anticanonical
class −KX.

Note that π∗C − Epec
π is an anticanonical divisor for any cubic plane curve C.

Statement (ii) is purely about the effectiveness of this divisor. We will also use
that π∗C − C̃ is an effective divisor on X whose prime divisors lie in the support
of Epec

π .

Proof. The equivalence between (i) and (ii) follows directly from Definition 2.5.3.
Assume statement (ii) holds for a cubic plane curve C. The divisor D =

π∗C − Epec
π − C̃ then satisfies the conditions of (iii). Now assume (iii). We

have two anticanonical divisors π∗C − Epec
π and C̃ + D. That implies that the
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difference (π∗C − C̃) − Epec
π − D is a principal divisor. Since π∗C − C̃ and D

are supported on Epec
π we see that the same holds for (π∗C − C̃) − Epec

π − D.
Now consider a function f ∈ κ(X) such that divX f = (π∗C − C̃) − Epec

π − D.
We see that f has a trivial divisor on X\Epec

π . Using the birational morphism
π : X → P

2
k we find a function f ∈ κ(P2

k) which has a trivial divisor on the com-
plement of a finite set of points. Since P

2
k is normal, we see that div

P
2
k

f = 0

and hence f must be constant both in κ(P2
k) and in κ(X). This shows that

(π∗C − C̃)− Epec
π − D = 0 and hence π∗C − Epec

π = C̃ + D is an effective anti-
canonical divisor.

Note that the proof also shows that the complementary divisor D in (iii) is
unique.

We will see in Proposition 2.7.16 another way to identify the cubic plane
curves in the linear system of VX .

2.6 Singular del Pezzo surfaces

A generalized del Pezzo surface comes by definition with a morphism to a pro-
jective space, namely the morphism associated to the complete linear system of
a sufficiently large multiple of the anticanonical divisor. For del Pezzo surfaces
of high degree it is even enough to consider −KX itself.

THEOREM 2.6.1. Let X be a generalized del Pezzo surface of degree d over a field k.
If d ≥ 3 then the complete linear system |− KX | does not have base points and −KX is
very ample outside of the −2-curves. The associated morphism contracts all −2-curves
on X and embeds the obtained surface as a degree d surface in P

d
k .

Proof. See Proposition V.1 of [23].

COROLLARY 2.6.2. The anticanonical map embeds an ordinary del Pezzo surface of
degree d ≥ 3 as a smooth surface in P

d
k of degree d.

For ordinary del Pezzo surfaces of degrees 1 and 2 it is known that although
the class −KX is ample it will not be very ample. The smallest multiples of the
anticanonical line bundle which are very ample are −3KX and −2KX respec-
tively. Theorem 2.6.1 is also true for generalized del Pezzo surfaces of degree 1
and 2 if one considers these multiples of the anticanonical line bundles.

We will now consider the image of a generalized del Pezzo surface under
this morphism to a projective space over k. Such a surface will be normal by
Proposition 2.4.11.

DEFINITION 2.6.3. The projective normal surface obtained from contracting all
the −2-curves on a generalized del Pezzo surface X is called a singular del Pezzo
surface.
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Note the unfortunate terminology: an ordinary del Pezzo surface X is also a
singular del Pezzo surface, although X is actually non-singular. In general the
morphism X → Y is not an isomorphism, but it will be a birational morphism.
We have seen in Proposition 2.4.11 how to construct Y from X. One can also re-
cover the generalized del Pezzo surface X from the singular del Pezzo surface Y,
but we will need the following notion.

DEFINITION 2.6.4. Let Y be a scheme. A scheme X together with a proper bira-
tional map γ : X → Y is called a desingularization of Y if X is regular.

A desingularization γ : X → Y of Y is said to be a minimal desingularization if
for any desingularization X� the morphism X� → Y factors through X → Y.

Finding desingularizations can be quite hard in general and even minimal
desingularizations need not exist [3, Section 3]. For surfaces they are well enough
understood and we have the following proposition.

PROPOSITION 2.6.5. Let Y be a surface over a field k. Suppose that Y has a desingu-
larization γ : X → Y. Then Y has a unique minimal desingularization.

A desingularization X → Y is minimal if and only if all integral curves E on X
which map to a point on Y satisfy E2 ≤ −2χ(E).

Because of this result we will usually talk about the minimal desingulariza-
tion of a surface instead of a minimal desingularization.

Proof. See Corollary 27.3 in [37].

This gives us the result we were looking for.

COROLLARY 2.6.6. Let X be a generalized del Pezzo surface over a field k and let Y
be the associated singular del Pezzo surface over k. The morphism γ : X → Y which
contracts all −2-curves on X is the minimal desingularization of Y.

Proof. The surface X is smooth over k and we see by [33, Corollary II.4.8] that
the morphism γ is proper. This shows that X is a desingularization of Y by
definition. We will show that X is the minimal desingularization of Y.

The integral curves on X mapping to a point on Y are precisely the −2-curves
on X. A −2-curve E ⊆ X satisfies χ(E) = 1 because E is a smooth curve of
genus 0. This means that we have E2 ≤ −2χ(E) and we conclude from Proposi-
tion 2.6.5 that X is the minimal desingularization of Y.

A singular del Pezzo surface will only have isolated singularities since it is
normal. Such a singularity p on a singular del Pezzo surface Y can be studied
by looking at the fibre of p of the minimal desingularization γ : X → Y; the type
of singularity is encoded by the graph of intersection of the components of the
fibre γ−1 p.

COROLLARY 2.6.7. A singularity on a singular del Pezzo surface over an algebraic
closed field is an isolated singularity of type An or Dn for n ≤ 8, or E6, E7 or E8.
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Proof. This corollary is proved by listing all connected subgraphs of the graph
in Lemma 2.4.8.

