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5 The role of the tachyonic
instability in Horndeski
gravity

5.1 Introduction

In this Chapter we implement the conditions guaranteeing the absence
of tachyonic instabilities, as derived in Chapter 2 and presented in
Appendix 3.8, into the stability module of the Einstein-Boltzmann solver
EFTCAMB [22, 23, 80]. This completes the stability module as it already
encompasses the no-ghost and no-gradient conditions and guarantees
stability on the whole range of linear scales. The already existing no-ghost
and no-gradient, are in fact inherently high-k statements, and as such
cannot guarantee stability on the whole range of scales. The common
practice in Einstein-Boltzmann solvers so far, was to include a set of
mathematical conditions designed to eliminate models with exponential
growth of the perturbations. The latter are ad-hoc conditions derived,
under some simplifying assumptions, at the level of the equation of motion
implemented in the numerical codes. Here we show that this will not
be necessary anymore and one can rely on the rigorous, theoretically
motivated, set of conditions to ensure stability both in the high-k and
low-k regime.

After the implementation we proceeded to study the impact of the
novel conditions on the parameter space of Horndeski [78], as well as
of its subclasses f(R) gravity and Generalized Brans Dicke theories,
identifying several interesting features. Among other things, we confirm
that the constraining power of the stability conditions is significant and
will certainly give an important contribution towards physically informed
cosmological tests of gravity.

The work in this Chapter is based on [34]: The role of the tachyonic
instability in Horndeski gravity with N. Frusciante, S. Peirone and A.
Silvestri. In Sec. 5.2 we review the EFT of DE/MG and the formulation
of the stability conditions. In Sec. 5.3 we present the class of models used
in this study and their implementation in the EFToDE/MG language.
In Sec. 5.4 we illustrate the methodology that allows us to build large
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5 The tachyonic instability in Horndeski gravity

ensembles of models. We also describe the parameter spaces that we use
for studying the impact of the different stability conditions. Finally, in
Sec. 5.5 we present and discuss the results and in Sec. 5.6 we conclude.

5.2 Stability conditions in the Effective
Field Theory of dark energy and
Modified Gravity

In this section we review the general conditions that a theory of grav-
ity needs to satisfy in order to be free from instabilities, i.e. no-ghost,
no-gradient and no-tachyon conditions [109]. As discussed in the Intro-
duction, we include matter fields in our derivation, focusing on CDM,
which is the relevant one for late times.

We employ the EFT of DE/MG framework, which is at the basis
of the numerical code, EFTCAMB, that we use for our analysis. This
framework offers a unified language for a broad class of DE/MG models
with one additional scalar degree of freedom [14, 15]. The corresponding
action is constructed in the unitary gauge as a quadratic expansion in
perturbations and their derivatives, around a flat Friedmann-Lemâitre-
Robertson-Walker (FLRW) background. The different operators that
enter in the action are spatial-diffeomorphism curvature invariants. For
the purpose of this Chapter we restrict to Horndeski gravity, for which
the corresponding EFToDE/MG action reads:

S =

∫
d4x
√
−g
{
m2

0

2
(1 + Ω(t))R(4) + Λ(t)− c(t)δg00

+
M̄2

3 (t)

2

[
(δK)2 − δKµ

ν δK
ν
µ −

1

2
δg00δR(3)

]
+
M4

2 (t)

2
(δg00)2

−M̄
3
1 (t)

2
δg00δK + Lm[gµν , χm]

}
, (5.1)

where m2
0 is the Planck mass, g the determinant of the four dimensional

metric gµν , δg00 the perturbation of the upper time-time component of
the metric, R(4) and R(3) are respectively the trace of the four dimensional
and three dimensional Ricci scalar, Kµν is the extrinsic curvature and
K its trace. Ω, c,Λ,Mi are free functions of time dubbed EFT functions.
Finally, Lm is the matter Lagrangian for all matter fields. In this chapter
we strictly follow the approach of Chapter 3 where we adopt the Sorkin-
Schutz Lagrangian

After decomposing the action (5.1) into the actual perturbations of
the metric and matter fields, and removing spurious d.o.f., one obtains
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5.2 Stability conditions in the EFToDE/MG

the following action for the propagating d.o.f.s in Fourier space:

S(2) =

∫
d3k

(2π)3
dta3

(
~̇χtA~̇χ− k2~χtG~χ− ~̇χtB~χ− ~χtM~χ

)
, (5.2)

where ~χt ≡ (ζ, δd) with ζ the scalar degree of freedom and δd = δρ/ρ̄ the
density perturbations of the matter component. A, B, G, M are 2× 2
time and scale dependent matrices (see Chapter 3 for their expressions)
and dots indicate time derivatives with respect to cosmic time.

