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3 On the stability conditions
for theories of modified
gravity in the presence of
matter fields

3.1 Introduction

In the previous Chapter we started to study the set of conditions an
extension of gravity must satisfy in order to guarantee a viable cosmo-
logical scenario. This was done by considering the model in a vacuum
and as such does not represent our universe as it contains matter fields
which are gravitationally coupled to the new d.o.f.. In fact, the stability
conditions might be altered by the presence of the additional matter
fields, thus changing the viability space of the theory [37, 67, 112–115].
Identifying the correct viability requirements is important when testing
MG theories with cosmological data by using statistical tools [22, 23,
116, 117], as they can reduce the viability space one needs to explore.
Additionally they can even dominate over the constraining power of
observational data as recently shown in the case of designer f(R)-theory
on wCDM background [23]. Therefore, in this Chapter we proceed to
fix this deficiency and to quantify the modifications induced by the new
fields.

With the aim to obtain general results, we will employ once more
the Effective Field Theory of Dark Energy and Modified Gravity [14,
15]. This EFToDE/MG approach has been implemented into the Ein-
stein Boltzmann solver, CAMB/CosmoMC [20, 21, 118], creating EFT-
CAMB/EFTCosmoMC [22, 23, 39, 80, 82, 119] (http://www.eftcamb.
org/), providing a perfect tool to test gravity models through comparison
with observational data. EFTCAMB comes with a built-in module to
explore the viability space of the underlying theory of gravity, which
then can be used as priors. The results of the present work have a direct
application as they can be employed to improve the current EFTCAMB
viability requirements but not limited to it as they can be easily mapped
to other parametrizations [80].
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3 Stability conditions in the presence of matter

For the matter sector we chose to employ the Sorkin-Schutz action,
which allows one to treat general matter fluids [120, 121]. Among many
models used to describe matter Lagrangians and which have been exten-
sively used and investigated in the past years [37, 67, 112–115], we choose
to follow the recent arguments in ref. [122]. Indeed, it has been shown
that such an action, along with an appropriate choice for the matter field,
describes the dynamics of all matter fluids avoiding some problems which
might arise when including pressure-less matter fluids, like dust or cold
dark matter (CDM), which are relevant in the evolution of the Universe.

Previously, a stability analysis of the EFToDE/MG in the presence of
matter had been done in [37]. However, in our work we present also the
conditions which allow to avoid tachyonic instabilities and we analyse all
possible sub-cases concerning the stability conditions. Furthermore, due
to the different choice of matter action, modifications can be seen when
one includes presureless fluids.

With this machinery, we proceed to derive the viability constraints
one needs to impose on the free parameters of the theory by focusing
on three sources of possible instabilities, ghost, gradient and tachyonic
instabilities. We will proceed while retaining the full generality of the
EFToDE/MG approach, i.e. without limiting to specific models. However,
where relevant, we will make connections to specific theories, such as
low-energy Hořava gravity [35, 36, 55] and beyond Horndeski models [66]
and we will analyse the results within the context of these models.

This Chapter is based on the work in [32]: On the stability conditions
for theories of modified gravity in the presence of matter fields with A. De
Felice and N. Frusciante. In section 3.2, we briefly recap the EFToDE/MG
formalism we use to parametrize the DE/MG models with one extra
scalar d.o.f.. In section 3.3, we introduce the Sorkin-Schutz action to
describe the dynamics of matter fluids and we discuss the advantage of
using this action with respect to previous approaches. We also work out
the corresponding continuity equation and second order perturbed action.
In section 3.4, we work out the action for both gravity and matter fields
up to second order in perturbations. Then, we calculate and discuss
the stability requirements to avoid ghost instabilities (section 3.4.1), to
guarantee positive speeds of propagation (section 3.4.2) and to prevent
tachyonic instabilities (section 3.4.3). Finally, we conclude in section 4.6.

3.2 The Effective Field Theory of Dark
Energy and Modified Gravity

The EFToDE/MG has been proposed as a unifying framework to study
the dynamic and evolution of linear order perturbations of a broad
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3.2 The Effective Field Theory of Dark Energy and Modified Gravity

class of DE/MG theories [14, 15]. This approach encompasses all the
theories of gravity exhibiting one extra scalar and dynamical d.o.f. and
admits a well-defined Jordan frame. As discussed in the Introduction,
the EFToDE/MG is constructed in the unitary gauge by expanding
around the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric. Each
operator si accompanied by a time dependent function dubbed EFT
function. The explicit form of the perturbed EFToDE/MG action is the
following:

SEFT =

∫
d4x
√
−g
[
m2

0

2
(1 + Ω(t))R(4) + Λ(t)− c(t)δg00 +

M4
2 (t)

2
(δg00)2

−M̄
3
1 (t)

2
δg00δK − M̄2

2 (t)

2
(δK)2 − M̄2

3 (t)

2
δKµ

ν δK
ν
µ

+
M̂2(t)

2
δg00δR(3) +m2

2(t) (gµν + nµnν) ∂µg
00∂νg

00

]
, (3.1)

wherem2
0 is the Planck mass, gµν is the four dimensional metric and g is its

determinant, δg00 is the perturbation of the upper time-time component
of the metric, nµ is the normal vector to the constant-time hypersurfaces,
R(4) and R(3) are respectively the trace of the four dimensional and three
dimensional Ricci scalar, Kµν is the extrinsic curvature and K is its trace.
Finally, with δA = A− A(0) we indicate the linear perturbation of the
quantity A and A(0) is the corresponding background value.

Moreover, it has been shown that appropriate combinations of the
EFT functions in action (5.1) allows one to describe specific classes of
DE/MG models. We group such combinations as follows:

• M2
2 = −M̄2

3 = 2M̂2 and m2
2 = 0: Horndeski [78] or Generalized

Galileon class of models [79] (and all the models belonging to them);

• M2
2 + M̄2

3 = 0 and m2
2 = 0 : Beyond Horndeski class of models [66];

• m2
2 6= 0: Lorentz violating theories (e.g. low-energy Hořava grav-

ity [35, 36, 55]).

For a detailed guide to map a specific theory into the EFToDE/MG
language we refer the reader to the previous Chapter as well as refs. [14,
15, 37, 65]. Finally, an extended version of the above EFToDE/MG action
has been presented in the previous Chapter which includes operators
with higher than second order spatial derivatives.

In the following we will briefly recap the construction of the EFToDE/MG
action up to second order in terms of the scalar metric perturbations as
it will be the starting point for the stability analysis.
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3 Stability conditions in the presence of matter

Because of the unitary gauge in action (3.1), it is natural to choose the
Arnowitt-Deser-Misner (ADM) formalism [19] to write the line element,
which reads:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (3.2)

where N(t, xi) is the lapse function, N i(t, xi) the shift and hij(t, x
i) is

the metric tensor of the three dimensional spatial slices. Proceeding with
the expansion around a flat FLRW background, the metric can be written
as:

ds2 = −(1 + 2δN)dt2 + 2∂iψdtdx
i + a2(1 + 2ζ)δijdx

idxj , (3.3)

where as usual δN(t, xi) is the perturbation of the lapse function, ∂iψ(t, xi)
and ζ(t, xi) are the scalar perturbations respectively of Ni and hij and
a is the scale factor. Then, the scalar perturbations of the quantities
involved in the action (3.1) are:

δg00 = 2δN ,

δK = −3ζ̇ + 3HδN +
1

a2
∂2ψ ,

δKij = a2δij(HδN − 2Hζ − ζ̇) + ∂i∂jψ ,

δKi
j = (HδN − ζ̇)δij +

1

a2
∂i∂jψ ,

δR(3) = − 4

a2
∂2ζ , (3.4)

where we have made use of the following definitions of the normal vector
and extrinsic curvature:

nµ = Nδ0
µ, Kµν = hλµ∇λnν , (3.5)

with hµν = gµν +nµnν , H ≡ 1
a
da
dt is the Hubble function and dots are the

derivatives with respect to time. Then, the action (3.1) can be explicitly
expanded in terms of metric scalar perturbations up to second order and
after some manipulations, we obtain the following final form:

S
(2)
EFT =

∫
dtd3xa3

{
−F4(∂2ψ)2

2a4
− 3

2
F1ζ̇

2 +m2
0(Ω + 1)

(∂ζ)2

a2

− ∂2ψ

a2

(
F2δN − F1ζ̇

)
+ 4m2

2

[∂(δN)]2

a2
+
F3

2
δN2

+

[
3F2ζ̇ − 2

(
m2

0(Ω + 1) + 2M̂2
) ∂2ζ

a2

]
δN

}
, (3.6)
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3.3 The Matter Sector

where we have defined

F1 = 2m2
0(Ω + 1) + 3M̄2

2 + M̄2
3 ,

F2 = HF1 +m2
0Ω̇ + M̄3

1 ,

F3 = 4M4
2 + 2c− 3H2F1 − 6m2

0HΩ̇− 6HM̄3
1 ,

F4 = M̄2
2 + M̄2

3 , (3.7)

and other terms vanish because of the background equations of motion.
This result will be considered along with the matter sector which will be
presented in the next section in order to facilitate the complete study of
conditions that guarantee that a gravity theory, in presence of matter
fields, is free from instabilities.

3.3 The Matter Sector

The goal of the present work is to investigate the emergence of instabilities
in modified theories of gravity under the influence of matter fluids and
subsequently set appropriate stability conditions. Therefore, a crucial step
is to make the appropriate choice for the matter action, Sm. Moreover,
the generality of the EFToDE/MG approach in describing the gravity
sector makes that even for the matter action there is an equally general
treatment. It is common in literature to choose for the matter Lagrangian
a k-essence like form, P (X ) [37, 111–114, 123, 124], to model the matter
d.o.f. where X ≡ χ;µχ

;µ is the kinetic term of the field χ. However, this
choice displays problematic behaviours which motivates us to decide for a
different action. The easiest way of identifying those issues is to consider
the corresponding action for P (X ) when it has been specialized to a
dust fluid. In that case it can be easily shown that the action diverges.
Subsequently, in ref. [122], it has been shown that the real problem arising
in the K-essence like matter Lagrangian lies in the choice of the canonical
field one uses to describe the d.o.f. of the fluid. The usual choice for
the fluid variable, the velocity vm, satisfies a closed first order equation
of motion, which requires only one independent initial condition. Then,
the dust fluid would have only one d.o.f. (rather than two) and for that
field the action tends to blow up as the speed of propagation goes to zero
(c2s,d → 0). Instead, the appropriate variable for the fluid is the matter
density perturbation, δm.