2.7 Peculiar del Pezzo surfaces
The first type of del Pezzo surfaces to be studied were the surfaces which with
our definitions would be called ordinary del Pezzo surfaces of degree d ≥ 3.
Del Pezzo in [22] used Corollary 2.6.2 as his definition; he studied smooth sur-
faces in P

d
k of degree d. In this terminology singular del Pezzo surfaces appear

to be a natural generalization of ordinary del Pezzo surfaces. On the other hand
generalized del Pezzo surface seem to be an obvious extension if one consid-
ers ordinary del Pezzo surfaces as the projective plane blown up in r points in
general position.

In this section we will study a new type of del Pezzo surfaces: peculiar del
Pezzo surfaces. We will see that they fit in between the classes of singular and
generalized del Pezzo surfaces. They generalize the notion of ordinary del Pezzo
surfaces in the following way.

Let X be an ordinary del Pezzo surface over a field k and suppose that it is
explicitly written as the blowup X = Xr → Xr−1 → . . . → X1 → X0 = P

2
k of

the projective plane in r points in general position. As the centre pi ∈ Xi(k) of
the blowup Xi+1 → Xi does not lie on a curve with negative self-intersection
on Xi, we find that for 0 ≤ j < i the point pi does not map to pj under Xi → Xj.
Let Z be the union of the images of all pi in X0 = P

2
k . By the commutativity of

blowing up two closed subschemes [24, Lemma IV-41] we find that X and BlZ P
2
k

are isomorphic.
This approach has the following consequence: we do not need the interme-

diate surfaces Xi with 0 < i < r to study X; the geometry of X is completely
determined by information on P

2
k . For example, the −1-curves on an ordinary

del Pezzo surface X of degree d ≥ 3 are either a component of the exceptional
divisor of β : X = BlZ P

2
k → P

2
k or the strict transform along β of a line on P

2
k

which meets Z in two points or a conic which meets Z in five points. Recall that
for ordinary del Pezzo surfaces of degree 1 or 2 we would also have to consider
cubic plane curves. In any case, the intersection graph of all s-curves on an ordi-
nary del Pezzo surface is determined by the configuration of Z on the projective
plane.

Let us mimic the construction of Z for a generalized del Pezzo surface X
written as the blowup X = Xr → Xr−1 → . . . → X1 → X0 = P

2
k of the projective

plane in r points in almost general position: let qα be the images of the blowup
centres pi ∈ Xi under the composition Xi → P

2
k . We will let nα be the number

of i such that pi maps to qα. We would want Z to be a zero-dimensional scheme
supported in the qα such that the geometrically irreducible component at each qα

is of length nα. This presents two problems.
The first problem is that BlZ P

2
k will not be isomorphic to X in general. Con-

sider the first example in Section VI.2.3 from [24]. They consider the blowup
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of the projective plane in the non-reduced point defined by (x2, y). This ideal
contain the information of the origin p0 and the direction v defined at p0 by the
line y = 0. If we blow up the point p0 we get a surface X1 → P

2
k with an excep-

tional divisor E1. Now consider v as a k-point on E1. If we blowup X1 in v, then
we get a scheme X2 → X1 with the exceptional divisor E2. Let us denote the
strict transform of E1 along X2 → X1 also by E1. If we compose the two blowup
morphisms we get a birational morphism π : X = X2 → X1 → X0 = P

2
k with

peculiar divisor Epec
π = E1 + 2E2. The morphism π restricts to an isomorphism

X\Epec
π → P

2
k\p0.

Proposition IV.40 in [24] states that BlZ P
2
k is obtained from X by contracting

the −2-curve E1. So in this case BlZ P
2
k is not the generalized del Pezzo surface

we started with, but rather the associated singular del Pezzo surface. For some
zero-dimensional schemes Z the blowup BlZ P

2
Z will be neither a generalized or

a singular del Pezzo surface. This is where the peculiar del Pezzo surfaces come
in.

The second problem is that the support and local lengths do not determine
the zero-dimensional subscheme uniquely. It would if we could embed Z into
a smooth curve. So let us recall that the associated zero-dimensional scheme Z
associated to an ordinary del Pezzo surface naturally lies on a certain important
cubic plane curve.

It follows from Proposition 2.3.1 that the pushforward β∗D of an effective
anticanonical divisor D along β : BlZ P

2
k → P

2
k is a cubic curve. One can prove

that this cubic curve passes through Z. This even defines a bijection between
the effective anticanonical divisors on the ordinary del Pezzo surface BlZ P

2
k and

the cubic curves passing through Z. This proves that Z could equivalently be
defined as the intersection of all these cubic curves.

Now consider a generalized del Pezzo surface X and construct the points qα

with the multiplicities nα. With this data we could determine Z if the pushfor-
ward of an anticanonical divisor on X were a cubic curve which passes through
each qα and is furthermore smooth at these points. This is precisely the follow-
ing result.

LEMMA 2.7.1. Let X = Xr → Xr−1 → . . . → X1 → X0 = P
2
k be a generalized del

Pezzo surface over a field k written as the blowup of the projective plane in r points in
almost general position. Let pi ∈ Xi(k) be the centre of the blowup Xi → Xi−1. There
exists an irreducible cubic curve C ⊆ P

2
k such that the strict transform of Ci along

Xi → X0 = P
2
k passes through pi and is also smooth at pi.

For generalized del Pezzo surfaces over fields of characteristic zero one can
even find an irreducible curve C which is everywhere smooth using Bertini’s
theorem. We include the more general result so that our results are true over
any field.

Proof. This is part (b�) of Théorème III.1 in [23] in the version stated in the intro-
duction of part IV.
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So let us first look into zero-dimensional schemes on curves and define what
it means for such a subscheme to be in almost general position.

DEFINITION 2.7.2. A zero-dimensional subscheme Z on a surface S is called
curvilinear if it can be embedded in a curve C ⊆ S which is smooth in the support
of Z.

Let k be a field and consider a curvilinear subscheme Z ⊆ P
2
k of degree r ≤ 6.

We say that Z lies in almost general position if the scheme-theoretic intersection
of Z with any integral curve L of degree 1 satisfies deg(Z ∩ L) ≤ 3.

