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2 An Extended action for the
effective field theory of dark
energy: a stability analysis
and a complete guide to the
mapping at the basis of
EFTCAMB

2.1 Introduction

In the present Chapter we propose an extension of the original EFT
action for DE/MG [14, 15] by including extra operators with up to sixth
order spatial derivatives acting on perturbations. This will allow us to
cover a wider range of theories, e.g. Hořava gravity [35, 36], as shown
in Refs. [37–39]. The latter model has recently gained attention in the
cosmological context [39–58], as well as in the quantum gravity sector [35,
36, 59–61], since higher spatial derivatives have been shown to be relevant
in building gravity models exhibiting powercounting and renormalizable
behaviour in the ultra-violet regime (UV) [62–64].

We will work out a very general recipe that can be directly applied to
any gravity theory with one extra scalar d.o.f. in order to efficiently map
it into the EFT language, once the corresponding Lagrangian is written
in the Arnowitt-Deser-Misner (ADM) formalism. We will pay particular
attention to the different conventions by adapting all the calculations to
the specific convention used in EFTCAMB, in order to provide a ready-
to-use guide on the full mapping of models into this code. This method
has already been used in Refs. [37, 65] and here we will further extend it
by including the operators in our extended action. Additionally, we will
revisit some of the already known mappings in order to accommodate the
EFTCAMB conventions. Moreover, we will present for the first time the
complete mapping of the covariant formulation of the GLPV theories [66,
67] into the EFT formalism. Subsequently, we will perform a detailed
study of the stability conditions for the gravity sector of our extended
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2 An extended action for the EFToDE/MG

EFT action. For a restricted subset of EFT models such an analysis can
already be found in the literature [14, 15, 65, 67, 68]. Doing this analysis
will allow us to have a first glimpse at the viable parameter space of
theories covered by the extended EFT framework and to obtain very
general conditions to be implemented in EFTCAMB. In particular, we
will compute the conditions necessary to avoid ghost instabilities and to
avoid gradient instabilities, both for scalar and tensor modes. We will
also present the condition to avoid tachyonic instabilities in the scalar
sector. Finally, we will proceed to extend the ReParametrized Horndeski
(RPH) basis, or α-basis, of Ref. [69] in order to include all the models of
our generalized EFT action. This will require the introduction of new
functions and we will proceed to comment on their impact on the kinetic
terms and speeds of propagation of both scalar and tensor modes.

The work in this Chapter is based on [31]: An Extended action for the
effective field theory of dark energy: a stability analysis and a complete
guide to the mapping at the basis of EFTCAMB with N. Frusciante and
A. Silvestri. In Section 2.2, we propose a generalization of the EFT action
for DE/MG that includes all operators with up to six-th order spatial
derivatives. In Section 2.3, we outline a general procedure to map any
theory of gravity with one extra scalar d.o.f., and a well defined Jordan
frame, into the EFT formalism. We achieve this through an interesting,
intermediate step which consists of deriving an equivalent action in the
ADM formalism, in Section 2.3.2, and work out the mapping between
the EFT and ADM formalism, in Section 2.3.3. In order to illustrate the
power of such method, in Section 2.4 we provide some mapping exam-
ples: minimally coupled quintessence, f(R)-theory, Horndeski/GG, GLPV
and Hořava gravity. In Section 2.5, we work out the physical stability
conditions for the extended EFT action, guaranteeing the avoidance of
ghost and tachyonic instabilities and positive speeds of propagation for
tensor and scalar modes. In Section 2.6, we extend the RPH basis to
include the class of theories described by the generalized EFT action
and we elaborate on the phenomenology associated to it. The last two
sections are more or less independent, so the reader interested only in one
of these can skip the other parts. Finally, in Section 2.7, we summarize
and comment on our results.

2.2 An extended EFT action

The EFT framework for DE/MG models, introduced in Refs. [14, 15],
provides a systematic and unified way to study the dynamics of linear
perturbations in a wide range of DE/MG models characterized by an
additional scalar d.o.f. and for which there exists a well defined Jordan
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2.2 An extended EFT action

frame [10, 11, 70–73]. The action is constructed in the unitary gauge
as an expansion up to second order in perturbations around the FLRW
background of all operators that are invariant under time-dependent
spatial-diffeomorphisms. Each of the latter appear in the action accom-
panied by a time dependent coefficient. The choice of the unitary gauge
implies that the scalar d.o.f. is “eaten” by the metric, thus it does not
appear explicitly in the action. It can be made explicit by the Stükelberg
technique which, by means of an infinitesimal time-coordinate transfor-
mation, allows one to restore the broken symmetry by introducing a
new field describing the dynamic and evolution of the extra d.o.f.. For a
detailed description of this formalism we refer the readers to Refs. [14,
15, 65, 74, 75]. In this Chapter we will always work in the unitary gauge.

The original EFT action introduced in Refs. [14, 15], and its follow ups
in Refs. [65, 75–77], cover most of the theories of cosmological interest,
such as Horndeski/GG [78, 79], GLPV [66] and low-energy Hořava [35,
36]. However, operators with higher order spatial derivatives are not
included. On the other hand, theories which exhibit higher than second
order spatial derivatives in the field equations have been gaining attention
in the cosmological context [37, 38, 53, 64, 76], moreover, they appear to
be interesting models for quantum gravity as well [35, 36, 59–62]. As long
as one deals with scales that are sufficiently larger than the non-linear
cutoff, the EFT formalism can be safely used to study these theories. In
the following, we propose an extended EFT action that includes operators
up to sixth order in spatial derivatives:

SEFT =

∫
d4x
√
−g
[
m2

0

2
(1 + Ω(t))R+ Λ(t)− c(t)δg00 +

M4
2 (t)

2
(δg00)2

−M̄
3
1 (t)

2
δg00δK − M̄2

2 (t)

2
(δK)2 − M̄2

3 (t)

2
δKµ

ν δK
ν
µ +

M̂2(t)

2
δg00δR

+m2
2(t)hµν∂µg

00∂νg
00 +

m̄5(t)

2
δRδK + λ1(t)(δR)2 + λ2(t)δRµν δRνµ

+λ3(t)δRhµν∇µ∂νg00 + λ4(t)hµν∂µg
00∇2∂νg

00 + λ5(t)hµν∇µR∇νR
+λ6(t)hµν∇µRij∇νRij + λ7(t)hµν∂µg

00∇4∂νg
00

+λ8(t)hµν∇2R∇µ∂νg00
]
, (2.1)

where m2
0 is the Planck mass, g is the determinant of the four dimensional

metric gµν , hµν = (gµν + nµnν) is the spatial metric on constant-time
hypersurfaces, nµ is the normal vector to the constant-time hypersur-
faces, δg00 is the perturbation of the upper time-time component of
the metric, R is the trace of the four dimensional Ricci scalar, Rµν
is the three dimensional Ricci tensor and R is its trace, Kµν is the
extrinsic curvature and K is its trace and ∇2 = ∇µ∇µ with ∇µ be-
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2 An extended action for the EFToDE/MG

ing the covariant derivative constructed with gµν . The coefficients

{Ω,Λ, c,M4
2 , M̄

3
1 , M̄

2
2 , M̄

2
3 , M̂

2,m2
2, m̄5, λi} (with i = 1 to 8) are free

functions of time and hereafter we will refer to them as EFT functions.
{Ω,Λ, c} are usually called background EFT functions as they are the
only ones contributing to both the background and linear perturbation
equations, while the others enter only at the level of perturbations. Let
us notice that the operators corresponding to m̄5, λ1,2 have already been
considered in Ref. [65], while the remaining operators have been intro-
duced by some of the authors of this paper in Ref. [39], where it is shown
that they are necessary to map the high-energy Hořava gravity action [64]
in the EFT formalism.

The EFT formalism offers a unifying approach to study large scale
structure (LSS) in DE/MG models. Once implemented into an Einstein-
Boltzmann solver like CAMB [20], it clearly provides a very powerful
software with which to test gravity on cosmological scales. This has
been achieved with the patches EFTCAMB/EFTCosmoMC, introduced
in Refs. [22–24]. This software can be used in two main realizations:
the pure EFT and the mapping EFT. The former corresponds to an
agnostic exploration of dark energy, where the user can turn on and
off different EFT functions and explore their effects on the LSS. In the
latter case instead, one specializes to a model (or a class of models, e.g.
f(R) gravity), maps it into the EFT functions and proceed to study the
corresponding dynamics of perturbations. We refer the reader to Ref. [80]
for technical details of the code.

There are some key virtues of EFTCAMB which make it a very
interesting tool to constrain gravity on cosmological scales. One is
the possibility of imposing powerful yet general conditions of stability
at the level of the EFT action, which makes the exploration of the
parameter space very efficient [23]. We will elaborate on this in Section 2.5.
Another, is the fact that a vast range of specific models of DE/MG can
be implemented exactly and the corresponding dynamics of perturbations
be evolved, in the same code, guaranteeing unprecedented accuracy and
consistency.

In order to use EFTCAMB in the mapping mode it is necessary to
determine the expressions of the EFT functions corresponding to the
given model. Several models are already built-in in the currently public
version of EFTCAMB. This Chapter offers a complete guide on how to
map specific models and classes of models of DE/MG all the way into
the EFT language at the basis of EFTCAMB, whether they are initially
formulated in the ADM or covariant formalism; all this, without the need
of going through the cumbersome expansion of the models to quadratic
order in perturbations around the FLRW background.
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2.3 From a General Lagrangian in ADM
formalism to the EFToDE/MG

In this Section we use a general Lagrangian in the ADM formalism which
covers the same class of theories described by the EFT action (2.1). This
will allow us to make a parallel between the ADM and EFT formalisms,
and to use the former as a convenient platform for a general mapping
description of DE/MG theories into the EFT language. In particular, in
Section 2.3.1 we will expand a general ADM action up to second order
in perturbations, in Section 2.3.2 we will write the EFT action in ADM
form and, finally, in Section 2.3.3 we will provide the mapping between
the two.

2.3.1 A General Lagrangian in ADM formalism

Let us introduce the 3+1 decomposition of spacetime typical of the ADM
formalism, for which the line element reads:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (2.2)

where N(t, xi) is the lapse function, N i(t, xi) the shift and hij(t, x
i)

is the three dimensional spatial metric. We also adopt the following
definition of the normal vector to the hypersurfaces of constant time and
the corresponding extrinsic curvature:

nµ = Nδµ0, Kµν = hλµ∇λnν . (2.3)

The general Lagrangian we use in this Section has been proposed in
Ref. [37] and can be written as follows:

L = L(N,R,S,K,Z,U ,Z1,Z2, α1, α2, α3, α4, α5; t) , (2.4)

where the above geometrical quantities are defined as follows:

S = KµνK
µν , Z = RµνRµν , U = RµνKµν , Z1 = ∇iR∇iR ,

Z2 = ∇iRjk∇iRjk , α1 = aiai , α2 = ai∆ai , α3 = R∇iai ,
α4 = ai∆

2ai , α5 = ∆R∇iai, (2.5)

with ∆ = ∇k∇k and ai is the acceleration of the normal vector, nµ∇µnν .
∇µ and ∇k are the covariant derivatives constructed respectively with
the four dimensional metric, gµν and the three metric, hij .

The operators considered in the Lagrangian (2.4) allow to describe
gravity theories with up to sixth order spatial derivatives, therefore the
range of theories covered by such a Lagrangian is the same as the EFT
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action proposed in Section 2.2. The resulting general action, constructed
with purely geometrical quantities, is sufficient to cover most of the
candidate models of modified gravity [10, 11, 70–73].

We shall now proceed to work out the mapping of Lagrangian (2.4)
into the EFT formalism. The procedure that we will implement in the
following retraces that of Refs. [37, 65]. However, there are some tricky
differences between the EFT language of Ref. [65] and the one at the basis
of EFTCAMB [22, 23]. Most notably the different sign convention for
the normal vector, nµ, and the extrinsic curvature, Kµν (see Eq. (2.3)),
a different notation for the conformal coupling and the use of δg00 in the
action instead of g00, which changes the definition of some EFT functions.
It is therefore important that we present all details of the calculation
as well as derive a final result which is compatible with EFTCAMB. In
particular, the results of this Section account for the different convention
for the normal vector.

We shall now expand the quantities in the Lagrangian (2.4) in terms
of perturbations by considering for the background a flat FLRW metric
of the form:

ds2 = −dt2 + a(t)2δijdx
idxj , (2.6)

where a(t) is the scale factor. Therefore, we can define:

δKµν = Hhµν +Kµν , δS = S − 3H2 = −2HδK + δKµ
ν δK

ν
µ ,

δK = 3H +K , δU = −HδR+ δKµ
ν δK

ν
µ , δα1 = ∂iδN∂

iδN ,

δα2 = ∂iδN∇k∇k∂iδN , δα3 = R∇i∂iδN , δα4 = ∂iδN∆2∂iδN ,

δα5 = ∆2R∇i∂iδN , δZ1 = ∇iδR∇iδR , δZ2 = ∇iδRjk∇iδRjk

(2.7)

where H ≡ ȧ/a is the Hubble parameter and ∂µ is the partial derivative
w.r.t. the coordinate xµ. The operators R,Z and U vanish on a flat
FLRW background, thus they contribute only to perturbations, and for
convenience we can write R = δR = δ1R+ δ2R, Z = δZ, U = δU , where
δ1R and δ2R are the perturbations of the Ricci scalar respectively at
first and second order. We now proceed with a simple expansion of the
Lagrangian (2.4) up to second order:

δL = L̄+ LNδN + LKδK + LSδS + LRδR+ LUδU + LZδZ +

5∑
i=1

Lαiδαi

+

2∑
i=1

LZiδZi +
1

2

(
δN

∂

∂N
+ δK

∂

∂K
+ δS ∂

∂S
+ δR ∂

∂R
+ δU ∂

∂U

)2

L

+ O(3), (2.8)
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2.3 From a General Lagrangian in ADM formalism to the EFToDE/MG

where L̄ is the Lagrangian evaluated on the background and LX = ∂L/∂X
is the derivative of the Lagrangian w.r.t the quantity X. It can be shown
that by considering the perturbed quantities in (2.7) and, after some
manipulations, it is possible to obtain the following expression for the
action up to second order in perturbations:

SADM =

∫
d4x
√
−g
[
L̄+ Ḟ + 3HF + (LN − Ḟ)δN +

(
Ḟ +

1

2
LNN

)
(δN)2

+ LSδK
ν
µδK

µ
ν +

1

2
A(δK)2 + BδNδKCδKδR+DδNδR+ EδR

+
1

2
G(δR)2 + LZδRµνRνµ + Lα1

∂iδN∂
iδN + Lα2

∂iδN∇k∇k∂iδN

+ Lα3
R∇i∂iδN + Lα4

∂iδN∆2∂iδN + Lα5
∆R∇i∂iδN

+ LZ1
∇iδR∇iδR+ LZ2

∇iδRjk∇iδRjk
]
, (2.9)

where:

A = LKK + 4H2LSS − 4HLSK ,

B = LKN − 2HLSN ,

C = LKR − 2HLSR +
1

2
LU −HLKU + 2H2LSU ,

D = LNR +
1

2
L̇U −HLNU ,

E = LR −
3

2
HLU −

1

2
L̇U ,

F = LK − 2HLS ,

G = LRR +H2LUU − 2HLRU . (2.10)

Here and throughout the Chapter, unless stated otherwise, dots indicate
derivatives w.r.t. cosmic time, t. The above quantities are general
functions of time evaluated on the background. In order to obtain
action (2.9), we have followed the same steps as in Refs. [37, 65], however,
there are some differences in the results due to the different convention
that we use for the normal vector (Eq. (2.3)). As a result the differences
stem from the terms which contain K and Kµν . More details are in
Appendix 2.8, where we derive the contribution of δK and δS, and in
Appendix 2.9, where we explicitly comment and derive the perturbations
generated by U .

Finally, we derive the modified Friedmann equations considering the
first order action, which can be written as follows:

S(1)
ADM =

∫
d4x

[
δ
√
h(L̄+ 3HF + Ḟ) + a3(LN + 3HF + L̄)δN + a3Eδ1R

]
,

(2.11)
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2 An extended action for the EFToDE/MG

where δ1R is the contribution of the Ricci scalar at first order. Notice
that we used

√
−g = N

√
h, where h is the determinant of the three

dimensional metric. It is straightforward to show that by varying the
above action w.r.t. δN and δ

√
h, one finds the Friedmann equations:

LN + 3HF + L̄ = 0 ,

L̄+ 3HF + Ḟ = 0. (2.12)

Hence, the homogeneous part of action (2.9) vanishes after applying the
Friedmann equations.