In order to avoid the issues described above we choose the Sorkin-Schutz
action, see refs. [120, 121] which is well defined for a dust component
and can describe in full generality perfect fluids. As observed above the
appropriate fluid variable is the density perturbation which is exactly the
one employed by this action and thus satisfies a second order equation
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3 Stability conditions in the presence of matter

of motion as will be evident in the following. The Sorkin-Schutz matter
action reads:

Sm = −
∫
d4x[
√
−g ρ(n) + Jν∂ν`] , (3.8)

where ρ is the energy density, which depends on the number density n, `
is a scalar field, whereas Jν is a vector with weight one. Additionally, we
define n as

n =

√
JαJβgαβ

g
. (3.9)

Then, the four velocity vector uα is defined as

uα =
Jα

n
√
−g

, (3.10)

and satisfies the usual relation uαuα = −1. Variation of the matter
Lagrangian with respect to Jα leads to

uα =
1

∂ρ/∂n
∂α` , (3.11)

while taking its variation with respect to the metric we find that the
stress energy tensor can be defined as

Tαβ ≡
2√
−g

δSm
δgαβ

= n
∂ρ

∂n
uαuβ +

(
n
∂ρ

∂n
− ρ
)
gαβ , (3.12)

which is a barotropic perfect fluid with pressure given by

p ≡ n ∂ρ
∂n
− ρ . (3.13)

Let us notice that a particular choice for the density, i.e. ρ ∝ n1+w, allows
to have the usual relation p = wρ, where w is the barotropic coefficient.
Finally, by varying the matter action with respect to `, one gets the
conservation constraint

∂αJ
α = 0. (3.14)

On a flat FLRW background the above relation gives J0 = N0, where
N0 is the total particle number and from Eq. (3.9) we have n = N0/a

3.
Let us now proceed to write the matter action (3.8) up to second order

in the scalar fields by using the metric scalar perturbations in Eq. (3.3).
For the fluid variables we proceed to expand them as follows

J0 = N0 + δJ ,

J i =
1

a2
∂iδj ,

` = −
∫ t ∂ρ

∂n
dt′ − ∂ρ

∂n
vm , (3.15)
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3.4 Study of Stability conditions

where vm is the velocity of the matter species. Furthermore, we note
that since

ρ = ρ̄+
∂ρ

∂n

(
−3N0

a3
ζ +

δJ

a3

)
≡ ρ̄+ δρ , (3.16)

where ρ̄ is the density at the background, one can obtain

δJ =
a3ρ̄ δm
∂ρ/∂n

+ 3N0 ζ , (3.17)

where, as usual, δm = δρ/ρ̄. We can thus rewrite δJ in terms of δm in
the perturbed matter action. Finally, we can use the equation of motion
for δj

δj = −N0(ψ + vm) (3.18)

in order to eliminate it in favour of vm and ψ.
Combining the above results and after some integrations by parts, we

obtain the action for the scalar perturbations up to second order:

S(2)
m =

∫
dtd3xa3

[
−nρ,n(∂v)2

2a2
+

(
3H
(
nρ,n

2 − nρ̄ ρ,nn − ρ̄ ρ,n
)
δm

ρ,n

+
nρ,n∂

2ψ

a2
− 3nρ,nζ̇ − ρ̄ δ̇m

)
vm −

ρ,nnρ̄
2δ2
m

2ρ2
,n

− ρ̄ δNδm

]
.(3.19)

Notice that the velocity vm can always be integrated out, as nρ,n =
ρ̄+ p 6= 0.

3.4 Study of Stability conditions

In this section we present the main bulk of our work, i.e. the study of the
general conditions that a gravity theory has to satisfy in order to be free
from instabilities when additional matter fields are considered. These
set of requirements include: no ghost instabilities, positive speeds of
propagation (squared) and no tachyonic instabilities as presented in the
Introduction. Recently, it has been shown that physical stability plays
an important role when testing specific gravity models with cosmological
data [23, 125]. In particular, the EFTCAMB patch [22, 23] includes a
specific module with the task to identify the viable parameter space of a
selected theory. The results of the present work can be used to improve
such modules and improve on the efficiency of the selection process.

To achieve this goal we consider the general EFToDE/MG parametriza-
tion presented in section 3.2 in the presence of two different matter fluids,
described by the action (3.19), for which we made the following, realistic,
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3 Stability conditions in the presence of matter

choices: a pressure-less fluid, i.e. cold dark matter/dust (d) and radiation
(r). A treatment which includes two general fluids complicates the process
substantially and we do not expect to learn much more in such a case. So
the relevant action required in order to proceed is of the following form:

S(2) =
1

(2π)3

∫
dtd3ka3

{
ρ̄d

(
−k

2ψ

a2
− 3ζ̇ − δ̇d

)
vd + ρ̄r

(
−4

3

k2ψ

a2

− 4ζ̇ − δ̇r
)
vr − ρ̄d

(kvd)
2

2a2
− 2

3
ρ̄r

(kvr)
2

a2
− F4

2a4

(
k2ψ

)2
+

2k2ζ
(

2M̂2 +m2
0(Ω + 1)

)
a2

+ 3F2ζ̇

 δN +
(
δNF2 − F1ζ̇

) k2ψ

a2
+

+
4m2

2(kδN)2

a2
+
m2

0(Ω + 1)(kζ)2

a2
− 4

3
ρ̄r

(kvr)
2

2a2
− ρ̄dδNδd

+
1

2
F3δN

2 − 3

2
F1ζ̇

2 − ρ̄r
8
δ2
r − ρ̄rδNδr

}
, (3.20)

where we have Fourier transformed the spatial coordinates and we have
considered the following relations for the number densities:

nd = ρ̄d , nr = (ρ̄r)
3
4 , (3.21)

being ρ̄d, ρ̄r respectively the density of dust and radiation at background.
An action constructed in such a way admits only three d.o.f. described

by {ζ, δd, δr}. Therefore in the above action we notice the presence of
four Lagrange multipliers δN , ψ, vd and vr. Consequently, we proceed
with the removal of the latter by using the constraint equations obtained
after the variations of the action with respect to the Lagrange multipliers.
The resulting set of constraint equations is:

ρ̄r

(
−4

3

k2ψ

a2
− 4ζ̇ − δ̇r

)
− 4

3
ρ̄r
k2vr
a2

= 0 ,

ρ̄d

(
−k

2ψ

a2
− 3ζ̇ − δ̇d

)
− ρ̄d

k2vd
a2

= 0 ,

2k2ζ
(

2M̂2 +m2
0(Ω + 1)

)
a2

+ 3F2ζ̇ +
8m2

2k
2δN

a2
+ F2

k2ψ

a2
− ρ̄dδd

+F3δN − ρ̄rδr = 0 ,

−ρ̄dvd −
4

3
ρ̄rvr + δNF2 − F1ζ̇ −

F4

a2
k2ψ = 0 . (3.22)

After solving for the auxiliary fields and substituting the results back
into action (3.20), we get an action containing only the three dynamical
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3.4 Study of Stability conditions

d.o.f. {ζ, δd, δr}:

S(2) =
1

(2π)3

∫
d3kdta3

(
~̇χtA~̇χ− k2~χtG~χ− ~̇χtB~χ− ~χtM~χ

)
, (3.23)

where we have defined the dimensionless vector:

~χt = (ζ, δd, δr), (3.24)

and the matrix components are listed in Appendix 3.6. In the next
sections we will derive the stability conditions one needs to impose on
the above action in order to guarantee the viability of the underlying
theory of gravity.

Before proceeding with this in-depth analysis of the final action we
present the background equations corresponding to our set-up:

E1 ≡ 3m2
0

[
1 + Ω + a

dΩ

da

]
H2 + Λ− 2 c−

∑
ρ̄i = 0 ,

E2 ≡ m2
0(1 + Ω)(3H2 + 2Ḣ) + 2m2

0HΩ̇ +m2
0Ω̈ +

∑
i

pi + Λ = 0 ,

Ei ≡ ˙̄ρi + 3H(ρ̄i + pi) = 0 . (3.25)

where the Friedmann equations have been supplemented by the continuity
equations for the fluids. Finally, in order to close the system of equations,
one needs to use the well-known equations of state for dust and radiation.
As a side comment, from the background equations it is not possible to
define in general a modified gravitational constant because c and Λ can
be functions of H2. The latter statement is clear when looking at the
mapping of specific theories in the EFToDE/MG language as done in
Chapter 2.

3.4.1 The presence of ghosts

A negative kinetic term of a field is usually considered as a pathology of
the theory, since the high energy vacuum is unstable to the spontaneous
production of particles [29]. Such a pathology must be constrained
demanding for a positive kinetic term.

Recently in ref. [126], it has been shown that such a constraint has to
be imposed only in the high energy regime, in other words, an infrared
ghost does not lead to a catastrophic vacuum collapse. On the contrary
it was shown that it corresponds to a well known physical phenomenon,
the Jeans instability.

In fact, expanding the ghost conditions in high-k one can show that,
when using appropriate field re-definitions, the sub-leading terms can
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3 Stability conditions in the presence of matter

be recast into the form of a Jeans mass instability, and viceversa. For
example, the Hamiltonian H = −P 2 +Q2 (where a ghost is present), can
be recast into H = p2 − q2 (with negative squared speed of propagation
and/or tachyonic mass), upon using the trivial canonical transformation
Q = p, P = −q. Therefore, we will consider only the constraints coming
from the high-k behaviour for the ghost conditions as only in this regime
they correspond to a true theoretical instability and not to a hidden
physical phenomenon. As for the tachyonic squared mass (i.e. negative
mass), it is problematic only when the time of evolution of the instability
is much larger than H2. We will elaborate on the latter in section 3.4.3.