If Z is reduced and we have

deg(Z ∩ D) ≤
�

2 if deg D = 1;
5 if deg D = 2

for all effective divisors D of degree at most 2, we say that Z lies in general posi-
tion.

In the definition of almost general position one would want to add the con-
dition that for all curves C of degree 2 we have deg(Z ∩ C) ≤ 6. Since we
have restricted to r ≤ 6 this condition is trivially satisfied. If one considers
zero-dimensional subschemes of degrees 7 and 8 in almost general position, one
would require that deg(Z ∩ C) ≤ 6. A more complication condition would also
be needed on cubic plane curves.

A zero-dimensional scheme supported on a plane curve of low degree will
always lie in almost general position.

LEMMA 2.7.3. Let k be a field and Z a zero-dimensional supported in the smooth locus
of a cubic plane curve C ⊆ P

2
k. Then Z lies in almost general position.

To construct curvilinear subschemes more generally one can use the fact
that a geometrically irreducible zero-dimensional subscheme on a given smooth
curve C is uniquely defined by its support and its degree. This warrants the fol-
lowing definition.

DEFINITION 2.7.4. Let m be a positive integer and C a curve which lies on a
surface S over a field k. Fix a k-point x on S which is smooth as a point of both C
and S over k. We will write IC,x,m for the ideal sheaf defining the unique zero-
dimensional subscheme of C of degree m which is supported at x.

When X → P
2
k is the blowup of the projective plane in r points in general

position we will consider the degree r zero-dimensional subscheme Z of P
2
k such

that BlZ P
2
k is isomorphic to X over P

2
k . This proves that for ordinary del Pezzo

surfaces we can freely shift between the set of points and the subscheme Z.
The main objective of this section is to relate the blowup X� = BlZ P

2
k for a

zero-dimensional scheme Z in almost general position to generalized and sin-
gular del Pezzo surfaces. Let us start by giving these surfaces X� a name.

DEFINITION 2.7.5. Let k be a field. A peculiar del Pezzo surface over k is the
blowup of P

2
k in a subscheme Z ⊆ P

2
k in almost general position. The degree
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of a peculiar del Pezzo surface is 9 − deg Z.

We have seen that ordinary del Pezzo surfaces are also peculiar del Pezzo
surfaces. Note however that peculiar del Pezzo surface can be singular surfaces,
but on the other hand they are not necessarily singular del Pezzo surfaces. We
will now describe the relation between generalized and peculiar del Pezzo sur-
faces.

PROPOSITION 2.7.6. Let X� be a peculiar del Pezzo surface of degree 9− r over a field k.
It has the minimal desingularization X and the surface X is a generalized del Pezzo
surface given as the blowup of P

2
k in r points in almost general position. Furthermore,

the del Pezzo surfaces X� and X have the same degree.

For the proof we will need several lemmas. First we will describe the blowup
of a surface in a curvilinear subscheme. Then we will consider how the geome-
try of a surface changes under a blowup in a possibly non-reduced curvilinear
scheme.

LEMMA 2.7.7. Let m be a positive integer and C a curve which lies on a surface S over
a field k. Fix a k-point x on S which is smooth as a point of both C and S over k. Let Z
be the zero-dimensional subscheme of S defined by the ideal sheaf IC,x,m.

The blowup B = BlZ S of S in the subscheme Z can be computed as follows: define
S0 = S, x0 = x, C0 = C and recursively the blowup πi+1 : Si+1 → Si in xi with
exceptional curve Ei+1, the strict transform Ci+1 of Ci along πi+1, and xi+1 the unique
intersection between Ei+1 and Ci+1. Then B is obtained from Sm by contracting the
strict transforms of Ei for all 1 ≤ i ≤ m − 1.

This construction also shows that the positive-dimensional fibres of Sm → S
are of the same form as described in Proposition 2.4.4. It now follows from
Proposition 2.6.5 that Sm is the minimal desingularization of B.

Proof. Consider the completed local ring �OS,x at x and let �x, �C and �Z be the pull-
backs of x, C and Z along the morphism Spec �OS,x → S. As �Z is the subscheme
of �C of length m which is supported at �x and we recover a situation similar
to the one in the lemma; we will compute the blowup of the two-dimensional
scheme Spec �OS,x in the zero-dimensional scheme �Z, which is contained in �C
and supported in the point �x. We will first prove the result in this case. To that
end let �πi, �Si, �xi and �Ci be the objects mentioned in the lemma when applied to
computing the blowup �B = Bl�Z �S.

By smoothness we can choose an isomorphism �OS,x → k[[u, v]] such that �C
is given by the vanishing of v. Then Z is given by the ideal (um, v). Using these
equations one can prove by explicit calculations that �Sm → �B is the contrac-
tion of all but the last of the exceptional curves �Ei. A particularly nice way to
prove this is using toric geometry: the blowup in the ideal (um, v) gives us the
completion of a singular toric variety covered by two affine charts. To find a
desingularization of �B one can use the procedure in [21, Section 10.1], which
coincides with the process described in the lemma.
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Blowing up commutes with flat base change, so we have the following tower
of cartesian squares combining the situation above with the general case.

�Sm Sm

... �B
... B

�S1 S1

�S0 = Spec �OS,x S0 = S

�πm πm

�π2 π2 β

�π1 π1

�β

Let U be the complement of x in S and identify it with the corresponding
open U ×S Sm ⊆ Sm. Now consider the map U � �S0 → S0, which is an fpqc
cover, so the same holds for the base change U � �Sm → Sm. The fibred product
of U � �Sm over Sm with itself is the disjoint union of the Sm-schemes U ×Sm U,
�Sm ×Sm

�Sm and U ×Sm
�Sm. The projection maps of the first product are isomor-

phisms as U is an open of Sm. Because taking the fibred product of T → S
with the completion of S in x we get the completion of T in the pullback of x
we see that the projections �S0 ×S0

�S0 → �S0 are isomorphisms too. Pulling back
this isomorphism to Sm we find that �Sm ×Sm

�Sm and �Sm are also naturally iso-
morphic. Lastly, U ×Sm

�Sm is the complement of the closed point in �Sm. So we
have maps U, �Sm → B over Sm which agree on the product over Sm described
above. As representable functors on the category of S-schemes are sheaves in
the fpqc topology [25, Theorem 2.55] the morphism U � �Sm → B descends to
the morphism Sm → B of S-schemes we were looking for.

