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4 de Sitter limit analysis for
dark energy and modified
gravity models

4.1 Introduction

In the previous Chapter we presented a choice of variables which allowed
us to obtain a Hamiltonian of the form:

H(Φi, Φ̇i) =
a3

2

[
Φ̇2

1 + Φ̇2
2 + µ1(t, k) Φ2

1 + µ2(t, k) Φ2
2

]
, (4.1)

where Φi(t, k) are two linear combinations of the physical fields ζ(t, k), the
curvature perturbation, and δρd(t, k), the perturbation of the dust energy
density. This Hamiltonian was then the basis from which we constructed
the conditions guaranteeing the absence of tachyonic instabilities on
large scales. As the final set of variables is a mix of the initial, gauge-
dependent quantities, one might naturally wonder if a different choice
of variables would yield different results. Thus we wished to study this
question and compare the gauge-dependent variables with a choice of
gauge-independent variables.

In order to get an insight into the dependence of the mass on the
choice of variables we will choose a gauge invariant combination which
will describe the perturbations. Then, we will make a change of coor-
dinates to this new field, δφ, and proceed to study the mass. In order
to simplify the comparison we will choose to study the final-state de
Sitter (dS) background. This is a reasonable choice as our universe
already experiences a dark-energy dominated phase. On doing this, we
will employ the EFToDE/MG formalism which allows for late-time dS
solutions citeCreminelli:2006xe. Since we restrict our attention to the dS
background, we will have one, and only one, propagating scalar d.o.f.,
because matter fields are sub-dominant. Then, it is possible to exactly
define the speed of propagation and the mass of this gauge-invariant field
representing δφ. Even though the value for the mass of the dark energy
field is exact only on the dS background, it is expected to be a reliable
approximation for its value at late times, i.e. when z ' 0.
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4 de Sitter limit analysis

Besides the mass we will proceed to investigate, during the dS stage, the
behaviour of the speed of propagation in a model independent fashion. On
doing so we need to consider the limit k/(aH)� 1 as a potential gradient
instability might manifest itself at those scales. However, on dS, as time
progresses one needs to consider increasingly larger values for k, as a
grows exponentially (whereas H remains constant). Subsequently, as the
system evolves, the same modes will be rapidly stretched to cosmological
scales. Now, in general, we find that the speed of propagation for the dark
energy perturbation does not necessarily vanish, even for the Horndeski
subclasses of theories. In fact, the numerical value of the speed of
propagation is model dependent, and its non-negativity can be set as
a constraint in order to have a final stable dS. If this constraint is not
satisfied (i.e. c2s < 0) then we will expect that the late time evolution
cannot evolve towards a dS background even though at the level of the
background the dS case is an attractor solution. On the other hand, for
lower value of k/(aH), the mass of the mode will play a more important
role. In this case one needs to impose, in general, a constraint on the
value of the mass for the dark energy perturbation field in order to obtain
a stable dS.

A final source of instability might show up for those theories which
exhibit a small or vanishing speed of propagation. In this case the sub-
leading order term in the high k/(aH) expansion becomes relevant and
can potentially lead to unstable solutions. We will discuss this in depth
and we will present the necessary constraints in order to avoid such
instability.

The work in this Chapter is based on [33]: de Sitter limit analysis
for dark energy and modified gravity models with A. De Felice and N.
Frusciante. In Sec. 4.2 we give a general overview of the EFToDE/MG
approach for dark energy and modified gravity and we introduce a gauge
invariant quantity to describe the dark energy field. In Sec. 4.3 we show
that the parameter space identified by imposing the no-ghost condition
and a positive speed of propagation for scalar modes does not change
when considering different quantities describing the dynamics of the extra
d.o.f.. In Sec. 4.4, we discuss the dS limit by using the EFToDE/MG
framework, we discuss the evolution of the extra scalar d.o.f. on different
regime, i.e. low and large k, by deriving the speed of propagation and the
mass term. In Sec. 4.5, in order to make our results concrete we apply
them to specific well known models, such as K-essence, Galileons and
low-energy Hořava gravity. Finally, in Sec. 4.6 we summarize and discuss
potential future steps.
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4.2 Modifying General Relativity

4.2 Modifying General Relativity

In the present analysis we will employ a general and unifying approach to
parametrize any deviation from General Relativity obtained by including
one extra scalar d.o.f. in the action, i.e. the effective field theory for
Dark Energy and Modified Gravity [14, 15]. For the present purpose the
EFToDE/MG approach has the advantage of keeping our results very
general as all the well known theories of gravity with one extra scalar
d.o.f. can be cast in the EFToDE/MG framework[14, 15, 37, 39, 65].

The EFToDE/MG is constructed in the unitary gauge, i.e. uniform
time hypersurfaces correspond to uniform field hypersurfaces. This
results in the scalar perturbation being absorbed by the metric. Let us
now introduce the action which can be constructed by solely geometric
quantities. The general form is:

S(2) =

∫
d4x
√
−g
[
m2

0

2
(1 + Ω(t))R(4) + Λ(t)− c(t)δg00 +

M4
2 (t)

2
(δg00)2

−M̄
3
1 (t)

2
δg00δK − M̄2

2 (t)

2
(δK)2 − M̄2

3 (t)

2
δKµ

ν δK
ν
µ

+
M̂2(t)

2
δg00δR(3) +m2

2(t) (gµν + nµnν) ∂µg
00∂νg

00

]
, (4.2)

where as usual m2
0 is the Planck mass, gµν and g are respectively the

four dimensional metric and its determinant, δg00 = 1 + g00, whereas
R(4) and R(3) are respectively the trace of the four dimensional and three
dimensional Ricci scalar, nµ is the normal vector, Kµν and K are the
extrinsic curvature and its trace. All the operators appearing in the action
are invariant under the time dependent spatial-diffeomorphisms and they
are expanded in perturbations up to second order around a flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) background. The notation δA =
A−A(0) indicates the linear perturbation of the operator A with A(0) its
background value. The functions appearing in front of each operator are
unknown functions of time and usually they are named EFT functions. In
particular, {Ω(t), c(t),Λ(t)} are called background EFT functions because
these are the only functions that appear in the background Friedmann
equations. Finally one can opt to work directly with the field perturbation
by restoring the full diffeomorphism invariance, through the Stückelberg
technique. This step is useful either when the gauge is not well defined
or when studying the evolution of the perturbations with numerical tool,
such as EFTCAMB/EFTCosmoMC [eftweb, 22, 23, 80].

For the present purpose we adopt the action (4.2), which includes
theories like Horndeski/Generalized Galileon [78, 79], beyond Horndeski
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4 de Sitter limit analysis

(GLPV) [66] and low-energy Hořava gravity [35, 36, 55], without the new
operators presented in Chapter 2.

Now, let us use the Arnowitt-Deser-Misner (ADM) formalism [19] and
expand the line element around the flat FLRW background. Keeping
only the scalar part of the metric, we get

ds2 = −(1+2δN)dt2+2∂iψdtdx
i+[a2(1+2ζ)δij+2∂i∂jγ] dxidxj , (4.3)

where as usual δN(t, xi) is the perturbation of the lapse function, ∂iψ(t, xi),
ζ(t, xi) and γ(t, xi) are the scalar perturbations respectively of Ni and
of the metric tensor of the three dimensional spatial slices, hij , and a(t)
is the scale factor. In the following, since we choose the unitary gauge,
we also set γ(t, xi) = 0.

We have shown in Chapter 3 that the above EFToDE/MG action can
be written as:

S(2) =

∫
dtd3xa3

{
−F4(∂2ψ)2

2a4
− 3

2
F1ζ̇

2 +m2
0(Ω + 1)

(∂ζ)2

a2
− ∂2ψ

a2

(
F2δN − F1ζ̇

)
+ 4m2

2

[∂(δN)]2

a2
+
F3

2
δN2 +

[
3F2ζ̇ − 2

(
m2

0(Ω + 1) + 2M̂2
) ∂2ζ

a2

]
δN

}
, (4.4)

where we have defined

F1 = 2m2
0(Ω + 1) + 3M̄2

2 + M̄2
3 ,

F2 = HF1 +m2
0Ω̇ + M̄3

1 ,

F3 = 4M4
2 + 2c− 3H2F1 − 6m2

0HΩ̇− 6HM̄3
1 ,

F4 = M̄2
2 + M̄2

3 , (4.5)

and H ≡ ȧ/a is the Hubble function and δN and ψ are auxiliary fields.
Varying the action with respect to δN and ψ yields the Hamiltonian and
momentum constraints:

2k2ζ
(

2M̂2 +m2
0(Ω + 1)

)
a2

+ 3F2ζ̇ +
8m2

2k
2δN

a2
+ F2

k2ψ

a2
+ F3δN = 0 ,

δNF2 − F1ζ̇ −
F4

a2
k2ψ = 0 . (4.6)

Finally, solving for the auxiliary fields one can eliminate them from the
action, hence obtaining the following Lagrangian, written in compact
form in 3D Fourier space:

S(2) =

∫
d4x a3

{
Lζ̇ζ̇(t, k)ζ̇2 − k2

a2
G(t, k)ζ2

}
, (4.7)
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4.2 Modifying General Relativity

where

Lζ̇ζ̇(t, k) =
A1(t) + k2

a2A4(t)

A2(t) + k2

a2A3(t)
, G(t, k) =

G1(t) + k2

a2G2(t) + k4

a4G3

(A2(t) + k2

a2A3(t))2
,

(4.8)
are respectively the kinetic and gradient term. The Ai(t) and Gi(t)
coefficients are listed in Appendix 4.7 for a general FLRW background.
In the next section they will be specified in the dS limit.

