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Introduction

Background

The study of Diophantine equations is concerned with polynomial equations
and their solutions in number fields and number rings. This field of research is
thousands of years old. For example, triplets of integers x, y and z satisfying
the equation x2 + y2 = z2 have been studied in several ancient civilizations. A
first question can be whether a solution to such an equation exists at all. The
existence of solutions is usually proved by providing explicit values satisfying
the equation. Next, one can wonder about how many solutions there are and
if this number is finite or infinite. If on the other hand no solutions exist, one
would want a reason to explain their absence. It is this question with which we
concern ourselves in this thesis.

Let X be a scheme over a number field k for which we want to determine
whether X(k) is empty or not. A usually first step is to consider a completion kv
of k and note that if X(kv) is empty then so is X(k). For some schemes this is
all one needs to consider; the Hasse–Minkowski theorem states that for a hyper-
surface X ⊆ P

n
k defined by a homogeneous quadric equation F ∈ k[x0, . . . , xn]

the set X(k) is non-empty precisely if X(kv) is non-empty for all completions kv
of v. For other schemes over k this need not be the case and several counter-
examples to this principle were published. Then in 1970 Manin [40] introduced
a technique which unified all these results. The technique he put forward is now
known as the Brauer–Manin obstruction.

Up to then all known examples of schemes X over the number field k for
which X(k) was empty were either explained by the absence of local points or by
the Brauer–Manin obstruction. We now however know that the Brauer–Manin
obstruction is not sufficient to explain to the absence of integral points on all
schemes. When we restrict to certain subclasses of schemes, such as the quadric
hypersurfaces, there do exist positive results. For other types of schemes the
study of integral points is still ongoing. This thesis aims to add to the case of
surfaces, i.e. schemes of dimension two. Although there are still a lot of unan-
swered questions rational points on surfaces are relatively well understood. We
have for example the conjecture by Colliot-Thélène and Sansuc [14, page 174]
which states that the Brauer–Manin obstruction is the only one to the Hasse
principle on rational surfaces. So despite the many open problems there is an

v
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INTRODUCTION

understanding of what the final results should be or at least in what type of lan-
guage they should be phrased.

Now let us turn our attention to integral points. There is no standard frame-
work yet for working with integral points on surfaces. Even on log rationally
connected surfaces, which are not unlike the rationally connected surface men-
tioned above, Manin’s technique does not have to exclude the existence of inte-
gral points, as was proved in [16]. In [32] a refined conjecture was put forward,
but for the slightly more complex class of log K3 surfaces no conjectures have
been formulated yet. In [35] new concepts were introduced to explain the ab-
sence of integral solutions. But again, these techniques do not explain all known
counter-examples. In the hope to find other techniques and terminology which
allow us to formulate reasonable conjectures we still need more examples of the
study of integral points on surfaces.

This thesis contributes in that sense to this field of research because one of the
main result is the existence of Brauer–Manin obstructions to the integral Hasse
principle. What makes these examples stand out is that these are of order 5, in
contrast to the previously known examples which are all of order 2 and 3.

Another important result is the uniform bound on the Brauer group of ample
log K3 surfaces. This result will help to understand the relevance of the Brauer–
Manin obstruction to integral points on such surfaces.

Overview

In the first chapter we recall general notions in the theory of the arithmetic of
schemes. We will for example define the ring of adeles Ak associated to a number
field k. Now consider a scheme X over k. We will describe the elements of
the set of adelic points X(Ak) as tuples of points pv ∈ X(kv) indexed by all
completions kv of k. This induces an inclusion X(k) ⊆ X(Ak) which could be
used to prove that X(k) is empty. The celebrated Hasse–Minkowski theorem
can now be rephrased by saying that this technique is all one needs for quadric
hypersurface; consider a projective scheme X ⊆ P

d
k over a number field defined

by a homogeneous quadratic equation. The set X(k) is empty precisely if the
set X(Ak) is empty. One says that quadratic forms satisfy the Hasse principle.

For other schemes it is however possible that the set of adelic points is non-
empty, but that there are no k-points on X. In this case, one could consider the
Brauer group of X. This invariant of schemes can be useful in the following way.
Any element A ∈ Br X defines an intermediate subset

X(k) ⊆ X(Ak)
A ⊆ X(Ak).