We have the composition Sm → B → S0 and similarly to the proof of Propo-
sition 2.4.4 we see that the positive-dimensional fibre of Sm → S is a union of
−2-curves and one −1-curve. We conclude that the desingularization Sm → B
contracts a chain of −2-curves and Proposition 2.6.5 proves that Sm is the mini-
mal desingularization of B. Similarly to the proof of Proposition 2.4.11 one can
prove that if Sm is a projective normal surface, then so is B.

We will also need to know how intersection numbers of curves on S behave
under pullback to Sm. The following lemma describes local intersection num-
bers for the blowup of S in a closed point. For a reference on the notions of
intersection numbers and multiplicities of curves one can consult Sections 3.2
and 3.3 in [26].

LEMMA 2.7.8. Consider a surface S over a field k with a smooth k-point x. Let m be
a positive integer, C ⊆ S a curve on S which is smooth at x, and Z ⊆ C the zero-
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dimensional subscheme defined by IC,x,m. Consider an integral curve D on S such that
any common component of C and D does not pass through x. It holds that

deg(D ∩ Z) = min(ix(C, D), deg Z).

Let E be the exceptional divisor of the blowup π : S� → S of S at x. Define C̃ and D̃
as the strict transforms of C and D along π, and let x� be the unique intersection point
of C̃ with E. If s is the multiplicity of D at x then we have

ix(C, D) = ix�(C̃, D̃) + s.

Proof. We will work with the completed local rings �OS,x and �OS� ,x� . We can pick
coordinates u and v for �Ox, such that C is given by v = 0, and hence Z is given
by um = 0 = v. Then we can use coordinates u and V on �Ox� , such that the map
�Ox → �Ox� induced by π maps u to u and v to Vu. Now let D be defined at x by

a polynomial g(u, v).
By definition we have

deg(D ∩ Z) = dimk �Ox/(um, v, g) = dimk �Ox/(um, v, g(u, 0)),

deg Z = dimk �Ox/(um, v) = m

and
ix(C, D) = dimk �Ox/(v, g) = dimk �Ox/(v, g(u, 0))

which proves the first statement.
For the second statement we interpret

ix(C, D) = dimk �Ox/(v, g(u, 0))

as the smallest t such that ut is a monomial of g.
Since C is smooth at x and E is defined by the vanishing of u we see that C̃

is defined by V = 0. Similarly, D̃ is given by the vanishing of the polynomial
g̃ = g(u,Vu)

us . So we have

ix�(C̃, D̃) = dimk �Ox�/(V, g̃).

This is the smallest integer t� such that ut� is a monomial of g̃. We have a cor-
respondence between monomials of g and g̃ by associating uαvβ to uα+β−sVβ.
This implies that t = t� + s.

We can now compute the self-intersection of the strict transform D̃ ⊆ Sm of
an integral curve D ⊆ S, which we will need to prove Proposition 2.7.6.

LEMMA 2.7.9. Let Z ⊆ S be a curvilinear subscheme of degree r on a smooth surface S
over a field k. Let X� → S be the blowup of S in Z and let X → X� be its minimal
desingularization. For an integral curve D on S we define D̃ to be the strict transform
of D along X → X� → S. If D is smooth in the support of Z we have

D̃2 = D2 − deg(D ∩ Z).
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Proof. Let C ⊆ S be a curve on S which contains Z and is smooth in the support
of Z. It is enough to prove the result in the case that Z is supported in a single
point x ∈ C. We use the notation of Lemma 2.7.7: the morphism X → X� → S
equals the composition X = Sm → Sm−1 → . . . → S1 → S0 = S of m blowups in
k-points xi ∈ Si(k). Let Ei ⊆ Si be the exceptional curve of Si → Si−1.

We also define Ci, Di ⊆ Si as the strict transforms of C and D along Si → S0.
We see that xi ∈ Ci. We will determine the i for which xi lies on Di.

We will prove by induction that

ixi (Ci, Di) = max(ix0(C0, D0)− i, 0).

Indeed, Di is either smooth in xi or it does not pass through xi which correspond
to the conditions ixi (Ci, Di) > 0 and ixi (Ci, Di) = 0. The result now follows from
Lemma 2.7.8; ixi (Ci, Di) decreases by 1 as i increases by 1 until it is zero.

Define m� = deg(Z∩D). Note that we have proved that Di passes through xi
for i = 0, 1, . . . , m� − 1, but not for i > m�. Since D is smooth at each of the xi
for i < m�, we find D2

i = D2
0 − i for i < m�. From the fact that Di does not

pass through xi for i ≥ m� it follows that D2
i = D2

0 − m� for those i. Since
Z ∩ D ⊆ Z we see that m� = deg(Z ∩ D) ≤ deg Z = m and from the first result
in Lemma 2.7.8 we conclude

D̃2 = D2
n = D2

0 − m� = D2 − deg(D ∩ Z).

While proving this last lemma we have also proved the following statement.

COROLLARY 2.7.10. Let k be a field, m a positive integer, and C a curve on a surface S
over k. Let x ∈ C(k) be a point which is smooth as a point of C and of S. Define Z to be
the curvilinear scheme of S corresponding to the ideal IC,x,m. Consider X� = BlZ S and
let X → X� be its minimal desingularization. Now write E1 + E2 + . . . + Em for the
unique positive-dimensional fibre over π : X → S as in Proposition 2.4.4. Let D ⊆ S
be a curve which passes through x and is smooth at x. The strict transform D̃ ⊆ X of D
along π passes through exactly one Ei namely the one with i = deg(D ∩ Z).

We will now prove that the minimal desingularization of a peculiar del Pezzo
surface is a generalized del Pezzo surface.