2.3.2 The EFT action in ADM notation

We shall now go back to the EFT action (2.1) and rewrite it in the ADM
notation. This will allow us to easily compare it with action (2.9) and
obtain a general recipe to map an ADM action into the EFT language.
To this purpose, an important step is to connect the δg00 used in this
formalism with δN used in the ADM formalism:

g00 = − 1

N2
= −1 + 2δN − 3(δN)2 + ... ≡ −1 + δg00 , (2.13)

from which follows that (δg00)2 = 4(δN)2 at second order. Considering
the Eqs. (2.7) and (2.13), it is very easy to write the EFT action in terms
of ADM quantities, the only term which requires a bit of manipulation
is (1 + Ω(t))R, which we will show in the following. First, let us use
the Gauss-Codazzi relation [19] which allows one to express the four
dimensional Ricci scalar in terms of three dimensional quantities typical
of ADM formalism:

R = R+KµνK
µν −K2 + 2∇ν(nν∇µnµ − nµ∇µnν) . (2.14)

Then, we can write:∫
d4x
√
−gm

2
0

2
(1 + Ω)R =

∫
d4x
√
−gm

2
0

2
(1 + Ω)

[
R+KµνK

µν −K2

+2∇ν (nν∇µnµ − nµ∇µnν)] ,

=

∫
d4x
√
−gm

2
0

2
(1 + Ω)

[
R+ S −K2 + 2∇ν (nνK − aν)

]
,

=

∫
d4x
√
−g
[
m2

0

2
(1 + Ω)

(
R+ S −K2

)
+m2

0Ω̇
K

N

]
,

(2.15)
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where in the last line we have used that ∇νaν = 0. Proceeding as usual
and employing the relation (2.139), we obtain:∫
d4x
√
−gm

2
0

2
(1 + Ω)R =

∫
d4x
√
−gm2

0

{
1

2
(1 + Ω)R+ 3H2(1 + Ω)

+2Ḣ(1 + Ω) + 2HΩ̇ + Ω̈ +
[
HΩ̇− 2Ḣ(1 + Ω)− Ω̈

]
δN

−Ω̇δKδN +
(1 + Ω)

2
δKµ

ν δK
ν
µ −

(1 + Ω)

2
(δK)2

+
[
2Ḣ(1 + Ω) + 2HΩ̇ + Ω̈− 3HΩ̇

]
(δN)2

}
.

(2.16)

Finally, after combining terms correctly, we obtain the final form of the
EFT action in the ADM notation, up to second order in perturbations:

SEFT =

∫
d4x
√
−g
{
m2

0

2
(1 + Ω)R+ 3H2m2

0(1 + Ω) + 2Ḣm2
0(1 + Ω)

+2m2
0HΩ̇ +m2

0Ω̈ + Λ +
[
HΩ̇m2

0 − 2Ḣm2
0(1 + Ω)− Ω̈m2

0 − 2c
]
δN

−(m2
0Ω̇ + M̄3

1 )δKδN +
1

2

[
m2

0(1 + Ω)− M̄2
3

]
δKµ

ν δK
ν
µ −

1

2

[
m2

0(1 + Ω)

+M̄2
2

]
(δK)2 + M̂2δNδR+

[
2Ḣm2

0(1 + Ω) + Ω̈m2
0 −Hm2

0Ω̇ + 3c

+2M4
2

]
(δN)2 + 4m2

2h
µν∂µδN∂νδN +

m̄5

2
δRδK + λ1(δR)2

+λ2δRµν δRνµ + 2λ3δRhµν∇µ∂νδN + 4λ4h
µν∂µδN∇2∂νδN

+λ5h
µν∇µR∇νR+ λ6h

µν∇µRij∇νRij + 4λ7h
µν∂µδN∇4∂νδN

+2λ8h
µν∇2R∇µ∂νδN

}
. (2.17)

This final form of the action will be the starting point from which we will
construct a general mapping between the EFT and ADM formalisms.

2.3.3 The Mapping

We now proceed to explicitly work out the mapping between the EFT
action (2.17) and the ADM one (2.9). The result will be a very convenient
recipe in order to quickly map any model written in the ADM notation
into the EFT formalism. In the next Section we will apply it to most
of the interesting candidate models of DE/MG, providing a complete
guide on how to go from covariant formulations all the way to the EFT
formalism at the basis of the Einstein-Boltzmann solver EFTCAMB [22,
23].
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2 An extended action for the EFToDE/MG

A direct comparison between actions (2.9) and (2.17) allows us to
straightforwardly identify the following:

m2
0

2
(1 + Ω) = E , −2c+m2

0

[
−2Ḣ(1 + Ω)− Ω̈ +HΩ̇

]
= LN − Ḟ ,

Λ +m2
0

[
3H2(1 + Ω) + 2Ḣ(1 + Ω) + 2HΩ̇ + Ω̈

]
= L̄+ 3HF + Ḟ ,

m2
0

[
2Ḣ(1 + Ω)−HΩ̇ + Ω̈

]
+ 2M4

2 + 3c = Ḟ +
LNN

2
,

−m2
0(1 + Ω)− M̄2

2 = A, λ1 =
G
2
, −m2

0Ω̇− M̄3
1 = B, m̄5

2
= C,

M̂2 = D, m2
0

2
(1 + Ω)− M̄2

3

2
= LS , 4m2

2 = Lα1
, λ5 = LZ1

, 4λ4 = Lα2
,

2λ3 = Lα3 , 4λ7 = Lα4 , 2λ8 = Lα5 , λ2 = LZ , λ6 = LZ2 .
(2.18)

It is now simply a matter of inverting these relations in order to obtain
the desired general mapping results:

Ω(t) =
2

m2
0

E − 1, c(t) =
1

2
(Ḟ − LN ) + (H Ė − Ë − 2EḢ),

Λ(t) = L̄+ Ḟ + 3HF − (6H2E + 2Ë + 4H Ė + 4ḢE) , M̄2
2 (t) = −A− 2E ,

M4
2 (t) =

1

2

(
LN +

LNN
2

)
− c

2
, M̄3

1 (t) = −B − 2Ė , M̄2
3 (t) = −2LS + 2E ,

m2
2(t) =

Lα1

4
, m̄5(t) = 2C, M̂2(t) = D, λ1(t) =

G
2
,

λ2(t) = LZ , λ3(t) =
Lα3

2
, λ4(t) =

Lα2

4
, λ5(t) = LZ1

,

λ6(t) = LZ2 , λ7(t) =
Lα4

4
, λ8(t) =

Lα5

2
. (2.19)

Let us stress that the above definitions of the EFT functions are very
useful if one is interested in writing a specific action in EFT language.
Indeed the only step required before applying (2.19), is to write the
action which specifies the chosen theory in ADM form, without the need
of perturbing the theory and its action up to quadratic order.

The expressions of the EFT functions corresponding to a given model,
and their time-dependence, are all that is needed in order to implement
a specific model of DE/MG in EFTCAMB and have it solve for the
dynamics of perturbations, outputting observable quantities of interest.
Since EFTCAMB uses the scale factor as the time variable and the
Hubble parameter expressed w.r.t conformal time, one needs to convert
the cosmic time t in the argument of the functions in Eq. (2.19) into
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2.4 Model mapping examples

the scale factor, a, their time derivatives into derivatives w.r.t. the scale
factor and transform the Hubble parameter into the one in conformal
time τ , while considering it a function of a, see Ref. [80]. This is a
straightforward step and we will give some examples in Appendix 2.10.

Let us conclude this Section looking at the equations for the background.
Working with the EFT action, and expanding it to first order while using
the ADM notation, one obtains:

S(1)
EFT =

∫
d4x

{
a3m

2
0

2
(1 + Ω) δ1R+

[
3H2m2

0(1 + Ω) + 2Ḣm2
0(1 + Ω)

+ 2m2
0HΩ̇ +m2

0Ω̈ + Λ
]
δ
√
h+ a3

[
3HΩ̇m2

0 − 2c+ 3H2m2
0(1 + Ω)

+ Λ] δN} , (2.20)

therefore the variation w.r.t. δN and δ
√
h yields:

3HΩ̇m2
0 − 2c+ 3H2m2

0(1 + Ω) + Λ = 0 ,

3H2m2
0(1 + Ω) + 2Ḣm2

0(1 + Ω) + 2m2
0HΩ̇ +m2

0Ω̈ + Λ = 0 .

(2.21)

Using the mapping (2.19), it is easy to verify that these equations corre-
spond to those in the ADM formalism (2.12). Once the mapping (2.19)
has been worked out, it is straightforward to obtain the Friedmann
equations without having to vary the action for each specific model.

2.4 Model mapping examples

Having derived the precise mapping between the ADM formalism and
the EFT approach in Section 2.3.3, we proceed to apply it to some
specific cases which are of cosmological interest, i.e. minimally coupled
quintessence [71], f(R) theory [11], Horndeski/GG [78, 79], GLPV [66]
and Hořava gravity [64]. The mapping of some of these theories is
already present in the literature (see Refs. [14, 15, 39, 65, 74, 75] for
more details). However, since one of the main purposes of this work
is to provide a self-contained and general recipe that can be used to
easily implement a specific theory in EFTCAMB, we will present all the
mapping of interest, including those that are already in the literature due
to the aforementioned differences in the definition of the normal vector
and some of the EFT functions. Let us notice that the mapping of the
GLPV Lagrangians in particular, is one of the new results obtained in
this work.
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2 An extended action for the EFToDE/MG

2.4.1 Minimally coupled quintessence

As illustrated in Refs. [14, 15, 75], the mapping of minimally coupled
quintessence [71] into EFT functions is very straightforward. The typical
action for such a model is of the following form:

Sφ =

∫
d4x
√
−g
[
m2

0

2
R− 1

2
∂νφ∂νφ− V (φ)

]
, (2.22)

where φ(t, xi) is a scalar field and V (φ) is its potential. Let us proceed
by rewriting the second term in unitary gauge and in ADM quantities:

−1

2
gµν∂µφ∂νφ → − φ̇

2
0(t)

2
g00 ≡ φ̇2

0(t)

2N2
, (2.23)

where φ0(t) is the field background value. Substituting back into the
action we get, in the ADM formalism, the following action:

Sφ =

∫
d4x
√
−g

{
m2

0

2

[
R+ S −K2

]
+

1

N2

φ̇2
0(t)

2
− V (φ0)

}
, (2.24)

where we have used the Gauss-Codazzi relation (2.14) to express the
four dimensional Ricci scalar in terms of three dimensional quantities.
Now, since the initial covariant action has been written in terms of ADM
quantities, we can finally apply the results in Eqs. (2.19) to get the EFT
functions:

Ω(t) = 0, c(t) =
φ̇2

0

2
, Λ(t) =

φ̇2
0

2
− V (φ0). (2.25)

Notice that the other EFT functions are zero. In Refs. [14, 15] the above
mapping has been obtained directly from the covariant action while our
approach follows more strictly the one adopted in Ref. [75]. However, let
us notice that w.r.t. it, our results differ due to a different definition of
the background EFT functions.∗

∗The background EFT functions adopted here are related to the ones in Ref. [75],
by the following relations:

1 + Ω(t) = f(t) , Λ(t) = −Λ̃(t) + c(t) , c(t) = c̃(t) . (2.26)

where f and tildes quantities correspond to the EFT functions in Ref. [75]. These
differences are due to the fact that in our formalism we have in the EFT action the
term −cδg00 while in the other formalism the authors use −c̃g00, therefore an extra
contribution to Λ̃ from this operator comes when using g00 = −1 + δg00. Instead the
different definition of the conformal coupling function, Ω, is due to numerical reasons
related to the implementation of the EFT approach in CAMB.
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2.4 Model mapping examples

Moreover, in order to use them in EFTCAMB one need to convert
them in conformal time τ , therefore one has:

c(τ) = H2φ
′ 2
0

2
, Λ(τ) = H2φ

′ 2
0

2
− V (φ0) , (2.27)

where the prime indicates the derivative w.r.t. the scale factor, a(τ), and
H ≡ 1

a
da
dτ is the Hubble parameter in conformal time. Minimally coupled

quintessence models are already implemented in the public versions of
EFTCAMB [80].

2.4.2 f(R) gravity

The second example we shall illustrate is that of f(R) gravity [10, 11]. The
mapping of the latter into the EFT language was derived in Refs. [14, 75].
Here, we present an analogous approach which uses the ADM formalism.
Let us start with the action :

Sf =

∫
d4x
√
−gm

2
0

2
[R+ f(R)] , (2.28)

where f(R) is a general function of the four dimensional Ricci scalar.
In order to map it into our EFT approach, we will proceed to ex-

pand this action around the background value of the Ricci scalar, R(0).
Therefore, we choose a specific time slicing where the constant time
hypersurfaces coincide with uniform R hypersurfaces. This allows us to
truncate the expansion at the linear order because higher orders will
always contribute one power or more of δR to the equations of motion,
which vanishes. For a more complete analysis we refer the reader to
Ref. [14] . After the expansion we obtain the following Lagrangian:

Sf =

∫
d4x
√
−gm

2
0

2

{[
1 + fR(R(0))

]
R+ f(R(0))−R(0)fR(R(0))

}
,

(2.29)
where fR ≡ df

dR . In the ADM formalism the above action reads:

Sf =

∫
d4x
√
−gm

2
0

2

{[
1 + fR(R(0))

] [
R+ S −K2

]
+

2

N
ḟRK

+ f(R(0))− R(0)fR(R(0))
}
, (2.30)

where we have used as usual the Gauss Codazzi relation (2.14). Using
Eqs. (2.19), it is easy to calculate that the only non zero EFT functions
for f(R) gravity are:

Ω(t) = fR(R(0)) , Λ(t) =
m2

0

2
f(R(0))−R(0)fR(R(0)) . (2.31)
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2 An extended action for the EFToDE/MG

The public version of EFTCAMB already contains the designer f(R) mod-
els [12, 80, 81], while the specific Hu-Sawicki model has been implemented
through the full mapping procedure [82].

2.4.3 The Galileon Lagrangians

The Galileon class of theories were derived in Ref. [83], by studying
the decoupling limit of the five dimensional model of modified gravity
known as DGP [84]. In this limit, the dynamics of the scalar d.o.f.,
corresponding to the longitudinal mode of the massive graviton, decouple
from gravity and enjoy a galilean shift symmetry around Minkowski
background, as a remnant of the five dimensional Poincare’ invariance [85].
Requiring the scalar field to obey this symmetry and to have second
order equations of motion allows one to identify a finite amount of terms
that can enter the action. These terms are typically organized into a
set of Lagrangians which, subsequently, have been covariantized [86]
and the final form is what is known as the Generalized Galileon (GG)
model [79]. This set of models represent the most general theory of
gravity with a scalar d.o.f. and second order field equations in four
dimensions and has been shown to coincide with the class of theories
derived by Horndeski in Ref. [78]. It is therefore common to refer to
these models with the terms GG and Horndeski gravity, alternatively.
GG models have been deeply investigated in the cosmological context,
since they display self accelerated solutions which can be used to realize
both a single field inflationary scenario at early times [87–96] and a late
time accelerated expansion [97–101]. Moreover, on small scales these
models naturally display the Vainshtein screening mechanism [102, 103],
which can efficiently hide the extra d.o.f. from local tests of gravity [83,
85, 104–108].

GG models include most of the interesting and viable theories of
DE/MG that we aim to test against cosmological data. To this extent,
the Einstein-Boltzmann solver EFTCAMB can be readily used to explore
these theories both in a model-independent way, through a subset of
the EFT functions, and in a model-specific way [22, 80]. In the latter
case, the first step consists of mapping a given GG model into the EFT
language. In the following we derive the general mapping between GG
and EFT functions, in order to provide an instructive and self-consistent
compendium to easily map any given GG model into the formalism at
the basis of EFTCAMB.

