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Abstract

Magnetic resonance imaging (MRI) is sensitive to structural and functional

changes in the brain caused by Alzheimer’s disease (AD), and can therefore be

used to help diagnosing the disease. Improving classification of AD patients

based on MRI scans might help to identify AD earlier in the disease’s progress,

which may be key in developing treatments for AD. In this study we used an

elastic net classifier based on several measures derived from the MRI scans

of mild to moderate AD patients (N = 77) from the prospective registry on

dementia study and controls (N = 173) from the Austrian stroke prevention

family study. We based our classification on measures from anatomical MRI,

diffusion weighted MRI and resting state functional MRI. Our unimodal classi-

fication performance ranged from an area under the curve (AUC) of 0.760 (full

correlations between functional networks) to 0.909 (grey matter density). When

combining measures from multiple modalities in a stepwise manner, the classi-

fication performance improved to an AUC of 0.952. This optimal combination

consisted of grey matter density, white matter density, fractional anisotropy,

mean diffusivity, and sparse partial correlations between functional networks.

Classification performance for mild AD as well as moderate AD also improved

when using this multimodal combination. We conclude that different MRI

modalities provide complementary information for classifying AD. Moreover,

combining multiple modalities can substantially improve classification perfor-

mance over unimodal classification.

Key words: Alzheimer’s disease; classification; multimodal; MRI; fMRI;

DWI
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2.1 Introduction

Early diagnosis is key to the development of treatments for Alzheimer’s disease

(AD) (Prince et al., 2011). In this respect it is well recognised that magnetic

resonance imaging (MRI) might be highly useful as an early AD biomarker

(Jack et al., 2010). Several MRI techniques have been applied successfully

to study average group differences between AD patients and controls in voxel

based grey matter (Ferreira et al., 2011), white matter (Li et al., 2012), diffusion

measures (Douaud et al., 2011), and functional connectivity (Gour et al., 2014;

Binnewijzend et al., 2012).

In addition to average group difference in case control studies, similar MRI

measures have also been used to predict or classify the disease class (i.e., patient

or control) of individuals. This classification based on MRI scans could be

helpful in making a reliable diagnosis of AD in the future. Machine learning

classification is a suited candidate to make such individual predictions, because

it is well equipped to handle high-dimensional data such as those from MRI.

Reliable individual classification of AD and controls has already been achieved

with MRI measures of grey matter atrophy (Klöppel et al., 2008; Plant et al.,

2010a; Cuingnet et al., 2011), white matter integrity (Nir et al., 2014), and

brain activity (Lee et al., 2013; Koch et al., 2012).

Some studies suggest that classification of Alzheimer’s disease may further

improve when combining several MRI modalities (Mesrob et al., 2012; Sui et al.,

2013b), while another recent study found better classification by using a single

MRI modality (Dyrba et al., 2015). It is not yet clear which MRI modality

or combination of modalities provide the best classification performance of AD

patients.

The goal of this study is to perform individual classification of mild to

moderate AD from healthy controls, and to combine information from several

modalities to improve this individual classification. We compare classification

performance for typical measures of grey matter atrophy, white matter in-

tegrity, and functional connectivity. Then we investigate whether combining

modalities improves classification performance. We test how this multimodal

classification model is able to separate patients with mild AD and patients with

moderate AD from healthy controls.

11



Chapter 2

2.2 Materials and Methods

2.2.1 Data sample

Participants

Our dataset was collected as a part of the prospective registry on dementia

(PRODEM; see also Seiler et al., 2012). Our sample only contained subjects

scanned at the Medical University of Graz. The inclusion criteria are: demen-

tia diagnosis according to DSM-IV criteria (American Psychiatric Association,

2000), non-institutionalization and no need for 24-hour care, and availability

of a caregiver who agrees to provide information on the patients’ and his or

her own condition. Patients were excluded from the study if they were unable

to sign a written informed consent or if co-morbidities were likely to preclude

termination of the study. We conducted our study with the baseline scans

from the PRODEM study, and included only patients diagnosed with AD in

according the NINCDS-ADRDA Criteria (McKhann et al., 1984), for which

anatomical MRI, diffusion MRI, and resting state functional MRI scans were

present. Amyloid imaging for additional confirmation of the diagnosis was

unavailable in our sample.