Although the EFToDE/MG approach has been discussed in the context
of energies smaller than the cut-off of the theory, Λcut−off , here and in
the following we will assume that we can still perform a high-k expansion,
namely we assume that in this regime we have H � k/a � Λcut−off .
This assumption is assumed to be valid at least for medium-low redshifts,
those for which we can apply all the known cosmological-data constraints,
namely BBN, CMB, BAO, etc.

In action (3.23) we have a non-diagonal kinetic matrix for the three
fields, i.e. L 3 Aijχ̇iχ̇j . As previously mentioned, in order to guarantee
the absence of ghosts, one needs to demand the high-k limit of the kinetic
matrix to be positive definite. It is clear that one case encompassing all
viable theories does not exist as a result of the wide range of operators
which depend differently on the momentum. In particular, one has to pay
attention to the operators accompanying M̄3

2 , M̄
2
2 and m2

2, which exhibit
a higher order dependence on k. Therefore, we will present a number of
clear sub-cases which we consider relevant

We can identify a few cases:

1. In this case all the functions in the Lagrangian are present, in
particular m2

2 6= 0 and F4 6= 0. As a reference we note that the
low-energy Hořava gravity belongs to this general case. Expanding
at high-k, we find

G1 =
(F1 − 3F4) a3F1

2F4
> 0 , (3.26)

Gl =
a5ρ̄2

l

2k2(ρ̄l + pl)
> 0 , (3.27)

where the index l indicates the matter components, i.e. dust and
radiation, G1 ≡ Det(A)/(A22A33 − A2

23), Gr = A33 and Gd =
A22 −A2

23/A33. The Gl conditions represent the standard matter
no-ghost conditions, which are trivially satisfied.

2. F4 = 0 = m2
2. This case corresponds to the well known class of
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3.4 Study of Stability conditions

beyond Horndeski theories. We find:

G1 =

(
F1F3 + 3F2

2
)
F1a

3

2F2
2 > 0 , (3.28)

Gl =
a5ρ̄2

l

2k2(ρ̄l + pl)
> 0 . (3.29)

3. F4 = 0 and m2
2 6= 0. The ghost conditions change into

G1 =
4F 2

1m
2
2k

2a

F 2
2

> 0 , (3.30)

Gd =
F 2

2 a
5ρ̄d

2k2(F 2
2 − 8m2

2ρ̄d)
> 0 , (3.31)

Gr =
9 a5

(
F 2

2 − 8m2
2ρ̄d
)
ρ̄r

8 k2[3F 2
2 − 8m2

2(3ρ̄d + 4ρ̄r)]
> 0 , (3.32)

and in this case the matter no-ghost conditions get non-trivially
modified. In particular, we find 0 < m2

2 < F 2
2 /[8(ρ̄d + 4ρ̄r/3)].

Such condition prevents m2
2 to be arbitrarily large ensuring the

stability of the theory. One might wondering about the role of
spatial gradients of the lapse in the stability of matter, since in
the action (3.20) there is no direct coupling between matter and
gravity. However, the spatial gradient of the lapse turns out to
be proportional to δ̇2

d, δ̇
2
r and ζ̇2 through eqs. (3.22), then it is

directly involved in the above ghost conditions. In this sense there
is a “coupling” between gravity and matter fields.

4. m2
2 = 0 and F4 6= 0. In this case we have

G1 =
a3 (F1 − 3F4)

(
F1F3 + 3F 2

2

)
2(F2

2 + F4F3)
> 0 , (3.33)

Gl =
a5ρ̄2

l

2k2(ρ̄l + pl)
> 0 . (3.34)

5. F1 = 0. In this case the no-ghost conditions can be written as:

G1 = − 9F 2
2 a

5

16m2
2k

2
> 0 , (3.35)

Gl =
a5ρ̄2

l

2k2(ρ̄l + pl)
> 0 , (3.36)

so that m2
2 < 0.

79



3 Stability conditions in the presence of matter

6. Cases: F1 = 3F4, or F1 = 0 = F2, or m2
2 = 0 = F1F3 + 3F 2

2 . In
this cases the determinant of the kinetic matrix identically vanishes.
This behaviour, in general, leads to strong coupling, so that this
class of theories cannot be considered as a valid EFT.

A final remark on the first two cases, which are the most noticeable
since they are strictly related to well known models: the presence of
matter fluids does not affect the form of the ghost conditions, indeed,
we recover the same results as in the previous Chapter where no matter
fluids were included, once the high-k limit has been taken. However,
let us note that the parameters space identified by these conditions can
change because of the evolution of the scale factor, which in turns is the
solution of different Friedmann equations. Moreover, no-ghost conditions
have been previously obtained in presence of matter fields described by a
P (X ) action as in refs. [37, 111, 123, 124] (and references therein). Such
results are obtained for the variable vm and they can be safely applied
for all matter fluids but not for dust. Indeed, in the specific case of
pressureless fluids (w → 0) the ghost condition turns out to be ill defined.
This can be explained by the fact that the no-ghost conditions need to
be derived at the level of the action, which diverges in this limit. From a
physical point of view this is related to a ”bad” choice of physical variable
which has to describe the matter d.o.f. as we discussed in section 3.3.
However, in some cases they can be extended to non relativistic matter
species as for eg. in ref. [111], where the authors use for the barotropic
coefficient of these species the case w = 0+ which implies a small yet
non-negligible pressure and speed of propagation. In conclusion, by using
appropriate precautions in some cases present in literature one can find
some of the above results, mostly related to case 2. In this sense our
results are more general and robust.

3.4.2 The speeds of propagation

We will now proceed with the study of the speeds of propagation asso-
ciated to the scalar d.o.f. in action (3.23). As usual, their positivity
guarantees the avoidance of any potential gradient instabilities at high-k.
Hereafter, we will consider the action purely in the high-k limit. This is
a necessary step in order to obtain the physical speeds of propagation.
Indeed, if one does not assume the high-k limit the resulting “speeds
of propagation” would be complicated and non-local expressions due to
the complex dependence on the momentum of the action (3.23) and the
interaction between the three fields. Of course, in order to study the gra-
dient instability in full generality one needs to work out such expressions.
However, let us say that in such case the fields do not decouple from each
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other and it turns out to be very difficult to obtain analytical expressions
for the speeds of propagation. Moreover, the regime in which the gradient
instability manifests itself faster and thus becomes potentially dangerous
within the lifetime of the universe is in the high-k limit, thus justifying
our restriction to such a regime.

In order to achieve this, it is necessary to diagonalise the kinetic matrix,
therefore we will proceed with the following field redefinition:

ζ = Ψ1, δd = Ψ2k −
A12A33 −A13A23

A22A33 −A2
23

Ψ1,

δr = kΨ3 +
A12A23 −A13A22

A22A33 −A2
23

Ψ1 −
A23

A33
Ψ2k . (3.37)

The k dependence of the transformation is a convenient choice in order to
obtain, in the high-k limit, a scale invariant kinetic matrix and the new
kinetic matrix, L 3 a3KijΨ̇iΨ̇j , is now diagonal without approximations.
Finally, we get a Lagrangian of the form:

L(2) = K11Ψ̇2
1 +K22Ψ̇2

2 +K33Ψ̇2
3 +Q12(Ψ̇1Ψ2 − Ψ̇2Ψ1)

+ Q13(Ψ̇1Ψ3 − Ψ̇3Ψ1) +Q23(Ψ̇2Ψ3 − Ψ̇3Ψ2)−MijΨiΨj ,(3.38)

where the kinetic matrix coefficients are:

K11 =
A33A12

2 − 2A13A23A12 +A2
13A22 +A11

(
A23

2 −A22A33

)
A23

2 −A22A33
,

K22 = k2

(
A22 −

A23
2

A33

)
,

K33 = k2A33 Kij = 0 with i 6= j , (3.39)

and the Qij andMij matrix coefficients will be specified in the following
case by case.

Due to the different scaling with k of the operators in action (3.23), it is
necessary to analyse the sub-cases identified before separately. As it will
become clear every sub-case exhibits a different behaviour, as expected.

1. General case (m2
2 6= 0 and F4 6= 0). The kinetic matrix elements at

high-k read

K11 =
F1 (F1 − 3F4)

2F4
+O(k−2) , K22 =

1

2
a2ρ̄d +O(k−2) ,

K33 =
3

8
a2ρ̄r +O(k−2) , (3.40)

which are scale invariant. In its full generality, the action reduces
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in such a limit to a system of three decoupled fields:

S(2) =
1

(2π)3

∫
dk3dt

a3

8

{
4a2ρ̄dΨ̇

2
2 + 3a2ρ̄rΨ̇

2
3 +

4F1 (F1 − 3F4)

F4
Ψ̇2

1

− k2

a2

2
(
−4m2

0(Ω + 1)
(
m2

2 − M̂2
)

+ 4M̂4 +m4
0(Ω + 1)2

)
m2

2

Ψ2
1

+ a2ρ̄rΨ
2
3

]
+O(k−1)

}
, (3.41)

from which it is easy to read off the Qij andMij coefficients. Then,
for high-k, the elements Qij are corrections and the matrix Mij

becomes diagonal. This decoupling is very helpful when obtaining
the speeds of propagation from the Euler-Lagrange equations:

F1 (F1 − 3F4)

F4
Ψ̈1 +

k2

a2

−4m2
0(Ω + 1)

(
m2

2 − M̂2
)

+ 4M̂4 +m4
0(Ω + 1)2

2m2
2

Ψ1

+

F 2
1

(
3F4H − Ḟ4

)
+ F1F4

(
2Ḟ1 − 9F4H

)
F 2

4

− 3Ḟ1

 Ψ̇1 ≈ 0 ,

Ψ̈2 + 2HΨ̇2 ≈ 0 ,

3Ψ̈3 + 3HΨ̇3 +
k2

a2
Ψ3 ≈ 0. (3.42)

It is now straightforward to isolate the three speeds of propagation
and look at their functional dependence:

c2s,g =
F4

(
−4m2

0(Ω + 1)
(
m2

2 − M̂2
)

+ 4M̂4 +m4
0(Ω + 1)2

)
2F1m2

2 (F1 − 3F4)
,

c2s,d = 0 , c2s,r =
1

3
, (3.43)

where we have used the suffix ′′g′′ to indicate the speed of propaga-
tion associated to the d.o.f. of the gravity sector. It is clear that
when we consider all the operators active, including the higher order
in spatial derivative operators, one gets a completely decoupled
system where the fields do not influence each other and evolve
separately.

