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Chapter 1

Brauer groups and the
Brauer–Manin obstruction

In this chapter we will review important concepts in the theory of rational and
integral points on schemes over number fields. We will start by describing sev-
eral types of adelic rings associated to number fields. These rings are useful
for studying all localizations kv of a number field k simultaneously. In a sim-
ilar manner one can study the kv-points on a scheme X for all completions kv
of the number field k at the same time consider the so-called adelic points on a
scheme X. This set will help us to study the set X(k). In particular, we find a
natural inclusion of the set of k-points on X in the adelic points.

In the cases where the set of adelic points is too big to yield information about
the set of k-points one can turn to the Brauer–Manin obstruction. This technique
uses the Brauer group of a scheme to identify a subset of the adelic points which
contains X(k). We will study the Brauer groups over schemes by first defining
the Brauer group of a field in terms of central simple algebras. The definition of
these algebras generalizes to sheaves of algebras on schemes. We will show that
the Brauer group of a scheme thus constructed coincides with the second étale
cohomology group of the scheme with values in Gm, assuming some conditions
which will not be too restrictive for our purposes.

We proceed by defining the so-called residue maps and stating some of their
relevant properties. These group homomorphism are an important tool in the
computation and understanding of Brauer groups of local rings and also Brauer
groups of schemes. These homomorphisms allow us to define the Brauer–Manin
obstruction discussed above.

In the last section of this chapter we review some technical results on Brauer
groups and residue maps which we will need throughout the thesis.

Very few results in this chapter are true for all schemes. The main goal will
be to study schemes defined by polynomial equations with coefficients in a field.
Such schemes will be called varieties. There are however a variety of definitions
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1.1. ADELIC POINTS, WEAK AND STRONG APPROXIMATION

in use for this type of scheme. To avoid ambiguity we will fix the definition here
for the remainder of the thesis.

DEFINITION 1.0.1. Let k be a field. A variety over k is a scheme over k which is
separated and of finite type over k.

1.1 Adelic points, weak and strong approximation
Let k be a number field and denote the set of all non-trivial places of k by Ωk. This
set splits into the non-archimedean places Ωfin

k and the archimedean places Ω∞
k .

For a finite subset S ⊆ Ωk we write Ok,S or simply OS for the elements of k which
are v-integral for all finite v �∈ S. In the case that S contains no finite places we
recover the ring of integers Ok of k.

For a non-archimedean place v of k we write kv for the completion of k at v
and Ov for the v-integral elements in kv. We will endow both kv and Ov with
the v-adic topology, which gives them the structure of topological rings.

We will study the rational points of a scheme X over k by considering the sets
of points X(kv) for all v ∈ Ωk. We would like to study these sets of points simul-
taneously, but this approach loses too much of the global structure of X(k). This
is reminiscent of the fact that the product of all kv does not reflect the important
property that an element of k is v-integral for all but finitely many places v. This
can be remedied by considering the elements in ∏v kv which are v-integral for
almost all v. The following definition constructs this ring using the restricted
product [12, Section 13], which also incorporates the topologies on the respec-
tive completions of k and Ok.

DEFINITION 1.1.1. Let k be a number field and let T ⊆ Ωk be a finite set of places
of k. The ring of T-adeles of k is the ring defined as the restricted product

A
T
k := ∏�

v∈Ωk\T
(kv,Ov)

with respect to the integral elements Ov ⊆ kv for all finite places v. We will en-
dow A

T
k with the restricted product topology, which makes it into a topological

ring.
If T is empty we suppress it in the notation and the terminology and we find

the ring of adeles Ak of k.

We will often identify Ak with the subset of elements in ∏v∈Ωk
kv which are

integral at all but finitely many places. Note that this product and its subset Ak
are topological spaces, and that the inclusion is continuous, but the topology on
the ring of adeles will be finer than the subspace topology.

For some applications we will be interested in adeles of k which are integral
outside of a given set of places.

DEFINITION 1.1.2. Let S be a finite set of places of a number field k such that the
archimedean places Ω∞

k are contained in S. We define the integral adelic points
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CHAPTER 1. BRAUER GROUPS

of k away from S as
Ak,S := ∏

v∈S
kv × ∏

v∈Ωk\S
Ov.

For a finite set T ⊆ Ωk we can repeat the above construction while ignoring
any primes in T. This produces the set A

T
k,S of integral T-adelic points of k away

from S.

The set Ak,S is a subset of both Ak and ∏v kv. If we endow Ak,S with the
product topology one can show that it is even an open subset of both Ak and the
product ∏v kv. This shows that the topology on Ak,S coincides with subspace
topology coming from either inclusion Ak,S ⊆ Ak and Ak,S ⊆ ∏v kv. Note the
contrast with the ring of adeles; the topology on Ak differs from the subspace
topology coming from the inclusion Ak ⊆ ∏v kv.

The ring of adeles was defined to study rational points of a scheme X over k
since the collection of point sets X(kv) does potentially not contain enough of the
global structure of X(k). This can be done by looking at the set X(Ak) of adelic
points on X, which remembers more of the global structure of X(k) than the col-
lection of the X(kv). One possible setback is that a priori the topology on X(kv)
cannot be recovered from X(Ak). Let us recall how the topology on X(kv) is
defined. The idea is that for an affine scheme X of finite type over a topological
ring R one can identify X(R) with a subset of the R-points on an affine space A

n
R,

which is in bijection to Rn. Now we proceed by endowing Rn with the product
topology and X(R) with the subspace topology.

For a general finite type scheme over a topological ring R we cover X by
affine opens Xi. In this case we will require that R is local so as to ensure
that X(R) =

�
Xi(R). Then we have topologies on the sets Xi(R) and these

topologies generate a topology on X(R) and this will be the topology we will
consider. One can show that this topology does not depend on the choice of the
affine covering and that a morphism of schemes X → Y over R induces a con-
tinuous map X(R) → Y(R). For more information and the statement that these
topologies are in some sense natural, one can consult [18].

To summarize, if R is a topological ring one can define a natural topology on
the set X(R) if X is affine over R, or R is a local ring and X is a separated scheme
of finite type over R. Note that these constructions do not allow us to topologize
the set of adelic points X(AT

k ), unless X happens to be affine over A
T
k . The

following proposition shows however that the set of adelic points on a variety
admits a natural bijection to a set which comes with a topology.