The stability requirements can be now obtained from action (5.2). In
the following we will list them, discussing their relevance and range of
applicability:

• no-ghost: Requiring the absence of ghosts translates into Aij being
positive definite. This must be done in the high-k limit as a low-k
instability does not lead to a catastrophic vacuum collapse and is
rather relatable to the Jeans instability, as discussed in [126].

• no-gradient: In order to avoid diverging solutions at high-k one
needs to demand the speed of propagation to be positive, i.e. c2s > 0.
The speed of propagation can be obtained, after a diagonalization
of the kinetic matrix Aij , from the dispersion relations coming from
action (5.2).

• no-tachyon: In the case of a single scalar canonical field, this
amounts to demanding that either the mass term in the Lagrangian
is positive or, in case it is negative, the rate of instability is slower
than the Hubble rate. The latter case corresponds to the Jeans
instability for the scalar d.o.f.. When matter fields are involved,
one needs to study the mass matrix of the Hamiltonian associated
to the canonical fields as illustrated in Chapter 3. For more details
about the nature of the tachyon instability we refer the reader
to [85]. Here, we will focus on the practical condition one has to
impose in order to avoid such instability.

The Hamiltonian associated to the action (5.2) assumes the follow-
ing general form for the canonical d.o.f.s:

H =
a3

2

[
Φ̇2

1 + Φ̇2
2 + µ1(t, k) Φ2

1 + µ2(t, k) Φ2
2

]
,

(5.3)

where Φi are the canonical fields and, for k → 0, µi are the mass
eigenvalues.∗ As discussed in Chapter 3, the above Hamiltonian

∗It is important to note that the canonical field is a result of a number of field
redefinitions, hence is a mix of the scalar and matter d.o.f..
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5 The tachyonic instability in Horndeski gravity

exhibits a tachyonic instability when at low momenta a mass eigen-
value µi becomes negative and evolves rapidly, i.e. |µi| � H2.
Thus, for a theory to be viable, it must hold that |µi| . H2. For-
mulated in this way one also includes theories with instabilities
which evolve over scales much larger than the Hubble scale. This
particular case is typical of clustering fluids, where the instability
corresponds to the well known Jeans instability, which is vital for
structure formation.

While we focused on the scalar d.o.f.s in the EFToDE/MG action, one
can repeat the same expansion for the tensorial part. Starting from the
quadratic action for tensor perturbations, one can then work out the
equivalent conditions to ensure that tensor modes are free from ghost
and gradient instabilities (see e.g. [14, 15, 65, 67, 68]).

From the above discussion, we have five conditions (three for the scalar
sector and two for the tensor one) which need to be imposed in order to
guarantee the stability of a theory at any scale and time.

The relevance of these conditions reflects also in the choice of the
parameter space one has to sample when performing a fit to data. This
was established in [23, 39, 138], where it was shown that they might
dominate over the constraining power of cosmological data.

In Einstein-Boltzmann solvers the no-ghost and no-gradient conditions
are commonly employed while the no-tachyon ones are typically not in-
cluded. The former two conditions guarantee the stability at high-k, thus
in order to guarantee stability on the whole k-spectrum, the codes usu-
ally employ ad-hoc conditions that eliminate models with exponentially
growing modes at low-k. In the EFToDE/MG framework, these addi-
tional requirements are typically worked out at the level of the dynamical
equation for the perturbations of the scalar field. While in action (5.1)
the scalar field is hidden inside the metric degrees of freedom, one can
leave the unitary gauge by the Stückelberg trick and make explicit the
perturbations associated to the scalar field. This amounts to an infinites-
imal time coordinate transformation t → t + π, with the scalar degree
of freedom being described by π and obeying the following equations of
motion:

Aπ′′ +Bπ′ + Cπ + k2Dπ +H0E = 0, (5.4)

where A,B,C,D,E are functions of time and k and their explicit expres-
sions can be found in [80]. H0 is the present day value of the Hubble
parameter and primes are derivatives with respect to conformal time.

