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Abstract

Diffusion magnetic resonance imaging (MRI) is a powerful non-invasive method

to study white matter integrity, and is sensitive to detect differences in Alzheimer’s

disease (AD) patients. Diffusion MRI may be able to contribute towards reli-

able diagnosis of AD. We used diffusion MRI to classify AD patients (N = 77),

and controls (N = 173). We use different methods to extract information from

the diffusion MRI data. First, we use the voxel-wise diffusion tensor measures

that have been skeletonised using tract based spatial statistics. Second, we

clustered the voxel-wise diffusion measures with independent component anal-

ysis (ICA), and extracted the mixing weights. Third, we determined structural

connectivity between Harvard Oxford atlas regions with probabilistic tracto-

graphy, as well as graph measures based on these structural connectivity graphs.

Classification performance for voxel-wise measures ranged between an AUC of

0.888, and 0.902. The ICA-clustered measures ranged between an AUC of

0.893, and 0.920. The AUC for the structural connectivity graph was 0.900,

while graph measures based upon this graph ranged between an AUC of 0.531,

and 0.840. All measures combined with a sparse group lasso resulted in an AUC

of 0.896. Overall, fractional anisotropy clustered into ICA components was the

best performing measure. These findings may be useful for future incorpora-

tion of diffusion MRI into protocols for AD classification, or as a starting point

for early detection of AD using diffusion MRI.

Key words: Alzheimer’s disease; classification; MRI; diffusion; DTI
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3.1 Introduction

Reliable and early diagnosis of Alzheimer’s disease (AD) is key to developing a

cure for this disease (Prince et al., 2011). Magnetic resonance imaging (MRI)

is highly useful as a biomarker for AD, and may be suitable for early detection

of AD as well (Jack et al., 2010). Machine learning classification provides a

powerful method to make predictions about the disease state of an individual

based on MRI scans. So far individual classification studies in AD have mainly

focused on anatomical MRI scans (Klöppel et al., 2008; Plant et al., 2010a;

Cuingnet et al., 2011; de Vos et al., 2016). Other MRI modalities are increas-

ingly being used for AD classification as well, such as white matter integrity

measures (Nir et al., 2014), and functional MRI (Lee et al., 2013; Koch et al.,

2012). White matter integrity measures are promising for predicting AD us-

ing machine learning classification (Dyrba et al., 2013; O’Dwyer et al., 2012).

White matter networks have also been used for classification of mild cognitive

impairment, which is often a prodromal state of AD (Wee et al., 2011, 2012).

However, multiple measures can be derived from diffusion MRI scans. Tradi-

tionally, the diffusion tensor imaging model (Basser et al., 1994a) is applied to

the diffusion data to derive voxel-wise measures, such as voxel-wise fractional

anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA), and radial dif-

fusivity (DR). Additionally, these voxel-wise measures can be clustered into

independent components, so that the individuals’ weights for each component

can be used to predict AD (Ouyang et al., 2016). Furthermore, structural con-

nectivity networks can be estimated with tractography (Behrens et al., 2007).

Graph measures can then be determined based on these structural connectivity

networks, such as node strength, degree, clustering, and centrality, as well as

average shortest path length, or transitivity of a network (Rubinov and Sporns,

2010). It is not yet known which diffusion MRI measure is most accurate and

useful for predicting AD. Moreover, combining multiple MRI-based measures

may improve prediction accuracy (Schouten et al., 2016; de Vos et al., 2016;

Sui et al., 2013a; Dai et al., 2012).

Here we study AD classification using diffusion MRI measures separately

and combined in a comprehensive way. First we explore the predictive perfor-

mance of voxel-wise diffusion tensor imaging measures using tract based spatial

statistics (TBSS) of FA, MD, DA, and DR (Smith et al., 2006). Then we clus-

ter these voxel-wise TBSS measures using independent components analysis

(Beckmann, 2012), and use the mixing weights on the components for classifi-
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cation (Ouyang et al., 2015). Finally, we study the predictive performance of

structural connectivity of probabilistic tractography networks (Behrens et al.,

2007), and of graph measures that are based on these structural connectivity

networks. Additionally, we explore the combination of all measures using a

sparse group lasso.

3.2 Materials and Methods

3.2.1 Data sample

Participants

Our dataset was collected as a part of the prospective registry on dementia

(PRODEM; Seiler et al., 2012). Our sample only contained subjects scanned at

the Medical University of Graz. The inclusion criteria are: dementia diagnosis

according to DSM-IV criteria (American Psychiatric Association, 2000), non-

institutionalization and no need for 24-hour care, and availability of a caregiver

who agrees to provide information on the patients’ and his or her own condition.