Besides the curvature perturbation ζ(t, k) one can choose to undo the
unitary gauge and work directly with the Stückelberg field, namely π,
by performing a broken time translation t → t − π(t, ~x). In order to
obtain an unperturbed metric after the translation one needs to recognize
that ζ = −Hπ [131]. However, these fields are not gauge invariant. In
this work, we will define a gauge invariant quantity which will describe
the evolution of the dark energy field at level of perturbations. Let us
introduce the one-form

nµ =
∂µφ√

−gαβ∂αφ∂βφ
=

δ0
µ√
−g00

, (4.9)

which would define the 4-velocity along the field-fluid. On the other hand,
looking for deviation from General Relativity, when the matter fields are
negligible we can can rewrite the Einstein equations as follows

m2
0Gµν = Tφµν . (4.10)

This equation can always be written, and the modifications of gravity
have been named in terms of its effective stress-energy tensor, Tφµν ,
independently of the EFToDE/MG which we are considering. Therefore,
we can define

ρφ ≡ Tφµν nµnν = m2
0Gµνn

µnν , (4.11)

where the second part of this equation holds on-shell, that is, on imple-
menting the equations of motion (at any order). Notice that the definition
given in eq. (4.11) is covariant and, as such, valid even at non-linear
order, and does not depend on the choice of the gauge. Since we want
the results to match a more phenomenological approach we will define,
at linear order the following gauge invariant combination to describe the
dark energy field, namely

δφ ≡ δρφ
ρ̄φ

+
˙̄ρφ
ρ̄φ

[
ψ − a2 d

dt

( γ
a2

)]
, (4.12)

where, using the background Friedmann equation from action (4.2) and
assuming that no matter fields are present, on the background we can
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4 de Sitter limit analysis

define

ρ̄φ = 2c− Λ− 3m2
0H

2 (Ω + aΩ,a) , (4.13)

and
δρφ ≡ ρφ − ρ̄φ . (4.14)

We notice here that δφ reduces to δρφ/ρ̄φ in the Newtonian gauge. Comma
a is the derivative with respect to the scale factor.

We will find the equation of motion for δφ which in general assumes
the following from

δ̈φ + µ3(t, k) δ̇φ + µ6(t, k) δφ = 0 . (4.15)

The coefficient of δ̇φ is the friction term and its sign will damp or enhance
the amplitude of the field fluctuations. While µ6 contains both the speed
of propagation of the dark energy field and the information about of the
mass which, in principle, can be both negative or positive. The above
equation will allow us to define the mass of the dark energy perturbation
field, which in the next section will be exact on the de Sitter background,
and approximate at low redshifts, z ' 0.

4.3 The Ghost and Gradient instabilities

By studying the curvature perturbation field, one can immediately work
out the stability conditions, namely the no-ghost condition, the positive
speed of propagation and the tachyonic condition as weas done in Chapter
2 and 3. The first two conditions, i.e. the combination of no-ghost and
positive-squared-speed conditions, give equivalents constraints for both
the ζ and δφ fields, in the high-k regime [126]. We will show it in the
following. Let us consider the action (4.7) and the field transformation

δφ = α3(t, k)ζ̇ + α6(t, k)ζ. (4.16)

We will show in the following section that it is possible to derive this
relation and find explicit expressions for {α3, α6}. For the moment we
assume that such an expression exist, since we have only one independent
d.o.f. (the curvature perturbation, ζ), so that any other field (for example
δφ in this case) can be constructed out of a linear combination of ζ and

its first time derivative ζ̇. Then, on introducing an arbitrary function,
E(t, k) ( note, it is not a field), we can construct the action

S(2) =

∫
d4x a3

{
Lζ̇ζ̇(t, k)ζ̇2 − k2

a2
G(t, k)ζ2 − E(t, k) (δφ − α3ζ̇ − α6ζ)2

}
,

(4.17)
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4.3 The Ghost and Gradient instabilities

and it is clear that δφ is a Lagrange multiplier so that we can use its
own equation of motion to remove it from the action. On performing
this step we can see that eq. (4.17) reduces to eq. (4.16). This step
may look like superfluous, but it allows us to change the dynamical field
variable in the Lagrangian from ζ to δφ. Thus, since E is a free function,
if α3 6= 0, on choosing it to be E = Lζ̇ζ̇/α2

3, we immediately see that the

kinetic quadratic term proportional to ζ̇2 disappears and the action can
be rewritten, after integrations by parts, as

S(2) =

∫
d4x a3

{[
(H (ηL − η3 + η6 + 3)α3 − α6)α6Lζ̇ζ̇

α2
3

− k2

a2
G

]
ζ2

+

(
−

2Lζ̇ζ̇ δ̇φ
α3

+
(−2H (ηL − η3 + 3)α3 + 2α6)Lζ̇ζ̇δφ

α3
2

)
ζ

−
δ2
φLζ̇ζ̇
α2

3

}
, (4.18)

where we have defined

ηL ≡
L̇ζ̇ζ̇
HLζ̇ζ̇

, η3 ≡
α̇3

Hα3
, η6 ≡

α̇6

Hα6
. (4.19)

Therefore, we have succeeded to make ζ become a Lagrange multiplier
and, as such, in general, it can be integrated out (using its own equation
of motion), leaving δφ as the propagating independent scalar d.o.f..

It should be noted, that integrating out ζ is only possible whenever the
term proportional to ζ2 in Eq. (4.18) does not vanish. If this case occurs,
as we shall see later on happening in some theories for which both α6

and G vanish, then the field δφ cannot be chosen as the independent field
used to describe the system of scalar perturbations.

After removing the auxiliary field ζ, we can rewrite the action as

S(2) =

∫
d4x a3

[
a2

k2

(
Q(t, k) δ̇2

φ − G(t, k)
k2

a2
δ2
φ

)]
, (4.20)

where the coefficients are listed in Appendix 4.7. Therefore, the no-ghost
condition for the field δφ can be read as

lim
k
aH→∞

Q = lim
k
aH→∞

L2
ζ̇ζ̇

Gα2
3

=
A3(t)2

G3(t)
lim
k
aH→∞

L2
ζ̇ζ̇

α2
3

> 0 , (4.21)

which implies
G3(t) > 0 , (4.22)
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4 de Sitter limit analysis

and we have assumed that for any function f(t, k) in the Lagrangian,
we have, for large k’s, that f(t, k) = f̄(t) + O(k−2). If the previous
assumption does not hold, then we need to discuss case by case what
happens for the limit. On using again the above assumption, the speed
of propagation can be defined as

c2s = lim
k
aH→∞

G
Q

= lim
k
aH→∞

G

Lζ̇ζ̇
=

G3(t)

A3(t)A4(t)
, (4.23)

which we require to be positive defined. On combining both the con-
straints we find

A3(t)A4(t) > 0 . (4.24)

If we consider the stability conditions defined by the field ζ, we find
the no-ghost condition

lim
k
aH→∞

Lζ̇ζ̇ =
A4(t)

A3(t)
> 0 , (4.25)

which, together with

c2s = lim
k
aH→∞

G

Lζ̇ζ̇
=

G3(t)

A3(t)A4(t)
≥ 0 , (4.26)

imply G3 > 0. Thus, both fields propagate with the same speed. Note
that these results apply on a general FLRW background.

This calculation shows that the no-ghost condition and the speed
of propagation must be calculated in the high-k regime and in such a
limit they become invariants, meaning that they do not change when
we change the propagating scalar d.o.f.. It should be noticed that the
no-ghost conditions do not coincide but the final set of conditions do for
ζ and δφ.

Since the mass term is not a quantity which is sensitive to the high
k regime, we should not expect, in general, it behaves as an invariant.
Therefore, each propagating field will have its own mass. However, here
we are considering physical fields, i.e. fields for which we can attach a
clear physical meaning and both δφ and ζ need to remain less than unity
for the background to be stable. Therefore, a mass instability for δφ,
leading this field to reach unity, will imply in general some instability for
the field ζ and viceversa. In order to find the mass of the field δφ we will
investigate its equation of motion. We will perform this calculation in
the following sections.
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4.4 The de Sitter Limit

In this section we will consider the EFToDE/MG action (4.7) in the limit
of a dS universe. Such a limit is a good approximation in those regimes
in which the dark energy component is dominant over any matter fluids,
e.g. very late time. In this case the background Friedmann equation
simply reduces to

3m2
0H

2
0 = ρ̄φ, (4.27)

where the dark energy density, ρ̄φ has been defined in eq. (4.13). From
the assumption of a dS universe, it follows that H = const = H0 and
the dark energy density is a constant as well. Therefore, eq. (4.13) is a
constraint. As a result the dark energy density acts like a cosmological
constant. As it is well known such a realization can be obtained, beside
the cosmological constant itself, by considering a modified gravity theory
with a scalar field whose solution can mimic such a behaviour. Then,
eq. (4.27) can be integrated and one immediately gets

a(t) = a0e
tH0 , (4.28)

where a0 is an integration constant.