Proof of Proposition 2.7.6. Fix a zero-dimensional subscheme Z ⊆ P
2
k in almost

general position such that X� is isomorphic to BlZ P
2
k and let π� : X� → P

2
k be

the composition of this isomorphism with the blowup morphism. Now let K
be a finite Galois extension of k such that the geometric components of Z are
defined over K. We can apply Lemma 2.7.7 to each component of Z and find a
smooth surface over K, which descends to a smooth surface X over k with a map
γ� : X → X�. Proposition 2.6.5 shows that γ� is the minimal desingularization of
the peculiar del Pezzo surface X� since it is so locally.

Now fix an algebraic closure k̄ of k and let X̄ be the base change of X to k̄. We
will prove that there are no integral curves on X̄ with self-intersection smaller
than −2. Suppose that there is an integral curve D̃ on X̄ with self-intersection
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less than −2. Fix a decomposition X̄ = Xr → Xr−1 → . . . X1 → X0 = P
2
k̄ into

blowups in k̄-points xi ∈ Xi(k̄). Let n be the smallest positive integer such that
there is an integral curve D� ⊆ Xn passing through xn, such that D�2 = −2. Let
D = π∗D� be the pushforward of D� to the projective plane. Now D̃ is the strict
transform of D along X → P

2
k̄ . This implies that D̃2 < D�2 = −2. By minimality

of n we have that Xn is a generalized del Pezzo surface over k̄ of degree d ≥ 3
and hence D is either a line or a conic on P

2
k̄ by Lemma 2.4.3. Because D is

integral it is smooth and we can apply Lemma 2.7.9.
If D is a line we see that

deg(D ∩ Z) = D2 − D̃2 > 1 − (−2) = 3

which contradicts Z lying in almost general position. If D is an integral conic
we have

deg(D ∩ Z) = D2 − D̃2 > 4 − (−2) = 6,

which contradicts deg Z ≤ 6.
This implies that X̄ and hence X is a generalized del Pezzo surface and its

degree is also 9 − r = d.

Note that for every peculiar del Pezzo surface X� there is a birational mor-
phism from X� to the projective plane, and by composition we find a birational
morphism X → P

2
k for its associated generalized del Pezzo surface. The next

proposition shows that associating a generalized del Pezzo surface to a peculiar
del Pezzo surface in this manner defines a bijection.

PROPOSITION 2.7.11. Let π : X → P
2
k be a birational morphism from a generalized

del Pezzo surface X of degree d ≥ 3 to the projective plane. The natural map

π∗ : H0(P2
k ,O(1)) → H0(X, π∗O(1))

is an isomorphism of k-vector spaces, which identifies the complete linear systems of O(1)
and L = π∗O(1). The morphism π is associated to the complete linear system of L.
The line bundle L⊗ ω∨

X is big and nef and the image X� of the complete linear system
of a sufficiently large multiple of L⊗ ω∨

X is a peculiar del Pezzo surface.

One can show that the peculiar del Pezzo surface is the image of the complete
linear system associated to the line bundle L⊗ ω∨

X itself. For del Pezzo surfaces
of degree 1 and 2 with a birational morphism π : X → P

2
k the contraction of

all −2-curves in the support of the exceptional divisor Eπ of π is given by the
powers (L⊗ ω∨

X)
3 and (L⊗ ω∨

X)
2 respectively.

Proof of Proposition 2.7.11. The isomorphism

π∗ : H0(P2
k ,O(1)) → H0(X, π∗O(1))

follows from the isomorphism O(1) → π∗π∗O(1) in Lemma 2.5.1. This also
proves that π is associated to the complete linear system of L.
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In particular we see that the complete linear system of L is non-empty. Let Λ
be an effective divisor in the complete linear system of L and let −KX be an
effective anticanonical divisor on X. It follows from Definition 2.1.3 that Λ − KX
is nef, since Λ and −KX are both nef. By Proposition 2.1.4 we only need to
compute

(Λ − KX)
2 = Λ2 − 2KX · Λ + K2

X = 1 + 2 · 3 + d = d + 7 > 0

to conclude that Λ − KX is also big. Here we have used that Λ is the pullback of
some line L ⊆ P

2
k and by the projection formula we find

KX · Λ = KX · π∗L = π∗KX · L = K
P

2
k
· L = −3.

Let γ� : X → X� be the birational proper morphism associated to a suffi-
ciently large multiple of Λ − KX . The integral curves C ⊆ X which are con-
tracted are those for which C(Λ − KX) = 0. We see by Proposition 2.1.4 that
C · Λ ≥ 0 and C ·−KX ≥ 0 and it follows that the curves contracted by γ� are
the curves which are contracted by both π and the anticanonical map. These are
precisely the −2-curves in the support of Eπ .

Now let X� be the image of the anticanonical map on X. We will need to
prove that X� is a peculiar del Pezzo surface. We will first show that X� is the
blowup of the projective plane in a curvilinear subscheme Z. Note that the state-
ment is purely geometric so we may assume that k is algebraically closed.

By Lemma 2.7.1 there exists a cubic curve C ⊆ P
2
k such that its strict trans-

form Ci ⊆ Xi is smooth at pi for all i. Note that in particular C must be reduced
as it is irreducible, locally principal and smooth in at least one point.

Let us write the birational morphism X → P
2
k as the composition X = Xr →

Xr−1 → . . . → X0 = P
2
k of blowups in closed points pi ∈ Xi(k). Consider

the multiset I consisting of the images of the points pi in P
2
k . This means that I

is a set of smooth points qα on C with some multiplicities nα. Now let Zα be
the zero-dimensional subscheme of C defined by IC,qα ,nα and set Z = ∪Zα. It
follows from Lemma 2.7.7 that X� is the blowup of P

2
k in Z.

We will prove that Z lies in almost general position. For a line L on the
projective plane we define L̃ to be the strict transform. Since L is smooth we
may apply Lemma 2.7.9 and we find

deg(Z ∩ L) = L2 − L̃2 ≤ 1 − (−2) = 3

so Z lies in almost general position.