Patients were excluded from the study if they were unable to sign a written

informed consent or if co-morbidities were likely to preclude termination of the

study. We conducted our study with the baseline scans from the PRODEM

study, and included only patients diagnosed with AD in accordance to the

NINCDS-ADRDA Criteria (McKhann et al., 1984), for whom diffusion MRI

scans were present.

The controls were drawn from the Austrian Stroke Prevention Family Study,

which is a prospective single-center community-based follow-up study with the

goal of examining the frequency of vascular risk factors and their effects on

cerebral morphology and function in the controls. On the basis of structured

clinical interview and a physical and a neurological examination, participants

had to be free of overt neurologic or psychiatric findings and had to have no

history of a neuropsychiatric disease, including cerebrovascular attacks and de-

mentia. The study protocols were approved by the ethics committee of the

Medical University of Graz, Austria, and written informed consent was ob-

tained from all subjects.

This resulted in a dataset of 77 AD patients between ages 47 and 83, and

173 controls between ages 47 and 83 (see Table 3.1).
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Table 3.1: Demographics for the study population

Demographics Control (N = 173) AD (N = 77)

Age 66.1± 8.71 68.6± 8.58
Gender, ♂/♀ 74/99 (57.2%♀) 31/46 (59.7%♀)
Education (years) 11.5± 2.76 10.8± 3.22
Disease duration (months) 0.00± 0.00 26.7± 24.5
MMSE 27.5± 1.83 20.4± 4.51
CDR − 0.82± 0.34
GDS 2.11± 2.15 2.64± 2.57

Data is represented as mean±standard deviation. MMSE = mini mental
state exam, CDR = clinical dementia rating, GDS = geriatric depression
scale.

MRI acquisition

Each participant was scanned on the same Siemens Magnetom TrioTim 3T

MRI scanner. Anatomical T1-weighted images were acquired with TR = 1900

ms, TE = 2.19 ms, flip angle = 9°, isotropic voxel size of 1 mm. Diffusion

images were acquired along 12 non-collinear directions with a b-value of 1000
s

mm2 . Each direction and a b = 0 image was scanned 4 times with TR = 6700

ms, TE = 95 ms, 50 axial slices, voxel size = 2.0× 2.0× 2.5 mm.

3.2.2 MRI preprocessing

The MRI data were processed using FMRIB Software Library (FSL, version

5.0; Smith et al., 2004; Jenkinson et al., 2012) unless otherwise specified. For

the anatomical MRI this included brain extraction, bias field correction, and

non-linear registration to standard MNI152 (Grabner et al., 2006). For the

diffusion MRI this included brain extraction and eddy current correction.

3.2.3 Elastic net classification with nested cross-validation

We used the feature vectors derived from the different aforementioned tech-

niques in a logistic elastic net regression model for classification (Zou and

Hastie, 2005; Friedman et al., 2010). We used 10-fold cross-validation to deter-

mine the generalisation performance of the elastic net regression models. For

each subject this produced a probability between 0 and 1 of being classified as

an AD patient.
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The elastic net imposes a penalty on the regression parameters to ensure

that the regression model remains stable even when the number of predictors

is larger than the number of observations. Specifically, it uses a combination of

a least absolute shrinkage and selection operator (LASSO; Tibshirani, 1996),

and Ridge penalty (Hoerl and Kennard, 1970). The LASSO penalty enforces

sparse solutions, by shrinking many regression parameters to 0. The Ridge

penalty smoothly shrinks the size of the regression parameters. The ratio be-

tween the two penalties is determined by a hyperparameter α, and the strength

of the penalty is determined by a hyperparameter λ. When the values of these

hyperparameter are estimated based on the cross-validated classification per-

formance, the out-of-sample classification performance may be overestimated,

because a combination of hyperparameters may work particularly well for one

specific sample, and may not fully generalise to a different sample (Kriegeskorte

et al., 2009). Therefore, we take a nested-cross-validation approach to estimate

the hyperparameters (Varma and Simon, 2006), i.e., we perform an additional

cross-validation within the training set to estimate the hyperparameters, and

then use those settings to train a model on the entire training set in order to

predict the test set. The focus of our method is on optimisation of predictive

performance and not on model stability. The trade-off of this choice is that

the models from the cross-validation folds may differ in sparseness and regu-

larisation, and are therefore not suitable for interpretation (Varoquaux et al.,

2016).

To reduce the variability in the classification outcome resulting from the

random partitioning in training and test folds we repeated the entire classifi-

cation procedure 10 times. The reported results are the average over these 10

repetitions.