The corresponding mathematical conditions are [80]:
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5.3 Models

• if B2 − 4A(C + k2D) > 0 then

−B ±
√
B2 − 4A(C + k2D)

2A
< H0 , (5.5)

• if B2 − 4A(C + k2D) < 0 then

−B
2A

< H0 . (5.6)

The no-ghost and no-gradient conditions, as well as the mathematical
ones, are implemented in the publicly available version of the Einstein-
Boltzman solver EFTCAMB [22, 80], respectively under the name of
physical and mathematical (math) conditions. Although it would be rea-
sonable to add the no-tachyon conditions under the umbrella of physical
conditions, in this Chapter we stick to the original convention and retain
the term physical for the pair of no-ghost and no-gradient. We always
refer separately to the no-tachyon one as the mass condition.

In this work, we extend the stability module of EFTCAMB to include
the mass conditions in terms of the mass eigenvalues µi and proceed
to study the impact of the latter on the parameter space of different
scalar-tensor theories within Horndeski gravity. Our first goal is to show
that the physical plus mass conditions form a complete set of physically
motivated, rigorously derived requirements that do guarantee stability on
the whole range of linear cosmological scales. We also compare the mass
and math conditions in terms of performance, showing that the latter
can be safely disregarded in favor of the former. Finally we study the
effects of the different conditions on the parameter space of the different
theories, identifying some noteworthy features.

5.3 Models

We consider several classes of scalar-tensor models of gravity:

• f(R) [11]: specifically designer f(R) [12, 81] with a wCDM back-
ground. For any value of the equation of state, w0, the different
models reproducing the corresponding expansion history can be
labeled by the present value of the Compton wavelength of the
scalaron, namely B0 = B(z = 0), where

B(z) =
fRR

1 + fR

HṘ

Ḣ
. (5.7)

Hence we have a two-dimensional model parameter space, i.e.
{w0, B0}. These models can be fully mapped in the EFToDE/MG
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5 The tachyonic instability in Horndeski gravity

language, and the only corresponding non-zero EFT functions are:

Ω = fR and Λ =
m2

0

2 (f −RfR).

• Generalized Brans Dicke (GBD): non-minimally coupled scalar-
tensor theories with a canonical kinetic term. f(R) gravity is a
sub-class of these theories, with a fixed coupling to matter. When
one allows the coupling to vary, a representative class is that of
Jordan-Brans-Dicke (JBD) models [139]. These models correspond,
in the EFToDE/MG language, to non-zero {Ω,Λ, c}. In this work
we adopt the so-called ‘pure EFT’ approach, where we simply
explore several different choices for {Ω,Λ, c} as functions of time,
thus creating a large ensemble of GBD models. For more details
on this approach we refer the reader to [140, 141].

• Horndeski (Hor): the full class of second order scalar-tensor theories
as identified by Horndeski [78]. Within the EFToDE/MG formalism,
we can explore them by turning on the full set of EFT functions in
action (5.1), i.e. {Ω,Λ, c,M4

2 , M̄
3
1 , M̄

2
3 }. We also consider separately

the subset of Horndeski for which the speed of sound of tensor is
equal to that of light, c2t = 1. Most of the modifications happen in
the scalar sector of the theory, hence we refer to this class as HS .
This specific class has become of great interest after the detection of
the gravitational wave GW170817 and its electromagnetic counter
part GRB170817A [142–144], which has set tight constraints on
the speed of propagation of tensor modes. We can create large
ensembles of these models in the pure EFToDE/MG approach, by
turning on the following EFT functions: {Ω,Λ, c,M4

2 , M̄
3
1 }.