2. Case F4 = 0 = m2
2. After applying the fields re-definitions (3.37),
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we get in the large k-limit the following action:

S(2) =
1

(2π)3

∫
dk3dta3

{
1

2
F1

(
F1F3

F 2
2

+ 3

)
Ψ̇2

1 +
1

2
a2ρ̄dΨ̇

2
2

+
3

8
a2ρ̄rΨ̇

2
3 − k2 ρ̄r

8
Ψ2

3 + k
1

2F2

(
4M̂2 + 2m2

0(Ω + 1)− F1

)
×

[
ρ̄d

(
Ψ2Ψ̇1 −Ψ1Ψ̇2

)
+ ρ̄r

(
Ψ3Ψ̇1 −Ψ1Ψ̇3

)]
+

k2

3a2F 2
2

[
−3F1F2H

(
2M̂2 +m2

0(Ω + 1)
)

+ (6ρ̄d + 8ρ̄r)

×
(

2M̂2 +m2
0(Ω + 1)

)2

+ 3m2
0

[
F1(Ω + 1)Ḟ2

− F2

(
F1Ω̇ + (Ω + 1)Ḟ1

)
+ F 2

2 (Ω + 1)
]
− 6

(
F2

(
Ḟ1M̂

2

+ 2F1M̂
˙̂
M
)
− F1Ḟ2M̂

2
)]

Ψ2
1

}
+O(k−2).

(3.44)

As it is clear, the resulting action in the high-k limit exhibits some
substantial deviations from the previous case. The complication
arises due to the fact that now the fields are coupled in antisym-
metric configurations. This will force us to change approach when
obtaining the speeds of propagation. Namely, we will choose firstly
to Fourier transform the time component in the Lagrangian by us-
ing (∂t → −iω) and then proceed to obtain the dispersion relations.
This will yield the following:

L(2) ∼ ~ΨT

 1
2F1

(
F3F1

F 2
2

+ 3
)
ω2 − k2

a2G11 −iωkB12 −iωkB13

iωkB12
1
2a

2ρ̄dω
2 0

iωkB13 0 3
8a

2ρ̄rω
2 − k2 ρ̄r

8

·~Ψ ,

(3.45)
where G11 and Bij can be read off from the action and we have

defined the field vector ~Ψ. Now, setting the determinant of the

above matrix to zero and considering that ω2 = k2

a2 c
2
s in the high-k

limit, we obtain the following results:

c2s,d = 0 ,

(3c2s − 1)ρ̄r
[
ρ̄d
(
c2s(F3F

2
1 + 3F 2

2F1)− 2a2F 2
2 G11

)
− 4B2

12F2
2
]

−16c2sB2
13F

2
2 ρ̄d = 0 (3.46)

with F2 6= 0 and where c2s is the double solution of the dispersion
relation obtained after observing that the dust speed of propagation,
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c2s,d is zero. It is clear that, while the speed of propagation of the
dust component remains unaffected by the presence of radiation
and gravity, the last dispersion relation manifests the clear interac-
tion between radiation and gravity, which modifies their speeds of
propagation. Hence, this result shows us clearly that the interaction
with matter can affect the gravity sector in a very deep way.

The only case in which the gravity sector and the radiation one
completely decouple is when the following condition applies:

4M̂2 + 2m2
0(Ω + 1)− F1 = 0. (3.47)

In this case from (3.46) the standard speed of propagation for the
radiation is recovered and the speed of gravity is

c2s,g =
2F 2

2 G11

F3F 2
1 + 3F 2

2F1
. (3.48)

Let us notice that the condition (3.47) is trivially satisfied for
the Horndeski class of models. In Eq. (3.48), G11 depends on the
background densities of dust and radiation, then one can use the
background equations (3.25) to eliminate the dependence from the
densities of the matter fluids, thus obtaining

c2s,g =
2

F1 (3F 2
2 + F1F3)

×
(

2cF 2
1 + 2m2

0F
2
1 Ḣ(Ω + 1)

+ F 2
1H

(
F2 −m2

0Ω̇
)

+m2
0F

2
1 Ω̈− 2m2

0F
2
2 (Ω + 1)− F 2

1 Ḟ2

+ 2F2F1Ḟ1

)
. (3.49)

Even though the radiation and the dust sector appear unaltered
there is some interplay between gravity and the matter sector.
Although the above expression for the speed of propagation of
the gravity mode holds both in the vacuum and matter case, the
parameters space defined through Eq. (3.49) changes drastically in
the two cases. Indeed, firstly one has to consider a different evolution
for the scale factor, a(t) accordingly to the corresponding Friedmann
equations, secondly in the vacuum case Eq. (3.49) simplifies because
a combination of terms turns to be zero due to the Friedmann
equations. Instead, such combination of terms when matter is
included gives a non zero contribution.

The same result for this sub-case has been obtained in ref. [37,
124], starting from a P (X ) action for the matter sector and the vm
variable. It is important to note that, in contrast to the no-ghost
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conditions, the results also agree for the case of dust. This can be
explained by the fact that the speed of propagation can be obtained
at the level of the equations of motion, hence avoiding the issues
plaguing the action, described in the previous sections.

3. Case F4 = 0 and m2
2 6= 0. The action at high-k reads

S(2) =
1

(2π)3

∫
dk3dta3

{
4k2F 2

1m
2
2

a2F 2
2

Ψ̇2
1 +

a2ρ̄dF
2
2

2F 2
2 − 16ρ̄dm2

2

Ψ̇2
2

+
9a2ρ̄r

(
F 2

2 − 8ρ̄dm
2
2

)
8 (−24ρ̄dm2

2 + 3F 2
2 − 32m2

2ρ̄r)
Ψ̇2

3 −
k2ρ̄r

8
Ψ2

3

− 128k2ρ̄2
dm

4
2ρ̄r

9 (F 2
2 − 8ρ̄dm2

2)
2 Ψ2

2 −
128k4F 2

1m
4
2ρ̄r

9a4F 4
2

Ψ2
1 −

8k3F1m
2
2ρ̄r

3a2F 2
2

Ψ1Ψ3

+
256k3aρ̄dF1m

4
2ρ̄r

9a3F 4
2 − 72ρ̄dF 2

2m
2
2

Ψ1Ψ2 + k
(
16F1F2m

2
2H

+
(

4F2

(
F2M̂

2 − 2m2
2Ḟ1

)
+ 2m2

0F
2
2 (Ω + 1)

− F1

(
16F2m2ṁ2 − 16m2

2Ḟ2 + F 2
2

)))
×

[
ρ̄d

2 (F 3
2 − 8ρ̄dF2m2

2)

(
Ψ2Ψ̇1 −Ψ1Ψ̇2

)
+

3ρ̄r
2F2 (−24ρ̄dm2

2 + 3F 2
2 − 32m2

2ρ̄r)

(
Ψ3Ψ̇1 −Ψ1Ψ̇3

)]
+

8k2ρ̄dm
2
2ρ̄r

3F 2
2 − 24ρ̄dm2

2

Ψ2Ψ3

}
+O(k−2) . (3.50)

We find that the solutions of the discriminant equation

det

(
c22k

2

a2
Kij −Mij

)
=

a5cs
4ρ̄m

(
cs

2ρr,n − nrρr,nn
)
ρ̄2
rm2

2F1
2k6(

−8m2
2nrρr,n − 8m2

2ρ̄m + F2
2
)
nrρr,n2

,

(3.51)
reduce to

c2s,g = 0 , c2s,d = 0 , c2s,r =
1

3
. (3.52)

The results for this case can be found in the limit F4 → 0 for the
general case discussed above.

4. Case F4 6= 0 and m2
2 = 0. The action for this sub-case at high-k

85



3 Stability conditions in the presence of matter

reads

S(2) =
1

(2π)3

∫
dk3dta3

{(
3F 2

2 + F1F3

)
(F1 − 3F4)

2 (F 2
2 + F3F4)

Ψ̇2
1

+
1

2
a2ρ̄dΨ̇

2
2 +

3

8
a2ρ̄rΨ̇

2
3 − k2 ρ̄r

(
F 2

2 + F3F4 + 4F4ρ̄r
)

8 (F 2
2 + F3F4)

Ψ2
3

− k2ρ̄2
dF4

2 (F 2
2 + F3F4)

Ψ2
2 − k4

2F4

(
2M̂2 +m2

0(Ω + 1)
)2

a4 (F 2
2 + F3F4)

Ψ2
1

+ k3
2F4

(
2M̂2 +m2

0(Ω + 1)
)

a2 (F 2
2 + F3F4)

(ρ̄rΨ3Ψ1 + ρ̄dΨ1Ψ2)

+ k
F2

(
−F1 + 3F4 + 4M̂2 + 2m2

0(Ω + 1)
)

2 (F 2
2 + F3F4)

[
ρ̄d

(
Ψ2Ψ̇1 −Ψ1Ψ̇2

)
+ ρ̄r

(
Ψ3Ψ̇1 −Ψ1Ψ̇3

)]
− k2ρ̄dF4ρ̄r

(F 2
2 + F3F4)

Ψ2Ψ3

}
+O(k−2) ,

(3.53)

where the kinetic terms K11,K22,K33 are of order O(k0) for high
values of k and the elements Q12 and Q13 are of order k and cannot
be neglected. Furthermore, the leading component of M11 is of
order k4. Therefore now we need to consider the discriminant
equation as

Det(ω2Kij − i ω Qij −Mij) = 0 , (3.54)

this equation can be recast as

ω6 +

(
A k4

a4
+O(k2)

)
ω4 +

(
B k

6

a6
+O(k4)

)
ω2 = 0 , (3.55)

with

A = 4

(
(Ω + 1)m0

2 + 2 M̂2
)2

F4

(3F4 − F1)
(
F1F3 + 3F2

2
) , B = −1

3
A . (3.56)

For high-k, we find the following solutions:

• One solution can be found by assuming ω2 = W k4/a4. In
this case we find

(W +A)W 2 k
12

a12
+O(k10) = 0 , (3.57)
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which is verified by W = −A, so that

ω2 = −A k4

a4
, c2s,g = −4A k2

a2
, (3.58)

or

c2s,g =
16F4

(
(Ω + 1)m2

0 + 2 M̂2
)2

(F1F3 + 3F 2
2 ) (F1 − 3F4)

k2

a2
, (3.59)

which tends to large values.