The healthy controls were drawn from the Austrian Stroke Prevention Fam-

ily Study, which is a prospective single-centre community-based follow-up study

with the goal of examining the frequency of vascular risk factors and their ef-

fects on cerebral morphology and function in the healthy elderly. On the basis

of structured clinical interview and a physical and a neurological examination,

participants had to be free of overt neurologic or psychiatric findings and had

to have no history of a neuropsychiatric disease, including cerebrovascular at-

tacks and dementia. The study protocol was approved by the ethics committee

of the Medical University of Graz, Austria, and written informed consent was

obtained from all subjects.

This resulted in a dataset of 77 AD patients between ages 47 and 83, of

which 39 had mild AD (MMSE > 20), and 38 had moderate AD (MMSE ≤
20) (Perneczky et al., 2006), and 173 healthy controls between ages 47 and 83

(see Table 2.1).
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Table 2.1: Demographics for the study population

Demographics Controls Mild AD Moderate AD

Age 66.1± 8.71 70.3± 7.85 66.9± 9.06
Gender, ♂/♀ 74 / 99 (57% ♀) 17 / 22 (56% ♀) 14 / 24 (63% ♀)
Education (years) 11.5± 2.76 11.6± 3.45 10.0± 2.79
Disease duration (months) 0.00± 0.00 22.6± 15.5 30.9± 30.7
MMSE 26.7± 5.80 24.2± 2.07 16.6± 2.73
CDR − 0.72± 0.25 0.92± 0.39
GDS 2.11± 2.15 2.54± 2.09 2.74± 3.02

Data is represented as mean±standard deviation. MMSE = mini mental state exam, CDR
= clinical dementia rating, GDS = geriatric depression scale.

MR acquisition

Each participant was scanned on a Siemens Magnetom TrioTim 3T MRI scan-

ner. Anatomical T1-weighted images were acquired with TR = 1900 ms, TE

= 2.19 ms, flip angle = 9°, isotropic voxel size of 1 mm. Diffusion images were

acquired along 12 non-collinear directions, scanning each direction 4 times with

TR = 6700 ms, TE = 95 ms, 50 axial slices, voxel size = 2.0 × 2.0 × 2.5 mm.

Resting-state fMRI series of 150 volumes were obtained with TR = 3000 ms,

TE = 30 ms, flip angle = 90°, 40 axial slices, with an isotropic voxel size of 3

mm. We instructed participants to lie still with their eyes closed, and to stay

awake.

2.2.2 Software

The MRI data were preprocessed using FMRIB Software Library (FSL, version

5.0; Smith et al., 2004; Jenkinson et al., 2012). For all further data analyses

we used MATLAB and Statistics Toolbox Release 2015b.

2.2.3 MRI preprocessing

The preprocessing of the anatomical MRI included brain extraction, bias field

correction, and non-linear registration to standard MNI152 (Grabner et al.,

2006). The preprocessing of the diffusion MRI included brain extraction and

correction of eddy currents. For the fMRI data the preprocessing included brain

extraction, motion correction (Jenkinson et al., 2002), a temporal high pass

filter with a cutoff point of 100 seconds, and 3 mm FWHM spatial smoothing.

Additionally, we used the FMRIB’s ICA-based Xnoiseifier (FIX, version 1.06),
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with the included standard training data to automatically identify and remove

noise components from the fMRI time course (Salimi-Khorshidi et al., 2014).

2.2.4 Anatomical Atlases

In order to compare properties across subjects we used two anatomical atlases

(Figure 2.1) included in FSL. For grey matter regions we used the Harvard-

Oxford probabilistic anatomical brain atlas (Desikan et al., 2006). Each brain

region in this atlas consist of a probability map, where each voxel is assigned

a probability of being part of each region. We split the 48 cortical regions

of the Harvard-Oxford atlas into left and right hemisphere regions, resulting

in 96 cortical regions. The cortical regions were combined with the 14 brain

regions from the subcortical atlas, excluding the brain stem because it was

not fully scanned for each participant. This resulted in a total of 110 grey

matter anatomical regions. For the white matter regions we defined 20 white

matter regions using the probabilistic JHU white-matter tractography atlas

(Hua et al., 2008). All voxels under 25% probability per region were removed

from each of the 110 grey matter, and each of the 20 white matter regions. For

the analyses we used the voxel-wise probabilities that survived the thresholding

for each region.