The zero-dimensional scheme Z constructed in the proof will be called the
zero-dimensional scheme Z ⊆ P

2
k associated to the morphism X → P

2
k . The scheme Z

does not only depend on X, but also on the morphism to the projective plane.
When it is clear from the context how X is given as the blowup of the projec-
tive plane in r points in almost general position we will say Z is the associated
subscheme of X.
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In many cases we will also need the curve C which is smooth in the support
of Z. Usually the existence is enough, but occasionally we will assume that C is
a cubic curve, which is allowed as one can see in the proof above.

Let us put together the main results on peculiar del Pezzo surfaces we have
proved thus far.

COROLLARY 2.7.12. Fix an integer 1 ≤ d ≤ 9 and let k be a field. There is a bijection
from the set of isomorphism classes of peculiar del Pezzo surfaces to the set of isomor-
phism classes of generalized del Pezzo surfaces of degree d with a birational morphism
to P

2
k defined by mapping a peculiar del Pezzo surface to its minimal desingulariza-

tion. The inverse is given by sending a generalized del Pezzo surface with a birational
morphism π : X → P

2
k to the peculiar del Pezzo surface obtained by contracting all

−2-curves on X which are contracted by π.

Proof. This follows from Proposition 2.7.6 and Proposition 2.7.11.

We also have the following result.

COROLLARY 2.7.13. A peculiar del Pezzo surface BlZ P
2
k over a field k is a non-

singular surface precisely if Z is reduced.

Proof. Let Z be a curvilinear subscheme of the projective plane. We can compute
the blowup BlZ P

2
k using Lemma 2.7.7 for each geometrically irreducible com-

ponent of Z. It follows that it is smooth precisely if all geometrically irreducible
components of Z are of degree 1. This is equivalent to Z being reduced.

As for most statements about generalized del Pezzo surfaces, we are inter-
ested in the application to ordinary del Pezzo surfaces.

COROLLARY 2.7.14. A peculiar del Pezzo surface BlZ P
2
k over a field k is an ordinary

del Pezzo surface precisely if Z lies in general position.

Proof. It is clear that Z lies in (almost) general position precisely if Z̄ lies in (al-
most) general position. This together with Proposition 2.2.4 implies that we can
assume that k is algebraically closed.

Write X� = BlZ P
2
k and let X → X� be the minimal desingularization of X�.

Suppose that X� is an ordinary del Pezzo surface. This implies that there are
no −2-curves on X. This shows that Z is reduced, otherwise there are −2-curves
in the fibres contracted by X → X� by Lemma 2.7.7. We saw in Lemma 2.3.4
that a −2-curve on X is the strict transform of a line or a conic along X → P

2
k .

Lemma 2.7.9 now shows that there are no curves of self-intersection less than −1
precisely if Z lies in general position.

If follows similarly as discussed in the introduction that if Z lies in general
position, then X� = X is an ordinary del Pezzo surface.

Let X → P
2
k be a birational morphism from a generalized del Pezzo surface

to the projective plane. Let X� and Y be the corresponding peculiar and singular

del Pezzo surfaces. Then there exist birational morphisms X
γ�
−→ X� γ��

−→ Y such
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that the composition γ contracts all −2-curves on X. We have also seen that γ�

contracts the −2-curves in Epec
π and hence γ�� contracts precisely the remaining

−2-curves.
We have also seen in Corollary 2.7.14 that if Z lies in general position then

BlZ P
2
k is an ordinary del Pezzo surface. This implies that γ, γ� and γ�� are iso-

morphisms. Corollary 2.7.13 shows that γ� is an isomorphism precisely if Z is
reduced. Note that Z being a reduced is one of the conditions in the definition
for Z to lie in general position. One could wonder what the relation is between
the second condition and γ��. It is what one would expect: γ�� is an isomorphism
precisely if deg(Z ∩ L) ≤ 2 for lines on P

2
k and deg(Z ∩ C) ≤ 5 for conics. We

will not need this precise result, but the following corollary will be useful.

PROPOSITION 2.7.15. Let Z ⊆ P
2
k be a zero-dimensional subscheme of degree deg Z =

r ≤ 5 in almost general position. If Z lies on a conic, then the peculiar del Pezzo surface
X� = BlZ P

2
k is a singular del Pezzo surface.

Proof. Let X → X� be the minimal desingularization of X�. This implies that X is
a generalized del Pezzo surface. The morphism X → X� contracts precisely the
−2-curves in the fibres of π : X → P

2
k . We will show that there are no other −2-

curves. Suppose that D̃ ⊆ X is a −2-curve. The pushforward D = π∗D̃ is a line
or a smooth conic on the projective plane. In either case we have deg(D ∩ Z) ≤
deg(D ∩ C) = 2 deg D. We now use Lemma 2.7.9 to find

−2 = D̃2 = D2 − deg(D ∩ Z) ≥ deg D(deg D − 2) ≥ (deg D − 1)2 − 1

which is a contradiction for any degree of D.

An advantage of introducing peculiar del Pezzo surfaces is the following
generalization of a well-known fact of ordinary del Pezzo surfaces to general-
ized ones. It allows us to identify the linear system VX of cubics in Proposi-
tion 2.5.4 in terms of Z.

PROPOSITION 2.7.16. Let X be a generalized del Pezzo surface over a field k given as
a blowup π : X → P

2
k of the projective plane in r points in almost general position.

Let Z ⊆ P
2
k be the associated zero-dimensional subscheme such that X� = BlZ P

2
k is the

associated peculiar del Pezzo surface of X → P
2
k.

The linear system of the cubic curves passing through Z is the linear system |VX |P2
k

described in Proposition 2.5.4.

We will use the following result.

LEMMA 2.7.17. Let Z be a curvilinear scheme of degree r supported in a smooth k-
point x on a surface S. Let π : X → X� → S be the composition of the minimal desin-
gularization X of X� = BlZ S and the blowup morphism X� → S. Let Ei for 1 ≤ i ≤ r
be the components of the exceptional divisor Eπ of π as described in Proposition 2.4.4.
In particular, E2

i = −2 for 1 ≤ i < r and E2
r = −1.