• The other two solutions of Eq. (3.55) can be found by assuming
ω2 = Wk2/a2, so that

(
AW 2 + BW

) k8

a8
+O(k6) = 0 , (3.60)

which implies the following standard results

c2s,d = 0 , c2s,r =
1

3
. (3.61)

5. Case F1 = 0. The action reads:

S(2) =
1

(2π)3

∫
dk3dta3

[
−9a2F 2

2

16m2
2

Ψ̇2
1 +

ρ̄d
2
a2Ψ̇2

2 +
3

8
ρ̄ra

2Ψ̇2
3

− k2ρ̄r
8

ψ2
3 + k2

ρ̄d

(
2M̂2 +m2

0(Ω + 1)
)

4m2
2

ψ1Ψ2

+ k2
ρ̄r

(
4M̂2 + 2m2

0(Ω + 1) + 8m2
2

)
8m2

2

Ψ1Ψ3

− k4
4M̂4 − 4m2

0(Ω + 1)
(
m2

2 − M̂2
)

+m4
0(Ω + 1)2

4a2m2
2

Ψ2
1


+ O(k−2). (3.62)

In this case, the matrixQij can be neglected, but theM11 coefficient
has a term in k4, therefore we have the discriminant equation

Det(ω2Kij −Mij) = 0 , (3.63)

which leads to

ω6 +

(
A k4

a4
+O(k2)

)
ω4 +

(
−1

3
A k6

a6
+O(k4)

)
ω2 +O(k6) = 0 .

(3.64)
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with

A =
4
(
−4m2

0(Ω + 1)
(
m2

2 − M̂2
)

+ 4M̂4 +m4
0(Ω + 1)2

)
9F 2

2

.

(3.65)
Once more we have a solution

ω2 = −A k4

a4
, (3.66)

which leads to

c2s,g =
16

9

4 (m2
2 − M̂2) (1 + Ω)m2

0 − (1 + Ω)
2
m4

0 − 4 M̂4

F 2
2

k2

a2
,

(3.67)
whereas the other two solutions are found to be

c2s,d = 0 , c2s,r =
1

3
. (3.68)

In summary, in this section we have derived the speeds of propagation
for the three dynamical fields describing our system. In general for all
the sub-cases analysed we have found that in the high-k regime the three
d.o.f. decouple and the resulting speeds of propagation are unaltered with
respect to the vacuum case. This can be easily verified by considering the
high-k limit of the results in Chapter 2. Only one case stands aside, the
beyond Horndeski case. In this case the dust field completely decouples
from the other fields, while the radiation and gravity fields are coupled
and their speeds result to be modified. We also recall that even in the
cases the expressions for the speeds of propagation do not differ from the
respective cases in vacuum, the parameters space may change accordingly
to a different evolution of the scale factor, which in turns is the solution of
different background equations. In conclusion, for all the cases analysed
we demand a positive speed of propagation in order to guarantee the
viability of the underlying theory of gravity.

3.4.3 Tachyonic and Jeans instabilities

The final aspect of our work which tends to be the one least studied
in the literature in the context of MG theories and especially in the
EFToDE/MG framework, is the study of the canonical mass of the fields
and consequently the boundedness of the Hamiltonian at low momenta.
These results are related to the usual tachyonic and Jeans instabilities,
the latter being characteristic of the fluids components.
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In this section we will restrict the analysis to the EFToDE/MG action
in the presence of only one matter fluid. We choose the dust over radiation
because we know that the dust component clusters and hence for our
purpose it might show an interesting behaviour related to the Jeans
instability. Thus, the results presented here will be applicable during
the dust-dominated era and onwards when the dynamics of the two d.o.f.
starts to play a role. A second fluid can be straightforwardly added, but
it makes the procedure substantially more difficult.

One can obtain the action for the EFToDE/MG with a dust component
by setting δr = 0 in the action (3.20) and ρ̄r = 0 in the remaining
functions. Now, let us assume the no-ghost conditions hold, and proceed
to rewrite the action in its canonical form. The first step is to diagonalise
the (2x2) kinetic matrix as in the previous section by making the following
field redefinitions

ζ = Ψ1 ,

δd = kΨ2 −
A12Ψ1

A22
, (3.69)

with the following diagonal terms:

K̄11 = A11 −
A2

12

A22
, K̄22 = k2A22 , (3.70)

where Aij are the ones defined in Appendix 3.6 after setting ρ̄r = 0. Next,
the canonical form is obtained by normalising the fields accordingly to:

Ψ1 =
1√

2K̄11

Ψ̄1 ,

Ψ2 =
1√

2K̄22

Ψ̄2 . (3.71)

After grouping the different terms and performing a number of integra-
tions by parts, we obtain the Lagrangian as:

L(2) =
a3

2

[
˙̄Ψ2

1 + ˙̄Ψ2
2 + B̄(t, k) ( ˙̄Ψ1Ψ̄2 − ˙̄Ψ2Ψ̄1)− C̄ij(t, k)Ψ̄iΨ̄j

]
,

(3.72)
where we refer the reader to the Appendix 3.6 for the functional forms of
the B̄, Cij coefficients.
In order to obtain the mass eigenvalues we need to proceed with the
diagonalization of the mass matrix Cij while keeping the canonical form of
the action. For this purpose we consider a field rotation via an orthogonal
matrix, in the following way:

Ψ̄1 = cosαΦ1 + sinαΦ2 ,

Ψ̄2 = − sinαΦ1 + cosαΦ2 . (3.73)
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Now, it is possible to choose α in a very specific way in order to diagonalize
the mass matrix. This leads to the following relation:

tan(2α) = β ≡ − 2C̄12

C̄11 − C̄22
, (3.74)

accompanied by:

d[tan(2α)]

dt
= 2[1 + tan2(2α)]α̇ ⇐⇒ α̇ =

β̇

2(1 + β2)
. (3.75)

Then, the Lagrangian becomes

L(2) =
a3

2

[
Φ̇2

1 + Φ̇2
2 +B(t, k) (Φ̇1Φ2 − Φ̇2Φ1)− µ1(t, k)Φ2

1 − µ2(t, k)Φ2
2

]
,

(3.76)
with the following definitions:

B = B̄ + 2α̇ ,

µ1 = −α̇2 − B̄α̇+
(C̄11 − C̄22)2 + 4C2

12

C̄11 − C̄22
cos2 α+

C̄11C̄22 − 2C̄2
12 − C̄2

22

C̄11 − C̄22
,

µ2 = −α̇2 − B̄α̇− (C̄11 − C̄22)2 + 4C2
12

C̄11 − C̄22
cos2 α+

C̄2
11 − C̄11C̄22 + 2C̄2

12

C̄11 − C̄22
.

(3.77)

It is straightforward to obtain the energy function (which is equal in
value to the Hamiltonian, see e.g. [127] for details) which reduces to a
formally simple form (see Appendix 3.7), namely

H(Φi, Φ̇i) =
a3

2

[
Φ̇2

1 + Φ̇2
2 + µ1(t, k) Φ2

1 + µ2(t, k) Φ2
2

]
, (3.78)

so that the Hamiltonian will be unbounded from below if the eigenvalues
satisfy µ1 < 0 or µ2 < 0, for example on the line (Φ̇i = 0). Naively
one could then proceed and constrain the mass eigenvalues to be non-
negative. From a physical point of view this condition must be considered
too stringent as there is a very well known phenomenon related to a
negative mass, the Jeans Instability. As this corresponds to a negative
mass but with a slow enough evolution rate in order to be countered
by gravity we can reformulate the condition avoiding a catastrophical
tachyon instability. For cosmological purposes, in order for a theory to be
viable we will proceed to demand the eigenvalues, if negative, to satisfy
the condition |µi(t, 0)| . H2, so that the evolution rate of the instability
will not affect the whole stability of the system for time-intervals much
shorter than the Hubble time (see also ref. [126]). Finally, one would
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expect that the µ2 eigenvalue can become negative as the dust sector
must exhibit a Jeans instability in order for structure to form in our
universe.

• Minimally coupled quintessence model in presence of a
dust fluid

We will now proceed to exemplify the previous, rather abstract, ap-
proach by studying a specific model in the presence of dust: minimally
coupled quintessence, which has the following action [71]

Sφ =

∫
d4x
√
−g
[
m2

0

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
+ Sm , (3.79)

where φ is the scalar field and V the corresponding potential. The above
can be mapped in the EFToDE/MG formalism by making the following
correspondence as was done in Chapter 2 and the following refs. [14, 15,
75]

c =
1

2
φ̇2

0 , Λ =
1

2
φ̇2

0 − V (φ0) ,
{

Ω, M̂2, M̄2
2 , M̄

2
3 ,M

3
1 ,M

4
2

}
= 0,

(3.80)
where φ0(t) is the background value of the scalar field.