5.4 Methodology

We aim at studying in detail the way different sets of stability conditions
affect the parameter space of the models under consideration. We always
impose the set of physical stability conditions, i.e. no-ghost and no-
gradient, as a baseline; on top, we separately switch on the checks for
either the math (5.5 or 5.6) or the mass condition. For one class of
models, namely f(R), we consider an additional condition, as desrcibed
in the following.

f(R)-gravity is among the models for which the stability conditions have
been extensively investigated [12, 81, 145–147]. Besides the usual no-ghost
and no-gradient conditions, an additional important requirement has
been identified in the literature by demanding the high curvature regime
to be stable against small perturbations. This translates into requiring a
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5.4 Methodology

positive mass squared for the scalaron, in the limit of |RfRR| � 1 and
fR → 0

m2
fR ≈

1 + fR
3fRR

≈ 1

3fRR
, (5.8)

which leads to the well known fRR > 0 constraint, often dubbed as the
tachyon condition for f(R). Since such condition has been obtained under
specific hypothesis, it does not coincide analytically with the general
no-tachyon conditions discussed in Sec. 5.2. In the analysis of f(R), we
include this latter condition as one of the case studies, to compare with
the mass and math ones.

To study the viable parameter space of all the models under the
different sets of stability conditions, we use the numerical framework
adopted in [140, 141]. It consists of a Monte Carlo (MC) code which
samples the space of the EFT functions, building a statistically significant
ensemble of viable models. To compute wether a sampled model is stable
(and thus accepted by the sampler) or not, we interface the MC code
with the publicly available Einstein-Boltzmann solver EFTCAMB [22,
23]. Starting from the background solution, the code undergoes a built-in
check for the stability of the model.

In EFTCAMB, f(R) is implemented via the so-called ‘mapping’ mode,
i.e. as a specific model after being mapped to the EFToDE/MG lan-
guage [80]. Currently both the Hu-Sawicki model [82] and designer f(R)
models are available. For our study we focus on the latter one, choosing a
wCDM background. For the remaining three classes of models we adopt
the ‘pure EFT’ approach, where we explore many different choices for
the time-dependence of the corresponding EFT functions. Specifically,
following [140, 141, 148], we parametrize the relevant EFT functions
using a Padé expansion:

f(a) =

∑N
n=1 αn (a− a0)

n−1

1 +
∑M
m=1 βm (a− a0)

m
, (5.9)

where the truncation orders are given by N and M . The coefficients
αn and βm are sampled with uniform prior in the range [−1, 1] and we
verified that the results are not sensitive to the prior range. Furthermore,
the convergence of the results is reached at N +M = 9, meaning that
each EFT function has 9 free parameters. We consider, with equal weight,
expansions around a0 = 0 and a0 = 1 to represent thawing and freezing
models, respectively. For further details about the sampling procedure
we refer the reader to [140, 141].

In this pure EFToDE/MG approach any choice of Λ and Ω produces a
different background expansion history, which can be solved for using the
Friedmann equation, as explained in [140]. The remaining background
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5 The tachyonic instability in Horndeski gravity

EFT function, c, can be determined in terms of Λ,Ω and H(a), and does
not need to be sampled independently.

Following this procedure, we build large numerical samples of viable
models for the GBD, HS and Hor classes reaching a samples size of ∼ 104

accepted models.
For f(R) gravity we study the impact of stability conditions on the

{w0, B0} parameter space, comparing also to previous results [23]. For
the remaining classes of models the dimension of the parameter space
is very high (e.g. GBD has 27 additional parameters) and, furthermore,
the individual parameters in the Padé expansion do not have any direct
physical meaning. For such reasons we look at their predictions for the
phenomenology of Large Scale Structure, studying the cuts of different
stability criteria on the, physical, space of the phenomenological functions
(µ,Σ) defined in the usual way [149]:

k2Ψ = −4πGµ(a, k)a2ρ∆ , (5.10)

k2(Φ + Ψ) = −8πGΣ(a, k) a2ρ∆ , (5.11)

where ρ is the background matter density, ∆ = δ + 3aHv/k is the
comoving density contrast, and Ψ and Φ are the scalar perturbations,
respectively, to the time-time and spatial components of the metric in
conformal Newtonian gauge. From their definition, µ = Σ = 1 in ΛCDM,
but in general they are functions of time and scale. The function µ
directly affects the clustering and the peculiar motion of galaxies, hence
it is well constrained by galaxy clustering and redshift space distortion
measurements [150–152]. On the other hand, Σ affects the geodesics
of light and is directly measured by Weak Lensing, Cosmic Microwave
Background and galaxy number counts experiments [152–154].