The EFToDE/MG approach preserves a direct link with those theories
of modified gravity which show one extra scalar d.o.f. and they can be
fully mapped in the EFToDE/MG language as in Chapter 2 and refs. [14,
15, 37, 39, 65]. Then, by using the mapping with specific theories and
the solution in the dS limit for the chosen theories, we can deduce the
behaviour of the EFT functions. In case of Horndeski [78] or Generalized
Galileon [79] and beyond Horndeski/GLPV [66], when the shift symmetry
is applied, the dS universe can be realized when the kinetic term is a
constant, i.e. X = −φ̇2 = const [132, 133]. In this case all the EFT
functions are constants and the constraint (4.13) is always satisfied. K-
essence models [134] also admit a dS limit with φ̇ = const, when the
general function of the kinetic term, namely K(X), has a polynomial
form. In this case the roots of the polynomial obtained by solving the
equation dK/dX = 0 are the constant values for the derivative of the
field. A more general class of theories is the one with m2

2 6= 0, to which
low-energy Hořava gravity [35, 36, 55] belongs. Such theory admits a dS
solution [46, 135] and also in this case the EFT functions are constants.
We will assume that the EFT functions on a dS background for all theory
having m2

2 6= 0 are constant. In the following, assuming constant EFT
functions will greatly simplify the whole treatment.

Moreover, by assuming Ω = const in the dS limit the EFToDE/MG
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4 de Sitter limit analysis

background equations reduce to the following forms

3m0H
2
0 (1 + Ω) + Λ = 0 ,

3m0H
2
0 (1 + Ω) + Λ− 2c = 0. (4.29)

Then, it is easy to deduce the following relations

c = 0 , ρ̄φ = − Λ

1 + Ω
. (4.30)

The generality of the EFToDE/MG approach in describing linear
modifications of gravity due to an extra scalar d.o.f., allows us to perform
a very general analysis in the dS limit for a wide range of theories.
However, it is worth to notice that a unique treatment is not possible
because subclasses of models, corresponding to specific choices of EFT
functions are expected to show up. Therefore, in the following we will
mainly consider three subclasses corresponding to

• General case: {F4,m
2
2} 6= 0, to this class belong all models with

higher then two spatial derivatives;

• Beyond Horndeski (or GLPV) models: {F4,m
2
2} = 0;

• Hořava gravity-like models: m2
2 6= 0 and 3F 2

2 + F3F1 = 0.

For all of them we will study the behaviours of the curvature perturbation,
ζ(t, k) as well as of the gauge independent quantity describing the dark
energy field δφ(t, k).

4.4.1 The general case

We will now investigate the stability of the dS universe in the general
case, i.e. by assuming all operators to be active. In contrast to the
next cases this corresponds to the case {F4,m

2
2} 6= 0. The kinetic and

gradient terms for this case have the same form as in (4.8), where now
the terms Ai and Gi are constants and they can be obtained from the
time dependent expressions in the Appendix 4.7 by setting all the EFT
functions to be constant. They are:

Lζ̇ζ̇(t, k) =
(F1 − 3F4)

((
3F 2

2 + F1F3

)
+ 8 k2

a(t)2F1m
2
2

)
2
(

(F 2
2 + F3F4) + 8 k2

a(t)2F4m2
2

) , (4.31)

G(t, k) =

(
16F 2

4m
2
2

(
−4m2

0(Ω + 1)
(
m2

2 − M̂2
)

+ 4M̂4 +m4
0(Ω + 1)2

) k4

a4

+ 8F4

(
4m2

0(Ω + 1)
(
F 2

2

(
M̂2 − 2m2

2

)
+ F3F4

(
M̂2 − 2m2

2

)
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+ 3 (F1 − 3F4)F2H0m
2
2

)
+ 4M̂2

(
F 2

2 M̂
2 + F3F4M̂

2

+ 6 (F1 − 3F4)F2H0m
2
2

)
+
(
F 2

2 + F3F4

)
m4

0(Ω + 1)2
) k2

a2

+ F2 (F1 − 3F4)
(
F 2

2 + F3F4

)
H0

(
2M̂ +m2

0(Ω + 1)
)

−
(
F 2

2 + F3F4

)
2m2

0(Ω + 1)
)
/

(((
F 2

2 + F3F4

)
+ 8F4

k2

a(t)2
m2

2

)
2

)
.

(4.32)

We assume that {F2, (F1 − 3F4) , 2M̂2 + m2
0(Ω + 1)} 6= 0, leaving

the treatment of these special cases at the end of this section. Now
from action (4.7), one can derive the field equation for the curvature
perturbation, ζ, in the dS limit, which reads

ζ̈ +

(
3H0 +

L̇ζ̇ζ̇
Lζ̇ζ̇

)
ζ̇ +

k2

a(t)2

G

Lζ̇ζ̇
ζ = 0 . (4.33)

We notice that in the above equation there is no dispersion coefficient.
Let us now analyse two limiting cases of the above equation. In the

limiting case in which k2/a2 is small, the term proportional to ζ in
the above equation is sub-dominant and it can be neglected, thus the
curvature perturbation behaves as follows

ζ(t) = C2 −
C1e

−3H0t

3H0
, (4.34)

where Ci are integration constant. Because the second term is a decaying
mode, we can deduce from the above result that the curvature pertur-
bation is conserved. On the contrary, when k2/a2 really matters, the
equation of ζ reduces to

ζ̈ + 3H0ζ̇ + (
k2

a(t)2
c2s + µ̃un)ζ = 0 , (4.35)

where we have defined the squared speed of propagation of the mode ζ
at high-k as in eq. (4.26) and µ̃un is the next to leading order term in
the high-k expansion of G/Lζ̇ζ̇ . We will refer to µ̃un as the undamped
effective mass of the mode. When considering a dS background these
two terms assume the following constant form

c2s =
G3

A3A4
=
F4

(
−4m2

0(Ω + 1)
(
m2

2 − M̂2
)

+ 4M̂4 +m4
0(Ω + 1)2

)
2F1 (F1 − 3F4)m2

2

,

µ̃un = −(−12F1 (F1 − 3F4)F2H0m
2
2

(
2M̂2 +m2

0(Ω + 1)
)
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+ F 2
2

(
3F4

(
−4m2

0(Ω + 1)
(
m2

2 − M̂2
)

+ 4M̂4

+ m4
0(Ω + 1)2

)
+ 4F1m

2
2m

2
0(Ω + 1)

)
+ F1F3F4

(
2M̂2 +m2

0(Ω + 1)
)

2)/(16F 2
1 (F1 − 3F4)m4

2). (4.36)

Now, let us consider (4.35) for a general friction coefficient, χ. Then
for high-k, we choose an approximate plane wave solution of the form
ζ ∝ exp(−i ω t), which, after substituting in the previous equation we
get the following algebraic equation:

−ω2 − χiH0ω +

(
c2sk

2

a(t)2
+ µ̃un

)
= 0 , (4.37)

The equation has the following solution

ω = −χ
2
H0 i± ω0 , (4.38)

where

ω0 ≡

√
c2sk

2

a(t)2
+ m̃2 , m̃2 ≡ µ̃un −

χ2

4
H2

0 , (4.39)

and m̃2 represents the damped mass of the oscillatory part of the solution.
The imaginary part of ω corresponds instead to the decaying (damped)
part of the solution. Since we are in the high-k regime, we expect that

in general
c2sk

2

a2 + m̃2 > 0. In this case we are in the presence of an
underdamped oscillator, for which the solution reads

ζ(t) ≈ e−χH0t/2(C1 cosω0t+ C2 sinω0t) ,

and no instability occurs.

Now, an example of where the next to leading order term becomes
relevant for stability is when the speed of sound is small or vanishing,

i.e. c2s ' 0. Then, when m̃2 < 0, one has
c2sk

2

a2 + m̃2 < 0, yielding the
following solution:

ζ(t) ≈ e−χH0t/2(C1e
−|ω0|t + C2e

|ω0|t) , (4.40)

which represents overdamped solutions when |ω0| < χH0/2. On the other

hand, if the model has
c2sk

2

a2 + m̃2 < 0 and |ω0| > χH0/2, then the mode

ζ(t) ∝ e(−χ2H0+|ω0|)t (4.41)
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is exponentially growing. For c2s ' 0 and m̃2 < 0 this implies a catas-
trophic instability when

µ̃un < 0 and |µ̃un| � H2
0 . (4.42)

Besides the case described above, when c2s < 0 and |µ̃un| ' H0 another
instability arises. This is then the usual gradient instability.

The above discussion is directly applicable to the eq. (4.35) presented
in this section when χ = 3. We will show that the above arguments will
be still valid in the high-k-limit of the dark energy field for the general
case as well as for the other sub-cases discussed in the following, for which
one will only need to employ this analysis for different values of χ. In
such instances we will refer back to this paragraph instead of repeating
the whole discussion.

However, in general the speed of propagation is not vanishing, thus
the extra d.o.f. propagates also in a dS universe and the solution, when
µ̃un is negligible reads:

ζ(t, k) =
1

8H0

[
sin

(
k

a(t)

cs
H0

)(
3C2H0 + 8C1

k

a(t)
cs

)
+ cos

(
k

a(t)

cs
H0

)(
8C1H0 − 3C2

k

a(t)
cs

)]
, (4.43)

which can be approximated as

ζ(t, k) ≈ cs
8H0

k

a(t)

[
8C1 sin

(
k

a(t)

cs
H0

)
− 3C2 cos

(
k

a(t)

cs
H0

)]
. (4.44)

This solution decays, even for a very large k as the scale factor grows
exponentially.