Let C be an effective Cartier divisor on S and let π∗C be its pullback to X. The
following statements are equivalent.

55

33A_BW_PS Lyczak_Stand.job_Press Sheet Size 17x24 cm
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(i) The zero-dimensional scheme Z lies on C.

(ii) The multiplicity of π∗C on Er is at least r.

(iii) The multiplicity of π∗C on Ei is at least i for all 1 ≤ i ≤ r.

Proof. We work with the completed local ring �Ox ∼= k[[u, v]] where the isomor-
phism is chosen such that Z is defined by the ideal (ur, v). Define �S = Spec �Ox
and �C = C ×S �S. Since localization is flat we can compute the multiplicities
of π∗C along Ei by pulling the everything back to �X = X ×S �S. The scheme �X
contains affine opens Ui = Spec k[[u, Vi]] such that the map Ui → �X → �S in-
duced by π is defined by u �→ u and Vi �→ uiv. The open Ui contains the generic
point of Ei and Ei is defined by the vanishing of u on this open.

Now let �C be defined by the vanishing of f ∈ k[[u, v]]. The lemma is equiva-
lent to the following immediate statement. Let 0 ≤ i ≤ r be an integer. We have
that f lies in the ideal (ui, v) precisely if the multiplicity of u in f (u, uiv) is at
least i.

Proof of Proposition 2.7.16. We will prove that the linear subsystems of cubics
passing through Z and the linear system |VX |P2

k
described in Proposition 2.5.4

are the same. We will do so by showing that a cubic curve C ⊆ P
2
k passes

through Z precisely if Epec
π ≤ π∗C. This follows from applying Lemma 2.7.17 to

each point in the support of Z.

We conclude the following generalization of Corollary V.4.4 in [33].

COROLLARY 2.7.18. Let Z ⊆ P
2
k be a zero-dimensional subscheme in almost general

position of degree deg Z ≤ 6. The linear subsystem of cubics through Z is of dimension
9 − deg Z.

Consider the situation where the curvilinear subscheme Z ⊆ S of degree r
is supported in a single point x. Let X� be the blowup BlZ S, X → X� the mini-
mal desingularization and π : X → X� → S the composition of these two mor-
phisms. Recall from Proposition 2.4.4 that the fibre of π above x is the union of
−2-curves and a single −1-curve Er. In the above proof we have identified the
effective Cartier divisors C ⊆ S which satisfy π∗C ≥ Epec

π as the locally princi-
pal curves passing through Z. This means that π∗C − Epec

π is an effective divisor.
We would like to be able to describe when this effective divisor is supported on
the −1-curve Er on Epec

π .

LEMMA 2.7.19. An effective Cartier divisor C ⊆ S satisfies π∗C ≥ Epec
π + Er if and

only if IC ⊆ IxIC,x,r.

Proof. We will use the notation in the proof of Lemma 2.7.17. We will need to
show that the multiplicity of π∗C along Er is at least r+ 1 precisely if IC is a ideal
subsheaf of IxIC,x,r. The multiplicity of π∗C along Er is the multiplicity of u
in f (u, urVr). This is at least r + 1 if and only if f ∈ (ur+1, uv, v) = (u, v)(ur, v).
The ideals (u, v) and (ur, v) define the respective ideals Ix and IC,x,r on S.

56

33B_BW_PS Lyczak_Stand.job_Press Sheet Size 17x24 cm



CHAPTER 2. DEL PEZZO SURFACES

In this section we have defined peculiar del Pezzo surfaces associated to
zero-dimensional subschemes in almost general position. We have also seen
how to construct the associated generalized del Pezzo surface from just this sub-
scheme. The last lemma of this section tells us how to determine the associated
singular del Pezzo surface.

LEMMA 2.7.20. Let Z ⊆ P
2
k be a zero-dimensional subscheme in almost general posi-

tion of degree r ≤ 6.
The closure of the image Y of the birational map P

2
k ��� Y ⊆ P

d
k defined by the linear

subsystem of cubics passing through Z is the singular del Pezzo surface Y associated
to Z.

Proof. Let π : X → P
2
k be the generalized del Pezzo surface associated to Z. Since

the degree of X is 9− r ≥ 3 the image of the anticanonical morphism γ : X → P
d
k

is the associated singular del Pezzo surface Y.
Note that π restricts to an isomorphism π−1 : P

2
k\Z

∼=−→ X\Eπ . The pull-
back of π−1 identifies the divisors in VX restricted to P

2
k\Z with the divisors in

H0(X, ω∨) restricted to X\Eπ . This proves that the birational map γ ◦ π−1 is
defined by the cubics in VX , i.e. the cubics which pass through Z. To conclude
the proof we note that the closure of the scheme-theoretic image of this map is
the same as the scheme-theoretic image of the map γ.

2.8 Arithmetic of del Pezzo surfaces

In Chapters 3 and 4 we will study arithmetic properties of surfaces which are
closely related to del Pezzo surfaces. We will use some results on the arithmetic
of ordinary del Pezzo surfaces over number fields which we will review in this
section. The aim is not to give a complete overview of the topic. The focus lies on
the results we will need later on. A more complete overview of the arithmetic of
del Pezzo surfaces can be found in [55] which is the main source for this section.
For similar results on singular del Pezzo surfaces one is referred to [7] and [19].

THEOREM 2.8.1. Let X be an ordinary del Pezzo surface of degree d ≥ 5 over a field k.
If X(k) is non-empty then X is birational over k to P

2
k.

Now let k be a number field. Then X satisfies both weak approximation and the
Hasse principle.

Proof. The proof is different for each degree. A very clear and detailed exposi-
tion can be found in [55, Lecture 2].

The proofs for the cases d = 5 and d = 7 also yield the following important
result.