If this explains the absence of rational points one says that there is a Brauer–
Manin obstruction to the Hasse principle.

It was recognized in [17] that these techniques can be adapted to explain the
absence of Ok-points for a scheme X defined over Ok. In this case one defines

vi
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the ring of integral adeles Ak,∞ of k. For classes of schemes over Ok we have
the integral Hasse principle which says that X (Ok) is empty precisely if X (Ak,∞)
is empty. Again, if X (Ok) is non-empty then so is X (Ak,∞) since we have an
inclusion X (Ok) ⊆ X (Ak,∞). Also, for any element A ∈ Br X of the Brauer
group of the generic fibre X = Xk we have an intermediate subset

X (Ok) ⊆ X (Ak,∞)A ⊆ X(Ak,∞).

We will use this chain of inclusions to define the Brauer–Manin obstruction to the
integral Hasse principle.

There are many sources which offer a more complete treatise on the arith-
metic of schemes over number rings and number fields. See for example [46]
and the introduction in [32].

In the second chapter we review del Pezzo surfaces. We start by treating the sur-
faces studied by del Pezzo himself in [22] which we will call ordinary del Pezzo
surfaces. The most common extension in the literature of these surfaces are the
generalized del Pezzo surfaces. These surfaces are also smooth and are indistin-
guishable from the ordinary del Pezzo surfaces if one only looks at the geomet-
ric Picard group. These two types of surfaces share many geometric properties,
one of which is the fact that the anticanonical map turns out to be a morphism
into projective space of relatively small dimension for both types of surfaces.
The difference is that this morphism is an isomorphism onto its image for pre-
cisely the ordinary del Pezzo surfaces; for the generalized del Pezzo surfaces it
will merely be a birational morphism onto its image. This brings us to the last
common type of del Pezzo surface to be studied in literature. A singular del Pezzo
surface is the image of a generalized del Pezzo surface under this morphism to
projective space.

This chapter also contains the new concept of peculiar del Pezzo surfaces. This
novel type of surface fits in between the generalized and singular del Pezzo
surfaces in the following manner. A generalized del Pezzo surface X over an
algebraically closed field k admits a birational morphism π : X → P

2 to the pro-
jective plane. Let Y ⊆ P

d be the image of X under the anticanonical morphism
to P

d, i.e. the singular del Pezzo surface associated to X. The composition of π
with the birational inverse of the anticanonical morphism X → Y produces a bi-
rational map Y ��� P

2. Let us consider a splitting of the morphism X → X� → Y
into two birational morphisms. For each such splitting we have a birational
map X� ��� P

2. A peculiar del Pezzo surface is the minimal X� such that X� ��� P
2

is a morphism, i.e. π factors through X�.
We will prove that the generalized del Pezzo surface X, the peculiar del

Pezzo surface X�, and the singular del Pezzo surface Y all determine each other.
The main advantage is that a peculiar del Pezzo surface has a rather direct geo-
metric construction; any peculiar del Pezzo surface is the blowup of the projec-
tive plane in a, possibly non-reduced, zero-dimensional scheme. In this manner,
many geometric properties of X, X� and Y could be described in terms of this

vii
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INTRODUCTION

zero-dimensional scheme on P
2. This allows one to solve problems concerning

del Pezzo surfaces using the language of points and curves on the projective
plane.

In the third chapter we change our attention to log K3 surfaces over a num-
ber field k and specially those of ample type. A particular straightforward way
to construct such a surface U is by considering a projectively embedded ordi-
nary del Pezzo surface X ⊆ P

d and taking the complement of a hyperplane,
i.e. U = A

d ∩ X. We present the results from the author’s work joint with Mar-
tin Bright [10]. The main theorem in this chapter is that the Brauer group of such
surfaces over k are uniformly bounded in the sense that # (Br U/ Br k) < C. We
will show that the constant C only depends on the degree of the number field k.
This result is particularly encouraging with a view towards Várilly-Alvarado’s
conjecture [56, Conjectures 4.5, 4.6] which states that such a bound should exist
for proper K3 surfaces, another class of log K3 surfaces which is disjoint from
the ample log K3 surfaces considered in this chapter.