Finally, in order to ensure a stable dS universe one has to impose
some stability requirements. Following the discussion in the previous
section and the results in Chapters 2 and 3, we have respectively for the
avoidance of scalar and tensor ghosts

F1(F1 − 3F4)

F4
> 0 , m2

0(1 + Ω)− M̄2
3 > 0 , (4.45)

which need to be combined with the requirement of positive speeds of
propagation for scalar and tensor modes

c2s =
F4

(
−4m2

0(Ω + 1)
(
m2

2 − M̂2
)

+ 4M̂4 +m4
0(Ω + 1)2

)
8F1 (F1 − 3F4)m2

2

,

c2T = 1 +
M̄2

3

m2
0(1 + Ω)− M̄2

3

. (4.46)
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At this point one may wonder if a tachyonic condition can be applied.
In Chapter 2 it has been shown that by performing a field redefinition
in order to obtain a canonical action, one can define an effective mass
term, which in the small k limit gives the correct condition. If we apply
such condition in the dS limit the effective mass associated to our general
case is vanishing. Moreover as discussed before, in case the speed of
propagation for the ζ field becomes very small at high-k, one has also
to ensure that the following conditions do not apply: µ̃un < 0 and
|µ̃un| � H2

0 . However, as already discussed the mass term is sensitive
to a field redefinition, thus in order to impose a condition on the mass
which holds regardless of the considered field but containing the real
information about the mass of the dark energy field, we need to investigate
the behaviour of the gauge invariant quantity δφ.

In the dS universe the gauge invariant quantity defined in eq. (4.12)
reads

δφ =
δρφ
ρ̄φ

=
2ζ̇

H
− 2 δN − 2

3

∇2ζ +∇2ψ

a2H2
, (4.47)

which can be easily obtained from the first line in eq. (4.6). Moreover,
from the same equations we found that δφ can be written as in eq. (4.16)
and it is then used to derive the eq. (4.15). In the dS universe the
coefficients of the eqs. (4.15)-(4.16) are

α3(t, k) =
α̃3 + k2

a(t)2
4
F1
A4

3H0(A2 + k2

a(t)2A3)
, α6(t, k) =

2k2

3H2
0a(t)2

[
α̃6

(A2 + k2

a(t)2A3)
+ 1

]
,

µ3(t, k) = H0

∑7
m=0 bm

k2m

a2m∑7
m=0 cm

k2m

a2m

, µ6(t, k) =

∑10
n=0 dn

k2n

a2n∑9
n=0 fn

k2n

a2n

, (4.48)

where here the {bi, ci, di, fi, α̃i} are constants. Note that the above results
might have some limiting cases when the determinants of the above
relations go to zero. In what follows we are assuming a non-vanishing
denominator.

For the dark energy field in the regime in which k2/a2 is negligible, we
have

µ3 = 5H0 +O(k2) , µ6 = 6H2
0 +O(k2) , (4.49)

where µ6 ≡ m2 can be read as a mass term, which in this case is positive
and of the same order of H2

0 , thus no instability takes place. Moreover,
because the value of the mass is fixed (i.e. does not depend on the
specific value of the EFT functions one can assume), this result is quite
general. We also stress that such results can be also safely applicable at
low redshifts, as we know at those z the universe is mostly dark energy
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dominated and thus approaching a dS universe. Finally, the dark energy
field evolves following

δφ(t) = C1e
−3H0t + C2e

−2H0t, (4.50)

and because the friction term is positive, its effect will be to damp the
amplitude of the field. Then, in this regime the δφ field effectively has a
mass, while the ζ field has not. This is one of the main differences which
characterize the gauge invariant field δφ.

In the opposite regime, we have

µ3 = 7H0 +O(k−2) , µ6 =

(
c2s

k2

a(t)2
+ µun

)
+O(k−2) , (4.51)

where also in this case we have defined a speed of propagation of the
mode δφ at high-k, which coincides with the speed of propagation for the
field ζ as discussed in Sec. 4.3 and we have defined, in analogy with the
previous case, µun as the effective undamped mass for the dark energy
filed, which in this case assumes the following form:

µun = 10H2
0 +
A3(A4G2 −A1G3) +A4G3(4A4H

2
0 −A2)

A2
3A2

4

, (4.52)

which is the next to leading order term in µ6. From (4.51) we see that
the equation of motion has the form

δ̈φ + 7H0δ̇φ +

(
c2sk

2

a2
+ µun

)
δφ = 0 , (4.53)

which is exactly the same form of the equation of the ζ field at high-k.
Thus the discussion presented earlier is also applicable here, for χ = 7 and
µun given by eq. (4.52). Finally, the the damped mass of the oscillatory
mode is

m̂2 ≡ µun −
49

4
H2

0 . (4.54)

Therefore, an instability might manifest itself when c2s ' 0 and m̂2 < 0.

To be precise, when one has
c2sk

2

a2 + m̂2 < 0, one must impose µun < 0
and |µun| � H2

0 in order to avoid said instability.
Finally we present the solution at leading order and when µun is

negligible:

δφ(t, k) ≈ k3

a(t)3

c3s
1920H3

0

(
1575c2 cos

(
k

a(t)

cs
H0

)
− 128c1 sin

(
k

a(t)

cs
H0

))
,

(4.55)
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which is decaying for an exponentially growing scale factor.
When one considers the case where all the operators are active it

is necessary to highlight a number of limiting cases where a different
behaviour emerges:

• case F2 = 0. In this case, one is still able to solve the constraint
equation to write the action in the form (4.7), with the following
coefficients:

Lζ̇ζ̇ =
1

2
F1

(
F1

F4
− 3

)
,

G(t, k) =
1

8 k2

a(t)2m2
2 + F3

[
2
k2

a(t)2

(
−4m2

0(Ω + 1)
(
m2

2 − M̂2
)

+ 4M̂4 +m4
0(Ω + 1)2

)
−m2

0F3(Ω + 1)
]
, (4.56)

the speed of propagation of the curvature perturbation in the high-k
limit ( k2/a2) is

c2s =
F4

(
−4m2

0(Ω + 1)
(
m2

2 − M̂2
)

+ 4M̂4 +m4
0(Ω + 1)2

)
2F1 (F1 − 3F4)m2

2

.

(4.57)
The results and the discussion we had in the general case work also
in this case, one has just to replace the correct speed of propagation.

• case F1 − 3F4 = 0. In this case the kinetic term in action (4.7) is
vanishing, thus follows that the curvature perturbation ζ = 0 as
well as the dark energy field. These theories lead to strong coupling
thus they cannot be considered in the EFT context.

• case 2M̂2 + m2
0(1 + Ω) = 0. After computing the kinetic and

gradient terms, it is straightforward to verify that the gradient
term is negative. Indeed, it has the form G = −m2

0(Ω + 1), and
the stability condition to avoid ghost in tensor modes imposes that
1 + Ω > 0. Now, considering that the kinetic terms is positive
as well, to guarantee that the scalar modes have no-ghosts, we
can conclude that the speed of propagation in negative, thus this
subclass of theories in the dS limit shows an instability.

In summary, we have analysed the evolution and stability of the
curvature perturbation and the gauge invariant dark energy field for
a quite general case. We have found that the curvature perturbation
is conserved at large scale, as expected, and at small scale it evolves
with a non zero speed of propagation, which finally decays as the scale
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factor grows with time (eq. (4.55)). The δφ field at large scale appears
to have mass which results to be positive and of same order of H2

0 , thus
avoiding the tachyonic instability and along with the fact that at these
scale it decays, these are the two characteristics that makes the two fields
analysed to be different. We conclude this section saying that in order
to have a stable dS universe the conditions which need to be satisfied
are the requirements on the kinetic terms and speeds of propagations for
scalar and tensor modes (see eqs. (4.45)-(4.46)) since the condition on
the avoidance of tachyonic instability at large scale is always satisfied.
However, one has to make sure that at high-k, in case c2s ' 0 the mass
associated to these modes do not show an instability, i.e. m̃2 < 0 when
µ̃un < 0 and |µ̃un| � H2

0 for the ζ field and m̂2 < 0 when µun < 0 and
|µun| � H2

0 for the dark energy field.

4.4.2 Beyond Horndeski class of theories

In this section we will consider the EFToDE/MG action restricted to
the beyond Horndeski class of theories, which corresponds to set m2

2 = 0,
F4 = 0 in action (4.2). For such case in general we have both Lζ̇ζ̇ and G
to be functions of time as in Chapter 2, but in the dS limit the kinetic
and the gradient terms reduce to constants with the following expressions:

Lζ̇ζ̇ =
1

2
F1

(
F1F3

F 2
2

+ 3

)
, G =

F1H0

(
2M̂2 +m2

0(Ω + 1)
)
− F2m

2
0(Ω + 1)

F2
,

(4.58)
and because they are constant we can define the speed of propagation
from the beginning without requiring any limit, and it reads

c2s =
2F2

(
F1H0

(
2M̂2 +m2

0(Ω + 1)
)
− F2m

2
0(Ω + 1)

)
F1 (3F 2

2 + F1F3)
. (4.59)

In the following we will consider {F2, F1,
(
3F 2

2 + F1F3

)
6= 0}. The re-

quirement F1 6= 0 is ensured by the assumption that our theory reduces
to GR, while the others cases will be considered at the end of this section.
The stability conditions requires Lζ̇ζ̇ > 0 and c2s > 0 to guarantee the
theory to be free from ghost in the scalar sector and to prevent gradi-
ent instabilities. To complete the set of stability conditions one has to
include the conditions from the tensor modes, i.e. the no-ghost condition
which reads F1/2 > 0 and a positive tensor speed of propagation, that
is c2T = 2m2

0(1 + Ω)/F1 > 0. For the ζ field we can perform a filed
redefinition and construct a canonical action as was done in Chapter 2,
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from which we can read the effective mass. In the dS universe, such term
is identically zero at all scale.

In the dS limit the analysis of the dynamical equation for ζ is straight-
forward:

ζ̈ + 3H0ζ̇ +
k2

a(t)2
c2sζ = 0 , (4.60)

which has the same form of the equation for ζ in the general case (see
eq. (4.33)), thus it has the same solutions in both the regimes, but the
speed is now given by eq. (4.59). In summary, the curvature perturbation
is conserved in the limit in which k2/a(t)2 is heavily suppressed and it
slowly decays at high-k (see eq. (4.55)).