3.2.4 Combining measures using the Sparse Group Lasso

To explore whether the combination of multiple sets of features improves clas-

sification we used the Sparse Group Lasso (SGL; Simon et al., 2013). Sets

of features can be grouped together, and the SGL imposes a LASSO penalty

between groups, and an elastic net penalty within groups. The resulting mod-

els then show sparseness between groups (i.e., the weights of some groups of

features are set to zero), while also imposing some sparseness within selected

groups (i.e., the weights of some features within a group is set to zero). Like

the elastic net, the SGL uses the hyperparameters α to determine the mix be-
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tween LASSO and Ridge within the groups, and λ to determine the strength

of the penalty. We used the same nested cross-validation approach as in the

elastic net procedure to choose λ, but fixed α at 0.05, resulting in a sparse

between group and fairly dense within group model. We did not choose α

within the nested cross-validation procedure because this was computationally

impractical (10-fold, 10-repeats took about 3 weeks to calculate in parallel on a

high performance computing cluster using 100 cores for a single α value), and

because this procedure does a poor job at model selection (Simon et al., 2013).

3.2.5 Measuring classification performance

To assess the classification performance, we performed receiver operating char-

acteristic (ROC) analyses on the predicted outcomes between 0 and 1 from

the elastic net and sparse group lasso regression. We calculated the ROC

curve by shifting the threshold for classifying an individual as AD from 0 to 1,

and plotted the true positive rate (sensitivity) versus the false positive rate (1 -

specificity) for each intermediate point. The area under this ROC curve (AUC)

is a measure of classification performance that is insensitive to the distribution

between controls and AD patients (Fawcett, 2006), so that we can take full ad-

vantage of the larger number of controls than AD patients in our dataset. We

performed bootstrapping with 5000 samples to determine the standard error

of the AUC. The ROC analyses were performed with the perfcurve function in

MATLAB R2016b.

3.3 Classification features

3.3.1 Tract-based diffusion tensor features

In order to extract voxel-wise measures from the diffusion images we used tract

based spatial statistics (TBSS; Smith et al., 2006). TBSS projects the subjects’

diffusion measures onto a mean white matter tract, which can then be used for

voxel-wise cross-subjects analyses. Because the values are comparable across

subjects we can use these features for individual classification as well. Using

TBSS we projected the subjects’ fractional anisotropy (FA), mean diffusivity

(MD), axial diffusivity (DA), and radial diffusivity (DR) onto a mean white

matter skeleton that represents the center of the white matter tracts. This

resulted in a feature vector with a length of 113282 values per measure for each
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individual.

3.3.2 Independent Components Analyses clustered diffu-

sion tensor features

The second method that we employ for classification is independent components

analysis (ICA) based classification. We use the same voxel-wise, skeletonized

measures from TBSS, but we decompose these voxel maps into a number of

independent components using MELODIC (Beckmann, 2012). This resulted in

a mixing matrix of one value per component per subject, and their correspond-

ing component weight maps. We use the values from the mixing matrix in

the same classification procedure as described previously. The ICA procedure

is an unsupervised learning method, that does not require information about

the class labels of the individuals. Therefore it was admissible to use ICA as

a preprocessing step prior to the cross-validation procedure. We perform this

ICA analysis separately for the FA, MD, DA, and DR maps. We call these

measures FA-ICA, MD-ICA, DA-ICA, and DR-ICA to distinguish them from

the voxel-wise measures.

Independent components analysis does not provide a standardised method

to determine the optimal number of components for classification. The prefer-

able method to choose a suitable number of components is to consider number

of components as an additional model hyperparameter. This number can then

be tuned in the nested cross-validation loop. Unfortunately this was computa-

tionally infeasible in our case. Instead we set the number of components to 28,

following Ouyang et al. (2015).

3.3.3 Probabilistic tractography based structural connec-

tivity and graph features

In order to perform tractography between comparable regions within each sub-

ject we used the Harvard-Oxford anatomical brain atlas (Desikan et al., 2006;

Zhan et al., 2015). We split the 48 cortical regions of the Harvard-Oxford atlas

into left and right hemisphere regions, resulting in 96 cortical regions. The

cortical regions were combined with the 14 brain regions from the subcortical

atlas, excluding the brain stem because it was not fully scanned for each par-

ticipant. This resulted in a total of 110 grey matter anatomical regions. We

removed all voxels under 25% probability of being part of any region, and then

34



333

Diffusion MRI classification

Figure 3.1: Harvard-Oxford cortical and subcortical regions that we used as tar-
get and seed nodes for probabilistic tractography. Areas represent the probabilistic
regions above the 25% threshold, and then assigned to the highest probability region.

assigned each voxel to the region for which its probability was the highest (see

Fig. 3.1).