PROPOSITION 1.1.3. Let T be a finite set of places of a number field k and consider
the generic fibre X = Xk of a separated scheme X of finite type over Ok,T. If v �∈ T
then X (Ov) → X(kv) is injective and the natural map

X(AT
k ) → ∏�

v∈Ωk\T
X(kv)

is well-defined and bijective. The product in the codomain is the restricted product of the
indicated factors with respect to X (Ov) for v ∈ Ωfin

k \T.

3
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1.1. ADELIC POINTS, WEAK AND STRONG APPROXIMATION

Proof. See Section 2.3.1 and Exercise 3.4 in [46].

Recall that a variety X over k spreads out over an open dense subset U
of SpecOk, see for example [46, Theorem 3.2.1], i.e. there is a separated scheme X
of finite type over Ok,T for some finite set T such that Xk is isomorphic to X. This
proves that any k-variety X is the generic fibre of an Ok,T-scheme X and we can
use Proposition 1.1.3 to describe the set of adelic points on X.

Note that the set X(AT
k ) only depends on the generic fibre X of X , while the

restricted product in Proposition 1.1.3 depends a priori on the choice of model X
of X. However since for any two models one can identify the two sets of Ov-
points for all but finitely many v it follows from the definition of the restricted
product that

∏�

v∈Ωk\T
X(kv)

is independent of the choice of model. Similarly one proves that the restricted
product topology on this product is also independent of the choice of model
X/Ok,T . Using the bijection in Proposition 1.1.3 we have produced a topology
on the set of adelic points X(Ak).

DEFINITION 1.1.4. The adelic topology on the set X(AT
k ) of T-adelic points on a

variety X over a number field k is the unique topology on this set such that the
bijection in Proposition 1.1.3 is a homeomorphism.

There is an important corollary in the case that X is proper, because then
the natural map X (Ov) → X(kv) is an isomorphism for all v and the restricted
product becomes the standard product.

COROLLARY 1.1.5. Let X be a proper variety over a number field k. The natural map

X(AT
k ) → ∏

v∈Ωk\T
X(kv)

is a homeomorphism.

For two finite sets of places T� ⊆ T the projection map A
T�
k → A

T
k is contin-

uous. In particular we have a map

Ak → A
T
k

for each such T. Composing with the diagonal map k → Ak we get maps
X(k) → X(AT

k ). Usually, the set of adelic points X(AT
k ) is easier to work with

than the set of rational points X(k) in which we are primarily interested. This
motivates our interest in the image of the map X(k) → X(AT

k ).

DEFINITION 1.1.6. Let X be a variety over a number field k and let T be a finite
set of places of k. If X(k) is dense in X(AT

k ) we say that X satisfies strong ap-
proximation away from T and X satisfies weak approximation away from T if X(k) is
dense in ∏v∈Ωk\T X(kv).
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CHAPTER 1. BRAUER GROUPS

The names of these two concepts seem counterintuitive; being dense in the
subset X(AT

k ) seems weaker than being dense in the larger set ∏v∈Ωk\T X(kv).
The terminology stems from the facts that the topology of X(AT

k ) is not the
subspace topology as a subset of

∏
v∈Ωk\T

X(kv).

Using the definition of the restricted product topology on X(AT
k ) one can show

that if X satisfies strong approximation, it will also satisfy weak approximation.
Now let X be a projective variety over a number field k. On such a scheme the

notions of weak and strong approximation coincide by Corollary 1.1.5. We have
seen that we study the set of adelic points on X, using a model of X over Ok.
If X comes with a projective embedding X ⊆ P

N
k we can define a model as

follows; we have that X is a closed subset of P
N
k which is in turn the generic

fibre of P
N
Ok

. We can now construct a model X/Ok by taking the closure of X
in the projective space P

N
Ok

. As for any model of a proper scheme one can again
identify the Ok-points of X with the k-points on X.

For a scheme which is not projective, the set of integral points will depend
on the model. Hence, the set of integral points on a model can differ from the
set of rational points. For this reason we will consider the following setup.

PROPOSITION 1.1.7. Let S be a finite set of places of k which contains the infinite
places Ω∞

k of k. Now let X be a separated scheme of finite type over Ok,S. The natural
map

X (Ak,S) → ∏
v∈S

X(kv)× ∏
v �∈S

X (Ov)

is a bijection. Both sets X (Ak,S) and X(Ak) are naturally subsets of ∏v∈Ωk
X(kv)

and under this identification we have the inclusion X (Ak,S) ⊆ X(Ak). So we have the
following chain of inclusions

X (Ok,S) ⊆ X (Ak,S) ⊆ X(Ak),

where we embed the Ok,S-points on X diagonally into X (Ak,S).

Proof. See Theorem 3.6 in [18].

Now let k be a number field and let S be a finite set of places containing
the archimedean places Ω∞

k of k. If a scheme X does not have a point over any
completion kv of k we see that X (Ak,S) is empty for any model X/Ok. In this
case we also conclude that there are no Ok,S-points on X .

By Proposition 1.1.7 we can check whether X (Ak,S) is non-empty by check-
ing the existence of solutions over local fields and rings. However, if X (Ok,S)
is empty it can still be that X (Ak,S) is non-empty. This motivates the following
definition.
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1.2. CENTRAL SIMPLE ALGEBRAS OVER FIELDS

DEFINITION 1.1.8. A separated and finite type Ok,S-scheme X satisfies the S-
integral Hasse principle if the existence of Ak,S-points on X implies the existence
of Ok,S-points.

Similarly, a k-variety X is said to satisfy the Hasse principle if the existence of
adelic points on X implies the existence of k-points on X.

A scheme satisfies the Hasse principle if it either admits a global solution
or if it is not locally soluble at at least one place. Usually we will consider the
Hasse principle for family of schemes, which means that for each scheme in the
family one of the two mutually exclusive statements holds, but not necessarily
the same statement is true for all schemes in the family under consideration.

We will later see how the Brauer group of a scheme can in some cases be
used to prove that a variety X does not satisfy weak or strong approximation,
or that X(k) or X (Ok) is empty.

1.2 Central simple algebras over fields

In this section we will define the Brauer group of a field. The main notion will
be that of a central simple algebra. The content of this section and much more
can be found in [28].

DEFINITION 1.2.1. A central simple algebra over a field k is a finite-dimensional k-
algebra A which is simple as a ring and central as a k-algebra, i.e. A has pre-
cisely two two-sided ideals, and the centre of A is the image of the natural in-
clusion k �→ A.