Now, let us consider the dark energy field, δφ defined in eq. (4.16).
For the beyond Horndeski sub-case, the coefficients of eqs. (4.16)-(4.15)
reduce as follows

α3 = −2F1 (2F2H0 + F3)

3F 2
2H0

≡ α0
3 ,

α6(t, k) =
2k2

(
−2F2H0

(
2M̂2 +m2

0(Ω + 1)
)

+ F 2
2

)
3F 2

2H
2
0a(t)2

≡ k2

a(t)2
α0

6 ,

µ3(t, k) = −
H0

(
5α0

3

(
α0

6H0 − α0
3c

2
s

)
− 7(α0

6)2 k2

a(t)2

)
α0

3 (α0
3c

2
s − α0

6H0) + (α0
6)2 k2

a(t)2

,

µ6(t, k) =
1

α0
3 (α0

3c
2
s − α0

6H0) + (α0
6)2 k2

a(t)2

[
6α0

3H
2
0

(
α3c

2
s − α0

6H0

)
+

k2

a(t)2

[
α0

6α
0
3H0c

2
s + (α0

3)2(c2s)
2 + 10(α0

6)2H2
0

]
+ (α0

6)2 k4

a(t)4
c2s

]
,

(4.61)

where α0
3 and α0

6 are constants. These relations have been obtained from
eqs. (4.48), and from them it is easy to identify the bi, ci, di coefficients.

The above expressions hold for F2 6= 0 and α0
3

(
α0

3c
2
s − α0

6H0

)
+(α0

6)2 k2

a2 6=
0. Let us note that in the latter, in order to realize α0

3

(
α0

3c
2
s − α0

6H0

)
+

(α0
6)2 k2

a2 → 0, we have to consider that since all the coefficients are
k-independent we need to have α0

6 = 0, then the remaining option is
c2s = 0. That is because α0

3 6= 0 otherwise the dark energy field disappears.
Therefore, the only configuration is with {c2s, α0

6} = 0. We will consider
the case F2 = cs = 0 at the end of this section.

In the limit in which k2/a2 is suppressed, these coefficients reduce to

µ3 = 5H0 +O(k) , µ6 = 6H2
0 +O(k2) . (4.62)
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Then, the friction term µ3 will dump the amplitude of the dark energy
field, while µ6 = m2 will act as positive dispersive coefficient or a ”mass”
one. These results are independent on the specific theory one may consider
and the mass of the dark energy field is positive. This is a general result,
which allows us to conclude that all the theories belonging to this sub-
class do not experience tachyonic instability in a dS universe, and it is
quite safe to assume that this results holds also at z ≈ 0. Moreover, the
solution of eq. (4.15) reads

δφ(t, 0) = D1e
−3H0t +D2e

−2H0t, (4.63)

where Di are integration constant. Therefore, we can conclude that the
dark energy field is damped.

On the other hand, for large k2/a2 we get

µ3 = 7H0+O(k−2) , µ6(t, k) = 2H0

(
α0

3c
2
s

α0
6

+ 5H0

)
+

k2

a(t)2
c2s+O(k−2) ,

(4.64)
with α0

6 6= 0. Also in this limit the µ3 coefficient will dump the amplitude
of the dark energy field, while the second coefficient assumes the form

µ6(t, k) ≡
(

k2

a(t)2
c2s + µun

)
, (4.65)

where the speed of the dark energy field in this regime is the same of
the original ζ field and µun follows directly from the previous expression.
The analysis done in the previous section for the high-k limit of the dark
energy field is directly applicable to this case. Let us just recall that
an instability might occurs when at high-k the speed of propagation is
very small, as it can happen that m̂2 < 0 when µun < 0 and |µun| � H2

0 .
When, µun is negligible as in the previous case, we can solve the equation
and we find the same behaviour of the general case (eq. (4.55)).

As before we now separately consider some special cases:

•
{
c2s, α6

}
=0. In case c2s = 0 the ζ field has the solution

ζ(t) = C̃1 −
C̃2

3H0
e−3H0t , (4.66)

which predicts the conservation of the curvature perturbation at
any scale.

When going to the dark energy field, δφ, which is related to the
ζ field through the eq. (4.16), one can notice two main aspects.
Firstly, because α6 = 0, the dark energy field is identified as ζ̇ up
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to a constant (α3) and hence it requires one boundary condition
less. Additionally, when carefully studying the Lagrangian after
changing the field, eq. (4.20), it is clear that the kinetic term for the
dark energy field diverges for high-k. This is due to the fact that
the speed is vanishing which translates to the gradient term being
zero. Hence, it must be concluded that, for this particular case, the
choice for the dark energy field is inappropriate and should not be
considered.

• F2 = 0: Considering the action (4.4), by varying with respect to ψ
immediately follows that ζ̇ = 0. Thus the extra scalar d.o.f. does
not propagate.

• 3F 2
2 + F1F3 = 0: in this case the kinetic term is zero and the

curvature perturbation is vanishing. These theories show strong
coupling thus they cannot be considered in the EFT approach.

We conclude by saying that the results of the previous section also apply
to the beyond Horndeski class of theories considered in the present section.
Moreover, the main result here is also that the speed of propagation of
the scalar mode in general does not vanish as instead previously found
in literature. We will show some practical examples in Sec. 4.5.

4.4.3 Hořava gravity like models

Let us now consider a special case in which m2
2 6= 0 and 3F 2

2 + F3F1 = 0.
This subclass of models includes the low-energy Hořava gravity model.
The action can be written as

S(2) =

∫
d4xa(t)3 k2

a(t)2

 A4

A2 + k2

a(t)2A3

ζ̇2 −

 k2

a(t)2

G2 + k2

a(t)2G3

(A2 + k2

a(t)2A3)2

+
G1

(A2 + k2

a(t)2A3)2

)
ζ2

}
(4.67)

with an overall factor k2/a(t)2. For this case in the dS limit the no-ghost
and positive speed conditions read

A4

A3
> 0, c2s =

G3

A3A4
> 0 , (4.68)

along with the usual conditions for the stability of tensor modes

m2
0(1 + Ω)− M̄2

3 > 0 , c2T (t) = 1 +
M̄2

3

m2
0(1 + Ω)− M̄2

3

> 0 . (4.69)
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The conditions on the speeds reduce to G3 > 0 and 1 + Ω > 0. Just for
simplicity, let us rewrite the above action as follows

S(2) =

∫
d4xa3 k2

a(t)2

{
L̃ζ̇ζ̇(t, k)ζ̇2 −

(
k2

a2
G̃(t, k) + M̃(t, k)

)
ζ2

}
,

(4.70)
where the definitions of the above coefficients immediately follows from
the action (4.67). The field equation for the curvature perturbation can
then be written in a compact form as

ζ̈ +

3H0 +

˙̃Lζ̇ζ̇
L̃ζ̇ζ̇

 ζ̇ +

(
k2

a2

G̃

L̃ζ̇ζ̇
+

M̃

L̃ζ̇ζ̇

)
ζ = 0 , (4.71)

where in this case a dispersion coefficient for the field ζ appears in the
evolution equation. Let us now analyse the two limit as in the previous
cases.

In the case k2/a2 is sub-dominant M̃ 6= 0 and we have

ζ̈ + 3H0ζ̇ + m̄2ζ = 0 , (4.72)

where we have defined the mass term at low k as

m̄2 = lim
k2

a2→0

M̃

L̃ζ̇ζ̇
=
G1

A2A4
. (4.73)

In order to avoid a instability coming from the mass term we require
|m̄2| << H2

0 . The solution reads

ζ(t) = C1e
1
2 t
(
−
√

9H2
0−4m̄2−3H0

)
+ C2e

1
2 t
(√

9H2
0−4m̄2−3H0

)
. (4.74)

When 9H2
0 − 4m̄2 > 0, both the exponentials are purely negative hence

both modes are decaying. In the opposite case the solution is a decaying
oscillator.

In the limit in which k2/a2 is dominant the above equation reduces to

ζ̈ + 5H0ζ̇ +

(
k2

a(t)2
c2s + µ̃un

)
ζ = 0 , (4.75)

where

µ̃un =
(A3G2 −A2G3)

A2
3A4

. (4.76)

Let us note that in this limit M̃ is of O(k−2) and the above mass-like
term comes from the 0th order expansion of the term G̃/L̃ζ̇ζ̇ . Also in
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this case we can apply the analysis of Sec. 4.4.1, for χ = 5, and conclude

that, when k2

a2 c
2
s + m̃2 > 0 no instability occurs, while when the speed is

small or negligible some growing modes or instability might take place if

µ̄un < 0. In the case µ̃un <<
k2

a2 c
2
s, the solution of the above equation at

leading order is:

ζ(t, k) ≈ − k2

a(t)2

c2s
96H2

0

(
45c2 sin

(
k

a(t)

cs
H0

)
+ 32c1 cos

(
k

a(t)

cs
H0

))
,

(4.77)
which decays in time.

Now, let us consider the dark energy field. The definitions of the αi
functions which enter in the relation between ζ and δφ can be found in
Appendix 4.7 after applying the restriction to this subcase. In the regime
in which k2/a2 is sub-dominant, the equation for the dark energy field
has the following coefficients

µ3 = 3H0 +O(k2) , µ6 =
G1

A2A4
+O(k2) . (4.78)

As expected in this case the mass term is the dominant one and µ6 ≡ m̄2.
Thus in this limit the solution is the same of the curvature perturbation.