Let us now consider that the minimally coupled quintessence model
can be also parametrized by assuming that the modification to the gravity
sector can be recast as a DE perfect fluid by introducing the following:

wDE(a) ≡ PDE

ρ̄DE
=
φ̇2/2− V (φ)

φ̇2/2 + V (φ)
, (3.81)

and assuming that the DE density has the standard perfect fluid form

ρ̄DE = 3m2
0H

2
0 Ω0

DE exp

[
− 3

∫ a

1

(1 + wDE(a))

a
da

]
, (3.82)

with H0,Ω
0
DE be the present day values of the Hubble and density

parameter respectively. Then, the Friedmann equation simply reads:

3m2
0H

2 = ρ̄d + ρ̄DE. (3.83)

and the EFT functions can be written accordingly as

c =
1

2
ρ̄DE(1 + wDE) , Λ = wDEρ̄DE. (3.84)

This choice for the parametrization makes the whole treatment of the
minimally coupled quintessence case more handy. Indeed, this will allow
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Figure 3.1: The figures show the behaviours of the mass eigenvalues µ1/H
2 (blue dashed

line), µ2/H
2 (orange dot dashed line) for minimally coupled quintessence on a CPL back-

ground. Left panel: stable tachyonic configuration with w0 = −0.9 and wa = 0.009. Right
panel: unstable tachyonic configuration with w0 = −2.9 and wa = −2. For this figure the
cosmological parameters are chosen to be: Ω0

DE = 0.69,Ω0
d = 0.31, H0 = 67.74 [128]. See

section 3.4.3 for the whole discussion.

us to rewrite the mass eigenvalues (3.95), presented in appendix ??,
purely in terms of the fluid parameter, i.e. µi(wDE). As a general remark,
from the expressions (3.95) it becomes clear that in general the mass
eigenvalues tend to be quite complicated. More complicated theories,
especially the non minimally coupled ones, will be substantially harder
to treat, yet not impossible. Having the explicit results of the mass
eigenvalues for the minimally coupled quintessence model, we want now
to proceed and gain some intuition regarding their behaviour compared
to H2.

We will make a specific choice of the DE equation of state, out of the
many options, which will help in illustrating different behaviours:

• The CPL parametrization [129, 130]: wDE(a) = w0 + wa(1 − a),
where w0 and wa are constant and indicate, respectively, the value
and the derivative of wDE today;

as illustrative examples, for the values of {w0, wa} in the DE equation of
state we choose two sets, one for which the system is free from tachyonic
instability and one where the gravity sector shows an unstable configura-
tion since a tachyonic instability is manifest. The results are illustrated
in figure 3.1. In the left panel, for the choice of the parameters w0 = −0.9
and wa = 0.009, we notice that the eigenvalue associated to the gravity
sector (i.e. µ1) is always positive and approximately of the same order
as H2. On the contrary, the eigenvalue associated with the dust sec-
tor (µ2), here plotted in its absolute value, is negative and |µ2| � H2.
This, of course, has to be expected as it is a manifestation of the well
known Jeans instability which allows structure to form. In the right
panel, we chose a rather unrealistic set of the parameters in order to
show a tachyonic instability, namely w0 = −2.9 and wa = −2. Both the

92



3.5 Conclusion

eigenvalues oscillate and switch the sign very fast at early time, then µ2

becomes positive around log(a) > −2.9 and µ1 turns to be firstly negative
and finally positive at very late time. In this case since the eigenvalue
associated to gravity is negative (for most of the time) and additionally
|µ1| � H2, this implies that the tachyonic instability evolves very fast,
resulting in an unstable system. The dust eigenvalue on the other hand
is positive during the matter dominated era which means that matter
does not cluster.

The above discussion concerns only the tachyonic and Jeans instabilities,
thus can not be considered exhaustive. In order to complete the set of
stability conditions for minimally coupled quintessence one needs to study
the ghost conditions and the speeds of propagation, as presented in the
previous sections, which in the case of minimally coupled quintessence
simply reduce to wDE(a) > −1.

3.5 Conclusion

In this Chapter we presented a thorough analysis of the viability condi-
tions which guarantee the stability of the scalar d.o.f. in the presence of
matter fields. These conditions guarantee the avoidance of ghosts and
tachyonic instabilities, supplemented with a positive speed of propagation.
The study of the viability of specific gravity theories in vacuum or in
the presence of matter fields has already yielded an extensive literature.
However, our results are more general and directly applicable to most of
the well known models which are of cosmological interest.

For the gravity sector, we employed the general EFT approach for
DE/MG, which has the advantage of being a model independent parametriza-
tion of gravity theories with one extra scalar d.o.f. while at the same
time preserving a direct link with a wide class of theoretical models
which can be explicitly mapped into this formalism. In order to describe
the standard perfect fluids we chose the Sorkin-Schutz action which has
been shown to be well behaved in contrast to other choices made in the
past when considering presureless fluids. In detail, we specialised to the
case where the matter fluids are dust (or CDM) and radiation. From
these starting blocks we proceeded to derive the action up to second
order in scalar perturbations accompanied by the background equations.
Finally, we moved to the study of the viability requirements which we
will summarise and discuss in the following.

After constructing the Lagrangian for the perturbations one can
straightforwardly guarantee the absence of ghosts by imposing the positiv-
ity of the kinetic term, or matrix in case more than one field is considered
as in the present chapter. In deriving such conditions we have considered
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only the Lagrangian in the high-k regime, following the recent results
in ref. [126] where it was shown that only the high energy terms can
turn out in catastrophic instabilities. Sub-leading terms can be recast
in mass-like terms through appropriate field redefinitions. Because the
EFToDE/MG approach encompasses a variety of DE/MG models, which
in some cases show different and non trivial k-dependence, it is not
possible to obtain one general result applicable to all possible theories.
Therefore, we have identified five relevant sub-cases for which we have
worked out the corresponding no-ghost conditions. In particular, two
of the aforementioned sub-cases correspond to well known theoretical
models, i.e. low-energy Hořava gravity and beyond Horndeski, while the
remaining three do not correspond to any specific class of theories but
can be useful in a model independent study. In general, we found three
no-ghost conditions for each of the sub-cases. Out of those, the conditions
corresponding to matter fields were trivially satisfied. Finally, we have
also identified conditions which lead to strong coupling regimes, thus
excluding these theories from an effective description.

The next step was to identify the speeds of propagation of the three
d.o.f., in the high-k limit, for the sub-cases mentioned before. In order to
avoid gradient instabilities it was then required that they have a positive
sign. Depending on the sub-case the results change drastically because
the momentum dependence of various terms differs in each sub-case.
In general, the gravity speed of propagation does not depend on fluid
variables once one consider theories with higher (than second) order
spatial derivatives. In particular, for the sub-case to which low-energy
Hořava gravity belongs, we find that at high-k the d.o.f. are completely
decoupled and the speeds of propagation of dust and radiation components
are unaffected by the coupling to gravity, leading to the standard results.
On the contrary, the sub-case corresponding to beyond Horndeski shows
non trivial modifications as only the dust speed of propagation stays
unaltered. Furthermore, when specifying to Horndeski, the dust and
radiation reduce to the standard results while the speed of propagation
associated to the gravity mode still is modified with respect to the vacuum
case. The three remaining sub-cases exhibit unaltered matter speeds
and the gravity one is not influenced by the matter sector. A surprising
result is the sub-case corresponding to F4 = 0,m2

2 6= 0, for which the
gravitational sector has a vanishing speed of sound.

In the last part of the Chapter we considered the tachyonic instability.
This instability is tightly related with the Hamiltonian being unbounded
as was shown in the extensive calculation in Section 3.4.3 . Only for this
case we have simplified the approach by assuming only the dominant
matter fluid, Cold Dark Matter. From this starting point, we have identi-
fied the two eigenvalues (µi) of the system which need to be constrained

94



3.6 Appendix A: Matrix coefficients

in the limit k → 0 in order to guarantee the Hamiltonian of the system
is bounded from below. These conditions then correspond to the ones
one needs to apply in order to avoid tachyonic instabilities. A stringent
condition is then to demand both the eigenvalues to be positive definite.
On the other hand, it is well known that the dust fluid exhibits a Jeans
instability, which is necessary in order to allow structures formation.
Therefore, it is more realistic to allow them to become negative in sign
but with a evolution rate which sufficiently slow in order to avoid the
system to become unviable. In other words this translates to demanding
that, in case µi < 0, we have |µi| � H2. Due to the complexity of
these results, we have chosen to exemplify our findings by studying the
minimally coupled quintessence case. We have parametrized the gravity
modification in terms of the equation of state for DE, i.e. wDE(a) and
then through the appropriate mapping, we were able to write µi(wDE).
By choosing the CPL parametrization for the DE fluid and two sets
of values for the DE parameters we then presented, figure 3.1, we two
typical situations, i.e. the case in which the tachyonic instability shows
up and the theory becomes pathological and a stable case exhibiting a
Jeans instability for the dust sector.

Concluding we would like to stress that, in the case of ghost and
gradient instabilities, we presented the results in a model independent
way. This implies that it covers the results existing in the literature,
typically derived in the context of a specific theory, and generalises them
to cover cases left unexplored. We proved this by comparing our results
with the ones in the literature. Additionally we considered in depth the
tachyonic instability, in the presence of matter, a result completely novel
and of severe importance as the usual two conditions are not enough to
produce a stable theory. This will be discussed more in depth in Chapter
5 where we will proceed to implement these results in EFTCAMB and
test them. That will be the final step of this line of work as then they
can be employed in depth in studying models of DE/MG.