PROPOSITION 2.8.2. Let X be an ordinary del Pezzo surface of degree 5 or 7 over a
field k. Then X has a k-rational point and hence X is birational over k to P

2
k.
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Proof. See Lecture 2 in [55] for the proof of the existence of the rational points.
The last statement now follows from Theorem 2.8.1.

Note that this proposition also shows that ordinary del Pezzo surfaces of de-
gree 5 and 7 satisfy the Hasse principle trivially. This is not the case for ordinary
del Pezzo surfaces of degrees 6, 8 and 9.

Example. Let k be a number field and let C ⊆ P
2
k be a conic such that C(k) = ∅.

Since C̄ is isomorphic to P
1
k̄ we see that X = C × C is an ordinary del Pezzo

surface of degree 8 over k, such that X(k) = ∅.
Also, any ordinary del Pezzo surface X degree 9 is a Brauer–Severi variety,

i.e. X̄ ∼= P
2
k̄ . By a result of Châtelet we see that X is isomorphic to P

2
k precisely

when X(k) �= ∅, see for example [46, Proposition 4.5.10]. The existence of a sur-
face X over k with these properties follows from the correspondence between
isomorphism classes of Severi–Brauer varieties of dimension 2 and central sim-
ple algebras over k of dimension 32, see [46, Section 4.5.1].

For ordinary del Pezzo surfaces of low degree it is known that weak approx-
imation or the Hasse principle need not hold, except for the following case.

PROPOSITION 2.8.3. Let X be a generalized del Pezzo surface of degree 1 over a number
field k. Then X(k) �= ∅ and X satisfies the Hasse principle trivially.

Proof. We see from [23, Proposition III.2] that the anticanonical map on a gener-
alized del Pezzo surface of degree 1 has a unique base point. This base point is
hence defined over k which proves that X(k) �= ∅.

For the degrees 2 ≤ d ≤ 4 surfaces are known for which the Hasse principle
does not hold, and we also have counterexamples for weak approximation on
ordinary del Pezzo surfaces of degree 1 ≤ d ≤ 4. These counterexamples are
clearly presented in Table 3 of [55].

One might wonder if the failure of the Hasse principle or weak approxima-
tion can be explained by a Brauer–Manin obstruction. Let us to that end com-
pute the Brauer groups of del Pezzo surfaces over a number field. We first have
the following general result, which shows that the transcendental part of the
Brauer group of a generalized del Pezzo surface over a field of characteristic 0 is
trivial.

PROPOSITION 2.8.4. Let X be a rational projective smooth variety over an algebraically
closed field k of characteristic 0. The Brauer group Br X is trivial.

Proof. Since X is rational it is by definition birational to P
n
k where n is the dimen-

sion of X. This shows that X is irreducible and we can apply Proposition 1.4.13.
This shows that Br P

2
k and Br X are isomorphic. By Proposition 1.4.12 and Propo-

sition 1.2.14 we see that Br X must be trivial.

COROLLARY 2.8.5. Let X be a generalized del Pezzo surface over a field k of character-
istic zero. We have Br X = Br1 X.
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Degree Possibilities for Br X/ Br k
any d 1
d ≤ 4 2 22

d ≤ 3 3 32

d ≤ 2 23 24 25 26 2 · 4 22 · 4 4 42

d = 1 27 28 33 34 2 · 42 22 · 42 23 · 4
24 · 4 5 52 2 · 6 3 6 62

Table B: Possible group structures of Br X/ Br k. For example, 22 · 4 means
(Z/2Z)2 × Z/4Z.

Proof. By Proposition 2.8.4 we see that Br X̄ is trivial. This implies that

Br1 X = ker(Br X → Br X̄) = Br X.

We now use Proposition 1.6.5 to compute the algebraic Brauer group modulo
constants of a del Pezzo surface.

PROPOSITION 2.8.6. Let X be a generalized del Pezzo surface over a number field k.
The Brauer group modulo constants Br X/ Br k is one of the groups in Table B.

Proof. This result was proved by Manin for d ≥ 5 [41], Swinnerton-Dyer for
d = 4 and 3 [52], and d = 2 and 1 by Corn in [20, Theorem 1.4.1] for ordinary
del Pezzo surfaces. The result also holds since the geometric Picard group of a
generalized del Pezzo surface of degree d ≥ 7 depends only on d.

During a calculation done for Proposition 3.2.1 the possible Brauer groups
modulo constants were recomputed by a MAGMA program available at [39].
For completeness we will explain the code.

Since Gk acts on Pic X̄ it factors through the Weyl group W9−d. Let W ⊆ W9−d
be the minimal subgroup of W9−d through which this action factors. By the
inflation–restriction sequence we find that the inflation morphism

H1(W, Pic X̄) → H1(Gk, Pic X̄)

is an isomorphism, since the kernel of Gk → W acts trivially on the geometric
Picard group. One now enumerates the subgroups W of W9−d and compute the
first cohomology group of the action of W on Pic X̄.

The computation is simplified by a general result in group cohomology:
the cohomology group H1(W, Pic X̄) only depends on the conjugacy class of W
in W9−d by [58, Example 6.7.7].

The possible groups we find are precisely the groups in Table B.

One sees that it is only possible to have a Brauer–Manin obstruction to the
Hasse principle or weak approximation on a del Pezzo surface if d ≤ 4. Of
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course, for d ≥ 5 we would not expect this since we know from Theorem 2.8.1
that ordinary del Pezzo surfaces of large degree satisfy both the Hasse principle
and weak approximation.

All the known examples of failure of either of these local–global principles
are explained by a Brauer–Manin obstruction and this led Colliot-Thélène and
Sansuc [14, page 174] to ask the following question.

QUESTION 2.8.7. Let X be an ordinary del Pezzo surface of degree d ≤ 4 over a
number field k. If X(k) = ∅ does this imply X(Ak)

Br = ∅? Also, if the subset
X(k) ⊆ X(Ak) is not dense, does this imply X(Ak)

Br � X(Ak)?
In other words, is the Brauer–Manin obstruction the only obstruction to weak

approximation and the Hasse principle on ordinary del Pezzo surfaces?
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