The fourth chapter presents another novel result of the author. It exhibits Brauer–
Manin obstructions of order 5 to the integral Hasse principle. These examples
are particularly interesting since all other known examples of the Brauer–Manin
obstruction, be it to weak approximation or to any form of the Hasse principle,
are all of either order 2 or order 3.

These examples arise from an element A of order 5 in the Brauer group Br U
of the ample log K3 surface U over Q. Note however that the set of integral
points on the scheme U over Q is not well-defined. It depends on the choice
of model U of U, by which we mean a scheme U over Z whose fibre UQ is
isomorphic to U.

A model is often chosen by writing down explicit equations with integral
coefficients. For example, homogeneous equations with integral coefficients de-
fine a projective scheme over Z. The situation is made even more complicated
by the fact that we are dealing with affine schemes. Again, one could simply
construct an affine scheme by supplying equations which now should be inho-
mogeneous. This was done for example in [16], [32], [35], [38], [15]. In each of
these papers the application of the Brauer–Manin obstruction to the existence of
integral points on certain ample log K3 surfaces is studied. For the examples of
Brauer–Manin obstructions to the integral Hasse principle in this thesis another
approach is used; we will study the set of integral points on a scheme U over Z

which is constructed using geometrical tools. This geometric construction will
allow for a relatively effortless study of the fibres U� of U over a prime � ∈ Z. We
will use this to describe the set of integral adelic points U (AQ,∞) and compute
the subset U (AQ,∞)A corresponding to the class A ∈ Br U of order 5. This sub-
set contains the set U (Z) of integral points on U . We will give several explicit
examples for which U (AQ,∞)A and hence U (Z) is empty.

viii
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Notation and conventions

We list some basic notation and conventions which will reoccur throughout this
thesis. Some concepts will also be introduced in the text, but we include them
here as well for the reader’s convenience.

A ring is always assumed to be unitary. All rings will be commutative unless
stated otherwise.

A division ring is a, not necessarily commutative, ring where each non-zero
element has a multiplicative inverse.

Let R be a, not necessarily commutative, topological ring. A (left) R-module is
an abelian topological group together with a continuous left R-action. A (left) R-
algebra is a, not necessarily commutative, topological ring together with a con-
tinuous left R-action.

Let G be a topological group. A (left) G-module is a topological group with a
continuous left G-action. The notions of abelian G-modules and Z[G]-modules
are equivalent.

Whenever the topology on a ring, module or group is not explicitly stated,
we assume the topology to be discrete.

For a field k we will write k̄ for a fixed algebraic closure and ksep for the sepa-
rable closure of k in k̄. The absolute Galois group of a field k is endowed with the
profinite topology and this topological group is denoted by Gk = Gal(ksep/k).

The absolute Galois group of a finite field Fq is canonically isomorphic to �Z
and it is topologically generated by the Frobenius Frobq : F̄q → F̄q, x �→ xq.

A variety over a field k is a separated scheme of finite type over Spec k.
A curve over a field k is a variety over k of pure dimension 1, it need not be

irreducible, reduced or smooth.
A surface over a field k is a geometrically integral variety of dimension 2

over k.
A curve on a surface over a field k is a closed subscheme of the surface which

is a curve over k.
For a scheme X over a field k we will write XK for the base change X ×k K

for any field extension K of k. The notations Xsep and X̄ will be synonymous
for Xksep and Xk̄, respectively.

For a Cartier divisor D on a scheme X we will denote the associated line
bundle by L(D). It comes with a designated rational section denoted by 1D.
The rational section 1D extends to a global section precisely if D is effective.

ix
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NOTATION AND CONVENTIONS

The complete linear system of a line bundle L on a scheme X is denoted
by |L|X . We might suppress the scheme X in the subscript if it is clear from the
context. For a Cartier divisor D we write |D| for |L(D)|.

An integral variety X has a unique generic point η. The local ring OX,η is a
field which is called the function field of X and is denoted by κ(X).

The codimension of a point x on a scheme X is the dimension of the local
ring OX,x. The set of all points of codimension d is denoted by X(d).

The canonical bundle on a normal scheme X over a field k will be denoted
by ωX . The associated divisor class is KX , and by abuse of notation we also use
this notation to denote a divisor representing this class.

The category of abelian groups and group homomorphisms is denoted by Ab.
The category of schemes and morphisms is denoted by Sch.

x
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