Here are some examples of central simple algebras.

Example. The following algebras are central and simple over the indicated base
field:

» any field over itself.

» the quaternions H over R, i.e. the four-dimensional vector space over R

with basis 1, i, j, ij, such that multiplication is given by i2 = j2 = −1
and ij = −ji.

Now let A be a central simple algebra over a field k. The following algebras are
also central and simple:

» the opposite algebra Aopp over k.

» the matrix ring Matn(A) over k for each positive n, in particular Matn(k).

» the base change A ⊗k K over K for any finite field extension K/k.

The statement follows directly from the definition and a direct computation
for the first three cases. For the fourth case one can use the fact that there

6
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CHAPTER 1. BRAUER GROUPS

is a correspondence between the ideals of A and Matn(A), and that the cen-
tre Z(Matn(A)) consists of the diagonal matrices aIn where a ∈ Z(A) and In
is the identity matrix in Matn(A). The proof that A ⊗k K is central and simple
over K involves some manipulations of the tensor product. See for example [28,
Lemma 2.2.2].

The following theorem is an important result if one wants to classify central
simple algebras.

THEOREM 1.2.2 (Wedderburn’s theorem). Let A be a finite-dimensional simple k-
algebra. There exists a unique integer r > 0 and a division k-algebra D such that

Matr(D) ∼= A.

Proof. See [28, Theorem 2.1.3].

This theorem allows us to classify all central simple algebras over two im-
portant classes of fields.

COROLLARY 1.2.3. A central simple algebra A over a finite field k is isomorphic to a
matrix algebra Matr(k) for some positive integer r.

Proof. Let D be the division ring such that Matr(D) ∼= A, hence Z(D) = k.
Since k is a finite field and D is a finite-dimensional k-algebra we see that D
has finitely many elements. A famous theorem by Wedderburn says that every
finite division ring is a field showing in particular that D is commutative and
we find D = Z(D) = k.

COROLLARY 1.2.4. Let k be an algebraically closed field. Any central simple algebra
over k is a matrix algebra Matr(k).

Proof. Let A be a central simple algebra over the field k and let D be the division
ring such that A ∼= Matr(D). We will prove that the natural morphism k �→ D
is surjective. Pick an element d ∈ D. Since A is of finite dimension over k we see
that there is relation over k between finitely many of the 1, d, d2, . . .. This proves
that k(d) is a field extension of k of finite degree. Since k is algebraically closed
we conclude d ∈ k.

Corollary 1.2.4 implies the following result about the dimension of a central
simple algebra over a general field.

COROLLARY 1.2.5. The dimension of a central simple algebra over a field is always a
square.

Proof. Let A be a central and simple algebra over a field k. Since dimk A =
dimk̄

�
A ⊗k k̄

�
we can assume that k is algebraically closed. By Corollary 1.2.4

we see that there is a positive integer r and an isomorphism Matr(k) ∼= A. The
statement now follows from the fact dimk Matr(k) = r2.

7
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1.2. CENTRAL SIMPLE ALGEBRAS OVER FIELDS

We have already seen that the finite-dimensional matrix algebras over a field
are always central and simple. Hence central simple algebras over finite fields
and algebraically closed fields are as simple as they possibly can be. Although
the matrix algebras are in some sense the trivial central simple algebras, they
play a pivotal role in the study of all central simple algebras. We have for exam-
ple seen that after base changing to an appropriate field extension every central
simple algebra becomes isomorphic to a matrix algebra. One can study a central
algebra by considering these fields. This motivates the following definition.

DEFINITION 1.2.6. Let A be a central simple algebra over a field k. A splitting
field for A is a field extension K/k, such that there exist a positive integer n and
an isomorphism

A ⊗k K ∼= Matn(K).

We have seen that any algebraic closure of k is a splitting field for any cen-
tral simple algebra over k. The following theorem shows that each central sim-
ple algebra has a separable splitting field of finite degree and that any finite-
dimensional algebra with this property is both central and simple.

THEOREM 1.2.7. Let A be a finite-dimensional algebra over a field k. Then A is central
and simple precisely if there exists a separable field extension K/k of degree n such that

A ⊗k K ∼= Matn(K).

Proof. This is a combination of Theorem 2.2.1 and Theorem 2.2.7 in [28].

The following result follows immediately from this theorem.

COROLLARY 1.2.8. Let A and B be two central simple algebras over a field k. The
tensor product A ⊗k B is a central simple algebra over k.

Proof. By Theorem 1.2.7 we see that both A and B have a separable splitting field
of finite degree over k. This implies that the compositum K of these two fields is
also separable and splits both central simple algebras. We then see that

(A ⊗k B)⊗k K ∼= (A ⊗k K)⊗K (B ⊗k K) ∼= Matm(K)⊗ Matn(K) ∼= Matmn(K)

and we conclude from Theorem 1.2.7 that A⊗k B is a central simple algebra over
the field k.

A splitting field of a central simple algebra can be taken to be a splitting field
of the associated division ring D from Theorem 1.2.2. The following result tells
us where to look for a finite separable splitting field for division rings.

PROPOSITION 1.2.9. Let A be central simple algebra over k. The algebra A is split by
any subfield K of A, i.e. a subalgebra of A which is also a field, satisfying

[K : k]2 = dimk A.

A central division k-algebra D contains a separable element x of degree
√

dimk D, and
hence k(x) is a splitting field for all central simple algebras Matr(D) over k.
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CHAPTER 1. BRAUER GROUPS

Proof. The two statements are precisely Proposition 2.2.9 and Proposition 2.2.10
in [28].

Using Corollary 1.2.8 we can prove the following result, which is very useful
for generalizing central simple algebras to rings and even schemes.

THEOREM 1.2.10. Let A be a finite-dimensional algebra over a field k. The morphism

ϕ : A ⊗k Aopp → Endk(A), ∑
i

ai ⊗ bi �→
�

x �→ ∑
i

aixbi

�

of vector spaces over k is an isomorphism precisely when A is a central simple algebra
over k.

Proof. Suppose that A is a central simple algebra. Then by Corollary 1.2.8 we
see that so is A ⊗k Aopp. Because ϕ is not identically zero, we conclude that
the kernel of ϕ is trivial. By comparing the dimensions we see that ϕ must be
bijective and hence an isomorphism of k-algebras.