The EFTCAMB software allows us, in principle, to evolve the full
dynamics of linear perturbations and extract the exact form of Σ and
µ for each model in our ensembles. This however would be highly time-
consuming, hence we opt for the Quasi Static (QS) analytical expressions
of these functions, worked out from the modified Einstein equations
after reducing them to an algebraic set (in Fourier space) by neglecting
time derivatives of the scalar degrees of freedom [15, 155]. In [141] the
authors have compared the QS and exact (Σ, µ) for the same ensembles
of models as those considered in this Chapter, finding that the agreement
is excellent for all scales below the typical Compton wavelength of the
sampled model.

In order to visualize the effect of different stability cuts, we show
the predictions of a given ensemble of models in the (Σ, µ) plane for a
given value of scale and redshift. We set our output scale at k = 0.01h
Mpc−1, which has been shown to be safely inside the Compton scale for
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5.5 Results

Figure 5.1: The viable (B0, w0) parameter space of designer f(R) gravity on a wCDM
background. We plot the regions allowed by different stability conditions. The physical
conditions are imposed as a baseline in all cases and cut the lower region highlighted
by black lines. On top of them, we apply separately the math (left panel), fRR > 0
(central panel) and the mass (right panel) conditions. The corresponding viable regions
are indicated with solid colors, respectively in red for math, blue for fRR > 0 and green
for mass.

all models considered in the present analysis [141]. For this scale, we
show the results at a given value of the scale factor that we choose to be
a = 0.9, corresponding to a redshift z ≈ 0.1. This choice is more realistic
than a = 1 in terms of measurements from upcoming surveys.

5.5 Results

We now proceed to discuss the outcome of our analysis, focusing on
the cuts in the different parameter spaces considered. When studying
the GBD and Horndeski classes, through the large ensemble of models
generated via the Monte Carlo sampling, we also analyze the acceptance
rates of models when the different conditions are turned on.

5.5.1 Designer f(R) on wCDM background

We studied designer f(R) on a wCDM background, considering flat priors
on w0 ∈ [−1.1,−0.5] and Log10B0 ∈ [−5, 0], while fixing the cosmological
parameters to Planck 2015 ΛCDM values [128]. We also tested that our
results do not change when assuming the values from Planck 2018 [156],
as they are mostly compatible with the 2015 release.

In Fig. 5.1 we show the impact of the math, fRR > 0 and mass
conditions on the (B0, w0) space. As it was already known, the physical
conditions do not constrain B0 while they clearly constrain the equation
of state to w0 > −1.04. Going beyond the baseline, it is evident that the
math condition constrains the parameter space most severely, pushing
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5 The tachyonic instability in Horndeski gravity

Figure 5.2: Allowed parameter space for designer f(R) gravity with wCDM background,
when applying the physical conditions jointly with the mass conditions considered sepa-
rately, i.e. the µ1 (blue) or µ2 (yellow) stability cuts. In green we show the combined
viable region.

w0 towards w0 = −1 for values of B0 . 10−2. On the other hand,
fRR > 0 and mass condition have a very similar, and less severe, impact.
We have studied the cosmology of a number of models excluded by the
math conditions but allowed by the fRR and mass conditions. They all
exhibited stable behaviors, hence we infer the math conditions for f(R)
are too stringent.

The viable parameter space of the same designer f(R) was studied
in [23] under the no-ghost, no-gradient and the fRR > 0 requirements.
Their findings are in line with our results. Let us now look at Fig. 5.2,
where we consider separately the constraints coming from the individual
mass eigenvalues. One thing that can be noticed, is that both mass
conditions are important, cutting regions of the parameter space that are
partially complementary. The combined effect is similar to that of the
fRR condition, and this is a direct result of the mixing of the scalar and
matter d.o.f., which plays an important role in the determination of the
full no-tachyon conditions.