3.6 Appendix A: Matrix coefficients

For completeness in this Appendix we will explicitly list the matrix
coefficients used in sections 3.4,3.4.2 and 3.4.3. Let us start by considering
the action (3.23) introduced in section 3.4:

S(2) =
1

(2π)3

∫
d3kdta3

(
~̇χtA~̇χ− k2~χtG~χ− ~̇χtB~χ− ~χtM~χ

)
, (3.85)

where the coefficients are

A11 =
3(F1−3F4)(k2a2(−8m2

2(3ρ̄d+4ρ̄r)+3F 2
2 +F1F3)−a4F3(3ρ̄d+4ρ̄r)+8k4F1m

2
2)

2k2a2(−8m2
2(3ρ̄d+4ρ̄r)+3F3F4+3F2

2)−2a4F3(3ρ̄d+4ρ̄r)+48k4m2
2F4

,
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A12 = A21 = − 3a2ρ̄d(F1−3F4)(a2F3+8k2m2
2)

2k2a2(−8m2
2(3ρ̄d+4ρ̄r)+3F3F4+3F 2

2 )−2a4F3(3ρ̄d+4ρ̄r)+48k4m2
2F4

,

A13 = A31 = − 3a2(F1−3F4)ρ̄r(a2F3+8k2m2
2)

2k2a2(−8m2
2(3ρ̄d+4ρ̄r)+3F3F4+3F 2

2 )−2a4F3(3ρ̄d+4ρ̄r)+48k4m2
2F4

,

A22 =
a2ρ̄d(k2a2(3F3F4+3F 2

2−32m2
2ρ̄r)−4a4F3ρ̄r+24k4m2

2F4)
2k2(k2a2(−8m2

2(3ρ̄d+4ρ̄r)+3F3F4+3F 2
2 )−a4F3(3ρ̄d+4ρ̄r)+24k4m2

2F4)
,

A23 = A32 =
3a4ρ̄dρ̄r(a2F3+8k2m2

2)
2k2(k2a2(−8m2

2(3ρ̄d+4ρ̄r)+3F3F4+3F 2
2 )−a4F3(3ρ̄d+4ρ̄r)+24k4m2

2F4)
,

A33 =
9a2ρ̄r(k2a2(−8m2

2ρ̄d+F3F4+F 2
2 )−a4F3ρ̄d+8k4m2

2F4)
8k2(k2a2(−8m2

2(3ρ̄d+4ρ̄r)+3F3F4+3F 2
2 )−a4F3(3ρ̄d+4ρ̄r)+24k4m2

2F4)
,

B11 = − 6k4F2(F1−3F4)(2M̂2+m2
0(Ω+1))

k2a2(−8m2
2(3ρ̄d+4ρ̄r)+3F3F4+3F2

2)−a4F3(3ρ̄d+4ρ̄r)+24k4m2
2F4

,

B12 = 3k2a2F2ρ̄d(F1−3F4)

k2a2(−8m2
2(3ρ̄d+4ρ̄r)+3F3F4+3F2

2)−a4F3(3ρ̄d+4ρ̄r)+24k4m2
2F4

,

B13 = 3k2a2F2(F1−3F4)ρ̄r
k2a2(−8m2

2(3ρ̄d+4ρ̄r)+3F3F4+3F2
2)−a4F3(3ρ̄d+4ρ̄r)+24k4m2

2F4
,

B22 = 3a4F2ρ̄d
2

k2a2(8m2
2(3ρ̄d+4ρ̄r)−3F3F4−3F2

2)+a4F3(3ρ̄d+4ρ̄r)−24k4m2
2F4

,

B21 =
6k2a2F2ρ̄d(2M̂2+m2

0(Ω+1))
k2a2(−8m2

2(3ρ̄d+4ρ̄r)+3F3F4+3F2
2)−a4F3(3ρ̄d+4ρ̄r)+24k4m2

2F4
,

B23 = B32 = 3a4F2ρ̄dρ̄r
k2a2(8m2

2(3ρ̄d+4ρ̄r)−3F3F4−3F2
2)+a4F3(3ρ̄d+4ρ̄r)−24k4m2

2F4
,

B33 = 3a4F2ρ̄r
2

k2a2(8m2
2(3ρ̄d+4ρ̄r)−3F3F4−3F2

2)+a4F3(3ρ̄d+4ρ̄r)−24k4m2
2F4

,

B31 =
6k2a2F2ρ̄r(2M̂2+m2

0(Ω+1))
k2a2(−8m2

2(3ρ̄d+4ρ̄r)+3F3F4+3F 2
2 )−a4F3(3ρ̄d+4ρ̄r)+24k4m2

2F4
,

(3.86)

G11 =
{
k2a2

(
m2

0(Ω + 1)
(
−8 (3ρ̄d + 4ρ̄r)

(
m2

2 − M̂2
)

+ 3F3F4

+ 3F2
2
)

+ 8M̂4 (3ρ̄d + 4ρ̄r) + 2m4
0(Ω + 1)2 (3ρ̄d + 4ρ̄r)

)
− m2

0a
4F3(Ω + 1) (3ρ̄d + 4ρ̄r)− 6k4F4

(
−4m2

0(Ω + 1)
(
m2

2 − M̂2
)

+ 4(M̂2)2 +m4
0(Ω + 1)2

)}
/
{
a2
(
k2a2

(
8m2

2 (3ρ̄d + 4ρ̄r)

− 3F3F4 − 3F2
2
)

+ a4F3 (3ρ̄d + 4ρ̄r)− 24k4m2
2F4

)}
,

(3.87)

G12 = G21 = − ρ̄d(2M̂2+m2
0(Ω+1))(−a2(3ρ̄d+4ρ̄r)+3k2M̄2

2 +3k2M̄2
3 )

k2a2(−8m2
2(3ρ̄d+4ρ̄r)+3F3F4+3F2

2)−a4F3(3ρ̄d+4ρ̄r)+24k4m2
2F4

,

G13 = G31 = − ρ̄r(2M̂2+m2
0(Ω+1))(−a2(3ρ̄d+4ρ̄r)+3k2M̄2

2 +3k2M̄2
3 )

k2a2(−8m2
2(3ρ̄d+4ρ̄r)+3F3F4+3F2

2)−a4F3(3ρ̄d+4ρ̄r)+24k4m2
2F4

,
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G22 = 3a2F4ρ̄d
2

2k2a2(−8m2
2(3ρ̄d+4ρ̄r)+3F3F4+3F2

2)−2a4F3(3ρ̄d+4ρ̄r)+48k4m2
2F4

,

G23 = G32 = 3a2F4ρ̄dρ̄r
2k2a2(−8m2

2(3ρ̄d+4ρ̄r)+3F3F4+3F2
2)−2a4F3(3ρ̄d+4ρ̄r)+48k4m2

2F4
,

G33 =
ρ̄r(a2(−4(m2

2(6ρ̄d+8ρ̄r)−3F4ρ̄r)+3F3F4+3F2
2)+24k2m2

2F4)
8(k2a2(−8m2

2(3ρ̄d+4ρ̄r)+3F3F4+3F2
2)−a4F3(3ρ̄d+4ρ̄r)+24k4m2

2F4)
,

M11 = M12 = M21 = M13 = M31 = 0 ,

M22 = − a4ρ̄d
2(3ρ̄d+4ρ̄r)

2k2a2(−8m2
2(3ρ̄d+4ρ̄r)+3F3F4+3F2

2)−2a4F3(3ρ̄d+4ρ̄r)+48k4m2
2F4

,

M23 = M32 = − a4ρ̄dρ̄r(3ρ̄d+4ρ̄r)

2k2a2(−8m2
2(3ρ̄d+4ρ̄r)+3F3F4+3F2

2)−2a4F3(3ρ̄d+4ρ̄r)+48k4m2
2F4

,

M33 = − a4ρ̄r(3ρ̄d+4ρ̄r)(F3+4ρ̄r)

8(k2a2(−8m2
2(3ρ̄d+4ρ̄r)+3F3F4+3F2

2)−a4F3(3ρ̄d+4ρ̄r)+24k4m2
2F4)

.

(3.88)

Now, we write down the matrix coefficients of eq. (3.72) in section
3.4.3:

L(2) =
a3

2

[
˙̄Ψ2

1 + ˙̄Ψ2
2 + B̄(t, k) ( ˙̄Ψ1Ψ̄2 − ˙̄Ψ2Ψ̄1)− C̄ij(t, k)Ψ̄iΨ̄j

]
,

(3.89)
where

B̄ = −
k
(
A22

(
−2Ȧ12 +B12 −B21

)
+ 2A12Ȧ22

)
4A22

√
K̄11

√
K̄22

,

C̄12 = C̄21 = {k
(
a
(
A22

(
A12

(
K̄11

(
4K̄22

(
Ä22 + Ḃ22 − 2M22

)
+ 2Ȧ22

˙̄K22

)
− 2K̄22Ȧ22

˙̄K11 − 8k2G22K̄11K̄22

)
4K̄11K̄22Ȧ12Ȧ22

)
+ A2

22

(
−K̄11

(
2K̄22

(
2Ä12 + Ḃ12 + Ḃ21

)
+ ˙̄K22

(
2Ȧ12 −B12 +B21

))
+ K̄22

˙̄K11

(
2Ȧ12 −B12 +B21

)
+ 8k2G12K̄11K̄22

)
− 4A12K̄11K̄22Ȧ

2
22

)
− 6A22K̄11K̄22aH

(
A22

(
2Ȧ12 +B12 +B21

)
− 2A12

(
Ȧ22 +B22

)))
}/{16aA2

22K̄
3/2
11 K̄

3/2
22 } ,

C̄11 =
[
6A22K̄11H

(
A22A12

(
A12

˙̄K11 +B12K̄11 +B21K̄11

)
− A22

2
(
A11

˙̄K11 +B11K̄11

)
−A12

2B22K̄11

)
+ 2A12A22K̄11

(
A12

(
−Ȧ22

˙̄K11 + K̄11

(
2M22 − Ḃ22

)
+ 2k2G22K̄11

)
+ K̄11Ȧ22

(
4Ȧ12 −B12 +B21

))
+A22

3
(
−2K̄11

(
Ȧ11

˙̄K11 +A11
¨̄K11

)
+ 3A11

˙̄K11
2 − 2K̄11

2B′11 + 4k2G11K̄11
2
)

+A22
2
(

2A12K̄11

(
2Ȧ12

˙̄K11
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+ barK11

(
Ḃ12 + Ḃ21

)
− 4k2G12K̄11

)
+ 2K̄11

2Ȧ12

(
−2Ȧ12 +B12 −B21

)
+ A12

2
(

2K̄11
¨̄K11 − 3 ˙̄K11

2
))
− 4A12

2K̄11
2Ȧ22

2
]
/
{

8A22
3K̄11

3
}
,

C̄22 =
k2

8K̄22
3

[
−2K̄22

(
Ȧ22

˙̄K11 +A22
¨̄K11

)
+ 3A22

˙̄K11
2 + 4k2G22K̄22

2

− 6K̄22H
(
A22

˙̄K11 +B22K̄22

)
+ K̄22

2
(

4M22 − 2Ḃ22

)]
. (3.90)

Note that the Aij , Bij , Gij ,Mij matrix components that appear in the
last four coefficients have been obtained from the full expressions defined
above by setting ρ̄r = 0.