Now suppose that ϕ is an isomorphism of algebras over k. If A is not central,
then pick an a ∈ Z(A)\k and note that a ⊗ 1 − 1 ⊗ a is non-zero and lies in the
kernel of ϕ. This contradicts the existence of such an a and we conclude that A
is central. Now let I be a two-sided ideal of A. Considering I as a subspace of A
we find a subspace J of A such that I ⊕ J ∼= A. The morphism

ϕ : (I ⊕ J)⊗ (I ⊕ J) → Endk(A)

restricts to an injective linear map

(I ⊗ I)⊕ (I ⊗ J)⊕ (J ⊗ I) → Homk(A, I).

Now let n, i and j be the respective dimensions of A, I and J over k, then we find
that i2 + ij + ji ≤ ni. So either i = 0 or i + j + j ≤ n and we see that either i = 0
or j = 0. These cases correspond to I being either the zero ideal or the whole
of A.

Now we can define an important invariant for fields.

DEFINITION 1.2.11. Let k be a field and A and B two central simple algebras
over k. We say that A and B are similar if there are integers m and n, such the
central simple algebras Matm(A) and Matn(B) over k are isomorphic.

The Brauer group Br k of k is the set of similarity classes of central simple
algebras over k. Let [A] and [B] be two classes of the Brauer group represented
by central simple algebras. Multiplication on Br k is defined by

[A] · [B] = [A ⊗k B]

and inverses are given by [A]−1 = [Aopp].
Let K/k be a finite Galois extension. The Brauer group of k relative to K is

the subset of Br k consisting of the classes which are split by K and is denoted
by Br(K/k).

9
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1.2. CENTRAL SIMPLE ALGEBRAS OVER FIELDS

Multiplication in Br k is clearly associative and commutative. It follows from
[A] · [k] = [A ⊗k k] = [A] that the class of k is the unit element. Furthermore,
Theorem 1.2.10 shows that [A] · [A]−1 = [A] · [Aopp] = [A ⊗ Aopp] = [Endk(A)].
Now let n2 be the dimension of A over k then the algebra of k-linear endomor-
phism of A is isomorphic to Matn2(k) after choosing a k-linear basis for A. So we
find [A] · [A]−1 = [Matn2(k)] = [k]. This shows that [A]−1 is the multiplicative
inverse of [A].

Note that similar central simple algebras are split by the same fields. Now
let K/k be a finite Galois extension. The Brauer group Br(K/k) of k relative to K
is a subgroup of Br k, and it follows from Theorem 1.2.7 that the Brauer group
of k is the union over all finite Galois extensions of these subgroups.

Sometimes the following cohomological interpretation of the Brauer group
is in some cases more useful than the definition using central simple algebras.

THEOREM 1.2.12. Let k be a field and let K be a finite Galois extension. There are
natural maps

Br(K/k) → H2(Gal(K/k), K×) and Br k → H2(k, ksep,×)

which are isomorphisms of groups.

Proof. We will sketch the construction of these isomorphisms. The details can be
found in Sections 2.4 and 4.4 in [28]. One can find this precise statement there as
Theorem 4.4.7.

We start by recalling that central simple algebras over k can be classified as
the k-algebras which are forms of Matn(k) by Theorem 1.2.7. Using the fact that
the automorphism group of Matn(K) is PGLn(K) one can show that the set of
isomorphism classes of central simple algebras over k split by K is isomorphic
as a pointed set to H1(Gal(K/k), PGLn(K)). Using the short exact sequence

0 → K× → GLn(K) → PGLn(K) → 0

we obtain a map H1(Gal(K/k), PGLn(K)) → H2(Gal(K/k), K×). One proceeds
by showing that these maps are compatible and combine to give an isomor-
phism of groups

Br(K/k) → H2(Gal(K/k), K×).

For the second statement one uses the fact that every central simple algebra
over k is split by a finite Galois extension K. This proves that the isomorphism

Br k → H2(k, ksep,×)

is the limit of the first isomorphism over all finite Galois extensions K of k.

A consequence of this theorem is that we can bound the order of an element
of the Brauer group in terms of its splitting field.

10
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CHAPTER 1. BRAUER GROUPS

COROLLARY 1.2.13. Let K/k be a finite Galois extension of degree n and suppose
that A is a central simple algebra over k which is split by K. In the Brauer group Br k
we have n[A] = 0.

Proof. Since Gal(K/k) is of order n, we see that nH2(Gal(K/k), K×) = 0 by a
classical result in group cohomology, see [43, Proposition II.1.31] for example.
So [A] has order dividing n in Br(K/k) ⊆ Br k.

We can rephrase Corollaries 1.2.3 and 1.2.4 directly in terms of Brauer groups.

PROPOSITION 1.2.14. We have Br k = 0 when k is algebraically closed or a finite field.

Let us now give a first example of a field whose Brauer group is non-trivial.

PROPOSITION 1.2.15. It holds that Br R = Z/2Z and it is generated by the class of
the only non-trivial central division algebra over R, namely the quaternions H.

Proof. Let us write G = Gal(C/R). Since every central simple algebra over R

is split by C we see that Br R = Br(C/R) = H2(G, C
×) by Theorem 1.2.12.

Group cohomology of cyclic groups is well-understood, see for example [58,
Theorem 6.2.2], and we find

H2(G, C
×) ∼= (C×)G/|C×| = R

×/R>0

which is naturally isomorphic to Z/2Z. One can check that R and H are divi-
sion rings whose centres equal R, so their classes are different elements of Br R,
which proves the statement.

1.3 Cyclic algebras

We will now consider an important class of algebras.

DEFINITION 1.3.1. Let K/k be a cyclic extension of degree n. Fix a genera-
tor σ ∈ Gal(K/k) and an element a ∈ k×. We define a k-algebra (a, K/k, σ)
as follows: consider a K-vector space with basis 1, x, . . . , xn−1 endowed with a
multiplication determined by the properties xn = a and cxi · dxj = cσi(d)xi+j

for c, d ∈ K. We call this algebra a cyclic algebra over k.

When no confusion is possible we might suppress either the field extension
or the generator in the notation.

PROPOSITION 1.3.2. A cyclic algebra A = (a, K/k, σ) over a field is a central simple
algebra, which is split by the field K.

The map k× → Br k which maps an element a ∈ k× to the class of (a, K/k, σ)
is a homomorphism of groups. The kernel of this morphism equals NmK/k(K×). In
particular, we see that (a, K/k, σ) splits over k precisely when a is a norm from K,
i.e. a ∈ NmK/k(K×).