5.5.2 Horndeski

The results for Generalized Brans Dicke models (GBD), Horndeski with
c2t = 1 (HS) and full Horndeski (Hor) are presented as marginalized 2D
and 1D distributions for the phenomenological functions Σ− 1 and µ− 1,
at a = 0.9 and k = 0.01hMpc−1. In all cases the sampling was done
till 104 models were accepted by the set of stability conditions under
consideration.
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5.5 Results

Figure 5.3: Marginalized 2D and 1D distributions for the phenomenological functions
Σ − 1 and µ − 1 for the GBD models, computed at a = 0.9 and k = 0.01hMpc−1. In the
two panels we show the results of the different stability cuts: on the left physical+math
and on the right physical+mass. Black shaded points represent the values computed for
the single sampled models, while the contour lines cut the 2D distribution at 10%, 20%,
. . . , 90% of the total sample. These results are computed within the QSA.

In Fig. 5.3 we show the marginalized 2D and 1D distributions for (Σ, µ)
for the ensemble of GBD models, when applying the math and mass
stability cuts, on top of the usual physical baseline. It becomes instantly
clear that the mass condition has a stronger impact on the plane than
the math conditions. While the math conditions generally allow models
satisfying the relation (µ− 1)(Σ− 1) > 0, the mass conditions break the
degeneracy and allow purely models with (µ− 1), (Σ− 1) < 0.∗ In terms
of EFT functions this result translates into the mass conditions requiring
Ω > 0, since in the QSA Σ ∼ 1

1+Ω . The difference between mass and
math conditions is quite relevant when analyzed in the (Σ, µ) plane, yet
in terms of acceptance rates, the two conditions do not differ much, as
shown in Table 5.1. In retrospect, one notices that in fact the bulk of
viable models were in the (µ− 1), (Σ− 1) < 0 quadrant already for the
math conditions case. Still, it is noteworthy that the mass conditions in
GBD models forbid more distinctively the first quadrant.

In Fig. 5.4 the same combinations of stability conditions are studied
in the phenomenological plane of HS and Hor models. In this case, the
difference between the mass and math conditions is not so evident in
terms of allowed regions in the (Σ, µ) plane. Nevertheless, we can notice
that the math conditions allow the ensembles of models to have a tail
in the second quadrant (µ > 1 and Σ < 1), while this tail is drastically
cut by the requirement of mass stability. In fact the models lying in the
second quadrant are reduced from ∼ 1% in the former case to ∼ 0.1% in

∗This boundary when imposed by the math condition is rather sharp, while
imposed by the mass condition can be violated by a statistically negligible number of
models (0.01% of the total sample).

145



5 The tachyonic instability in Horndeski gravity

Figure 5.4: Marginalized 2D and 1D distributions for the phenomenological functions
Σ − 1 and µ − 1 for HS (top panels) and Hor (bottom panels), computed at a = 0.9 and

k = 0.01hMpc−1. In the two panels we show the results of the different stability cuts: on
the left physical+math and on the right physical+mass. Black shaded points represent
the values computed for the single sampled models, while the contour lines cut the two
dimensional distribution at 10%, 20%, . . . , 90% of the total sample. These results are
computed within the QSA.

the latter.

As we discussed in Sec. 5.4, we adopt a Monte Carlo sampling tech-
nique to create ensembles of models that obey different sets of stability
conditions. It is quite informative to compare the acceptance rates for
different stability conditions and we present their percentage values in
Table 5.1. It can be immediately noticed that the baseline of physical
conditions has a quite strong impact on Horndeski models, a result pre-
viously discussed in [141]. Focusing on the mass and math conditions
a general trend emerges, the mass conditions are more stringent than
the math conditions. For GBD and HS , this effect is stronger than for
Hor where the impact of the two conditions is fairly similar. Finally,
let us notice that, while in the (Σ, µ) plane of HS and Hor there were
no striking differences between mass and math conditions, looking at
the acceptance rates we do see some tangible differences. This can be
easily understood in terms of the large number of free EFT functions
that describe these models. In other words, mass conditions do cut more
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5.6 Conclusions

GBD (%) HS (%) Hor (%)

physical 18 8.3 1.2

physical + math 15 1.9 0.3

physical + mass 13 1.1 0.2

Table 5.1: Acceptance rates for the GBD, HS and Hor classes of models as subjected to
the different sets of stability requirements: physical, physical + math and physical + mass.

models than math conditions, yet when we look at the phenomenology,
i.e. at the (Σ, µ) plane, there is high degeneracy among the models
and we can not associate specific regions to these cuts. This is in stark
contrast to GBD where the additional cut contributed by mass has a
specific direction in the (Σ, µ) plane due to the fact that mainly one EFT
function, Ω, is being constrained.