We constructed a structural connectivity network for each individual in

order to perform graph analysis. We performed probabilistic tractography be-

tween 110 Harvard Oxford Atlas regions using probtrackx from FSL (Behrens

et al., 2007; Zhan et al., 2015). The settings that we used were the FSL de-

fault settings (curvature threshold = 0.2, maximum number of steps = 2000,

step length = 0.5mm). From each voxel within any of the atlas seed regions

100 streamlines were drawn, resulting in a 110 by 110 structural connectivity

graph. The graph was made undirected by summing the upper and lower tri-

angles of the connectivity graph, such that the connectivity between regions A

and B is the sum of the connections from A to B, and from B to A. Then, in

order to normalise the number of streamline counts between two regions, we

divided each connection between two regions by the sum of the total number of

successfully drawn streamlines from both regions. For each region, this num-

ber ranged between 3450 and 241977 streamlines depending on the size of the

region and the success rate of drawing a streamline from that region. We used

all the elements of the upper triangle of this connectivity graph as features for

classification ( 110∗109
2 = 5995 features).

After constructing the structural connectivity graphs we used the MAT-

LAB implementation of the Brain Connectivity Toolbox (http://www.brain-

connectivity-toolbox.net; Rubinov and Sporns, 2010) to calculate the strength,

degree, clustering, and betweenness centrality for each node in each graph, and

the transitivity, and characteristic path length of each graph. This resulted in

110 features per measure for strength, degree, clustering, and betweenness cen-

trality, and a single feature for transitivity, and for path length per individual.
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Figure 3.2: Overview of classification results. Bars indicate mean area under the
receiver operating characteristics curves over 10 repetitions. The error bars represent
standard errors based on 5000 bootstraps.

3.4 Results and Discussion

Detailed results for the classification procedure are summarised in Table 3.2,

while an overview of the mean AUCs for each measure is depicted in Figure

3.2.

3.4.1 Classification results of tract-based diffusion tensor

features

When using the voxel-wise TBSS measures for classification we found an AUC

between 0.888 and 0.902 (Table 3.2). The best single measure performance

was achieved with radial diffusivity (DR), closely followed by the other DTI

measures.

This method is already commonly used in case control studies with AD

or other patient groups, and we show that it is also suitable for individual

classification. While DR slightly outperforms the other TBSS measures, the

differences are small. It is likely that the differences in performance between

the TBSS measures do not generalise to other datasets. Still, TBSS in general
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Table 3.2: Alzheimer’s patients versus controls classification using tract-based
spatial statistics, ICA-clustered TBSS measures 20 components, graph mea-
sures, and all features combined with a sparse group lasso. The mean and
the bootstrapped standard error of the areas under the ROC curve over 10
repetitions are reported, as well as the sensitivity, specificity, and classification
accuracy for the optimal point in the ROC.

Measure AUC±SE Sensitivity Specificity Accuracy

FA-TBSS 0.892±0.023 0.838 0.821 0.826
MD-TBSS 0.888±0.023 0.844 0.792 0.808
DA-TBSS 0.891±0.021 0.849 0.804 0.818
DR-TBSS 0.902±0.021 0.791 0.873 0.848

FA-ICA 0.920±0.018 0.868 0.844 0.851
MD-ICA 0.898±0.022 0.842 0.843 0.843
DA-ICA 0.893±0.022 0.897 0.806 0.834
DR-ICA 0.899±0.022 0.832 0.844 0.840

Connectivity graph 0.900±0.023 0.803 0.871 0.850
Degree 0.817±0.029 0.799 0.740 0.758
Strength 0.840±0.029 0.766 0.809 0.796
Clustering 0.784±0.032 0.669 0.795 0.756
Betweenness Centrality 0.647±0.038 0.595 0.668 0.646
Path Length 0.720±0.035 0.625 0.727 0.696
Transitivity 0.531±0.041 0.373 0.772 0.649

Sparse Group Lasso 0.896±0.025 0.885 0.774 0.808

appears to be a suitable method for individual classification of Alzheimer’s

disease.

3.4.2 Classification results of ICA clustered diffusion ten-

sor features

The classification performance of ICA-clustered TBSS measures ranged be-

tween 0.893 for DA-ICA, and 0.920 for FA-ICA. The classification performance

of MD-ICA (0.896), and DR-ICA (0.899) are very similar to DA-ICA.