Let us introduce the GG action:

SGG =

∫
d4x
√
−g (L2 + L3 + L4 + L5) , (2.32)
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2.4 Model mapping examples

where the Lagrangians have the following structure:

L2 = K(φ,X) ,

L3 = G3(φ,X)�φ ,

L4 = G4(φ,X)R− 2G4X(φ,X)
[
(�φ)

2 − φ;µνφ;µν

]
,

L5 = G5(φ,X)Gµνφ
;µν +

1

3
G5X(φ,X)

[
(�φ)

3 − 3�φφ;µνφ;µν

+2φ;µνφ
;µσφ;ν

;σ

]
, (2.33)

here Gµν is the Einstein tensor, X ≡ φ;µφ;µ is the kinetic term and
{K, Gi} (i = 3, 4, 5) are general functions of the scalar field φ and X,
and GiX ≡ ∂Gi/∂X. Moreover, � = ∇2 and ; stand for the covariant
derivative w.r.t. the metric gµν . The mapping of GG is already present in
the literature. For instance in Ref. [74] the mapping is obtained directly
from the covariant Lagrangians, while in Refs. [65, 75] the authors start
from the ADM version of the action. In this Chapter we present in details
all the steps from the covariant Lagrangians (2.33) to their expressions
in ADM quantities; we then use the mapping (2.19) to obtain the EFT
functions corresponding to GG. This allows us to give an instructive
presentation of the method, while providing a final result consistent with
the EFT conventions at the basis of EFTCAMB. Throughout these steps,
we will highlight the differences w.r.t. Refs. [65, 74, 75] which arise
because of different conventions. Finally, in Appendix 2.10 we rewrite the
results of this Section with the scale factor as the independent variable
and the Hubble parameter defined w.r.t. the conformal time, making
them readily implementable in EFTCAMB.

Since the GG action is formulated in covariant form, we shall use the
following relations to rewrite the GG Lagrangians in ADM form:

nµ = γφ;µ, γ =
1√
−X

, ṅµ = nνnµ;ν , (2.34)

where we have, as usual, assumed that constant time hypersurfaces
correspond to uniform field ones. We notice that the acceleration, ṅµ,
and the extrinsic curvature Kµν are orthogonal to the normal vector.
This allows us to decompose the covariant derivative of the normal vector
as follows:

nν;µ = Kµν − nµṅν . (2.35)

With these definitions it can be easily verified that:

φ;µν = γ−1(Kµν − nµṅν − nν ṅµ) +
γ2

2
φ;λX;λnµnν , (2.36)

�φ = γ−1K − γ2

2
φ;λX;λ. (2.37)
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2 An extended action for the EFToDE/MG

• L2- Lagrangian

Let us start with the simplest of the Lagrangians which can be Taylor
expanded in the kinetic term X, around its background value X0, as
follows:

K(φ,X) = K(φ0, X0)+KX(φ0, X0)(X−X0)+
1

2
KXX(X−X0)2, (2.38)

where in terms of ADM quantities we have:

X = − φ̇0(t)2

N2
=
X0

N2
. (2.39)

Now by applying the results in Eqs. (2.19), the corresponding EFT
functions can be written as:

Λ(t) = K(φ0, X0), c(t) = KX(φ0, X0)X0 M4
2 (t) = KXX(φ0, X0)X2

0 .
(2.40)

The differences with previous works in this case are the ones listed in
Eq. (2.26).

• L3- Lagrangian

In order to rewrite this Lagrangian into the desired form, which depends
only on ADM quantities, we introduce an auxiliary function:

G3 ≡ F3 + 2XF3X . (2.41)

We proceed to plug this in the L3-Lagrangian (2.33) and using Eq. (2.37)
we obtain, up to a total derivative:

L3 = −F3φX − 2(−X)3/2F3XK . (2.42)

Now going to unitary gauge and considering Eq. (2.39), we can directly
use (2.19). Let us start with c(t):

c(t) = 1
2 (F − LN ) = −3φ̇2

0φ̈0F3X + 2φ̈0F3XX φ̇
4
0 − φ̇4

0F3Xφ + F3φφ̇
2
0

−F3φX φ̇
4
0 − 6Hφ̇5

0F3XX + 9HF3X φ̇
3
0 . (2.43)

Now we want to eliminate the dependence on the auxiliary function F3.
In order to do this, we need to recombine terms by using the following:

G3 = F3 + 2XF3X , G3φ = F3φ − 2φ̇2
0F3Xφ, G3X = 3F3X − 2φ̇2

0F3XX ,

G3XX = 3F3XX − 2φ̇2
0F3XXX + 2F3XX , G3φX = 3F3Xφ − 2φ̇2

0F3φXX ,
(2.44)
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which gives the final expression:

c(t) = φ̇2
0G3X(3Hφ̇0 − φ̈0) +G3φφ̇

2
0. (2.45)

Now let us move on to the remaining non zero EFT functions corre-
sponding to the L3 Lagrangian:

Λ(t) = L̄+ Ḟ + 3HF = G3φφ̇
2
0 − 2φ̈0φ̇

2
0G3X ,

M̄3
1 (t) = −LKN = −2G3X φ̇

3
0 ,

M4
2 (t) =

1

2

(
LN +

LNN
2

)
− c

2
= G3X

φ̇2
0

2
(φ̈0 + 3Hφ̇0)− 3HG3XX φ̇

5
0

−G3φX
φ̇4

0

2
, (2.46)

where we have used the relations (2.44). In the definitions of the EFT
functions, G3 and its derivatives are evaluated on the background. We
suppressed the dependence on (φ0, X0) to simplify the final expressions.
Before proceeding to map the remaining GG Lagrangians, let us comment
on the differences w.r.t. the results in literature [65, 74, 75]. The results
coincide up to two notable exceptions. The background functions are
redefined as presented in Eq. (2.26) and M̄3

1 = −m̄3
1. In the latter term,

the minus sign is not a simple redefinition but rather comes from the fact
that our extrinsic curvature has an overall minus sign difference due to
the definition of the normal vector. Therefore, the term proportional to
δKδg00 will always differ by a minus sign.

• L4- Lagrangian

Let us now consider the L4 Lagrangian:

L4 = G4R− 2G4X

[
(�φ)

2 − φ;µνφ;µν

]
. (2.47)

After some preliminary manipulations of the Lagrangian, we get:

L4 = G4R+ 2G4X(K2 −KµνK
µν) + 2G4XX;λ(Knλ − ṅλ) . (2.48)

We proceed by using the relation:

∂µG4 = G4XX;µ +G4φφ;µ , (2.49)

which we substitute in the last term of the Lagrangian (2.48) and, using
integration by parts, we get:

L4 = G4R+ (2G4XX −G4)(K2 −KµνK
µν) + 2G4φ

√
−XK , (2.50)
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2 An extended action for the EFToDE/MG

where we have used the Gauss-Codazzi relation (2.14). Let us recall that
we can relate φ;µ to X by using Eq. (2.39).

Finally, in the same spirit as for L3, we derive from the Lagrangian (2.50)
the corresponding non zero EFT functions by using the results (2.19):

Ω(t) = −1 +
2

m2
0

G4 ,

c(t) = −1

2

(
− L̇K + 2ḢLS + 2HL̇S

)
+HL̇R − L̈R − 2ḢLR

= G4X(2φ̈2
0 + 2φ̇0

...
φ0 + 4Ḣφ̇2

0 + 2Hφ̇0φ̈0 − 6H2φ̇2
0)

+G4Xφ(2φ̇2
0φ̈0 + 10Hφ̇3

0) +G4XX(12H2φ̇4
0 − 8Hφ̇3

0φ̈0 − 4φ̇2
0φ̈

2
0) ,

Λ(t) = L̄+ Ḟ + 3HF − (6H2LR + 2L̈R + 4HL̇R + 4ḢLR),

= G4X

[
12H2φ̇2

0 + 8Ḣφ̇2
0 + 16Hφ̇0φ̈0 + 4(φ̈2

0 + φ̇0

...
φ0)
]

−G4XX

(
16Hφ̇3

0φ̈0 + 8φ̇2
0φ̈

2
0

)
+ 8HG4Xφφ̇

3
0 ,

M4
2 (t) =

1

2
(LN + LNN/2)− c

2
= G4φX

(
4Hφ̇3

0 − φ̈0φ̇
2
0

)
− 6Hφ̇5

0G4φXX

−G4X

(
2Ḣφ̇2

0 +Hφ̇0φ̈0 + φ̇0

...
φ0 + φ̈2

0

)
+G4XX

(
18H2φ̇4

0 + 2φ̇2
0φ̈

2
0 + 4Hφ̈0φ̇

3
0

)
− 12H2G4XXX φ̇

6
0 ,

M̄2
2 (t) = −LKK − 2LR = 4G4X φ̇

2
0 ,

M̄2
3 (t) = −2LS + 2LR = −4G4X φ̇

2
0 ≡ −M̄2

2 (t) ,

M̂2(t) = LNR = 2φ̇2
0G4X ,

M̄3
1 (t) = 2HLSN − 2L̇R − LKN = G4X(4φ̇0φ̈0 + 8Hφ̇2

0)

− 16HG4XX φ̇
4
0 − 4G4φX φ̇

3
0 , (2.51)

where also in this case G4 and its derivative are evaluated on the back-
ground. Let us notice that the above relations satisfy the conditions
which define Horndeski/GG theories, i.e.:

M̄2
2 = −M̄2

3 (t) = 2M̂2(t), (2.52)

as found in Refs. [65, 74]. Finally, besides the differences mentioned
previously for the L2 and L3 Lagrangians which also apply here, we
notice that M̂2 = µ2

1 when comparing with Ref. [65].

• L5- Lagrangian

Finally, let us conclude with the L5 Lagrangian. This Lagrangian contains
cubic terms which makes it more complicated to express it in the ADM
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form:

L5 = G5(φ,X)Gµνφ
;µν+

1

3
G5X(φ,X)

[
(�φ)

3 − 3�φφ;µνφ;µν + 2φ;µνφ
;µσφ;ν

;σ

]
.

(2.53)
In order to rewrite L5, we have to enlist once again the help of an auxiliary
function, F5, which is defined as follows:

G5X ≡ F5X +
F5

2X
. (2.54)

Then, using this definition, we get the following relation:

G5XX;ρ = γ∇ρ(γ−1F5)− F5φγ
−1nρ. (2.55)

Let us start with the first term of the Lagrangian, which can be written
as:

G5Gµνφ
;µν = F5φ

;µνGµν −
γ

2
X ;νnµGµνF5 + (F5φ −G5φ)γ−2nµnνGµν ,

(2.56)
hence we need to rewrite F5φ

;µνGµν in terms of ADM quantities which
can be achieved by employing the following relation:

KµνGµν = KKµνKµν −K3
µν +RµνK −KµνnσnρRµσνρ −

1

2
K
(
R−K2

+ KµνK
µν − 2Rµνn

µnν
)
. (2.57)

This leads to the following:

F5φ
;µνGµν = F5(γ−1(−2Rµνn

µṅν) +
γ2

2
nµnνφ;λX;λGµν)

+ F5γ
−1
[
KKµνKµν −K3

µν +RµνKµν −KµνnσnρRµσνρ

− 1

2
K
(
R−K2 +KµνK

µν − 2Rµνn
µnν

)]
. (2.58)

The second term of the Lagrangian can be computed by considering
Eqs. (2.36)-(2.37), which yields:

1

3
G5X

[
(�φ)

3 − 3�φφ;µνφ;µν + 2φ;µνφ
;µσφ;ν

;σ

]
=

=
G5X

3
γ−3

(
K3 − 3KS + 2KµνK

µσKν
σ

)
+G5X

(
− 1

2
K2φ;λX

;λ − 2ṅσṅνK
νσ

+
S

2
φ;λX

;λ + 2γ−3Kṅν ṅν
)

=
G5X

3
γ−3K̃ +G5XJ , (2.59)
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where the definitions of K̃ and J come directly from the second line of
the above expression. In Appendix 2.11 we treat in detail the G5XJ
term but for now we simply state the final result:

G5XJ = F5γ
−1
[ K̃

2
+KµνnσnρRµσνρ+ṅ

σnρRσρ−KnσnρRσρ
]
−F5φ

2
(K2−S).

(2.60)
Hence, after collecting all the terms, we get:

L5 = F5

√
−X

(
KµνRµν −

1

2
KR

)
+ (G5φ − F5φ)X

R
2

+
(−X)3/2

3
G5XK̃

+
G5φ

2
X(K2 −KµνK

µν) . (2.61)

Now, in order to proceed with the mapping, we need to analyse K̃ and
U = KµνRµν terms. The latter will be treated as in Appendix 2.9, while
the former can be written up to third order as follows:

K̃ = −6H3 − 6H2K − 3HK2 + 3HKµνK
µν +O(3). (2.62)

Finally, the ultimate Lagrangian is:

L5 = F5

√
−X

(
U − 1

2
KR

)
+ (G5φ − F5φ)X

R
2

+
(−X)3/2

3
G5X(−6H3 − 6H2K − 3HK2 + 3HS) +

G5φ

2
X(K2 − S) .

(2.63)

Although F5 is present in the above Lagrangian, it will disappear when
computing the EFT functions as was the case for L3. At this point we
can write down the non zero EFT functions as follows:

Ω(t) =
2

m2
0

(
G5X φ̈0φ̇

2
0 −G5φ

φ̇2
0

2

)
− 1 ,

c(t) =
1

2
˙̃F +

3

2
Hm2

0Ω̇− 3H2φ̇2
0G5φ + 3H2φ̇4

0G5φX − 3H3φ̇3
0G5X

+ 2H3φ̇5
0G5XX ,

Λ(t) = ˙̃F − 3m2
0H

2(1 + Ω) + 4G5XH
3φ̇3

0 + 3HG5φφ̇
2
0 ,

M4
2 (t) = −

˙̃F
4
− 3

4
Hm2

0Ω̇− 2H3G5XXX φ̇
7
0 − 3H2φ̇6

0G5φXX + 6G5XXH
3φ̇5

0

+ 6H2G5φX φ̇
4
0 −

3

2
H3G5X φ̇

3
0 ,

M̂2(t) = −G5X φ̇
2
0φ̈0 +HG5X φ̇

3
0 +G5φφ̇

2
0 ,
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M̄2
2 (t) = −M̄2

3 (t) = 2M̂2(t) ,

M̄3
1 (t) = −m2

0Ω̇ + 4Hφ̇2
0G5φ − 4Hφ̇4

0G5φX − 4H2φ̇5
0G5XX + 6H2φ̇3

0G5X ,
(2.64)

with F̃ = F −m2
0Ω̇− 2Hm2

0(1 + Ω) = 2H2G5X φ̇
3
0 + 2HG5φφ̇

2
0 −m2

0Ω̇−
2Hm2

0(1 + Ω). We have omitted, in the EFT functions, the dependence
on the background quantities φ0 and X0 of G5 and its derivatives. Finally
we recover, as expected, the relation (2.52).

2.4.4 GLPV Lagrangians

We shall now move on to the beyond Hordenski models derived by
Gleyzes et al. [66, 67], known as GLPV. These build on the premises of
the Galileon models and include some extra terms in the Lagrangians that,
while contributing higher order spatial derivatives in the field equations,
maintain second order equations of motion for the true propagating d.o.f..
Specifically, the GLPV action assumes the following form:

SGLPV =

∫
d4x
√
−g
[
LGG2 + LGG3 + LGG4 + LGG5 + LGLPV

4 + LGLPV
5

]
,

(2.65)
where LGGi (i=2,3,4,5) are the GG Lagrangians listed in Eq.(2.33) and
the new terms to be added to the GG Lagrangians are the following:

LGLPV
4 = F̃4(φ,X)εµνρσε

µ′ν′ρ′σφ;µφ;µ′φ;νν′φρρ′ ,

LGLPV
5 = F̃5(φ,X)εµνρσεµ

′ν′ρ′σ′φ;µφ;µ′φ;νν′φ;ρρ′φ;σσ′ , (2.66)

where εµνρσ is the totally antisymmetric Levi-Civita tensor and F̃4, F̃5

are two new arbitrary functions of (φ,X).
As usual, we will first express the new Lagrangians in terms of ADM

quantities using, among others, relations (2.36)-(2.37), and we get:

LGLPV
4 = −X2F̃4(φ,X)(K2 −KijK

ij) ,

LGLPV
5 = F̃5(φ,X)(−X)5/2K̃

= F̃5(φ,X)(−X)5/2(−6H3 − 6H2K − 3HK2 + 3HKµνK
µν) .
(2.67)

The last equality holds up to second order in perturbations. It is now easy
to apply the familiar procedure. Moreover, since different Lagrangians
contribute separately to the EFT functions, we can simply calculate the
EFT functions corresponding to the new Lagrangians (2.67) and add
those to the results previously derived for the GG Lagrangians.
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• LGLPV
4 - Lagrangian

Let us start with the operators included in the LGLPV
4 Lagrangian:

LGLPV
4 = −X2F̃4(K2 − S). (2.68)

We can easily derive the following quantities that are useful for the
mapping:

LK = 6Hφ̇4
0F̃4, LS = φ̇4

0F̃4, LKK = −2φ̇4
0F̃4,

LN = 4
φ̇4

0

N5
F̃4(K2 − S) = 24H2φ̇4

0F̃4 LNN = −120φ̇4
0F̃4H

2,

LNK = −24Hφ̇4
0F̃4, LNS = −4φ̇4

0F̃4, F = 4Hφ̇4
0F̃4 ,

Ḟ = 4Ḣφ̇4
0F̃4 + 16HF̃4φ̇

3
0φ̈0 − 8Hφ̇5

0φ̈0F̃4X + 4Hφ̇5
0F̃4φ . (2.69)

Using the relations (2.19), we obtain the non-zero EFT functions corre-
sponding to LGLPV

4 :

c(t) = 2Ḣφ̇4
0F̃4 + 8Hφ̇3

0φ̈0F̃4 − 4Hφ̇5
0φ̈0F̃4X + 2HF̃4φφ̇

5
0 − 12H2φ̇4

0F̃4 ,

Λ(t) = 6H2φ̇4
0F̃4 + 4Ḣφ̇4

0F̃4 + 16Hφ̇3
0φ̈0F̃4 + 4Hφ̇5

0F̃4φ − 8Hφ̇5
0φ̈0F̃4X ,

M4
2 (t) = −18φ̇4

0F̃4H
2 − Ḣφ̇4

0F̃4 − 4Hφ̇3
0φ̈0F̃4 + 2Hφ̇5

0φ̈0F̃4X −HF̃4φφ̇
5
0 + 6H2φ̇4

0F̃4 ,

M̄2
2 (t) = 2φ̇4

0F̃4,

M̄3
1 (t) = 16Hφ̇4

0F̃4,

M̄2
3 (t) = −M̄2

2 (t) . (2.70)

As before, F̃4 and its derivatives are evaluated on the background, there-
fore they only depend on time.