In the opposite regime, we have

µ3 = 9H0 +O(k−2) , µ6 =

(
µun +

k2

a(t)2
c2s

)
+O(k−2) , (4.79)

where

µun = −
−A3

(
6F 2

2 G3H
2
0 + F3F4

(
6G3H

2
0 + G2

))
+A2F3F4G3 − 14A2

3A4F3F4H
2
0

A2
3A4F3F4

.

(4.80)
Again here we obtain a behaviour following the one of the ζ field but
with a different dispersive coefficient. When µun is negligible the solution
at leading order is again an oscillatory decaying mode

δφ ≈
k4

a(t)4

c4s
53760H4

0

(
99225C2 sin

(
k

a(t)

cs
H0

)
+ 512C1 cos

(
k

a(t)

cs
H0

))
.

(4.81)
In conclusion, along with the conditions discussed in the beginning

of this section for avoiding ghosts and having positive squared speeds
of propagations, we need to make sure that |m̄2| << H2

0 . Additionally,
when the speed of propagation is small, one needs to guarantee that both
µun and µ̃un do not cause an instability. This set of conditions will ensure
the system to be stable. We will provide a working example in Sec. 4.5,
where the above results are applied for low-energy Hořava gravity.
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4.5 Working examples

In this section we will apply the results we have derived in the previous
sections to specific models, i.e. K-essence, Horndeski/Galileon models,
low-energy Hořava gravity.

4.5.1 Galileons

We consider here the Generalised Galileon Lagrangians, and we will
apply the stability conditions derived for the beyond Horndeski mod-
els (Sec. 4.4.2). The complete Galileon action is the following [79]:

SGG =

∫
d4x
√
−g (L2 + L3 + L4 + L5) , (4.82)

where the Lagrangians have the following structure:

L2 = K(φ,X) ,

L3 = G3(φ,X)�φ ,

L4 = G4(φ,X)R− 2G4X(φ,X)
[
(�φ)

2 − φ;µνφ;µν

]
,

L5 = G5(φ,X)Gµνφ
;µν +

1

3
G5X(φ,X)

[
(�φ)

3 − 3�φφ;µνφ;µν + 2φ;µνφ
;µσφ;ν

;σ

]
,

(4.83)

here Gµν is the Einstein tensor, X ≡ φ;µφ;µ is the kinetic term and
{K, Gi} (i = 3, 4, 5) are general functions of the scalar field φ and X, and
GiX ≡ ∂Gi/∂X.

The Cubic Galileon model

We start by specializing action (4.82) to a well known model, i.e. the
Cubic Galileon, which corresponds to the following choice of the functions

K(X) = −g2

2
X , G3(X) =

g3

M3
X , G4 =

m2
0

2
, G5 = 0 , (4.84)

where {g2, g3} are constant and M3 = m0H
2
0 .

In a dS universe the background equations become

3m2
0H

2
0 = 6

g3

M3
H0φ̇

3 +
1

2
g2φ̇

2 , 3m2
0H

2
0 = −1

2
g2φ̇

2 . (4.85)

From the first Friedmann equation one can define the density of the dark
energy field at the background, that is

ρ̄φ = 6
g3

M3
H0φ̇

3 +
1

2
g2φ̇

2 , (4.86)
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and after manipulating the equations, one gets a constraint equation

6
g3

M3
H0φ̇

3 + g2φ̇
2 = 0 , (4.87)

which corresponds to c = 0, and from which follows [86, 132]

φ̇ ≡ φ̇0 = const , g2 = −6
g3

M3
H0φ̇0. (4.88)

Considering the above results, the EFT functions corresponding to this
model in the dS limit read

Λ = −3 g3

M3
H0φ̇

3
0 = −3m2

0H
2
0 , M4

2 = 3
2
g3

M3H0φ̇
3
0 = 3

2m
2
0H

2
0 ,

M3
1 = −2 g3

M3 φ̇
3
0 = −2m2

0H0 , (4.89)

while the others are vanishing.
Using the mapping and the results obtained in the previous section we

obtain that the speed of propagation reduces to zero while the kinetic
term diverges, implying that there is no scalar d.o.f. propagating in dS.
This is an expected result as the cubic Galileon decouples from gravity
in dS with a speed of sound of the form [14]

c2s =
c

c+M4
2

, (4.90)

which is exactly zero on the background.

K-essence

Motivated by the result for the cubic Galileon, where no scalar d.o.f.
propagates on dS, we proceed to check if this holds in more Horndeski
class theories. According to ref. [136] the complete set of Horndeski
models (with c = 0) does not possess a scalar d.o.f. on a dS background,
a statement which we wish to confront with specific examples.

We start with a well studied and rather simple theory by considering
a K-essence model with a general K(X) and a standard Einstein-Hilbert
term. In this case, we see that the background equations of motion
impose

K,X |X=X0
= 0 , K(X0) = −3m2

0H
2
0 , (4.91)

where X0 is the background value of X. The speed of propagation can
be written, along with the no-ghost condition, as

c2s =
K,X

2XK,XX +K,X
, Lζ̇ζ̇ = 2XK,XX +K,X . (4.92)
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Now, if K is analytical, we can consider a Taylor expansion around the
point X = X0. In such a case the background equations of motion impose

K = −3m2
0H

2
0 +
K2

2
(X−X0)2 +

K3

6
(X−X0)3 +O[(X−X0)4] , (4.93)

where K2 ≡ K,XX(X0), and K3 ≡ K,XXX(X0). Then, one finds that

c2s =
1

2X0
(X−X0)− 1

4K2X2
0

(3K2 +X0K3) (X−X0)2 +O[(X−X0)3] ,

(4.94)
and we have that, for an analytical function, c2s → 0 on dS. Hence, if
one would want to design a K-essence model with a non zero speed of
sound one has to resort to a non analytic form for K. Therefore, this is
an example for which in the class of Horndeski models it is still possible
to have a propagating d.o.f. in the dS universe. In the following we will
show more.

Covariant Galileons

Let us study the dS solution for the Covariant Galileon [86], defined by
the following choice of the functions:

K(X) = c2
2 X , G3(X) = c3 X

2M3 , G4(X) =
m2

0

2 −
c4X

2

4M6 ,

G5(X) = 3c5 X
2

4M9 , (4.95)

We proceed by adopting the following definitions [99]

X = −x2
dSm

2
0H

2
0 , α ≡ c4 x4

dS , β ≡ c5 x5
dS , (4.96)

where xdS = φ̇0

m0H0
|dS being the dS solution and M has been defined

before. Then, we find that the equations of motion for the background
are fulfilled provided that

c2 x
2
dS = 9α− 12β + 6 , c3x

3
dS = 9α− 9β + 2 . (4.97)

In this case the no-ghost condition for the scalar mode can be written
as

Lζ̇ζ̇
m2

0

= − (3α− 6β + 2) (3α− 6β − 2)

6 (α− 2β)
2 > 0 , (4.98)

and the speed of propagation reduces to

c2s =
(2β − α)

(
15α2 − 48αβ + 36β2 + 4

)
18α2 − 72αβ + 72β2 − 8

, (4.99)
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which does not vanish in general. Finally, from the dark energy field
sector, we obtain

µun = − 1
(−3α+6β+2)2 4H2

0

(
15α3 − 6α2(13β + 5) + 2α

(
66β2

+57β + 17)− 4
(
18β3 + 27β2 + 17β + 3

))
, (4.100)

which must be constrained, as discussed before, in the case of a vanishing
speed of propagation. Correspondingly, we obtain for the tensor sector
the following:

A2
T

m2
0

=
1

8
(3α− 6β + 2) > 0, c2T =

α− 2

6β − 3α− 2
. (4.101)

Considering the no-ghost condition and a positive speed of propagation it
can be easily shown that a part of the parameter space allows for stable
dS solutions with a non-vanishing speed of propagation. For example
the choice α = − 7

5 , and β = − 4
5 achieves this. These values result in

a relatively small speed of propagation for which µun > 0. Thus no
instability is present for these choice of parameters.

Models with G5(X) = 0, and G4(X) = m2
0/2

Now, for the Covariant Galileon, setting α = 0 = β, that is G4 = m2
0/2

and G5 = 0, yields once more a vanishing c2s while for the kinetic term
implies Lζ̇ζ̇ → +∞, i.e. weak coupling regime (see the Cubic Galileon
case in the previous section). Therefore, the Covariant Galileon requires
non-trivial G4, G5 in order to have a non-zero speed of propagation for
the scalar modes.

It is possible to find models for which G4 = m2
0/2 and G5 = 0, and,

on dS, the speed of propagation does not vanish. We illustrate this by
considering the model:

K(X) = −c2µ4
( −X

2M4

)p
, G3(X) = c3 µ

( −X
2M4

)q
, G4(X) =

m2
0

2 ,

G5(X) = 0 , (4.102)

where p and q are constants and µ is a typical length scale of the system.
Using the same notation as for the Covariant Galileon we obtain from
the background equations of motion the following:

c2 =
3m2

0H
2

µ4(−X/(2M4))p
, c3 = − pm2

0H

µq (−X)1/2 (−X/(2M4))q
.