11

11A_BW_PS Lyczak_Stand.job_Press Sheet Size 17x24 cm
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Proof. One can check that A is central and simple using Theorem 1.2.10. We also
see that K is a subfield of A and by Proposition 1.2.9 we find that K splits A.

The last statement follows from Equation 1.5.21 and Proposition 1.5.23 in [46].

The only non-split central simple algebra we have seen so far is an example
of a cyclic algebra.

Example. Let σ ∈ Gal(C/R) denote complex conjugation. Then the map

(−1, C/R, σ) �→ H

defined by mapping i to i, and x to j is an isomorphism of algebras over R.

This example illustrates the following general fact, which gives us a condi-
tion for when a central simple algebra can be written using only cyclic algebras.

THEOREM 1.3.3 (Merkurjev–Suslin). Let k be a field which contains a primitive n-th
root of unity. An element of Br k whose order divides n is the product of classes of cyclic
algebras over k.

Proof. See [28, Theorem 2.5.7].

We will be more interested in the following fields, which need not satisfy the
condition of the previous statement, but do satisfy an even stronger property.

PROPOSITION 1.3.4. Let k be a local or a global field. Every central simple algebra
over k is a cyclic algebra.

Proof. This is the content of Theorem 1.5.34 (iii) and Theorem 1.5.36 (iii) in [46].

We will see a complete description of Brauer groups of local and global fields
in Proposition 1.5.3 and Proposition 1.5.4.

1.4 Azumaya algebras over schemes

We will now generalize the notion of a central simple algebra over a field to the
notion of an Azumaya algebra over a scheme. One can think of such an algebra
as a family of central simple algebras. The following proposition shows that
under this interpretation Theorem 1.2.7 and Theorem 1.2.10 are satisfied locally.

PROPOSITION 1.4.1. Let A be a coherent OX-algebra on a scheme X, such that all
stalks Ax are non-trivial. The following statements are equivalent.

(i) The sheaf A is a locally free OX-module and for each point x ∈ X the fibre A(x) :=
A⊗OX κ(x) is a central simple algebra over κ(x).

12
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(ii) There is an étale covering Ui → X such that for each i there is an ri > 0 and an
isomorphism

A⊗OX OUi
∼= Mri (OUi ).

(iii) The sheaf A is a locally free OX-module and the morphism

A⊗OX Aopp → EndOX (A)

defined on sections by sending a ⊗ b to the endomorphism x �→ axb is an isomor-
phism.

Proof. See Definition 6.6.12 in [46].

A sheaf satisfying one, and hence all, of the statements in Proposition 1.4.1 is
the generalization of central simple algebra with which we will work.

DEFINITION 1.4.2. An Azumaya algebra over a scheme X is a coherent OX-algebra
with non-zero stalks satisfying the equivalent statements in Proposition 1.4.1.

Two Azumaya algebras A and A� on X are called similar if there are locally
free coherent OX-modules E and E � with non-zero stalks such that there is an
isomorphism

A⊗OX End (E) ∼= A� ⊗OX End (E �)

of OX-algebras.
The Azumaya Brauer group BrAz X of a scheme X is the set of similarity classes

of Azumaya algebras on X. The product of two classes [A] and [B] is defined
as [A⊗OX B]. The class [OX ] is a two-sided identity element for this multiplica-
tion and an inverse of a class [A] is given by [A]−1 := [Aopp]. This makes BrAz
into a functor Sch → Abopp.

Because we require A to be locally free, the rank of Ax as an OX,x-module is
locally constant. So on connected components of X we see that the rank is the
square of a positive integer, just as the dimension of central simple algebras over
fields. There are more similarities between Azumaya algebras on schemes and
central simple algebras for fields. It might for example be convenient to have a
cohomological interpretation of the Azumaya Brauer group of a scheme as we
did for fields in Theorem 1.2.12.

DEFINITION 1.4.3. Let X be a scheme. The cohomological Brauer group Br X is
defined as H2

ét(X, Gm), which defines a functor Sch → Abopp.

Unlike for fields, the cohomological Brauer group is not always isomorphic
to the Azumaya Brauer group. There is however a natural transformation

BrAz → Br

constructed similarly as in the case for fields: the isomorphism classes of Azu-
maya algebras over a scheme X of rank r2 are classified by the cohomology
group H1(X, PGLr). The short exact sequence

0 → Gm → GLr → PGLr → 0

13
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of étale sheaves on X gives rise to a homomorphism

H1(X, PGLr) → H2(X, Gm) = Br X.

One can check that the image in Br X of an Azumaya algebra A in H1(X, PGLr)
only depends on its class [A] in BrAz X. This gives us a map BrAz X → Br X for
any scheme X.

PROPOSITION 1.4.4. Consider the family of homomorphisms BrAz X → Br X con-
structed above.

(a) This defines a natural transformation BrAz → Br of functors Sch → Abopp.

(b) The homomorphism BrAz X → Br X is injective for every scheme X.

(c) Let k be a field. The three notions of the Brauer group of k, namely Br k, Br(Spec k)
and BrAz(Spec k), are all naturally isomorphic.

(d) Assume that X has an ample line bundle. The natural map BrAz X → (Br X)tors
is an isomorphism.

We see that Br k and Br(Spec k) are naturally isomorphic and we will keep
with the convention that an affine scheme will be denoted by its coordinate ring
if no confusion is likely, in particular we will write Br R for the Brauer group of
the affine scheme Spec R for any commutative ring R.

Proof. The fact that each map BrAz X → Br X is an injective group homomor-
phism can be found in [46, Theorem 6.6.17(i)]. A first isomorphism

Br k → Br(Spec k)

for the third statement follows from Theorem 1.2.12. It is quite straightfor-
ward to exhibit a natural correspondence between Azumaya algebras on Spec k
and central simple algebras over k which preserves similarity of algebras. This
proves the existence of the isomorphism Br k → BrAz(Spec k). The last statement
is Theorem 6.6.17(iii) in [46].

Here are some more properties of the two notions of Brauer groups.

PROPOSITION 1.4.5. Let X be a scheme.

(a) Suppose that a class [A] ∈ BrAz X is represented by an Azumaya algebra of
rank r2. Then r[A] is zero in BrAz X.

(b) The Azumaya Brauer group of a scheme with finitely many connected components
is torsion.