• LGLPV
5 - Lagrangian

Let us now consider the last Lagrangian:

LGLPV
5 = −(−X)5/2F̃5(−6H3 − 6H2K − 3HK2 + 3HS) , (2.71)

which gives the derivatives, w.r.t. ADM quantities, one needs to obtain
the mapping:

LK = −12H2φ̇5
0F̃5, LS = −3Hφ̇5

0F̃5, LN = 5
φ̇5

0

N6
F̃5K̃ = −30φ̇5

0H
3F̃5 ,

LKK = 6Hφ̇5
0F̃5, LNN = 180H3φ̇5

0F̃5, LNK = 60φ̇5
0F̃5H

2,

LNS = 15Hφ̇5
0F̃5, F = −6H2φ̇5

0F̃5,

Ḟ = 12H2φ̇6
0F̃5X φ̈0 − 12HḢφ̇5

0F̃5 − 30H2φ̇4
0F̃5φ̈0 − 6H2φ̇6

0F̃5φ .
(2.72)
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Employing these, allows us to obtain the non-zero EFT functions:

Λ(t) = −3H3φ̇5
0F̃5 − 12HḢφ̇5

0F̃5 − 30H2φ̇4
0F̃5φ̈0 + 12H2φ̇6

0F̃5X φ̈0 − 6H2φ̇6
0F̃5φ ,

c(t) = 6H2φ̇6
0φ̈0F̃5X − 6HḢφ̇5

0F̃5 − 15H2φ̇4
0F̃5φ̈0 − 3H2φ̇6

0F̃5φ + 15φ̇5
0H

3F̃5 ,

M4
2 (t) =

45

2
φ̇5

0H
3F̃5 + 3HḢφ̇5

0F̃5 +
15

2
H2φ̇4

0φ̈0F̃5 − 3H2φ̇6
0φ̈0F̃5X +

3

2
H2φ̇6

0F̃5φ ,

M̄2
2 (t) = −6Hφ̇5

0F̃5,

M̄3
1 (t) = −30H2φ̇5

0F̃5,

M̄2
3 (t) = −M̄2

2 (t) . (2.73)

As usual the functions F̃5 and its derivatives are functions of time. Their
expressions in terms of the scale factor and the Hubble parameter w.r.t.
conformal time can be found in Appendix 2.10. Let us notice that GLPV
models correspond to:

M̄2
2 = −M̄2

3 , (2.74)

which is a less restrictive condition than the one defining GG theo-
ries (2.52) as M̄2

2 6= 2M̂2.

Let us conclude this Section by working out the mapping between the
EFT functions and a common way to write the GLPV action. This action
is built directly in terms of geometrical quantities, hence guaranteeing
the unitary gauge since the scalar d.o.f. has been eaten by the metric [66].
Therefore now we will consider the following GLPV Lagrangian instead
of the one defined previously:

LGLPV = A2(t,N) +A3(t,N)K +A4(t,N)(K2 −KijK
ij) +B4(t,N)R

+ A5(t,N)
(
K3 − 3KKijK

ij + 2KijK
ikKj

k

)
+ B5(t,N)Kij

(
Rij − hij

R
2

)
, (2.75)

where Ai, Bi are general functions of t and N , and can be expressed in
terms of the scalar field, φ, , as shown in Ref. [66], effectively creating
the equivalence between the above Lagrangian and the one introduced in
Eq. (2.65).

It is very easy to write the above Lagrangian in terms of the quantities
introduced in Section 2.3.1:

LGLPV = A2(t,N) +A3(t,N)K +A4(t,N)(K2 − S) +B4(t,N)R
+ A5(t,N)

(
−6H3 − 6H2K − 3HK2 + 3HS

)
+ B5(t,N)

(
U − RK

2

)
.

(2.76)
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Now, we can compute the quantities that we need for the mapping (2.19):

L̄ = Ā2 − 3HĀ3 + 6H2Ā4 − 6H3Ā5 , E = B̄4 −
1

2
˙̄B5 ,

F = Ā3 − 4HĀ4 + 6H2Ā5 , LS = −Ā4 + 3HĀ5 ,

LK = Ā3 − 6HĀ4 + 12H2Ā5, LKK = 2Ā4 − 6HĀ5,

LN = Ā2N − 3HĀ3N + 6H2Ā4N − 6H3Ā5N , LU = B̄5 ,

LNN = Ā2NN − 3HĀ3N + 6H2Ā4NN − 6H3Ā5NN ,

LSN = −Ā4N + 3HĀ5N , LKN = Ā3N − 6HĀ4N + 12H2Ā5N ,

LKR = −1

2
B̄5 , LNU = B̄5N , LNR = B̄4N +

3

2
HB̄5N , (2.77)

where the quantities with the bar are evaluated in the background and
AiY means derivative of Ai w.r.t. Y . Then the EFT functions follow
from Eq. (2.19):

Ω(t) =
2

m2
0

(
B̄4 −

1

2
˙̄B5

)
− 1 ,

Λ(t) = Ā2 − 6H2Ā4 + 12H3Ā5 + ˙̄A3 − 4ḢĀ4 − 4H ˙̄A4 + 6H2 ˙̄A5 + 12HḢĀ5

−
[
2(3H2 + 2Ḣ)

(
B̄4 −

1

2
˙̄B5

)
+ 2 ¨̄B4 − B̄(3)

5 + 4H

(
˙̄B4 −

1

2
¨̄B5

)]
,

c(t) =
1

2

(
˙̄A3 − 4ḢĀ4 − 4H ˙̄A4 + 6H2 ˙̄A5 + 12HḢĀ5 − Ā2N + 3HĀ3N

)
−6H2Ā4N + 6H3Ā5N +H

(
˙̄B4 −

1

2
¨̄B5

)
− ¨̄B4 +

1

2
B̄

(3)
5

−2Ḣ

(
B̄4 −

1

2
˙̄B5

)
,

M̄2
2 (t) = = −2Ā4 + 6HĀ5 − 2B̄4 + ˙̄B5 ,

M̄3
1 (t) = −Ā3N + 4HĀ4N − 6H2Ā5N − 2 ˙̄B4 + ¨̄B5 ,

M̄2
3 (t) ≡ −M̄2

2 (t) ,

M4
2 (t) =

1

4

(
Ā2NN − 3HĀ3NN + 6H2Ā4NN − 6H3Ā5NN

)
− 1

4

(
˙̄A3 − 4ḢĀ4

−4H ˙̄A4 + 6H2 ˙̄A5 + 12HḢĀ5

)
+

3

4

(
Ā2N − 3HĀ3N + 6H2Ā4N

−6H3Ā5N

)
− 1

2

[
H

(
˙̄B4 −

1

2
¨̄B5

)
− ¨̄B4 +

1

2
B̄

(3)
5

−2Ḣ

(
B̄4 −

1

2
˙̄B5

)]
,

M̂2(t) = B̄4N +
1

2
HB̄5N +

1

2
˙̄B5 . (2.78)
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The condition (2.74) is satisfied as desired and one can focus on the GG
subset of theories by enforcing the condition M̄2

2 (t) = 2M̂2(t) .

2.4.5 Hořava Gravity

One of the main aspects of our paper is the inclusion of operators with
higher order spatial derivatives in the EFT action. Thus, it is natural to
proceed with the mapping of the most popular theory containing such
operators, i.e. Hořava gravity [35, 36]. This theory is a recent proposed
candidate to describe the gravitational interaction in the ultra-violet
regime (UV). This is done by breaking the Lorentz symmetry resulting
in a modification of the graviton propagator. Practically, this amounts
to adding higher-order spatial derivatives to the action while keeping the
time derivatives at most second order, in order to avoid Ostrogradsky
instabilities [25]. As a result, time and space are treated on a different
footing, therefore the natural formulation in which to construct the action
is the ADM one. It has been shown that, in order to obtain a power-
counting renormalizable theory, the action needs to contain terms with
up to sixth-order spatial derivatives [62–64]. The resulting action does
not demonstrate full diffeomorphism invariance but is rather invariant
under a restricted symmetry, the foliation preserving diffeomorphisms
(for a review see [55, 59] and references therein). Besides the UV regime,
Hořava gravity has taken hold on the cosmological side as well as it
exhibits a rich phenomenology [40–47, 49–51, 53] and very recently it has
started to be constrained in that context [39, 48, 52, 54, 56–58].

Here, we will consider the following action which contains up to six
order spatial derivatives, (and is therefore included in the extended EFT
action):

SH =
1

16πGH

∫
d4x
√
−g
[
KijK

ij − λK2 − 2ξΛ̄ + ξR+ ηaia
i + g1R2

+ g2RijRij + g3R∇iai + g4ai∆a
i + g5R∆R+ g6∇iRjk∇iRjk

+ g7ai∆
2ai + g8∆R∇iai

]
, (2.79)

where the coefficients λ, η, ξ and gi are running coupling constants, Λ̄ is
the ”bare” cosmological constant and GH is the coupling constant [39,
64]:

1

16πGH
=

m2
0

(2ξ − η)
. (2.80)

The above action is already in unitary gauge and ADM form, then we
just need few steps to write it in terms of the quantities introduced in
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2 An extended action for the EFToDE/MG

Section 2.3.1:

SH =
1

16πGH

∫
d4x
√
−g
[
S − λK2 − 2ξΛ̄ + ξR+ ηα1 + g1R2 + g2Z

+g3α3 + g4α2 − g5Z1 + g6Z2 + g7α4 + g8α5] , (2.81)

then by using the results (2.19) it is easy to show that the EFT functions
read:

m2
0(1 + Ω) =

2m2
0ξ

(2ξ − η)
, c(t) = − m2

0

(2ξ − η)
(1 + 2ξ − 3λ)Ḣ,

Λ(t) =
2m2

0

(2ξ − η)

[
−ξΛ̄− (1− 3λ+ 2ξ)

(
3

2
H2 + Ḣ

)]
,

M̄2
3 = − 2m2

0

(2ξ − η)
(1− ξ), M̄2

2 = −2
m2

0

(2ξ − η)
(ξ − λ),

m2
2 =

m2
0

4(2ξ − η)
η, M4

2 (t) =
m2

0

2(2ξ − η)
(1 + 2ξ − 3λ)Ḣ,

λ1 = g1
m2

0

(2ξ − η)
, λ2 = g2

m2
0

(2ξ − η)
,

λ3 = g3
m2

0

2(2ξ − η)
, λ4 = g4

m2
0

4(2ξ − η)
, λ5 = −g5

m2
0

(2ξ − η)

λ6 = g6
m2

0

(2ξ − η)
, λ7 = g7

m2
0

4(2ξ − η)
, λ8 = g8

m2
0

2(2ξ − η)
, (2.82)

and the remaining EFT functions are zero. The mapping of Hořava
gravity has been worked out in details in Ref. [39], by some of the authors
of this paper. Subsequently, the low-energy part of Hořava action, which
is described by {Ω, c,Λ, M̄2

3 , M̄
2
2 ,M

4
2 ,m

2
2}, has been implemented in

EFTCAMB [80] and constraints on the low-energy parameters {ξ, η, λ}
have been obtained in Ref. [39].

2.5 Stability

Along with its unifying aspect, a very important advantage of the
EFToDE/MG formalism is that of being formulated at the level of
the action in a model independent way. By inspecting the EFT action
expanded to quadratic order in the perturbations, it is possible to impose
conditions on the EFT functions to ensure that none of the undesired
instabilities develop. It has been preliminary shown in Ref. [23], that the
impact of such conditions can be quite significant as they can efficiently
reduce the parameter space that one needs to explore when performing a
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2.5 Stability

fit to data. In some cases they have been shown to dominate over the
constraining power of current data [23].

The study of the theoretical viability of the EFT action has already
been performed to some extent in the literature [14, 15, 65, 67, 68],
however here we will include in the analysis, for the first time, higher
order operators and consider also the instabilities related to a negative
squared mass of the scalar d.o.f.. Specifically, we will consider three
possible instabilities: ghost and gradient instabilities both in the scalar
and tensor sector, and tachyonic scalar modes (for a review see Ref. [109]).
Starting from the general action (2.17), we expand it up to quadratic
order in tensor and scalar perturbations of the metric around a flat FLRW
background. Our focus is on the stability of the gravity sector, hence we
will not consider matter fluids. The complete stability analysis of the
general action (2.17) in the presence of a matter sector is the main topic
of the next Chapter.

Let us consider the following metric perturbations for the scalar com-
ponents:

ds2 = −(1 + 2δN)dt2 + 2∂iψdtdx
i + a2(1 + 2ζ)δijdx

idxj , (2.83)

where as usual δN(t, xi) is the perturbation of the lapse function, ∂iψ(t, xi)
and ζ(t, xi) are the scalar perturbations respectively of the shift function
and the three dimensional metric. Then, the scalar perturbations of the
quantities involved in the action (2.17) are:

δK = −3ζ̇ + 3HδN +
1

a2
∂2ψ ,

δKij = a2δij(HδN − 2Hζ − ζ̇) + ∂i∂jψ ,

δKi
j = (HδN − ζ̇)δij +

1

a2
∂i∂jψ ,

δRij = −(δij∂
2ζ + ∂i∂jζ) ,

δ1R = − 4

a2
∂2ζ ,

δ2R = − 2

a2
[(∂iζ)2 − 4ζ∂2ζ]. (2.84)

Now, we can expand action (2.17) to quadratic order in metric perturba-
tions. In the following we will Fourier transform the spatial part∗ and

∗More properly, in Fourier space we should write (ζ(t, k))2 → ζkζ−k, however in
the following we prefer to drop the indices in order to simplify the notation.
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after regrouping terms, we obtain:

S(2)
EFT =

1

(2π)3

∫
d3kdt a3

{
−
(
W0 +W3k

2 +W2k
4
)
k2ζ2 − 3a2W4ζ̇δN

−3

2
a2W5(ζ̇)2 −

(
W4δN +W5ζ̇ −W7k

2ψ +
2

a4
m̄5k

2ζ

)
k2ψ

+

(
W1 + 4m2

2

k2

a2
− 4

λ4

a4
k4 + 4

λ7

a6
k6

)
(δN)2

−
(
W6 + 8λ3

k2

a4
+ 8

λ8

a6
k4

)
δNk2ζ

}
,

(2.85)

where:

W0 = − 1

a2

[
m2

0(1 + Ω) + 3Hm̄5 + 3 ˙̄m5

]
,

W1 = c+ 2M4
2 − 3m2

0H
2(1 + Ω)− 3m2

0HΩ̇− 3

2
H2M̄2

3 −
9

2
H2M̄2

2 − 3HM̄3
1 ,

W2 = −16
λ5

a6
− 6

λ6

a6
,

W3 = −16
λ1

a4
− 6

λ2

a4
,

W4 =
1

a2

(
−2m2

0H(1 + Ω)−m2
0Ω̇−HM̄2

3 − M̄3
1 − 3HM̄2

2

)
,

W5 =
1

a2

(
2m2

0(1 + Ω) + M̄2
3 + 3M̄2

2

)
,

W6 = − 4

a2

(
1

2
m2

0(1 + Ω) + M̂2

)
− 6H

m̄5

a2
,

W7 = − 1

2a4

(
M̄2

3 + M̄2
2

)
. (2.86)

In this action we have three d.o.f. {ζ, δN, ψ}, but in reality only one,
ζ, is dynamical, while the other two, {δN, ψ}, are auxiliary fields. This
implies that they can be eliminated through the constraint equations
obtained by varying the above action w.r.t. them. We will leave for the
next Sections the details of such a calculation, here we want to outline
the general procedure we are adopting. After replacing back in the action
the general expression for δN and ψ , we end up with an action of the
form:

S(2)
EFT =

1

(2π)3

∫
d3kdt a3

{
Lζ̇ζ̇(t, k)ζ̇2 −

[
k2G(t, k) + M̄(t, k)

]
ζ2
}
.