(4.103)
and subsequently we obtain:

Lζ̇ζ̇
m2

0
= 3p (1−p+2q)

(1−p)2 , c2s = 1−p
3(1−p)+6q ,

µun =
2H2

0(21p2−2p(18q+11)+1)
3p(p−2q−1) , (4.104)
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whereas the tensor modes do not add any new constraint. It is possible
to find a stable dS on choosing 0 < p < 1, and q > − 1

2 (1− p). Finally, in
order for the µun term to create an instability, one needs to look at the
case of a very small (or vanishing) speed of sound, i.e. p→ 1 or q →∞.
In both cases it turns out that µun = 12H2

0 hence no issues arise. As
an example for the choice of parameters, we choose p = 1/2 and q = 2,
for which all the conditions are satisfied with a speed of propagation of
c2s = 1/27, and the undamped mass of the modes is not negligible, as
µun = 326/27H2

0 .

Therefore we have showed that, even in the absence of non-trivial
G4, G5, it is still possible to find models for which c2s does not vanish
on dS. This concludes our demonstration of the fact that Horndeski
models do not necessarily imply a vanishing d.o.f. on a dS background
as suggested by ref. [136].

4.5.2 Low-energy Hořava gravity

One well known model which falls in the above sub-case is the low-energy
Hořava gravity [35, 36, 55]. The action of this theory is

SH =
1

16πGH

∫
d4x
√
−g
(
KijK

ij − λK2 − 2ξΛ̄ + ξR+ ηaia
i
)
,(4.105)

{λ, ξ, η} are dimensionless running coupling constants, Λ̄ is the “bare”
cosmological constant, GH is the coupling constant which can be expressed
as [64]

1

16πGH
=

m2
0

(2ξ − η)
. (4.106)

Expanding the above action in terms of the perturbed metric (4.3)
and considering the mapping between this action and the EFToDE/MG
framework, the action up to second order in perturbations can be recast
in the the same form of action (4.67) and by using the redefinition (4.16)
the action becomes the one in (4.70). In order to specify the coefficients
for action (4.70) and then analyse the solutions for this specific model,
let us consider the background equation which in the dS limit is

H2
0 =

2ξΛ̄

3(3λ− 1)
, (4.107)

from which follows

ρ̄φ = m2
0

2ξΛ̄

(3λ− 1)
. (4.108)
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Now, we can specify all the EFT functions [39],

(1 + Ω) =
2ξ

(2ξ − η)
, Λ = − 4m2

0ξ
2Λ̄

(2ξ − η)(3λ− 1)
M̄2

3 = − 2m2
0

(2ξ − η)
(1− ξ),

M̄2
2 = −2

m2
0

(2ξ − η)
(ξ − λ), m2

2 =
m2

0η

4(2ξ − η)
, M̄3

1 = M̂2 = c = M4
2 = 0.

(4.109)

Then, the no-ghost and gradient conditions at high-k read

2(1− 3λ)

(λ− 1)(η − 2ξ)
> 0, c2s =

(λ− 1)ξ(2ξ − η)

η(3λ− 1)
> 0 , (4.110)

where the latter is different from zero even in the PPN limit (η → 2ξ− 2).
Additionally, when k/a is sub-dominant we obtain a vanishing mass term
for the ζ field, i.e. m̄2 = 0. When k/a is dominant, we also need to
consider the undamped mass for the ζ field, which is

µ̃un =
4H2

0ξ

η
. (4.111)

When studying the parameter space allowed further below it turns out
that µ̃un will remain manifestly positive, hence no instabilities will occur
due to its presence. Now, when it comes to the gauge independent choice,
the dark energy field, δφ adds no new conditions when demanding no-
ghost and a positive speed of propagation as analysed in the previous
section. The mass for this field at low k is vanishing as well. At high-k
for the dark energy field we can define

µun =
2H2

0 (η(21λ+ 2ξ − 7) + 2ξ(3λ− 2ξ − 1))

η(3λ− 1)
, (4.112)

which has to be constrained if the speed is very small. Further below we
will comment on its effect on the parameter space. Finally the tensor
sector add the following set of constraints to the model:

2

2ξ − η
> 0, c2T = ξ > 0. (4.113)

Now it is possible to define a range of viability for the parameters of
low-energy Hořava gravity based on this set of conditions, namely:

0 < η < 2ξ, λ > 1 or λ <
1

3
, (4.114)

which is a very well known result. Keeping the above conditions in mind
we turn our attention to the regime of a small speed, i.e. λ→ 1 or η → 2ξ.
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In both cases it is easy to see that (4.111) will always be positive. On the
contrary, (4.112) does show different behaviours. For λ→ 1 it is clear that
an increasing ξ pushes it more and more to the strongly negative regime
while η does the opposite. Now, for η → 2ξ, it reduces to a constant,
µun = 16H2

0 . On top of these theoretical considerations one may want
to consider additional constraints coming from PPN, binary pulsar or
CherenKov [137]. Such additional constraints are complementary to the
ones obtained in our paper and in case these have to be imposed, our
results ensure that the theory is stable.

Finally, we will note that the relation between the original field ζ
and the dark energy one for this specific case can be obtained by using
the relations in Appendix 4.7 after applying the mapping provided in
this section. The functions αi appearing in eq. (4.16) result to be both
functions of k and time.

4.6 Conclusion

Until now, when considering the EFToDE/MG in the unitary gauge, the
curvature perturbation ζ has been the main focus of investigation when
considering the question of stability. However, this choice of variable
is gauge dependent, hence one might question if going to a gauge inde-
pendent one the viable parameter space of the model changes and, most
importantly, if such a gauge invariant quantity can be defined as the one
describing the dynamical dark energy field. This motivated us to look
for and construct a gauge independent quantity and, consequently, to
perform a comparison with the results for the original field, ζ.

In this Chapter, we first proceeded to define a gauge invariant quantity
which describes the linear density perturbation of the dark energy field.
Such a definition is very general and applicable both in the presence of
matter fields and in the late time universe. Then, moving to the explicit
stability study of the scalar d.o.f., we focused on avoiding the usual set
of instabilities namely ghost, gradient and tachyonic instabilities for both
scalar and tensor modes. These are related to the sign of the kinetic
term, the speed of propagation at high-k and the mass term at low-k
respectively. Additionally, we studied the effect of sub-leading term in
the high-k expansion as it might become important when the speed of
propagation is small. Dubbed the effective undamped mass it can become
problematic when it is strongly negative as the corresponding modes
are unstable. Moreover, we showed that, by doing a field redefinition in
the second order action from the curvature perturbation ζ to the dark
energy field, the constrains arising by imposing the absence of ghost and
gradient instabilities do not change.
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Moving on to the mass terms the agreement between the two per-
turbations does not seem to hold as the mass terms are substantially
different. It is then important to also consider the mass of the dark energy
field, when setting the proper condition for the avoidance of tachyonic
instability, as it has a real physical interpretation. In order to have
an idea of the behaviour of the mass term, we studied modifications of
gravity on a dS background and then we set and discussed the proper
conditions one has to impose in order to ensure a stable dS universe. The
existence of stable dS solutions is of value as it is expected to be the late
time stage of the universe. As we wished to achieve model independent
results we employed the usual EFToDE/MG while neglecting any matter
components due to their heavily sub-leading behaviour.

As we saw in the previous Chapters, the all-encompassing nature of
the original EFToDE/MG action dictates that a unique approach is not
feasible as sub-cases might show up which need to be treated separately,
a behaviour appearing due to the higher spatial derivative operators. In
this Chapter we identified three main cases that deserved our attention:
the case with all operators active, the beyond Horndeski class of models
and the case encompassing low-energy Hořava gravity.

Starting with these three subcases we proceeded to study their theoret-
ical stability by deriving the kinetic term and the speed of propagation.
By demanding them to be positive, one guarantees that the theory is free
of ghosts and gradient instabilities. Additionally, we supplemented them
with the same conditions guaranteeing a stable tensor sector. As already
discussed we find that the parameter space identified by the no-ghost
and gradient conditions is independent of the field chosen to describe the
scalar d.o.f.. In the general case when considering the low k/a limit it
becomes clear that the two fields satisfy a different equation of motion.
The curvature perturbations is conserved at those scales as the equation
does not contain any mass term. On the contrary, the equation for the
gauge invariant dark energy field appears to have a mass term which is
positive and of the same order of H2

0 , hence a tachyonic instability does
not develop and the solution is an exponentially decaying mode. We can
infer the same conclusion for the beyond Horndeski sub-case. On the
other hand, we find that for the Hořava like class both the curvature
perturbation and the gauge invariant dark energy field satisfy the same
equation of motion with a mass term dependent on the theory. The non
zero mass term for the curvature perturbation can be attributed to the
Lorentz violating nature of Hořava gravity. Thus we have to require that
|m̄2| ≤ H2

0 in order to guarantee a stable dS universe.

In the high-k limit usually only the leading order is considered, iden-
tified as the speed of propagation. Constraining this to be positive is
usually considered to be enough to guarantee stability of the correspond-

130



4.7 Appendix A: Notation

ing modes. We proceeded to expand this analysis by not neglecting
the next to leading order contribution, a term we dubbed the effective
undamped mass. This term turns out be relevant for theories with a very
small speed of propagation as it can become the source of an instability.
Thus, in such a case, one needs to impose an additional constraint.

As a final comment we would like to emphasize that the speed of
propagation was never identically zero. This is an interesting results
when considering the Horndeski class of models as it was claimed that
they do not propagate a scalar d.o.f. in dS [136]. While this can happen
for specific cases, such as the Cubic Galileon and any analytic K-essence
model, the statement does not hold in its full generality. To name one, the
very well known Covariant Galileon theory has been studied and shown
to propagate a d.o.f.. To complete its study we presented a parameter
choice which not only propagates a d.o.f. but also guarantees a stable dS
background.