For the next two statement we require that X is a regular integral noetherian scheme.

(c) The natural map Br X → Br κ(X) is injective.
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(d) The cohomological Brauer group Br X is a torsion group.

Proof. The first two statements are precisely Theorem 6.6.17(ii) in [46]. For the
last two statement we refer to Theorem 6.6.7 in [46].

So, in many cases we can identify all the types of Brauer groups we have seen
so far and in those cases we will simply write Br X for this group. In particular
we have the following important corollary to the previous proposition.

COROLLARY 1.4.6. Let X be a regular quasi-projective variety over a field then we
have

Br X ∼= (Br X)tors ∼= BrAz X.

Now that we have defined Brauer groups for general schemes, we have in
particular done so for rings. Let us consider the following example.

PROPOSITION 1.4.7. Let R be a complete local ring with maximal ideal m. The natural
morphism

Br R → Br(R/m)

is an isomorphism.

Proof. See Proposition 6.9.1 in [46].

Using the fact that the Brauer group of a finite field is trivial, see Proposi-
tion 1.2.14, we find the following result.

COROLLARY 1.4.8. Let O be the ring of integers in a non-archimedean local field.
Then BrO = 0 and in particular Br Zp = 0.

Let us now look at some examples of Brauer groups of, not necessarily affine,
schemes.

PROPOSITION 1.4.9. Suppose that C is a smooth integral curve over an algebraically
closed field then Br C = 0.

Proof. By Tsen’s theorem [46, Theorem 1.5.33] we see that the Brauer group of
a field of transcendence degree 1 over an algebraically closed field is trivial. By
the inclusion Br C → Br κ(C) from Proposition 1.4.5 we see that Br C must be
trivial too.

Most Brauer groups we have seen thus far are trivial. Starting from a field k
with a non-trivial Brauer group one can construct examples of schemes with a
non-trivial Brauer group.

PROPOSITION 1.4.10. Suppose that the k-scheme π : X → Spec k admits a k-point.
The natural morphism π∗ : Br k → Br X is injective.

Proof. A k-point p on X is a section of the structure morphism π. This shows
that the composition

Br k π∗
→ Br X

p∗→ Br k
is the identity on Br k and π∗ must be injective.

15
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The following lemma gives us another situation when the induced map be-
tween Brauer groups coming from a morphism between two schemes is injec-
tive.

LEMMA 1.4.11. Let X → Y be a birational morphism between two regular integral
noetherian schemes. The induced morphism Br Y → Br X is injective.

Proof. By Proposition 1.4.5 the morphisms Br X → Br κ(X) and Br Y → Br κ(Y)
are injective and we have an isomorphism Br κ(Y) → Br κ(X) induced by the bi-
rational morphism X → Y. By functoriality we have the following commutative
square.

Br Y Br κ(Y)

Br X Br κ(X)

∼=

The injectivity of Br Y → Br X is immediate.

This lemma is one of the main ingredients for the following proposition.

PROPOSITION 1.4.12. Let k be a field of characteristic 0 and n a positive integer. The
natural morphisms Br k → Br A

n
k and Br k → Br P

n
k are isomorphisms.

Proof. It follows from Proposition 1.4.9 and [4, Theorem 7.5] that the morphism
Br L → Br A

1
L is an isomorphism for a perfect field L. The first statement follows

from induction by considering A
n
k as the affine line over A

n−1
k . It is this step

where the condition on the characteristic comes in. Details can be found in [13,
Proposition 1.3].

For the last statement, one notes that the embedding A
n
k → P

n
k satisfies the

conditions of Lemma 1.4.11.

Even for a birational map we have the following result for proper schemes.

PROPOSITION 1.4.13. Let X and X� be birational regular integral noetherian schemes
which are projective over a field of characteristic 0. The Brauer groups Br X and Br X�

are isomorphic.

Proof. This follows from Corollaire 7.5 in [30].

1.5 Residue and invariant maps

Now we will study residue maps. These are an important tool for working with
Brauer groups of local and global fields. They will also turn out to be relevant
when studying the Brauer group of a scheme X\C which is the complement of
divisor C ⊆ X. The more general notion is the following.

16

13B_BW_PS Lyczak_Stand.job_Press Sheet Size 17x24 cm



CHAPTER 1. BRAUER GROUPS

PROPOSITION 1.5.1. Let R be a discrete valuation ring with fraction field K and perfect
residue field F. There exists an exact sequence

0 → Br R → Br K ∂R−→ H1(F, Q/Z) → 0.

The map ∂R is called the residue map of R.

Proof. This proposition is exactly Proposition 6.8.1 of [46]. The construction of
the residue map ∂R can be found there too.

If F is not perfect we lose the surjectivity of ∂R, but the rest remains true after
excluding the p-primary parts of all groups under consideration. See for a more
complete treatment Section 6.8.1 in [46].

DEFINITION 1.5.2. Let k be a non-archimedean local field with ring of integers O
and residue field F. The absolute Galois group of F is �Z with FrobF as a topo-
logical generator. We can identify the cohomology group H1(F, Q/Z) with the
group Homcnt(�Z, Q/Z) of 1-cocycles, since the action of �Z on Q/Z is trivial.
The invariant map invk of k is the composition

Br k
∂O−→ H1(F, Q/Z) → Homcnt(�Z, Q/Z)

∼=−→ Q/Z,

where the isomorphism Homcnt(�Z, Q/Z) → Q/Z is defined by evaluating
at FrobF. When k is either R or C we define invk to be the unique injective
map Br k → Q/Z.

Using these invariant maps we can describe the Brauer groups of both local
and global fields.

PROPOSITION 1.5.3. Let k be a local field. The invariant maps invk : Br k �→ Q/Z

satisfy

Im invk =






0 if k = C;
1
2 Z/Z if k = R, and
Q/Z if k is non-archimedean.

If k�/k is a finite extension of local fields, then the diagram in (1.1) commutes.

Br k Q/Z

Br k� Q/Z

invk

·[k� : k]
invk�

(1.1)

Proof. See [46, Theorem 1.5.34].

PROPOSITION 1.5.4. Let k be a global field. An element A ∈ Br k is split by kv for all
but finitely many places v.
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Let invv be the invariant map associated to the completion kv of k using the place v.
We have the following exact sequence

0 → Br k →
�

v
Br kv

∑ invv−−−→ Q/Z → 0.

Proof. See [46, Theorem 1.5.36].