5.6 Conclusions

In the final work presented in this thesis we test the impact of the condi-
tions for the avoidance of tachyon instabilities in scalar-tensor theories,
concluding the line of work. These conditions are crucial to guarantee
the stability of theories on the whole range of linear scales, complement-
ing the no-ghost and no-gradient conditions. The latter are the ones
most commonly implemented in Einstein-Boltzmann solvers, but being
intrinsically high-k conditions, they can not guarantee stability on all
scales. So far this shortcoming was addressed with a set of mathematical
conditions built on the additional scalar field equation, in such a way to
filter out models with exponentially growing solutions that would have
escaped the no-ghost and no-gradient check.

A complete derivation of the mass condition in Horndeski, and more
general modified gravity models, was carried out in Chapter 2 and we
have used those results as the basis for our analysis, implementing the
corresponding conditions in the stability module of EFTCAMB. We then
have carried out an extensive study of the impact of the new conditions
on the parameter space of Horndeski gravity, in particular comparing the
corresponding cuts to those previously contributed by the mathematical
conditions, as well as the improvement brought upon the incomplete set
of no-ghost and no-gradient.

Overall, we show that, as expected, the mass condition provides the
missing constraining power at low-k. Combined with the no-ghost and
no-gradient, they form a complete set of conditions that guarantee the
stability of any theory over all cosmological scales. Additionally, while

147



5 The tachyonic instability in Horndeski gravity

the mathematical conditions depended on a number of simplifying as-
sumptions about the nature of the dynamical equation for the extra
degree of freedom, the mass conditions are more rigorously defined from
a physical point of view. They are obtained from the stability analysis of
the full action and do not rely on any such simplifying assumptions.

In our analysis, we considered a set of different scalar-tensor theories,
as implemented in EFTCAMB, namely f(R) gravity, Generalized Brans
Dicke (GBD) models, the full Horndeski theory, as well as the subset
of it that does not alter the speed of tensor modes. In all cases, we
used the combination of no-ghost and no-gradient as the baseline and,
on top of that, compared the performance of mathematical versus mass
conditions. As mentioned above, the mass condition proves to be a very
reliable substitute of the mathematical condition in all cases. On top of
this, there are some features peculiar to specific models that are worth
summarizing. One of the most evident results of this work is that, in GBD
models, the mass condition removes more efficiently models away from
the Σ , µ > 1 region, clearly cutting the tail of models that were allowed
by the mathematical conditions. This indicates that GBD models with
either µ and/or Σ bigger than one would develop a tachyon instability.
While this feature is interesting and clearly stands out in the (Σ, µ) plane
of Fig. 5.3 it is important to notice that, from the acceptance rates in
Table 5.1, the tail is a small fraction of the whole ensemble of models
which tend to live in the Σ < 1 , µ < 1 quadrant. Interestingly the latter
would be severely constrained if one imposes consistency with local tests
of gravity, as shown in [141].

It is also worth stressing that in the case of f(R) gravity, we compared
the mass condition not only with the mathematical one, but also with
the popular fRR > 0 condition, which is based on the stability of the
theory in the high-curvature regime. As shown in Fig. 5.1, we found
that the ad-hoc mathematical condition is too stringent in the f(R) case,
while the fRR > 0 and mass ones contribute an almost equivalent, and
more generous, cut to the parameter space.

For the full Horndeski class, as well as the sub-class obeying c2t = 1
at all times, we do not report significant differences between the impact
of mathematical and mass conditions. But we highlight that the mass
condition completes the no-ghost and no-gradient into a reliable set
of conditions that guarantees stability on all linear scales, while being
physically informed.

As we have shown, the combination of no-ghost, no-gradient and no-
tachyon forms a theoretically rigorous and practically important set of
conditions that guarantees stability on all linear cosmological scales.
Finally, let us notice that, while in this work we focused on Horndeski
gravity, the mass conditions derived in Chapter 2 and implemented in

148



5.6 Conclusions

the stability module, can cover beyond Horndeski models as well.
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