Finally we believe that our results can be apllied at present time (z ∼ 0)
as well, as the dark energy field is dominating. However, in order to
guarantee that this field remains stable along all the whole evolution
of the universe, one has to properly derive the mass coefficient when
the matter fluids are considered, as was done in the previous Chapter.
In order to provide the mass associated to the, gauge invariant, dark
energy density field one should construct the Hamiltonian for all the
fields (perturbed dark energy density+ fluid densities), then work out
the associated eigenvalues and finally apply the . In light of the results
of this work it might be important to investigate also the behaviour of
the effective undamped mass term at high-k. Concluding, the gauge
invariant quantity defined to describe dark energy is still valid when
one includes the presence of matter. The difficulty will then lie in the
disentangling of its dynamics from these new field and will require a
separate investigation.

4.7 Appendix A: Notation

In this Appendix we will explicitly list all the coefficients used in the
main text.

The kinetic term in action (4.7) reads

Lζ̇ζ̇(t, k) =
A1(t) + k2

a2A4(t)

A2(t) + k2

a2A3(t)
, (4.115)

where

A1(t) = (F1 − 3F4)
(
3F 2

2 + F1F3

)
,
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A2(t) = 2
(
F 2

2 + F3F4

)
,

A3(t) = 16F4m
2
2 ,

A4(t) = 8F1m
2
2 (F1 − 3F4) , (4.116)

and the gradient term is

G(t, k) =
G1(t) + k2

a2G2(t) + k4

a4G3

(A2(t) + k2

a2A3(t))2
, (4.117)

where

G1(t) = 4
[
F2

(
F 2

2 + F3F4

)
(F1 − 3F4)H

(
2M̂2 +m2

0(Ω + 1)
)

+ 2
(
F2

3
((
Ḟ1 − 3Ḟ4

)
M̂2 + (F1 − 3F4) 2M̂

˙̂
M
)

+ F2

(
F4 (3F4 − F1) Ḟ3M̂

2 + F3

(
−6F4

2M̂
˙̂
M + F4

(
Ḟ1M̂

2

+ F12M̂
˙̂
M
)
− F1Ḟ4M̂

2
))
− F 2

2 (F1 − 3F4) Ḟ2M̂
2

+ F3F4 (F1 − 3F4) Ḟ2M̂
2
)

+m2
0

(
−
(
−F2

3
(
F1Ω̇− 3F4Ω̇

+ (Ω + 1)
(
Ḟ1 − 3Ḟ4

))
+ F2

(
F4

(
F3

(
3F4Ω̇− (Ω + 1)Ḟ1

)
− 3F4(Ω + 1)Ḟ3

)
+ F1

(
F3

(
(Ω + 1)Ḟ4 − F4Ω̇

)
+ F4(Ω + 1)Ḟ3

))
+ F2

2(Ω + 1)
(

(F1 − 3F4) Ḟ2 + 2F3F4

)
+ F3F4(Ω + 1)

(
F3F4 − (F1 − 3F4) Ḟ2

)
+ F2

4(Ω + 1)
)) ]

,

G2(t) = 8
(

4m2
0

(
−F4(Ω + 1)

(
F3F4

(
2m2

2 − M̂2
)
− (F1 − 3F4)m2

2Ḟ2

)
+ F4F

2
2 (−(Ω + 1))

(
2m2

2 − M̂2
)

+ F4 (F1 − 3F4)F2Hm
2
2(Ω + 1)

+ 3F2

(
F4

(
3F4

(
(Ω + 1)2m2ṁ2 −m2

2Ω̇
)

+m2
2(Ω + 1)Ḟ1

)
+ F1

(
F4

(
m2

2Ω̇

− (Ω + 1)2m2ṁ2)−m2
2(Ω + 1)Ḟ4

)))
+ 4

(
6F2F4 (F1 − 3F4)Hm2

2M̂
2

+ F4M̂
2
(
F3F4M̂

2 + 2 (F1 − 3F4)m2
2Ḟ2

)
− 2F2

(
F 2

4

(
6m2

2M̂
˙̂
M − 3M̂2m2

2

)
− F4

(
m2

2

(
Ḟ1M̂

2 + 2F1M̂
˙̂
M
)

− 2F1M̂m2ṁ2

)
F1m

2
2Ḟ4M̂

2
)

+ F 2
2F4M̂

4
)
m4

0F4

(
F 2

2 + F3F4

)
(Ω + 1)2

)
,

G3(t) = 64F 2
4m

2
2

(
−4m2

0(Ω + 1)
(
m2

2 − M̂2
)

+ 4M̂4 +m4
0(Ω + 1)2

)
(4.118)

The kinetic and Gradient coefficients here are in a FLRW universe.
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4.7 Appendix A: Notation

Here, we define the coefficients of action (4.20)

S =

∫
d4x a3

[
a2

k2

(
Q δ̇2

φ − G
k2

a2
δ2
φ

)]
, (4.119)

with

Q ≡
L2
ζ̇ζ̇

(
Gα3

2 k2

a2 − [H(ηL − η3 + η6 + 3)α3 − α6]α6Lζ̇ζ̇
)
k2

a2(
α6 (H (η3 − η6 − ηL − 3)α3 + α6)Lζ̇ζ̇ + k2

a2Gα3
2
)2 , (4.120)

G ≡
Lζ̇ζ̇[

α6 (H (η3 − η6 − ηL − 3)α3 + α6)Lζ̇ζ̇ + k2

a2Gα2
3

]2 (G2α2
3

k4

a4

+ G {[ηL2 + (5− 2 η3 − ηG + sL)ηL + η2
3 + (ηG − s3 − 5)η3 − 3 ηG

+ 6]H2α3
2 + 3H(η3 − η6 + 1/3 ηG − 2/3 ηL − 5/3)α6α3 + α6

2}k
2

a2
Lζ̇ζ̇

+ H2η6[H(η3
2α3 − η3η6α3 − 2 ηLη3α3 + η3α3s3 − η3α3s6 + ηLη6α3

+ ηL
2α3 + ηLα3s6 − ηLα3sL − 6 η3α3 + 3α3η6 + 6α3ηL

+ 3α3s6 + 9α3) + α6η6 − α6ηL − α6s6 − 3α6]α6L2
ζ̇ζ̇

)
, (4.121)

and

sL ≡
η̇L
HηL

, s3 ≡
η̇3

Hη3
, s6 ≡

η̇6

Hη6
, ηG =

Ġ

H G
. (4.122)

Moreover, the explicit expressions for the αi and µi coefficients in the
dS limit used in Sec. 4.4.1 are

α3(t, k) = −
2 (F1 − 3F4)

(
2F2H0 + F3 + 8k

2

a2m
2
2

)
3H0

(
F 2

2 + F3F4 + 8F4
k2

a2m2
2

)
α6(t, k) =

2k2

a(t)2

H0 (F4H0 − 2F2)
(

2M̂2 +m2
0(Ω + 1)

)
+ F 2

2 + F3F4 + 8F4
k2

a2m
2
2

3H2
0

(
F 2

2 + F3F4 + 8F4
k2

a2m2
2

) ,

(4.123)

and

µ3(t, k) =
1

Lζ̇ζ̇
(
Lζ̇ζ̇ (α6

2 − 3H0α3α6 + α6α̇3 − α3α̇6)− α6α3L̇ζ̇ζ̇ + k2

a2Gα3
2
)

×
{
Lζ̇ζ̇

(
−6H0α6α3L̇ζ̇ζ̇ + α6α3L̈ζ̇ζ̇ + α6

2L̇ζ̇ζ̇ + 2α6L̇ζ̇ζ̇α̇3

)
+ L2

ζ̇ζ̇

(
3H0α6 (2α̇3 + α6)− 9H2

0α3α6
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− α6 (2α̇6 + α̈3) + α3α̈6) + 2α3L̇ζ̇ζ̇
(
−α6L̇ζ̇ζ̇

)
− k2

a2
Lζ̇ζ̇α3

2Ġ

+
k2

a2
Gα3

(
Lζ̇ζ̇ (5H0α3 − 2α̇3) + 2α3L̇ζ̇ζ̇

)}
(4.124)

µ6(t, k) =
1

a2Lζ̇ζ̇
(
a2
(
Lζ̇ζ̇ (−3H0α3α6 + α6α̇3 − α3α̇6 + α6

2)− α6α3L̇ζ̇ζ̇
)

+ k2Gα3
2
)

×
{
a2
(
a2
(
Lζ̇ζ̇

(
−3H0α3

(
−2L̇ζ̇ζ̇α̇6

)
− L̇ζ̇ζ̇ (2α̇3 + α6) α̇6

+ α3

(
−L̈ζ̇ζ̇α̇6 + L̇ζ̇ζ̇α̈6

))
+ L2

ζ̇ζ̇

(
−3H0 (α6α̇6 + 2α̇3α̇6 − α3α̈6) + 9H2

0α3α̇6

+ α̇6α̈3 − (α̇3 + α6) α̈6 + 2α̇6
2
)

+ α3L̇ζ̇ζ̇
(

2L̇ζ̇ζ̇α̇6

))
+ k2α3Ġ

(
Lζ̇ζ̇ (−3H0α3 + α̇3 + α6)− α3L̇ζ̇ζ̇

))
+ k2a2G

(
α3

(
5H0α3L̇ζ̇ζ̇ + α3L̈ζ̇ζ̇ − 2α6L̇ζ̇ζ̇ − 2L̇ζ̇ζ̇α̇3

)
+ Lζ̇ζ̇

(
−5H0α3 (α̇3 + α6) + 6H2

0α3
2 − 3α3α̇6 + 2α̇3

2 + 3α6α̇3

− α3α̈3 + α6
2
))

+ k4G2α3
2
}

. (4.125)
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