For more information one can consult Section 1.5.9 in [46]. Here one can find
a construction of a cyclic algebra over a fixed local field with a given invariant.
Also a construction is given for a cyclic algebra over a global field with a given
set of local invariants. This last construction works precisely if the local invari-
ants sum to 0 in Q/Z, which is the best possible result given the short exact
sequence in Proposition 1.5.4.

1.6 The Brauer–Manin obstruction
In this section we fix a number field k and k-variety X.

PROPOSITION 1.6.1. Let v be a place of k and A an Azumaya algebra on X.

(a) The evaluation map evA : X(kv) → Br kv is locally constant in the v-adic topol-
ogy on X(kv).

(b) For an (xv) ∈ X(Ak) we have that evA(xv) is trivial for almost all v.

(c) For an adele (xv) in the image of X(k) → X(Ak) we have that

∑
v

invv A(xv) = 0 ∈ Q/Z.

Proof. These are Proposition 8.2.9, Proposition 8.2.1 and Proposition 8.2.2 in [46].

The last statement in Proposition 1.6.1 gives us a property of the elements in
the image of X(k) in X(Ak). Although this property can be shared with other
adelic points than those coming from X(k), it motivates the following definition.

DEFINITION 1.6.2. Consider a scheme X over a number field k. For an ele-
ment A ∈ Br X and x = (xv) ∈ X(Ak) define

(A, x) = ∑
v∈Ωk

invv A(xv).

This map Br X × X(Ak) → Q/Z is called the Brauer–Manin pairing of X.
For a subset B ⊆ Br X the Brauer–Manin set associated to B is defined as

X(Ak)
B := {x ∈ X(Ak) | (A, x) = 0 for all A ∈ B} .
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The Brauer–Manin sets give an inclusion-reversing map from subsets of Br X
to subsets of X(Ak) and satisfy the following properties.

COROLLARY 1.6.3. Let A be an element of Br X and let B ⊆ Br X be a subset.

(a) The map ∑ invv A : X(Ak) → Q/Z is locally constant and the Brauer–Manin
set X(Ak)

A associated to A is open and closed in X(Ak).

(b) The subset X(Ak)
B of X(Ak) is closed.

(c) We have the following inclusions

X(k) ⊆ X(k) ⊆ X(Ak)
B ⊆ X(Ak).

Where we have written X(k) for the topological closure of X(k) in X(Ak).

Some subsets of the Brauer group of a scheme are of particular interest.

DEFINITION 1.6.4. The classes of Br X in the image of Br k → Br X are called
constant classes, which form the subgroup Br0 X ⊆ Br X. The algebraic Brauer
group Br1 X of X is the subgroup consisting of the classes in the kernel of the
natural homomorphism Br X → Br X̄. The elements of Br1 X are called algebraic
classes and an element of Br X\Br1 X is called a transcendental class.

For the Brauer–Manin set associated to either Br1 X or Br X we omit the X
from the notation and write X(Ak)

Br1 and X(Ak)
Br respectively. The follow-

ing proposition shows why we do not introduce this notation for Br0 X. It also
shows that in some cases the algebraic part of the Brauer group can be explicitly
calculated.

PROPOSITION 1.6.5. (a) We have Br0 X ⊆ Br1 X ⊆ Br X.

(b) The constant Brauer classes of X lie in the right kernel of the Brauer–Manin
pairing, i.e. X(Ak)

Br0 X = X(Ak).

(c) Let X be a variety over a number field k such that all global invertible functions
over an algebraic closure are constant, i.e. Gm(Xsep) = ksep,×. There is an
isomorphism

Br1 X/ Br0 X ∼= H1(Gk, Pic Xsep).

Proof. For the first statement we only need to prove that constant classes are
algebraic. This follows from the fact that the Brauer group of an algebraically
closed field is trivial, see 1.2.14. The second statement follows from the fact that
the sum of local invariants of A ∈ Br k is always zero, Proposition 1.5.4. The
third statement follows from the Hochschild–Serre spectral sequence for details
one is referred to [46, Corollary 6.7.8].

These Brauer–Manin sets allow us in some cases to prove that a scheme X
does not satisfy the Hasse principle or weak approximation.
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PROPOSITION 1.6.6. Let X be a scheme over a number field k and let B be a subset
of Br X.

» If X(Ak)
B = ∅ then X(k) = ∅. If X(Ak) �= ∅ but X(Ak)

B = ∅ we say that
there is a Brauer–Manin obstruction to the Hasse principle on X.

» If X(Ak)
B � X(Ak) then X does not satisfy strong approximation. We say that

there is a Brauer–Manin obstruction to strong approximation on X.

We call either obstruction an algebraic obstruction if it occurs for a B ⊆ Br1 X.

The Brauer group can also be used to explain the absence of integral points.

DEFINITION 1.6.7. Consider a finite set S of places of a number field k and sup-
pose that S contains the infinite places Ω∞

k . Let X be a separated scheme of
finite type over Ok,S and let B ⊆ Br X be a subgroup of the Brauer group of the
generic fibre X = Xk. The integral Brauer–Manin set associated to B is denoted
by X (Ak,S)

B and defined as

X(Ak)
B ∩X (Ak,S),

where the intersection is taken in X(Ak).

PROPOSITION 1.6.8. » We have the following chain of inclusions

X (Ok,S) ⊆ X (Ak,S)
B ⊆ X (Ak,S) ⊆ X(Ak).

» If X (Ak,S)
B = ∅ then X (Ok,S) = ∅. If also X (Ak,S) �= ∅ we say that there is

a Brauer–Manin obstruction to the S-integral Hasse principle on X .

Note that even if there is no Brauer–Manin obstruction to the integral Hasse
principle, the absence of integral points can in some cases be explained by prov-
ing that X(k) is the empty set.

1.7 The purity theorem and the ramification locus
We have seen that the residue map can be used to compute the Brauer groups
of certain rings. We will now apply residue maps in the setting of schemes; in
Proposition 1.4.5 we have seen that for a regular integral noetherian scheme X
the natural map Br X → Br κ(X) is injective. Not every element of Br κ(X) will
necessarily define an Azumaya algebra on X, but it will always do so on a dense
open subset.

PROPOSITION 1.7.1. Let A ∈ Br κ(X) be a central simple algebra over the function
field of a regular integral noetherian scheme X over a field of characteristic 0. There
exists an open and dense subset U, such that A lies in the image Br U → Br κ(X).