The approach of using ICA to cluster diffusion tensor images is not com-

monly used, but at least one study already showed that the mixing weights of

several diffusion components were useful in separating AD from normal controls

(Ouyang et al., 2015).

The mixing weights of 28 components resulted in very good classification

performance, up to 0.920 for FA-ICA. However, compared to voxel-wise dif-

fusion tensor measures only FA seemed to benefit from ICA clustering. For

MD, DA, and DR the classification performance remained virtually unchanged.
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Even then, the ICA clustering allows an enormous reduction in the number of

features required to describe an individual, from 113282 voxel-wise features to

only 28 mixing weights.

One caveat with this method is that it is more difficult to extract these

28 features from an unseen individual, because the entire dataset was used to

derive the mixing weights and corresponding component weight maps. One

possible method is to spatially regress the feature maps (e.g., FA) of a new

individual on the 28 components’ weight maps, to find the individuals’ mixing

weights.

3.4.3 Classification results of Probabilistic tractography

based structural connectivity and graph features

For the structural connectivity measures the classification performance ranged

between an AUC of 0.531 for transitivity, and 0.840 for strength. Interestingly,

the connectivity graph, upon which the graph measures are based, reached an

AUC of 0.900, outperforming each graph measure (Table 3.2). Graph measures

have been very successful in finding group differences, by summarising graphs

into much fewer features than the connectivity matrix. However, in the classifi-

cation context, where we can use information from the entire graph, the graph

measures that we explored do not seem to be beneficial.

3.4.4 Classification results of multiple features combined

with the sparse group lasso

The sparse group lasso resulted in good classification performance with an

AUC of 0.896. However, this did not outperform the best measure, which

was FA-ICA. Nevertheless, the properties of the sparse group lasso allow us

to gain valuable insight into which measures are selected for classification, and

which measures are left out of the model completely. We explored the sum

of the absolute β values for each group of predictors, over the 100 different

classification models resulting from 10-fold cross-validation with 10 repetitions

(see Fig. 3.3). Here we see that some groups of predictors are always included

in the SGL models: MD-TBSS, FA-ICA, MD-ICA, DA-ICA, DR-ICA, and

Strength. Other groups of predictors are never included in the SGL models:

FA-TBSS, Degree, Clustering, and Transitivity. The rest of the groups are
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Figure 3.3: Boxplot of the sparse group lasso classification models from 10-fold times
10 repeated cross validation. The bars indicate the spread of the sum of the absolute
beta values. The boxplot for DR-TBSS could not be visualised, because the lower
84% of the values was zero. The non-zero values are plotted as + signs.

sometimes included in the models and sometimes set to zero: DA-TBSS, DR-

TBSS, Connectivity graph, Betweenness Centrality, and Path Length.

We observe some correspondence with the single measure classification

scores (see Fig 3.2). The strongest contribution to the SGL models come from

the TBSS and ICA measures, while the Connectivity graph and the Strength

are also consistently selected by the SGL. This suggests that there is com-

plementary information in the DTI measures, and the graph measures. At the

same time we observe that the very good performing FA-ICA is always selected,

but the almost equally well performing FA-TBSS is never selected. The same

pattern, albeit it less pronounced, can be seen with MD, DA, and DR. This be-

haviour of the SGL is expected, as the ICA measures are based upon the TBSS

measures, and do not contain complementary information. Unfortunately these

mixed results for FA, MD, DA, and DR do not provide a clear winner between

the TBSS and ICA approaches in terms of classification performance, but the

ICA approach does have the advantage of strong feature reduction.
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3.5 Conclusion

Overall, diffusion MRI is a suitable technique for classification of Alzheimer’s

disease (AD). Fractional anisotropy (FA) is a useful measure to detect AD,

and clustering fractional anisotropy into independent components is an espe-

cially promising method that had not been fully explored previously. Using

probabilistic tractography to determine structural connectivity networks can

also result into decent classification performance, especially when the connec-

tivity graph itself is considered instead of the derived graph measures. In this

study we explored the possibility of using a sparse group lasso to combine

multiple diffusion measures. Although this did not increase classification per-

formance in our sample, it did suggest that FA, MD, DA, and DR could be

complemented by Connectivity graphs, and Degree. The sparse group lasso

could not unambiguously answer the question of the effectiveness of using ICA

with TBSS measures for classification. Specifically, ICA seemed very effective

for FA, while the results for MD, DA and DR were mixed. The single best

performing measure was FA clustered into independent components. These

findings can serve as a starting point to include diffusion MRI in procedures

for early AD detection.
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