(2.87)
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where M̄(t, k) depends on inverse powers of k. Lζ̇ζ̇(t, k) is usually called
the kinetic term and its positivity guarantees that the theory is free from
ghost in the scalar sector. The variation of the above action w.r.t. ζ
gives:

ζ̈ +

(
3H +

L̇ζ̇ζ̇
Lζ̇ζ̇

)
ζ̇ +

(
k2 G

Lζ̇ζ̇
+

M̄

Lζ̇ζ̇

)
ζ = 0 , (2.88)

where the coefficient of ζ̇ is called the friction term and its sign will
damp or enhance the amplitude of the field fluctuations. M̄/Lζ̇ζ̇ is called
the dispersion coefficient which, in principle, can be both negative and
positive. Finally, we define the propagation speed as:

c2s ≡
G

Lζ̇ζ̇
. (2.89)

Let us note that the speed of propagation and the dispersion coefficient (or
”mass” term) and their effective counterparts have non-local expressions.
Therefore, their interpretation as the actual physical entities might be
ambiguous at first glance because usually these quantities are defined in
some specific limit, where they assume local expressions. In this work,
we still retain the labeling of speed of propagation and mass term for
the non-local expressions, because they reduce to the corresponding local
and physical quantity when the proper limit is considered. Moreover, the
non-local definitions are the ones which serve to our purpose, since they
represent the proper quantities on which the stability conditions have to
be imposed in order to guarantee a viable theory at all times and scales.

Now, let us perform a field redefinition in order to have a canonical
action. This step is important in order to identify the correct conditions
to avoid the gradient and tachyonic instabilities, in particular the last
one which is related to the condition of boundedness from below of the
corresponding canonical Hamiltonian. We will show that not only the
mass is sensitive to this normalization, as it is known, but that in the
general case in which the kinetic term is scale-dependent also the speed
of propagation, is affected by the field redefinition. In general, we can
use:

ζ(t, k) =
φ(t, k)√
2Lζ̇ζ̇(t, k)

, (2.90)

which, once applied to the action (2.87), gives:

S(2)
EFT =

1

(2π)3

∫
d3kdt a3

[
1

2
φ̇2 − c2s,eff(t, k)

k2

2
φ2 −m2

eff(t, k)φ2

]
,

(2.91)
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where meff(t, k) is an effective mass and depends on inverse powers of k,
while c2s,eff(t, k) is the effective speed of propagation.

When Lζ̇ζ̇ is only a function of time, the field redefinition (2.90) will

give time-dependent contributions only to M̄ thus generating m2
eff and

leaving G unaffected. In this case we have:

c2s,eff(t, k) = c2s(t, k) ,

m2
eff(t) =

Lζ̇ζ̇
(

4M̄(t)− 2L̈ζ̇ζ̇
)

+ L̇2
ζ̇ζ̇
− 6HLζ̇ζ̇L̇ζ̇ζ̇

8L2
ζ̇ζ̇

. (2.92)

Let us notice that in case in which the kinetic term depends only on time,
the term M̄ usually turns out to be zero or at most a function of time.

On the contrary, when Lζ̇ζ̇ exhibits a k-dependence, the field redef-

inition will affect both M̄ and G and in general c2s,eff 6= c2s and the
above expression for the effective mass does not hold anymore. In Sec-
tion 2.5.2 we will discuss the general expressions for these two quantities.
In general, the GLPV class of theories belongs to the case in which Lζ̇ζ̇
is only a function of time. When one starts including operators like
{m2

2, m̄5, λi, M̄
2
3 6= −M̄2

2 }, k-dependence will be generated in the kinetic
term. In the following sections we will analyse these cases in details.

Finally, in order to study the stability, one has to analyse the evolution
of the field equation obtained by varying the action (2.91) w.r.t. φ, i.e.:

φ̈+ 3Hφ̇+
(
k2c2s,eff +m2

eff

)
φ = 0, (2.93)

In this case H represents a friction term, which is always positive, and
m2

eff is the dispersion coefficient. A negative value of the effective mass
squared generates a tachyonic instability, however requiring m2

eff to be
positive is a stringent condition. It is sufficient to guarantee that the time
scale on which the instability evolves is longer then the time evolution of
the system [109] in order to be free of said instability. Therefore, we can
require that, when m2

eff < 0 , the typical evolution scale is of the same
order as the Hubble time, H0.

Continuing, in order to avoid gradient instabilities one enforces a
positive value of the effective speed of propagation. In the simpler cases
in which the kinetic term depends only on time (e.g. Horndeski and
GLPV theories), the normalization of the field leaves the speed of sound
unchanged, i.e. c2s = c2eff , thus the condition to impose is c2eff = c2s > 0.
For the more general case in which the kinetic term depends on scale
in a non trivial way, c2eff = c2s + f(t, k) (see Section 2.5.2 for the full
expression of f(t, k)); however, in the high k-limit, where the gradient
instability shows up, f(t, k) is maximally of order O(1/k2) which can be
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2.5 Stability

neglected in this limit. Therefore, the condition on the effective speed
of propagation reduces indeed to the original condition on the speed of
propagation, i.e. c2s > 0. In summary, in order to guarantee the stability
of the scalar sector the combination of c2eff > 0 and m2

eff > 0, along with
the no-ghost condition, i.e. Lζ̇ζ̇ > 0, provides the full set of stability
conditions.

We conclude with the stability analysis on the tensor modes. The
perturbed metric components which contribute to tensor modes are:

gTij(t, x
i) = a2hTij(t, x

i) , (2.94)

therefore, the terms containing tensor perturbations in (2.17), are the
following:

δRij = −δ
lk

a2
∂l∂kh

T
ij , δ2R =

1

a2

(3

4
∂kh

T
ij∂

khij T + hTij∂
2hij T

−1

2
∂kh

T
ij∂

jhik T
)
, δKi

j = −
ḣi Tj

2
(2.95)

where δ2R is the second order perturbation of the Ricci scalar, R. Then,
the EFT action for tensor perturbations up to second order reads:

ST (2)
EFT =

∫
d4x a3

{
m2

0

2
(1 + Ω)δ2R+

(
m2

0

2
(1 + Ω)− M̄2

3

2

)
δKi

jδK
j
i

+λ2δRijδRij + λ6
g̃kl

a2
∂kRij∂lRij

}
, (2.96)

from which we can notice that only four EFT functions describe the
dynamics of tensors, i.e. {Ω, M̄2

3 , λ2, λ8}. Among the extra operators
that we added in action (2.17), only two contribute to tensor modes
{λ2, λ8}. Now, using (2.95), the action becomes:

ST (2)
EFT =

∫
d4x a3

{
−m

2
0

2
(1 + Ω)

1

4a2
(∂kh

T
ij)

2 +

(
m2

0

2
(1 + Ω)− M̄2

3

2

)
(ḣTij)

2

4

+ λ2

(
δlk

a2
∂l∂kh

T
ij

)2

+ λ6
1

a6
(∂k∂l∂

lhTij)
2

}
. (2.97)

It is clear that the additional operators associated to higher spatial
derivatives do not affect the kinetic term. However, they affect the speed
of propagation of the tensor modes, as we will show in the following.
Indeed, action (2.97) can be written in the compact form:

ST (2)
EFT =

1

(2π)3

∫
d3kdt a3AT (t)

8

[
(ḣTij)

2 − c2T (t, k)

a2
k2(hTij)

2

]
, (2.98)
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with

AT (t) = m2
0(1 + Ω)− M̄2

3 ,

c2T (t, k) = c̄2T (t)− 8
λ2

k2

a2 + λ6
k4

a4

m2
0(1 + Ω)− M̄2

3

,

c̄2T (t) =
m2

0(1 + Ω)

m2
0(1 + Ω)− M̄2

3

, (2.99)

where we have Fourier transformed the spatial part. c̄2T is the tensor
speed of propagation for all the theories belonging to the GLPV class,
as shown in Refs. [67, 69]. However, GLPV theories are characterized
by the condition M̄2

3 (t) = −M̄2
2 (t), while the present definition of the

tensor speed does not rely on this constraint as it holds for a wider class
of theories. In order to avoid the development of instabilities in the
tensorial sector, one generally demands the kinetic term to be positive,
i.e. AT > 0, and to have a positive speed of propagation c2T > 0. From
Eqs. (2.99) it is easy to identify the corresponding conditions on the EFT
functions.

2.5.1 Stability conditions for the GLPV class of
theories

Let us focus on the GLPV class of theories by considering the appropriate
set of operators:

S(2)
GLPV =

1

(2π)3

∫
d3kdt a3

[
−W6δNk

2ζ −W4δNk
2ψ −W5k

2ψζ̇

− W0k
2ζ2 +W1(δN)2 − 3a2W4δNζ̇ −

3

2
a2W5ζ̇

2

]
, (2.100)

which is obtained from action (2.85) by imposing the following constraints:

W7 = 0 ,
{
m2

2, m̄5, λi
}

= 0. (2.101)

By varying the above action w.r.t. δN and ψ we get, respectively,:

−W6k
2ζ −W4k

2ψ + 2W1δN − 3a2W4ζ̇ = 0 ,

−W4δN −W5ζ̇ = 0. (2.102)

Inverting these relations gives:

δN = −W5

W4
ζ̇ ,

k2ψ = − 1

W2
4

[(
3a2W2

4 + 2W1W5

)
ζ̇ +W4W6k

2ζ
]
, (2.103)
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which, once substituted back in the action (2.100), yields:

S(2)
GLPV =

1

(2π)3

∫
d3kdt a3

{(
3

2
a2W5 +

W1W2
5

W2
4

)
ζ̇2 − k2

[
3

2
H
W5W6

W4

+
1

2

d

dt

(
W5W6

W4

)
+W0

]
ζ2

}
. (2.104)

This particular form has been obtained after integrating by parts the
term containing ζ̇ζ. The above action has the same form of (2.87), where
M̄ = 0. Therefore, it is easy to read the no-ghost condition:

Lζ̇ζ̇(t) ≡
3

2
a2W5 +

W1W2
5

W2
4

> 0 , (2.105)

and the condition on the speed of propagation (c2s > 0):

c2s(t) =
3HW5W6W4 +W6W4Ẇ5 +W5W4Ẇ6 −W5W6Ẇ4 + 2W0W2

4

3a2W5W2
4 + 2W1W2

5

.

(2.106)
The speed of propagation coincides with the phase velocity due to the
lack of k-dependence in the kinetic term, as discussed at earlier stage.
Additionally, this implies that only the mass term will be sensitive to the
field redefinition which, in this case, reads:

ζ(t, k) =
φ(t, k)√

2
(

3
2a

2W5 +
W1W2

5

W2
4

) . (2.107)

After this transformation the effective mass follows directly form Eq. (2.92),
i.e.:

m2
eff(t) =

−2Lζ̇ζ̇L̈ζ̇ζ̇ + L̇2
ζ̇ζ̇
− 6HLζ̇ζ̇L̇ζ̇ζ̇

8L2
ζ̇ζ̇

, (2.108)

where the kinetic term is given by Eq. (2.105).

2.5.2 Stability conditions for the class of theories
beyond GLPV

To go beyond the GLPV class of theories we start by naively considering
the general action (2.85) with all the higher order operators. We proceed
to integrate out the auxiliary fields δN and ψ by solving the following
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field equations:

−2m̄5
k2

a4
ζ + 2W7k

2ψ −W4δN −W5ζ̇ = 0 ,

8

(
m2

2 −
λ4

a2
k2 +

λ7

a4
k4

)
k2

a2
δN −

(
W6 + 8λ3

k2

a4
+ 8

λ8

a6
k4

)
k2ζ

−W4k
2ψ + 2W1δN − 3a2W4ζ̇ = 0 , (2.109)

and we finally end up with an action of the form:

S(2)
EFT =

1

(2π)3

∫
d3kdt a3

{
Lζ̇ζ̇(t, k)ζ̇2 − k2B̄(t, k)ζ2 − k2V̄(t, k)ζ̇ζ

}
,

(2.110)
where:

Lζ̇ζ̇(t, k) =

(
6a2W7 +W5

) [
3a4W4

2 + 2a2W1W5 + 8k2W5

(
m2

2 − λ4

a2 k
2 + λ7

a4 k
4
)]

2a2 (W4
2 − 4W1W7)− 32k2W7

(
m2

2 − λ4

a2 k2 + λ7

a4 k4
) ,

B̄(t, k) =

{
a2W0

(
W2

4 − 4W1W7

)
+ k2

[
1

a6

(
−a6W7

(
a2W2

6 + 16m2
2W0

)
−2a4m̄5W4W6 + a8

(
W2

4 − 4W1W7

)
W3 − 4m̄2

5W1

)
+k2

(
1

a8

(
a10
(
W2

4 − 4W1W7

)
W2 − 16

(
a6W7

(
a2m2

2W3 + λ3W6 − λ4W0

)
+a2m̄5λ3W4 + m̄2

5m
2
2

)))
+k4

(
− 16

a10

(
a4W7

(
a6m2

2W2 − a4λ4W3 + a2λ7W0 + 4λ3
2
)

+a2λ8

(
a4W6W7 + m̄5W4

)
− m̄5

2λ4

))
+k6

(
16

a12

(
a4W7

(
a6λ4W2 − a4λ7W3 − 8λ3λ8

)
− m̄5

2λ7

))
+k8

(
− 16

a10
W7

(
a6λ7W2 + 4λ8

2
))]}

/
{
a2
(
W2

4 − 4W1W7

)
−16k2W7

(
m2

2 −
λ4

a2
k2 +

λ7

a4
k4

)}
,

V̄(t, k) = −
{
k2

a2

[
8W4

(
6a2W7 +W5

)(
λ3 + λ8

k2

a2

)
+ 16

m̄5W5

a2

(
m2

2 −
λ4

a2
k2

+
λ7

a4
k4

)]
+ 6a4W4W7W6 + a2W4W5W6 + 6m̄5W2

4 + 4
m̄5

a2
W1W5

}
/
{
a2

(
W2

4 − 4W1W7

)
− 16k2W7

(
m2

2 −
λ4

a2
k2 +

λ7

a4
k4

)}
. (2.111)
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It is easy to notice that the above expressions can be written in a more
compact form as:

Lζ̇ζ̇(t, k) =
k2A4(t, k) +A1(t)

k2A2(t, k) +A3(t)
,

B̄(t, k) =
k2B2(t, k) + B1(t)

k2A2(t, k) +A3(t)
,

V̄(t, k) =
k2V2(t, k) + V1(t)

k2A2(t, k) +A3(t)
. (2.112)

By considering the above definitions the action can be written in the
same form of (2.87), i.e.:

S(2)
EFT =

1

(2π)3

∫
d3kdt a3

{
Lζ̇ζ̇(t, k)ζ̇2 − k2G(t, k)ζ2

}
, (2.113)

where we have identified the “gradient” term as:

G(t, k) =
{
k2
[
V2

(
k2Ȧ2 + Ȧ3 − 3H

(
k2A2 +A3

))
+A2A3 (2B1

− V̇1 − k2V̇2 + 2k2B2

)
+ V1

(
Ȧ2 − 3HA2

)]
+ V1

(
Ȧ3 − 3HA3

)}
/
{

2
(
k2A2 +A3

)
2
}

≡ k2G2(t, k) + G1(t)

(k2A2(t, k) +A3(t))
2 . (2.114)

Then the speed of propagation is c2s(t, k) = G/Lζ̇ζ̇ and the friction term
in the field equation of ζ turn out to be a function of both t and k. Let
us notice that when considering the most general case, at least one of
the functions {m2

2, λi} is not zero and none of the Ai functions are nil.
Additionally the action does not contain the term M̄ . We will show in
the next Section some particular cases of the action (2.85) for which such
a term is present.