Proof. Consider the inverse filtered system of schemes given by open dense sub-
sets Ui ⊆ X. We know that lim← Ui ∼= Spec κ(X). Corollaire VII.5.9 in [2] tells us
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that for such a system the natural morphism lim→ Br Ui → Br κ(x) is an isomor-
phism. This shows that an element A ∈ Br κ(X) comes from an element of Br U
for some open dense U ⊆ X.

A next question might be whether one can enlarge such an open subset U.
The following two results answer this question in general.

THEOREM 1.7.2 (Purity theorem). Let X be a noetherian regular integral scheme over
a field of characteristic 0 and consider an element A ∈ Br κ(X). There exists an open
subscheme U ⊆ X whose complement is either empty or of pure codimension 1, such
that A lies in the image of Br U → Br κ(X).

Proof. Let U� ⊆ X be an open and dense subscheme such that A lies in the image
of Br U� → Br κ(X). Consider the complement Z� = X\U� and let Z be the union
of the irreducible components of Z� of codimension 1. Then by Corollaire 6.2 in
[30] we see that the map Br(X\Z) → Br(X\Z�) = Br U� is an isomorphism. This
proves that one can take U = X\Z.

For a cyclic algebra A = (g, κ(XK)/κ(X), σ) over the field κ(X) Theorem 1.7.2
can be made explicit; the Azumaya class of A lies in the Brauer group of the
dense open subset where g is defined and invertible. The following lemma al-
lows us to check when this class actually lives in the subgroup Br X.

LEMMA 1.7.3. Consider a smooth and geometrically integral variety X over a field k
satisfying Gm(X̄) = k̄×. Fix a finite cyclic extension K/k, a generator σ ∈ Gal(K/k),
and an element g ∈ κ(X)×.

The cyclic algebra A = (g, κ(XK)/κ(X), σ) lies in the image of Br X → Br κ(X)
precisely if divg = NK/k(D) for some divisor D on XK. If k, and hence K, is a number
field, and X is everywhere locally soluble then A is constant exactly when D can be
taken to be principal.

Proof. This lemma is similar to Proposition 4.17 from [5]. The difference is that
the projectivity assumption is replaced by the weaker condition Gm(X̄) = k̄×.
One can check that under this assumption the proof presented in [5] is still valid.

This result exhibits a general principle. To explicitly write down classes of
Br X one usually uses the inclusion Br X �→ Br κ(X) and starts with a central
simple algebra over the field κ(X). Finding an open subscheme U of X for
which A comes from Br U is usually straightforward. We would want to iden-
tify the irreducible components of the complement Z of U in X on which we can
extend the Azumaya algebra. We have seen in the proof of Theorem 1.7.2 that
we can extend A on any irreducible components of Z of codimension at least 2.
For the irreducible components of Z of codimension 1 we can use residue maps.

THEOREM 1.7.4. Suppose that X is a regular integral noetherian scheme over a field of
characteristic 0. For each point x of X of codimension 1 we have a residue map

∂x : Br κ(X) → H1(κ(x), Q/Z).
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Fix an element A ∈ Br κ(X). The residue ∂x (A) is trivial for all but finitely many
codimension 1 points x ∈ X(1) and the following sequence is exact

0 → Br X → Br κ(X)
�

∂x−−→
�

x∈X(1)

H1(κ(x), Q/Z).

Proof. See Theorem 6.8.3 in [46].

Again, one can show a more general statement for schemes not necessarily
defined over a field, although one might need to exclude the p-primary part of
all groups if there exist codimension 1 points x for which κ(x) is imperfect.

In the proof of Proposition 1.7.1 we have seen the important result that the
Brauer group does not change when we cut out a subscheme of codimension at
least 2. When we cut out a subscheme of codimension 1, the Brauer group can
change and the residue maps allow us to quantify this change.

PROPOSITION 1.7.5. Let D be a geometrically irreducible regular divisor on a regular
integral noetherian scheme X over a field of characteristic 0. Write U for the complement
of D in X. The image of the residue map ∂D : Br U → H1(κ(D), Q/Z) lies in the
subgroup H1

ét(D, Q/Z) and the sequence in (1.2) is exact.

0 → Br X → Br U ∂D−→ H1
ét(D, Q/Z) (1.2)

Proof. See Corollaire 6.2 in [30].

This sequence is only functorial in some cases.

PROPOSITION 1.7.6. Let f : X� → X be a morphism between two regular integral
noetherian schemes over a field of characteristic 0. Let D be a regular integral divisor
on X, such that D� = f−1(D) is also regular and integral. Define U and U� as the
complement of D in X and D� in X� respectively. The diagram in (1.3) is commutative.

0 Br X Br U H1
ét(D, Q/Z)

0 Br X� Br U� H1
ét(D�, Q/Z)

(1.3)

Proof. The rows are exact by Proposition 1.7.5.
Now consider for a regular closed subscheme D of codimension 1 on a regu-

lar scheme X the first terms of the Gysin sequence, see for example Corollary 5.2
in [8],

0 → H2
ét(X, µn) → H2

ét(X\D, µn) → H1
ét(D, Z/nZ).

In the discussion following Lemma 5.4 in [8] we see that the Gysin sequence is
functorial for a morphism f : X� → X for which D� = f−1(D) is also regular and
of codimension 1.
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One can derive the exact sequence in Proposition 1.7.5 from the n-torsion
from the Gysin sequence, i.e.

0 → Br X[n] → Br U[n] ∂D−→ H1
ét(D, Q/Z)[n]

is exact. Note however that the map H2
ét(X\D, µn) → H1

ét(D, Z/nZ) can differ
from the residue map Br U[n] → H1

ét(D, Q/Z)[n] by a sign. Furthermore, the
functoriality of the Gysin sequence carries over to these sequences and we have
the commutative diagram as shown in (1.4).

0 Br X[n] Br U[n] H1
ét(D, Q/Z)[n]

0 Br X�[n] Br U�[n] H1
ét(D�, Q/Z)[n]

(1.4)

To prove the proposition we recall that the Brauer group of a regular integral
noetherian scheme is torsion, see Proposition 1.4.5.

Consider an element A ∈ Br κ(X) and let Z be the union of all irreducible
curves D on X for which ∂D(A) is non-zero. The results in this section show
that A lies in the image of Br U → Br κ(X) for U = X\Z. The closed sub-
scheme Z is called the ramification locus of A.
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