3.7 Appendix B: Obtaining the
Hamiltonian

In this appendix, we will present the derivation of the Hamiltonian used
in section 3.4.3 and explain why the antisymmetric matrix B does not
affect the unboundedness of the Hamiltonian. For this purpose we star
from the Lagrangian (3.76):

L(2) =
a3

2

[
Φ̇2

1 + Φ̇2
2 +B(t, k) (Φ̇1Φ2 − Φ̇2Φ1)− µ1(t, k)Φ2

1 − µ2(t, k)Φ2
2

]
.

(3.91)
Defining, the canonical momenta as:

p1 = a3
(

Φ̇1 +B(t, k)Φ2

)
,

p2 = a3
(

Φ̇2 −B(t, k)Φ1

)
, (3.92)

the Hamiltonian can be written as follows

H =

{
p1

(p1

a3
−BΦ2

)
+ p2

(p2

a3
+BΦ1

)
− a3

2

[(p1

a3
−BΦ2

)2

+
(p2

a3
+BΦ1

)2

+B
[(p1

a3
−BΦ2

)
Φ2 −

(p1

a3
+BΦ1

)
Φ1

]
− µ1Φ2

1 − µ2Φ2
2

]}
=
a3

2

[(p1

a3
−BΦ2

)2

+
(p2

a3
+BΦ1

)2

+ µ1Φ2
1 + µ2Φ2

2

]
. (3.93)

Now, in terms of {Φ̇i,Φi} the above Hamiltonian becomes (3.78):

H(Φi, Φ̇i) =
a3

2

[
Φ̇2

1 + Φ̇2
2 + µ1(t, k) Φ2

1 + µ2(t, k) Φ2
2

]
. (3.94)

From this expression it is clear that the antisymmetric matrix does not
influence the unboundedness from below of the Hamiltonian, instead such
issues are encoded within the functions µi.
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3.8 Appendix C: Mass eigenvalues for
beyond Horndeski case

In section 3.4.3 we studied the mass eigenvalues of the EFToDE/MG in
the presence of a dust fluid. We have presented the procedure and the
results in the case of minimally coupled quintessence but refrained from
showing general expressions due to their complexity. Here we present the
mass eigenvalues for the beyond Horndeski theories which, when using
the appropriate mapping, will yield the previously discussed quintessence
results. Then, the eigenvalues are:

µ1 =

−4F1F3

(
F2

(
F3Ḟ1 + F1Ḟ3

)
− 2F1F3Ḟ2

)
2F2

2

3F2
2 + F1F3

+
4F1F3

(
F2

(
F3Ḟ1 + F1Ḟ3

)
− 2F1F3Ḟ2

)
2

F1F3

F2
2 + 3

+
(
F1F2

2
(
6F1F3

(
3F2

2

+ F1F3) ȧ
(

3Ḟ3F2
2 + 6F3

(
ρ̄d − Ḟ2

)
F2 − 2F3

2Ḟ1

)
F2

2

+ a
(

6F3
3Ḟ1

2F2
4 + F1

2F3

((
6F3F̈3 − 9Ḟ3

2
)
F2

3 + 12F3

((
Ḟ2 − ρ̄d

)
Ḟ3

+ F3

(
˙̄ρd − F̈2

))
F2

2 + 4F3
2
(

3ρ̄d

(
Ḟ2 − ρ̄d

)
+ Ḟ1Ḟ3 − F3F̈1

)
F2

− 8F3
3Ḟ1Ḟ2

)
F2 + 2F1

3F3
2
(
F2Ḟ3 − 2F3Ḟ2

)
2 + F1

(
9
(

2F3F̈3 − 3Ḟ3
2
)
F2

6

+ 36F3

((
Ḟ2 − ρ̄d

)
Ḟ3 + F3

(
˙̄ρd − F̈2

))
F2

5

− 12F3
2
(

3ρ̄d

(
ρ̄d − Ḟ2

)
+ F3F̈1

)
F2

4 + 4F3
4Ḟ1

2F2
2
))))

/
(
a
(
3F2

2

+ F1F3)
(
3F2

2 + 2F1F3

))
− (9F2

6

1 +
1

3
√

F2
4

(3F2
2+2F1F3)2


×

(
6F1F2F3

(
3F2

2 + F1F3

)
ȧ
(
F2F3Ḟ1 + F1

(
2F3

(
ρ̄d − Ḟ2

)
+ F2Ḟ3

))
+ a

(
−3F3

2Ḟ1
2F2

4 + 2F1F3
2
(

3F2
2F̈1 − F3Ḟ1

2
)
F2

2 + F1
2
((

6F3F̈3

− 9Ḟ3
2
)
F2

3 + 12F3

((
Ḟ2 − ρ̄d

)
Ḟ3 + F3 ( ˙̄ρd

− F̈2

))
F2

2 + 2F3
2
(

6ρ̄d

(
Ḟ2 − ρ̄d

)
− Ḟ1Ḟ3 + F3F̈1

)
F2 + 4F3

3Ḟ1Ḟ2

)
F2

+ 2F1
3F3

(
−2
(
ρ̄d

2 − Ḟ2ρ̄d + Ḟ2
2 + F2

(
F̈2 − ˙̄ρd

))
F3

2

+ F2

(
F2F̈3 − 2

(
ρ̄d − 2Ḟ2

)
Ḟ3

)
F3 − 2F2

2Ḟ3
2
))))

/
(
a
(
3F2

2 + F1F3

)
2

99



3 Stability conditions in the presence of matter

×
(
3F2

2 + 2F1F3

))) 1

(16F1
2F2

4F3
2)
,

µ2 =

−4F1F3

(
F2

(
F3Ḟ1 + F1Ḟ3

)
− 2F1F3Ḟ2

)
2F2

2

3F2
2 + F1F3

+
4F1F3(

(
F2

(
F3Ḟ1 + F1Ḟ3

)
− 2F1F3Ḟ2

)
2

F1F3

F2
2 + 3

+

9F2
6

1 +
1

3
√

F2
4

(3F2
2+2F1F3)2


×

(
6F1F2F3

(
3F2

2 + F1F3

)
ȧ
(
F2F3Ḟ1 + F1

(
2F3

(
ρ̄d − Ḟ2

)
+ F2Ḟ3

))
+ a

(
−3F3

2Ḟ1
2F2

4 + 2F1F3
2
(

3F2
2F̈1 − F3Ḟ1

2
)
F2

2

+ F1
2
((

6F3F̈3 − 9Ḟ3
2
)
F2

3 + 12F3

((
Ḟ2 − ρ̄d

)
Ḟ3 + F3

(
˙̄ρd − F̈2

))
F2

2

+ 2F3
2
(

6ρ̄d

(
Ḟ2 − ρ̄d

)
− Ḟ1Ḟ3 + F3F̈1

)
F2 + 4F3

3Ḟ1Ḟ2

)
F2

+ 2F1
3F3

(
−2
(
ρ̄d

2 − Ḟ2ρ̄d + Ḟ2
2 + F2

(
F̈2 − ˙̄ρd

))
F3

2

+ F2

(
F2F̈3 − 2

(
ρ̄d − 2Ḟ2

)
Ḟ3

)
F3 − 2F2

2Ḟ3
2
))))

/
(
a
(
3F2

2 + F1F3

)
2

×
(
3F2

2 + 2F1F3

))
−
(

2F2
2F3

(
6F1F3

(
3F2

2 + F1F3

)
ȧ
(

9Ḟ1F2
4 + 6F1F3Ḟ1F2

2

+ F1
2
(

2F3

(
F3Ḟ1 + 3F2

(
Ḟ2 − ρ̄d

))
− 3F2

2Ḟ3

))
F2

2

+ a
(
−27F3Ḟ1

2F2
8 + 18F1F3

(
3F2

2F̈1 − 2F3Ḟ1
2
)
F2

6 + 18F1
2F3

(
3F2

2F3F̈1

− Ḟ1

(
Ḟ3F2

2 − 2F3Ḟ2F2 + F3
2Ḟ1

))
F2

4 + 2F1
3
(

9
(
Ḟ3

2 − F3F̈3

)
F2

4

+ 18F3

(
ρ̄dḞ3 + F3(t)

(
F̈2 − ˙̄ρd

))
F2

3 + 6F3
2
(
3ρ̄d

2

− 3Ḟ2ρ̄d − 3Ḟ2
2 − Ḟ1Ḟ3 + 2F3F̈1

)
F2

2 + 12F3
3Ḟ1Ḟ2F2 − 2F3

4Ḟ1
2
)
F2

2

+ F1
4F3

(
3
(
Ḟ3

2 − 2F3F̈3

)
F2

2 + 12F3

((
ρ̄d + Ḟ2

)
Ḟ3 + F3

(
F̈2 − ˙̄ρd

))
F2

2

+ 4F3
2
(

3
(
ρ̄d + Ḟ2

)(
ρ̄d − 2Ḟ2

)
− Ḟ1Ḟ3 + F3F̈1

)
F2 + 8F3

3Ḟ1Ḟ2

)
F2

− 2F1
5F3

2
(
F2Ḟ3 − 2F3Ḟ2

)
2
))/(

a
(
3F2

2 + F1F3

)
2
(
3F2

2 + 2F1F3

)))
/

(
16F1

2F2
4F3

2
)
. (3.95)
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