Let us now normalize the field by means of (2.90) with the kinetic
term given by Eq. (2.111). Since the kinetic term is a function of k, the
normalization will affect both the effective mass and speed of propagation.
Thus we have:

m2
eff(t, k) =

(
A1

2
[
2A3

(
3HȦ3 + Ä3

)
− 3Ȧ2

3

]
− 2A3A1

[
A3

(
3HȦ1 + Ä1

)
− Ȧ1Ȧ3

]
+A2

3Ȧ2
1

)(
8
(
k2A4 +A1

)2 (
k2A2 +A3

)2)
,

c2s,eff(t, k) =
{

6H
[[
k2
(
Ȧ4k

2 + Ȧ1

)
A2

2 + 2
[
A3

(
Ȧ4k

2 + Ȧ1

)
− k2A4

(
Ȧ2k

2
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+ Ȧ3

)]
A2 +A3

(
A3Ȧ42A4

(
Ȧ2k

2 + Ȧ3

))]
A1

− A2
1

(
A3Ȧ2 +A2

(
Ȧ2k

2 + Ȧ3

))
+
(
A2k

2 +A3

)
A4

[
A2

(
Ȧ4k

2 + Ȧ1

)
k2

− k2A4

(
Ȧ2k

2 + Ȧ3

)
+A3

(
Ȧ4k

2 + Ȧ1

)]]
+
[
3A2

4Ȧ2
2k

6 − 4A3A4G2k
4

+ 6A2
4Ȧ2Ȧ3k

4 − 2A3A4Ȧ2Ȧ4k
4 − 2A3A2

4Ä2k
4 + 3A2

4Ȧ2
3k

2 −A2
3Ȧ2

4k
2

− 4A3A4G1k
2 − 2A3A4Ȧ1Ȧ2k

2 − 2A3A4Ȧ3Ȧ4k
2 − 2A3A2

4Ä3k
2

+ 2A2
3A4Ȧ4k

2 −A2
2

(
Ȧ2

4k
4 + 2Ȧ1Ȧ4k

2 − 2A4

(
Ä4k

2 + Ä1

)
k2 + Ȧ2

1

)
k2

− 2A3A4Ȧ1Ȧ3 − 2A3
2Ȧ1Ȧ4 + 2A2

3A4Ä1 +A2
1

[
3k2Ȧ2

2 + 6Ȧ3Ȧ2

− 2
(
A3Ä2 +A2

(
Ä2k

2 + Ä3

))]
− 2A2

[
A4

2
(
Ä2k

2 + Ä3

)
k4

+ A4

(
2G2k

4 + Ȧ2Ȧ4k
4 + 2G1k

2 + Ȧ1Ȧ2k
2 + Ȧ3Ȧ4k

2 − 2A3Ä4k
2

+ +Ȧ1Ȧ3 − 2A3Ä1

)
k2 +A3

(
Ȧ4k

2 + Ȧ1

)2
]

+ 2A1

[
k2
(
Ä4k

2 + Ä1

)
A2

2

−
(

2G2k
4 + Ȧ2Ȧ4k

4 + 2A4Ä2k
4 + 2G1k

2 + Ȧ1Ȧ2k
2

+ Ȧ3Ȧ4k
2 + 2A4Ä3k

2 − 2A3Ä4k
2 + Ȧ1Ȧ3 − 2A3Ȧ1

)
A2

+ 3A4

(
Ȧ2k

2 + Ȧ3

)2

−A3

(
2G2k

2

+ Ȧ2Ȧ4k
2 + 2A4Ä2k

2 + 2G1 + Ȧ1Ȧ2 + Ȧ3Ȧ4 + 2A4Ä3

)
+ A2

3Ä4

]]}
/[8
(
A2k

2 +A3

)2 (A4k
2 +A1

)2
]

≡ c2s + f(t, k).

(2.115)

As said before the effective mass is a function of inverse powers of k. For
sufficiently high k, the effective mass is negligible while in the low k limit,
which is the one of interest in linear cosmology, it is solely a function of
time. Let us notice that the effective mass in this case has been obtained
directly from action (2.113), not from Eq. (2.92) which is valid only for
cases when the kinetic term does not depend on k.

2.5.3 Special cases

Although the subset of theories with higher than second order spatial
derivatives treated in the previous Section is very general, there are some
special cases for which the action assumes some particular forms due to
specific combinations of the EFT functions in the kinetic term. In order
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to illustrate said cases, we will consider the following action for practical
examples:

S(2)
EFT =

1

(2π)3

∫
d3kdt a3

[
4m2

2

k2

a2
(δN)2 −W6δNk

2ζ −W4δNk
2ψ −W5k

2ψζ̇

−W0k
2ζ2 +W7(k2ψ)2 +W1(δN)2 − 3a2W4δNζ̇ −

3

2
a2W5ζ̇

2

]
,(2.116)

for which the following conditions hold:

W7 6= 0 {m̄5, λi} = 0 . (2.117)

By solving the Eqs. (2.109) for δN and ψ we get:

δN =
W4

(
6a2W7 +W5

)
ζ̇ + 2W6W7k

2ζ

16m2
2W7

k2

a2 −W2
4 + 4W1W7

,

k2ψ =
W4W6k

2ζ +
(

2W1W5 + 3a2W2
4 + 8m2

2W5
k2

a2

)
ζ̇

16m2
2W7

k2

a2 −W2
4 + 4W1W7

,(2.118)

which allow us to eliminate the two auxiliary fields in the action. Substi-
tuting back in the action we get:

S(2)
EFT =

1

(2π)3

∫
d3kdt a3

{[(
6a2W7 +W5

) (
3a4W2

4 + 2a2W1W5 + 8m2
2W5k

2
)

2a2 (W2
4 − 4W1W7)− 32m2

2W7k2

]
ζ̇2

+ k2
[((

a2
(
W0

(
W2

4 − 4W1W7

)
− k2W2

6W7

)
− 16m2

2W0W7k
2
)
ζ2

−
(
a2W4W6

(
6a2W7 +W5

))
ζ̇ζ
)
/
(
16m2

2W7k
2 − a2

(
W2

4 − 4W1W7

))]}
,

(2.119)

where the kinetic term reads:

Lζ̇ζ̇(t, k) ≡
(
6a2W7 +W5

) (
3a4W2

4 + 2a2W1W5 + 8k2m2
2W5

)
2a2 (W2

4 − 4W1W7)− 32k2m2
2W7

.

(2.120)
In the following we will consider two special cases in which 1) the kinetic
term depends only on time; 2) the kinetic term has a particular k-
dependence, which needs to be studied carefully in order to correctly
identify the speed of propagation.

• First case: 3a2W2
4 + 2W1W5 6= 0 and m2

2 = 0. The kinetic term is
only a function of time:

Lζ̇ζ̇(t) =

(
6a2W7 +W5

) (
3a4W2

4 + 2a2W1W5

)
2a2 (W2

4 − 4W1W7)
, (2.121)
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which corresponds to the case A2 = A4 = 0. The above expression
must be positive in order to guarantee that the theory does not
exhibit ghost instabilities. Then, the speed of propagation can be
easily obtained from action (2.119) once the terms proportional to
ζ̇ζ have been integrated by parts and it reads:

c2s(t, k) =
1

(W2
4 − 4W1W7) (3a2W4

2 + 2W1W5) (6a2W7 +W5)

×
{

30a2W4W6W7

(
W4

2 − 4W1W7

)
H + 3W4W5W6

(
W2

4

− 4W1W7)H −W6W2
4W5Ẇ4 − 4W1W6W7W5Ẇ4

+ W3
4

(
W6Ẇ5 +W5Ẇ6

)
+ 4W4

[
W5

(
W6

(
W7Ẇ1

+ W1Ẇ7

)
−W1W7Ẇ6

)
−W1W6W7Ẇ5

]
+ 2W0

(
W2

4 − 4W1W7

)2
+ 6a2

[
W3

4

(
W7Ẇ6 +W6Ẇ7

)
+ 4W2

7W4

(
W6Ẇ1 −W1Ẇ6

)
− 4W1W6W2

7Ẇ4

− W2
4W6W7Ẇ4

]
− 2k2aW2

6W7(W2
4 − 4W1W7)

}
, (2.122)

where the k-dependence of the speed is due to W7 6= 0. Moreover, in
this case, the final action is of the form (2.87) with M̄ = 0. Since the
kinetic terms is free from any k-dependence there is no ambiguity in
defining the mass term which, after the normalization (2.90), ends
up being of the same form as in Eq. (2.92) where, in this case, Lζ̇ζ̇
is given by Eq. (2.121). Finally, the effective speed of propagation
remains invariant under the field redefinition.

• Second case: 3a2W2
4 + 2W1W5 = 0 and m2

2 6= 0. In this case the
kinetic term reduces to:

Lζ̇ζ̇(t, k) =
4m2

2W2
5

(
6a2W7 +W5

)
k2

a2

W2
4 (6a2W7 +W5)− 16k

2

a2m2
2W5W7

, (2.123)

which corresponds to A1 = 0 and A2(t), A4(t) both being functions
of time. From the action (2.119) it follows that there is an overall
factor k2 in front of the Lagrangian which can be reabsorbed by
redefining the field as ζ̃ = kζ. As a result we obtain an action of
the form (2.110). Let us notice that, in this case, V2 = 0. After
integrating by parts the term ∼ ζ̇ζ, we end up with an action
as in (2.87) where M̄ 6= 0, and both the friction and dispersive
coefficients in the field equation are functions of time and k. Now
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we can compute the speed of propagation which is:

c2s(t, k) =
V1Ȧ2 +A2(2k2B2 − V̇1 + 2B1) + 2A3B2 − 3HA2V1

2A4 (k2A2 +A3)
.

(2.124)
In conclusion, we give the expressions for the effective mass and
speed of propagation:

m2
eff(t, k) =

{
6A2A3H(A2Ȧ3 −A3Ȧ2) +A3A2(2Ȧ2Ȧ3 − 2A3Ä2

+ G1) +A2
2(2A3Ä3 − 3Ȧ3

2) +A3
2Ȧ2

2
}{

8A4
2
(
k2A2 +A3

)
2
}

c2s,eff(t, k) =
{

6A4H
[
A2

(
A4

(
k2Ȧ2 + Ȧ3

)
− 2A3Ȧ4

)
+A3A4Ȧ2

− k2A2
2Ȧ4

]
+ 2A2

[
A4

(
k2Ȧ2Ȧ4 + 2k2G2 + Ȧ3Ȧ4

− 2A3Ä4 + 2G1

)
+A4

2
(
k2Ä2 + Ä3

)
+A3Ȧ2

4

]
+ A4

[
2A3

(
Ȧ2Ȧ4 +A4Ä2 + 2G2

)
− 3A4Ȧ2

(
k2Ȧ2 + 2Ȧ3

)]
+ k2A2

2

(
Ȧ2

4 − 2A4Ä4

)}
/

[
8A2

4

(
k2A2 +A3

)2]
, (2.125)

where the function Gi(i = 1, 2) can be read from:

G(t, k) =
V1Ȧ2 +A2(−V̇1 + 2B1) + 2A3B2 − 3HA2V1 + 2k2A2B2

2 (k2A2 +A3)
2 .

(2.126)

Finally, let us notice that in the case M̄ 6= 0, one may wonder if the
conservation of the curvature perturbation is preserved on super-horizon
scales. It is not so trivial to draw a general conclusion about the behaviour
of ζ in such limit, because the EFT functions involved in the M̄ term
are all unknown functions of time. Therefore, we can conclude that in
the general field equation for ζ on super-horizon scales such term might
be non zero, possibly leading to a non conserved curvature perturbation.
However, we expect that well behaved DE/MG models will have either
M̄ = 0 or that such term will contribute a decaying mode, thus leaving
the conservation of ζ unaffected. In this regard, we will argue our last
statement by using an explicit example, which is not conclusive but can
give an insight on how M̄ can behave in the low k regime when theoretical
models are considered. Considering the mapping (2.82), it is easy to
verify that the low energy Hořava gravity falls in the special case under
analysis and that the corresponding M̄ 6= 0. However, when considering
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the super-horizon limit the M̄ term goes to zero and the equation for ζ
reduces to

ζ̈ +Hζ̇ = 0, (2.127)

which solution is ζ → ζc− c1e
−
√

2t

√
ξΛ

9λ−3

√
2
√

ξΛ
9λ−3

. ζc, c1 are constant and the second

term is a decaying mode. Hence, the conservation of ζ is preserved.

Let us conclude by saying that the cases treated in this Section are
only few examples of “special” cancellations that might happen.

2.6 An extended basis for theories with
higher spatial derivatives

In Ref. [69], the authors proposed a new basis to describe Horndeski
theories, in terms of four free functions of time which parametrize the
departure from GR. Specifically, these functions are: {αB , αM , αK , αT },
hereafter referred to as ReParametrized Horndeski (RPH). They are
equivalent and an alternative to the EFT functions needed to describe the
dynamics of perturbations in the Horndeski class, i.e. {Ω,M4

2 , M̄
2
2 , M̄

3
1 }.

In both cases one needs to supply also the Hubble parameter, H(a). The
latest publicly released version of EFTCAMB contains also the RPH
basis as a built-in alternative [80]. RPH is also the building block at the
basis of HiCLASS [110].

The RPH basis was constructed in order to encode departures from
GR in terms of some key properties of the (effective) DE component. As
discussed in details in Ref. [69], the braiding function αB is connected
to the clustering of DE, αM parametrizes the time-dependence of the
Planck mass and, along with αT , is related to the anisotropic stress while
large values of the kinetic function, αK correspond to suppressed values
of the speed of propagation of the scalar mode. In Ref. [67], the RPH
basis has been extended to include the GLPV class of theories by adding
the function αH , which parametrizes the deviation from the Horndeski
class.

In this Section we introduce an extended version of the RPH basis which
generalizes the original one [69], as well as its extension to GLPV [67],
by encompassing the higher order spatial derivatives terms appearing
in action (2.1). We also present the explicit mapping between this new
basis and the EFT functions in the extended action (2.1), in order to
facilitate the link between phenomenological properties and the theory
which is responsible for them.

Let us start with tensor perturbations of the EFT action (2.17) analysed
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2.6 An extended basis for theories with higher spatial derivatives

in Section 2.5. Here, for completeness we rewrite its compact form:

ST (2)
EFT =

1

(2π)3

∫
d3kdt a3AT (t)

8

[
(ḣTij)

2 − c2T (t, k)

a2
k2(hTij)

2

]
. (2.128)

Now, following Ref. [69], we define the deviation from GR of the tensor
speed of propagation as:

c2T (t, k) = 1 + α̃T (t, k), (2.129)

where:

α̃T (t, k) = αT (t) + αT2
(t)
k2

a2
+ αT6

(t)
k4

a4
, (2.130)

with:

αT (t) =
M̄2

3

m2
0(1+Ω)−M̄2

3
≡ c̄2T − 1 , αT2

(t) = −8 λ2

m2
0(1+Ω)−M̄2

3
,

αT6
(t) = −8 λ6

m2
0(1+Ω)−M̄2

3
. (2.131)

As expected, the additional higher order operators will contribute by
adding a k-dependence in the original definition of the αT function
introduced in Ref. [69]. Moreover, we can define the rate of evolution of
the mass function M2(t) ≡ AT (t) (defined in Eq. (2.99)) as:

αM (t) =
1

H(t)

d

dt

(
lnM2(t)

)
. (2.132)

It is clear that αT and αM differ from the ones in Ref. [69] since, in
general, M̄2

3 (t) 6= −M̄2
2 (t) for theories with higher spatial derivatives. It

is important to notice that the EFT functions which are involved in the
definition of αM and αT are {Ω, M̄2

3 }. Therefore, the class of theories
which can contribute to a time dependent Planck mass and modify
the tensor speed of propagation, are the ones which are non-minimally
coupled with gravity and/or contain the S-term in the action; specifically,
Horndeski models with non zero LGG4 , LGG5 , GLPV models with non
zero LGLPV4 , LGLPV5 and Hořava gravity. Moreover, the k-dependence in
the speed of propagation is related to the αT2, αT6 functions which are
present in Hořava gravity. Finally, let us notice that, since M2 appears
in the denominator of c2T , high values of M2 will generally suppress
the speed of propagation and in case only background EFT functions
are at play or theories for which {M̄2

3 (t), λ2,6} = 0 are considered, c2T
is identically one. Therefore, it would be not possible to discriminate
between minimally and non-minimally coupled models.

Let us now focus on the scalar perturbations. Collecting terms with
the same perturbations, the second order action (2.17) can be written as
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follows:

S(2)
EFT =

1

(2π)3

∫
d3kdt a3 M

2

2

{
(1 + α̃H) δNδ1R̃ − 4HαBδNδK̃

+ δK̃µ
ν δK̃

ν
µ − (αGLPVB + 1)(δK̃)2 + α̃KH

2(δN)2

− 1

4

(
αT2 + αT6

k2

a2

)
δR̃ijδR̃ij + (1 + αT )δ2R̃+ (1 + αT )δ1R̃δ

˜
(
√
h)

+

(
α1 + α5

k2

a2

)
(δR̃)2 + ᾱ5δ1R̃δK̃

}
,

(2.133)

where the geometrical quantities with tildes are the Fourier transform of
the corresponding quantities in Eq. (2.84), moreover we have identified
the following functions:

αB(t) =
m2

0Ω̇ + M̄3
1

2HM2
, αGLPVB (t) =

M̄2
3 + M̄2

2

M2
,

α̃K(t, k) = αK(t) + αK2(t)
k2

a2
+ αK4(t)

k4

a4
+ αK7(t)

k6

a6
,

where αK(t) =
2c+ 4M4

2

H2M2
, αK2

(t) =
8m2

2

M2H2
, αK4

(t) = − 8λ4

M2H2
,

αK7
(t) =

8λ7

H2M2
, α̃H(t,K) = αH(t) + αH3

(t)
k2

a2
+ αH8

(t)
k4

a4
,

where αH(t) =
2M̂2 + M̄2

3

M2
, αH3

(t) = −4λ3

M2
, αH8

(t) =
4λ8

M2
,

α1(t) =
2λ1

M2
, α5(t) =

2λ5

M2
, ᾱ5(t) =

m̄5

M2
. (2.134)

The relations between the W-functions introduced in Section 2.5 and the
above α-functions are the following:

W0 ≡ −
M2

a2
(αT + 1 + 3Hᾱ5 + 3 ˙̄α5 + 3ᾱ5HαM ) ,

W1 ≡
M2H2

2
αK +

3

2
a2HW4 − 3H2M2αB ,

W2 ≡
M2

a6

(
−8α5 +

3

4
αT6

)
, W3 ≡

M2

a4

(
−8α1 +

3

4
αT2

)
,

W4 ≡ −
HM2

a2

(
2 + 2αB + 3αGLPVB

)
, W5 ≡

M2

a2

(
2 + 3αGLPVB

)
,

W6 ≡ −
2M2

a2
(1 + αH + 3Hᾱ5) , W7 ≡ −

M2

2a4
αGLPVB . (2.135)

Before discussing in details the meaning of the α-functions and how they
contribute to the evolution of the propagating d.o.f., we introduce the
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2.6 An extended basis for theories with higher spatial derivatives

perturbed linear equations which will help us in the discussion. The
variation of the action (2.133) w.r.t to ψ and δN gives:

H
[
2(1 + αB) + 3αGLPVB

]
δN − (2 + 3αGLPVB )ζ̇ − αGLPVB

k2ψ

a2
− 2ᾱ5

k2ζ

a2
= 0 ,[

3H2
(
2− 4αB − 3αGLPVB

)
+H2α̃K

]
δN + 2H

[
2αB + 3αGLPVB + 2

]k2

a2
ψ

+
[
3H
(
2 + 2αB + 3αGLPVB

) ]
ζ̇ + 2

[
1 +Hᾱ5 + α̃H

]k2

a2
ζ = 0. (2.136)

These equations allow us to eliminate the auxiliary fields δN and ψ
from the action, yielding an action solely in terms of the dynamical field
ζ. A detailed description of how to eliminate the auxiliary fields was
the subject of the previous Section 2.5, indeed the above equations are
equivalent to Eqs. (2.109), once the relations (2.135) have been considered.
At this point, we can describe the meaning of the different α-functions in
terms of the phenomenology of ζ.

Let us now focus on the definition of the α-functions which characterize
the new basis, {αM , α̃T , αB , αGLPVB , α̃H , α̃K , ᾱ5, α1, α5}, extending and
generalizing the RPH one. A first difference that can be noticed w.r.t.
the RPH parametrization, is the presence of {α̃H , α̃K} which are now
functions of k, since they contain the contributions from operators with
higher spatial derivatives. Let us now describe the new basis in details
with the help of the definitions (2.134) and Eqs. (2.136):

• {αB , αGLPVB }: αB is the braiding function as defined in Ref. [69]. ∗

Its role is clear by looking at Eqs. (2.136), indeed αB regulates the
relation between the auxiliary field δN and the dynamical d.o.f. ζ.
Analogously, we define αGLPVB , which contributes to the braiding
since it mediates the relationship of ψ and δN with ζ. The effects
of these braiding coefficients on the kinetic term and the speed
of propagation is more involved. Indeed, by looking at the ac-
tion (2.133) we can notice that αGLPVB has a direct contribution to
the kinetic term since it is the pre-factor of (δK)2, which contains
ζ̇2. Moreover, both αB and αGLPVB affect indirectly the kinetic
term: the δN term in Eq. (2.136), whose pre-factor contains the
braiding functions, turns out to be proportional to ζ̇, then substi-
tuting it back to action (2.133), the term in (δN)2 will generate a
contribution to the kinetic term. Furthermore, their involvement
in the speed of propagation of the scalar d.o.f. comes in two ways:
1) from the kinetic term as previously mentioned. Indeed through

∗The definition of αB presented here differs from the one in Ref. [69] by a minus
sign and a factor 2.
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Eq. (2.89) they enter in the denominator of the definition of the
propagating speed; 2) because they multiply both the δN and ψ
terms in Eq. (2.136) which result to be proportional to k2ζ which
contributes to G in Eq. (2.89). Moreover, analogously to the defini-
tion of αH , which parametrizes the deviation w.r.t. Horndeski/GG
theories, αGLPVB is defined such as to parametrize the deviation
from GLPV theories; indeed the latter are characterized by the
condition αGLPVB = 0, hence the name. If αGLPVB 6= 0, higher
spatial derivatives appear in the ζ equation. Finally, αB is different
from zero for all the theories showing non-minimal coupling to
gravity and/or possessing the δNδK operator in the action, i.e.
f(R), LGG3 , LGG4 , LGG5 , LGLPV4 , LGLPV5 . This operator does not ap-
pear when one considers quintessence and k-essence models (LGG2 )
and Hořava gravity. αGLPVB is non zero for the low-energy Hořava
gravity action.

• α̃K(t, k): it is the generalization of the purely kinetic function
αK(t) and it describes the extension of the kinetic term to higher
order spatial derivatives in the case of non zero {αK2, αK4, αK7}.
It is easy to see that α̃K(t, k) is related to the kinetic term of the
scalar d.o.f. since it appears in action (2.133) as a coefficient of the
operator (δN)2 and, through the linear perturbed equations (2.136),
δN ∼ ζ̇. Since it describes the kinetic term, it will affect the speed
of propagation of ζ as well as the condition for the absence of a
scalar ghost. The last point is easy to understand because as we
extensively discussed in Section 2.5 the kinetic terms goes in the
denominator of the speed of propagation of scalar perturbation (see
Eq. (2.89)). The αK function is characteristic of theories belonging
to GLPV, while for Hořava gravity it is identically zero. On the
other hand, Hořava gravity contributes non zero {αK2, αK4, αK7}.
Finally, let us note that when considering theories beyond GLPV
the braiding coefficient discussed in the previous point, αGLPVB ,
gives a direct contribution to the kinetic term through the operator
(δK)2.

• {α1, α5, ᾱ5, α̃H}: from the constraint equations (2.136), it can be
noticed that α̃H and ᾱ5 contribute to the speed of propagation of
the scalar d.o.f. since they multiply the term k2ζ. In particular, if
ᾱ5 and the k-dependent parts of α̃H are different from zero, the
dispersion relation of ζ will be modified and the speed of propagation
will depend on k. The functions {α1, α5} have a similar impact
since they are the pre-factors of δ1R in the action which, once
expressed in terms of the perturbations of the metric, gives a term
proportional to k2ζ. In this case by looking at Eq. (2.89) these
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functions will enter in the definition of G. The theories where these
functions are present are GLPV and Hořava gravity models. In
particular, in the case of Hořava gravity the functions associated
with higher order spatial derivatives terms are present.

The above represents an interesting extension and generalization of the
original RPH parametrization [69], carefully built while considering the
different phenomenological aspects of the dark energy fluid. However, let
us notice that the desired correspondence between the α-functions and
actual observables becomes weaker as we go beyond the Horndeski class.
Indeed, due to the high number of α-functions involved, their dependence
on many EFT functions and the way they enter in the actual physical
quantities, such as the speed of sound and the kinetic term, identifying
exactly the underlying theory of gravity responsible for a specific effect
is a hard task.

2.7 Conclusions

We started this Chapter by generalizing the original EFToDE/MG action
for DE/MG by including operators up to sixth order in spatial derivatives.
This was motivated by the recent rise of theories containing a (sub)set of
these operators with higher-order spatial derivatives, like Hořava gravity.
As such, these theories were not covered by the operators included in the
first proposal of the EFToDE/MG action as presented in Refs. [37, 39].
From there on, the extended Lagrangian (2.1) became the basis of the
rest of the Chapter as the new operators play a central role.

Starting from the extended Lagrangian (2.1) we proceeded to show
an efficient method to map theories of gravity, expressed in terms of
geometrical quantities, into the EFToDE/MG language. This led to a
general mapping between the ADM and the EFToDE/MG formalism for
our new extended Lagrangian. Subsequently, we illustrated this procedure
by mapping models of DE/MG, with an additional scalar d.o.f., into the
EFToDE/MG formalism, resulting in a vast set of worked out examples.
These include minimally coupled quintessence, f(R), Hornedski/GG,
GLPV and Hořava gravity. The preliminary step of writing the theories
in the ADM formalism has also been presented as it is an integral
part of the procedure. Therefore we created a very useful guide for the
theoretical steps necessary in order to implement a given model of DE/MG
into EFTCAMB and a “dictionary” for many of the existing DE/MG
models. To this extent, we have been very careful and explicit about the
conventions which lie at the basis of the EFToDE/MG formalism and, by
extension, EFTCAMB. These become obvious when comparing with the
equivalent approaches in the literature as there are some clear differences.
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Thus the take-home message is that the user should be careful with the
conventions when implementing a given model into EFTCAMB.

An ongoing field of research regarding the EFToDE/MG is the de-
termination of the parameter space corresponding to physically healthy
theories, as we introduced at the beginning of this thesis. This is vital
from a theoretical as well as from a numerical point of view. As such it
was natural to subject our extended Lagrangian to a thorough stability
analysis while considering only the gravity sector. In fact, since the
EFToDE/MG formalism is based on an action, we were able to determine
general conditions of theoretical viability which are model independent
and can, a priori, greatly reduce the parameter space. The most common
criteria would be the absence of ghosts and gradient instabilities in the
scalar and tensor sector and the exclusion of tachyonic instabilities. Re-
garding the first two criteria, one can find results in the literature either
with or without the inclusion of a matter sector [14, 15, 37, 38, 65, 67,
68, 111]. In this work the study of the physical stability is particularly
interesting due to the appearance of operators with higher order spatial
derivatives. We proceeded, without including a matter sector, to study
the stability of different sets of theories, leaving the analysis of the matter
backreactions to the next Chapter. After integrating out the auxiliary
fields, we obtained an EFToDE/MG action describing only the dynamics
of the propagating d.o.f.. From this action, we identified the kinetic
term and the speed of propagation which have now become functions of
scale and time, due to the presence of higher derivative operators. We
required both to be positive in order to guarantee a viable theory free
from ghost and gradient instabilities. Subsequently we identified, at the
level of the equations of motion, the friction and dispersive coefficients.
We did this both for the scalar and tensor d.o.f.. Finally, we normalized
the scalar d.o.f. in order to obtain an action in the canonical form. This
form allowed us to identify the effective mass term on which we imposed
conditions in order to avoid the appearance of tachyonic instabilities in
the scalar sector. As a result, we obtained a set of very general stability
conditions which must be imposed in order to ensure theoretical viability
of models with operators containing up to sixth order in spatial deriva-
tives, in absence of matter. It is worth noting that due to the complicated
nature of some classes of theories, when written in the EFToDE/MG
formalism, we had to divide the treatment and the resulting conditions
in different subsets.

In the final part of this Chapter, we have built an extended and
generalized version of the phenomenological parametrization in terms of
α functions introduced in Ref. [69], to which we refer as ReParametrized
Horndeski (RPH). This parametrization was originally built to include all
models in the Horndeski class, and was afterwards extended to encompass
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beyond Horndeski models known as GLPV, in Ref. [67]. This was
achieved by introducing an additional function which parametrizes the
deviation from Horndeski theories. From this point we proceeded to
introduce new functions and generalize the definition of the original
ones, in order to account for all the beyond GLPV models described
by the higher order operators that we have included in our extended
EFToDE/MG action (2.1). In particular, we have found a new function
parametrizing the braiding, which also contributes to the kinetic term;
we have generalized the definitions of the kinetic and tensor speed excess
functions, the latter one now being both time and scale dependent; finally,
we have identified four extra functions entering in the definition of the
speed of propagation of the scalar d.o.f.. It is important to notice that the
structure of this extended phenomenological basis in terms of α functions
becomes quite cumbersome when higher order operators are considered
and the correspondence between the different functions and cosmological
observables becomes weaker.

2.8 Appendix A: On δK and δS
perturbations

In this Section we explicitly work out the perturbations associated to
δK and δS used in Section 2.3.1 and show the difference with previous
approaches [37, 65]. For this purpose, we consider the following terms of
the Lagrangian (2.8):

δL ⊃ LKδK+LSδS = FδK+LSδK
µ
ν δK

ν
µ ≡ F(K+3H)+LSδK

µ
ν δK

ν
µ ,

(2.137)
where we have defined:

F ≡ LK − 2HLS . (2.138)

Now, let us prove a relation which is useful in order to obtain action (2.9):∫
d4x
√
−gFK =

∫
d4x
√
−gF∇µnµ = −

∫
d4x
√
−g∇µFnµ =

∫
d4x
√
−g Ḟ

N
.

(2.139)

Using the above relation and the expansion of the lapse function:

N = 1 + δN + δN2 +O(3), (2.140)

finally, we obtain:

LKδK + LSδS = 3HF + Ḟ
(
1− δN + (δN)2

)
+ LSδK

µ
ν δK

ν
µ. (2.141)
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The differences with previous works are due to the different convention on
the normal vector, nµ (see Eq. (2.3)), which is responsible of the different
sign in Eq. (2.139) w.r.t. the definition used in Refs. [37, 65] and then
in the final results (2.141). Moreover, the difference in the definition
of the extrinsic curvature, see Eq. (2.3), which is a consequence of the
convention adopted for the normal vector, leads to the minus sign in

Eq. (2.138) because its background value is K
i(0)
j = −Hδij .

2.9 Appendix B: On δU perturbation

Due to the different convention for nµ we adopted here (see Eq. (2.3)), the
result obtained in Refs. [37, 65] concerning the perturbation associated
to U = RµνKµν , can not be directly applied to our Lagrangian (2.8).
Therefore, we need to derive again such result, which is crucial in order to
obtain the coefficients of the action (2.9). Then, let us prove the following
relation:∫

d4x
√
gλ(t)RµνKµν =

∫
d4x
√
g

(
λ(t)

2
RK − λ̇(t)

2N
R

)
, (2.142)

where λ(t) is a generic function of time. We notice that in Ref. [65] the
above relation is defined with a plus in front of the second term in the
last expression. Using the relation K = ∇µnµ we obtain:

∫
d4x
√
−g

(
λ(t)RµνKµν − λ(t)

2
R∇µnµ +

λ̇(t)

2N
R

)
= 0 . (2.143)

Now, after integration by parts of the second term and using nµ =(
−1/N,N i/N

)
, the last term cancels and we are left with:∫

d4x
√
−g
(
λ(t)RµνKµν +

λ(t)

2
nµ∇µR

)
= 0 . (2.144)

The first term can be rewritten using the expression for the extrinsic
curvature in the ADM formalism:

Kij = − 1

2N

[
∂thij −∇iNj −∇jNi

]
, (2.145)

where covariant derivative is w.r.t. the spatial metric hij . The overall
minus sign which appears in the above definition makes the expression to
differ from the one usually encountered that follows from the definition
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of nµ we employed. After substituting this expression into Eq. (2.144)
we get:∫

d4x
√
hλ(t)

[
−1

2

(
Rijhilhjkḣlk + Ṙ

)
+∇iN jRij +

1

2
N i∇iR

]
= 0 .

(2.146)

From here on the subsequent steps follows Ref. [65], indeed the last
two terms vanish due to the Bianchi identity and the first two can be
combined as a total divergence. Hence, the relation (2.142) holds.

Finally, using the above relation we can now compute the perturbations
coming from U = RµνKµν . Indeed we have:∫

d4x
√
−gLURµνKµν =

∫
d4x
√
−g
[

1

2
LURK −

1

2N
L̇UR

]
=

∫
d4x
√
−g
[

1

2
LU

(
K(0)δR+ δKδR

)
− 1

2
L̇UR (1− δN)

]
, (2.147)

then we get:

LUδU = −1

2

(
3LU +

1

2
L̇U

)
δR+

(
1

2
LUδK +

1

2
L̇UδN

)
δR . (2.148)

2.10 Appendix C: Conformal EFT functions
for Generalized Galileon and GLPV

In this Appendix we collect the results of Sections 2.4.3 and 2.4.4, and
convert them to functions of the scale factor; the Hubble parameter and
its time derivative are defined in terms of the conformal time, still they
need to be considered functions of the scale factor. This further step is
important for a direct implementation in EFTCAMB of Horndeski/GG
and GLPV theories. In this Section only, primes indicate derivatives w.r.t.
the scale factor. Furthermore, H ≡ d ln a/dτ and Ḣ ≡ dH/dτ , where τ is
the conformal time. In order to get the correct results {K, Gi, F̃i} have
to be considered functions of the scale factor.

First, we consider the EFToDE/MG functions derived in Section 2.4.3
for Horndeski/GG theories:

• L2-Lagrangian
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Λ(a) = K,
c(a) = KXX0 ,

M4
2 (a) = KXXX2

0 , (2.149)

where X0 is:
X0 = −H2φ′20 . (2.150)

• L3-Lagrangian

Λ(a) = H2φ′20

[
G3φ − 2G3X

(
Ḣ
a
φ′0 +H2φ′′0

)]
,

c(a) = H2φ′20

[
G3X

((
3H2 − Ḣ

) φ′0
a
−H2φ′′0

)
+G3φ

]
,

M4
2 (a) =

G3X

2
H2φ′20

((
3H2 + Ḣ

) φ′0
a

+H2φ′′0

)
− 3
H6

a
G3XXφ

′5
0 −

G3φX

2
H4φ′40 ,

M̄3
1 (a) = −2H3G3Xφ

′3
0 . (2.151)

• L4-Lagrangian

Ω(a) = −1 +
2

m2
0

G4 ,

c(a) = G4X

[
2
(
Ḣ2 +HḦ+ 2H2Ḣ − 5H4

) φ′ 20

a2
+ 2

(
5H2Ḣ+H4

) φ′0
a
φ′′0 + 2H4φ′′ 20

+2H4φ′0φ
′′′
0

]
+G4Xφ

[
2H2φ′20

(
Ḣ
a
φ′0 +H2φ′′0

)
+ 10

H4

a
φ′30

]

+G4XX

[
12
H6

a2
φ′40 − 8

H4

a
φ′30

(
Ḣ
a
φ′0 +H2φ′′0

)

−4H2φ′20

(
Ḣ2

a2
φ′20 + 2

ḢH2

a
φ′0φ

′′
0 +H4φ′′20

)]
,

Λ(a) = G4X

[
4
(
H4 + 5H2Ḣ+ Ḣ2 +HḦ

) φ′ 20

a2
+ 4

(
4H4 + 5H2Ḣ

) φ′0
a
φ′′0 + 4H4φ′′ 20

]
+ 4H4φ′0φ

′′′
0 + 8

H4

a
G4Xφφ

′3
0 − 8G4XXH2φ′ 20

(
Ḣφ
′
0

a
+H2φ′′0

)(
2H2φ

′
0

a
+ Ḣφ

′
0

a

+ H2φ′′0
)
,

M4
2 (a) = G4Xφ

[
4
H4

a
φ′30 −H2φ′ 20

(
Ḣ
a
φ′0 +H2φ′′0

)]
− 6
H6

a
φ′50 G4φXX − 12

H8

a2
G4XXXφ

′6
0
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+G4XXH2φ′ 20

[
2
(

9H4 + Ḣ2 + 2H2Ḣ
) φ′ 20

a2
+ 2

(
2H2Ḣ+ 2H4

) φ′0
a
φ′′0 + 2H4φ′′ 2

]
+G4X

[(
−2ḢH2 + 2H4 − Ḣ2 −HḦ

) φ′ 20

a2
−
(
H4 + 5H2Ḣ

) φ′0
a
φ′′0 −H4φ′′ 2

− H4φ′0φ
′′′
0

]
,

M̄3
1 (a) = 4G4XHφ′0

[(
Ḣ+ 2H2

) φ′0
a

+H2φ′′0

]
− 16G4XX

H5

a
φ′40 − 4G4XφH3φ′30 ,

M̄2
2 (a) = 4H2G4Xφ

′2
0 = −M̄2

3 (a) = 2M̂2(a) . (2.152)

• L5-Lagrangian

Ω(a) =
2H2

m2
0

φ′20

[
G5X

(
Ḣ
a
φ′0 +H2φ′′0

)
− G5φ

2

]
− 1 ,

c(a) =
H
2
F̃ ′ + 3

2

H2

a
m2

0Ω′ − 3
H4

a2
φ′20 G5φ +

3H6

a2
φ′40 G5φX − 3

H6

a3
φ′30 G5X

+ 2
H8

a3
φ′50 G5XX ,

Λ(a) = F̃ − 3m2
0

H2

a2
(1 + Ω) + 4G5X

H6

a3
φ′30 + 3

H3

a
G5φφ

′2
0 ,

M2
4 (a) = −HF̃

′

4
− 3

4

H2

a
m2

0Ω′ − 2
H10

a3
φ′70 G5XXX − 3

H8

a2
φ′60 G5φXX + 6G5XX

H8

a3
φ′50

+ 6
H6

a2
φ′40 G5φX −

3

2

H6

a3
φ′30 G5X ,

M̄2
2 (a) = 2

[
H2φ′20 G5φ −G5X

[
−H

4

a
φ′30 +H2φ′20

(
Ḣ
a
φ′0 +H2φ′′0

)]]
= −M̄2

3 (a) = 2M̂2(a) ,

M̄3
1 (a) = −Hm2

0Ω′ + 4
H3

a
φ′20 G5φ − 4

H5

a
φ′40 G5φX − 4

H7

a2
φ′50 G5XX

+ 6
H5

a2
φ′30 G5X , (2.153)

where F̃(a) = F −m2
0HΩ′ − 2Ham

2
0(1 + Ω) and F(τ) = 2H

5

a2 G5Xφ
′3
0 +

2H
3

a G5φφ
′2
0 .

Let us now consider the two Lagrangians which extend the Horn-
deski/GG theories to the GLPV ones introduced in Section 2.4.4:

• LGLPV4 -Lagrangian
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c(a) = 2
H4

a2
φ′40 (Ḣ − H2)F̃4 + 8

H4

a
φ′30 F̃4

(
Ḣ
a
φ′0 +H2φ′′0

)

− 4
H6

a
F̃4X

(
Ḣ
a
φ′0 +H2φ′′0

)
φ′50 + 2H6 F̃4φ

a
φ′50 − 12

H6

a2
φ′40 F̃4 ,

Λ(a) = 6
H6

a2
F̃4φ

′4
0 + 4

H4

a2
(Ḣ − H2)φ′40 F̃4 + 16

H4

a
φ′30 F̃4

(
Ḣ
a
φ′0 +H2φ′′0

)

− 8
H6

a
F̃4X

(
Ḣ
a
φ′0 +H2φ′′0

)
φ′50 + 4

H6

a
F̃4φφ

′5
0 ,

M4
2 (a) = −18

H6

a2
φ′40 F̃4 −

H4

a2
φ′40 (Ḣ − H2)F̃4 − 4

H4

a
φ′30 F̃4

(
Ḣ
a
φ′0 +H2φ′′0

)

+ 2
H6

a
φ′50 F̃4X

(
Ḣ
a
φ′0 +Hφ′′0

)
− H

6

a
φ′ 50 F̃4φ + 6

H6

a2
φ′40 F̃4 ,

M̄2
2 (a) = 2H4φ′40 F̃4 = −M̄2

3 (a) ,

M̄3
1 (a) = 16

H5

a
φ′40 F̃4 . (2.154)

• LGLPV5 -Lagrangian

Λ(a) = −3
H8

a3
φ′50 F̃5 − 12

H6

a3
φ′50 (Ḣ − H2)F̃5 − 30

H6

a2
F̃5

(
Ḣ
a
φ′0 +H2φ′′0

)
φ′40

+ 12
H8

a2
F̃5X

(
Ḣ
a
φ′0 +H2φ′′0

)
φ′60 − 6

H8

a2
F̃5φφ

′6
0 ,

c(a) = 6
H8

a2
φ′60 F̃5X

(
Ḣ
a
φ′0 +H2φ′′0

)
− 6
H6

a3
(Ḣ − H2)φ′50 F̃5

− 15
H6

a2
φ′40

(
Ḣ
a
φ′0 +H2φ′′0

)
− 3
H8

a2
φ′60 F̃5φ + 15

H8

a3
F̃5φ

′5
0 ,

M4
2 (a) =

45

2

H8

a3
φ′50 F̃5 + 3

H6

a3
(Ḣ − H2)φ′50 F̃5 +

15

2

H6

a2
φ′40 F̃5

(
Ḣ
a
φ′0 +H2φ′′0

)

− 3
H8

a2
φ′60

(
Ḣ
a
φ′0 +H2φ′′0

)
F̃5X +

3

2

H8

a2
φ′60 F̃5φ ,

M̄2
2 (a) = −6

H6

a
φ′50 F̃5 = −M̄2

3 (a) ,
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M̄3
1 (a) = −30

H7

a2
F̃5φ

′5
0 . (2.155)

Finally, we write the EFT functions obtained from the GLPV ac-
tion (2.76) in Section 2.4.4 in the appropriate form adopted in EFTCAMB
:

Ω(a) =
2

m2
0

(
B̄4 −

H
2
B̄′5

)
− 1 ,

Λ(a) = Ā2 − 6
H2

a
Ā4 + 12

H3

a3
Ā5 +HĀ′3 −

4

a2
(Ḣ − H2)Ā4 − 4

H2

a
Ā′4

+ 6
H3

a2
Ā′5 + 12

H
a3

(Ḣ − H2)Ā5 −
[

2

a2

(
H2 + 2Ḣ

)
B̄4 +

2

a

(
Ḣ+ 2H2

)
B̄′4

+2H2B̄′′4 −
H
a2

(
H2 + 3Ḣ+

Ḧ
H

)
B̄′5 −

H
a

(
3Ḣ+ 2H2

)
B̄′′5 −H3B̄′′′5

]
,

c(a) =
1

2

(
HĀ′3 −

4

a2
(Ḣ − H2)Ā4 − 4

H2

a
Ā′4 + 6

H3

a2
Ā′5 + 12

H
a3

(Ḣ − H2)Ā5

− Ā2N + 3HĀ3N − 6
H2

a2
Ā4N + 6

H3

a3
Ā5N

)
+

1

a

(
H2 − Ḣ

)
B̄′4 +

H
2a

(
3Ḣ − H2

)
B̄′′5 −H2B̄′′4 +

H3

2
B̄′′′5

+
1

2a2

(
Ḧ − 2H3

)
B̄′5 −

2

a2
(Ḣ − H2)B̄4 ,

M4
2 (a) =

1

4

(
Ā2NN − 3

H
a
Ā3NN + 6

H2

a2
Ā4NN − 6

H3

a3
Ā5NN

)
− 1

4

[
HĀ′3 − 4

Ā4

a2
(Ḣ − H2)− 4

H2

a
Ā′4 + 6

H3

a2
Ā′5

+12Ā5
H
a3

(Ḣ − H2)

]
+

3

4

(
Ā2N − 3

H
a
Ā3N + 6

H2

a2
Ā4N − 6

H3

a3
Ā5N

)
− 1

2

[
− 2

a2
(Ḣ − H2)B̄4 +

1

a

(
H2 − Ḣ

)
B̄′4 −H2B̄′′4

+
1

a2

(
Ḧ − H3

)
B̄′5 +

H
2a

(
3Ḣ − H2

)
B̄′′5 +

H3

2
B̄′′′5

]
,

M̄2
2 (a) = −2Ā4 + 6

H
a
Ā5 − 2B̄4 +HB̄′5 = −M̄2

3 (a) ,

M̄3
1 (a) = −Ā3N + 4

H
a
Ā4N − 6

H2

a2
Ā5N − 2B̄′4H+

Ḣ
a
B̄′5 +H2B̄′′5 ,

M̂2(a) = B̄4N +
H
2a
B̄5N +

H
2
B̄′5 . (2.156)
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2.11 Appendix D: On the J coefficient in
the L5 Lagrangian

In this Appendix we will show the details of the calculation regarding the
J coefficient in the L5 Lagrangian (2.53). Let us consider the following
term:

G5XJ = G5X

(
− 1

2
φ;ρX;ρ(K

2 − S) + 2γ−3(γ2
hρµ
2
X;ρ)(Kṅµ −Kµν ṅν)

)
= −1

2

(
γ∇ρ(γ−1F5)− F5φγ

−1nρ

)
(K2 − S)φ;ρ

+ γ−1(Kṅµ −Kµν ṅν)hµρ

(
γ∇ρ(γ−1F5) + F5φγ

−1nρ
)
. (2.157)

The last parenthesis contains a quantity which is orthogonal to the
quantities that multiply it, hence it vanishes. Therefore, we have:

G5XJ =
F5φ

2
nρn

ρ(K2 − S)− 1

2
nρ∇ρ(γ−1F5)(K2 − S) + hρµ∇ρ(γ−1F5)(Kṅµ −Kµν ṅν)

= −F5φ

2
(K2 − S) +

F5

γ

[
1

2
∇ρ(nρK2 − nρKµνK

µν)− (Kṅµ −Kµν ṅν);µ

]
=
F5

γ

(
K3

2
+ nρK∇ρK −

K

2
KµνK

µν − nρKµν∇ρKµν − ṅρ∇ρK

−K∇ρṅρ + ṅν∇ρKρν +Kρν∇ρṅν)− F5φ

2
(K2 − S), (2.158)

where in the second line we have used the fact that nµ is orthogonal to
ṅµ and Kµν . Now, employing the following geometrical quantities:

Rµνn
µnν = −nµ∇µK +∇µṅµ + nµ∇νKµν ,

Rµνn
ν ṅµ = ṅµ∇νKµν − ṅµṅν∇νnµ − ṅµ∇µK ,

KµνnρnσRµσνρ = Kγαnβ(∇αKβγ)−Kγαnβ(∇βKαγ) +Kγα(∇αṅγ) +Kγαṅγ ṅα ,
(2.159)

we obtain:

G5XJ =
F5

γ

(K3

2
+ nρK∇ρK −

K

2
KµνK

µν − nρKµν∇ρKµν − ṅρ∇ρK

−K∇ρṅρ + ṅν∇ρKρν +Kρν∇ρṅν
)
− F5φ

2
(K2 − S)

=
F5

γ

(K3

2
− K

2
KµνK

µν −KRµνnµnν + nµK(∇νKµν) +Kµνnρnσ

+KµνnσnρRµσνρ −Kγαnβ(∇αKβγ)
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−Kγαṅγ ṅα +Rµνn
µṅν + ṅµṅν∇νnµ

)
− F5φ

2
(K2 − S)

=
F5

γ

(K3

2
− K

2
KµνK

µν −KRµνnµnν −KKµνKµν +Kµνnρnσ

+KµνnσnρRµσνρ +KγαKβ
αKβγ

−Kγαṅγ ṅα +Rµνn
µṅν + ṅµṅν∇νnµ

)
− F5φ

2
(K2 − S) ,

(2.160)

where we have dropped a total derivative term. Finally, we use the defini-
tion K̃ in Eq. (2.59) and we obtain the final result used in Section 2.4.3:

G5XJ = F5γ
−1
[ K̃

2
+KµνnσnρRµσνρ + ṅσnρRσρ −KnσnρRσρ

]
− F5φ

2
(K2 − S) .

(2.161)
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