2.2.5 Anatomical features

We identified anatomical features by calculating the grey matter density (GMD),

and white matter density (WMD) for each brain voxel (Zhang et al., 2001). For

the GMD, we averaged the voxel-wise values for each of the 110 grey matter

regions weighted by the voxel-wise region probability. This provided a mea-

sure of brain atrophy within grey matter regions. For the WMD, we averaged

the voxel-wise values across each of the 20 white matter regions, weighted by

voxel-wise region probability. This resulted in a feature vector of 110 average

GMDs per subject, and a feature vector of 20 average WMDs per subject.

2.2.6 Diffusion features

We calculated the fractional anisotropy (FA) and mean diffusivity (MD) values

for each voxel with dtifit (Basser et al., 1994b). Then we averaged those values

for each of the 20 white matter regions, weighted by the region probability,
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Figure 2.1: Anatomical atlases overlaid on MNI brain template. Left part
shows the Harvard-Oxford cortical and subcortical areas. Right part shows the
JHU white-matter tractography atlas. The images are thresholded at 25%, and
showing the area with the maximum probability for displaying purposes, but
the atlases were treated as probabilistic in our analyses.

and partial volume corrected with the WMD, resulting in feature vectors of 20

mean FA and MD values per subject.

2.2.7 Functional Connectivity features

We performed temporal concatenation independent component analysis (ICA)

(Beckmann and Smith, 2004) with a relatively high dimensionality fixed at 70

components in order to get a more refined division of functionally coherent

areas than with low dimensional ICA (Beckmann, 2012; Smith et al., 2013).

We used an ICA threshold of 0.99, meaning that each voxel included in the

ICA map was 99 times more likely to be part of the component than to be

caused by the Gaussian background noise. Then we calculated the mean time

courses for each component for each subject, weighted by the ICA weight map,

and partial volume corrected with GMD.

For each component we determined the functional connectivity with every

other component. We defined the functional connectivity as the full correla-
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tions (FC) or as a sparse L1-regularised partial correlations (PC) between the

components’ time courses. We calculated the PC using the graphical lasso

algorithm (Friedman et al., 2008), with λ = 100 (Smith et al., 2011). Both

functional connectivity measures resulted in a feature vector of 70×69
2 = 2415

(partial) correlations.

2.2.8 Elastic net classification with nested cross-validation

We used the aforementioned six feature vectors from the three modalities with a

logistic elastic net regression for classification (Zou and Hastie, 2005; Friedman

et al., 2010). We used 10-fold cross-validation to determine the generalisation

performance of an elastic net regression models. For each subject this produced

a predicted value between 0 and 1, where 0 represents a control subject and 1

represents an AD patient.

The elastic net regression procedure estimates a sparse regression model by

imposing a penalty for including features and for the weight of each feature, so

that only a subset of the features are included. To determine the parameters

for the optimal size of this penalty without overestimating the classification

performance we used an additional nested cross-validation loop (Varma and

Simon, 2006; Kriegeskorte et al., 2009). In the outer loop we performed 10-fold

cross-validation, where 9/10th of the total dataset served as training set, and

1/10th as test set. Then we performed a nested, 10-fold cross-validation on

the training set over a grid of parameters to determine the penalty. We used

the penalty parameters that resulted in the lowest binomial deviance in the

nested loop to train the model on the original training set. This model was

used to make predictions for each participant in the test set. This procedure

was repeated 10 times so that each participant was part of the test set once.

By using this approach we did not use the test set to estimate the model, nor

the penalty parameters that we used to train the model. We also included

age and sex to the model without any penalty, so that all estimated regression

coefficients for the feature weights were conditional on the age and sex of the

subject.

To reduce the variability in the classification outcome resulting from the

random partitioning in training and test folds we repeated the entire classi-

fication procedure 50 times. This allowed us to average out this variability,

and report the range of observed outcomes under different train and test set

partitioning.
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2.2.9 Measuring classification performance

To assess the classification performance we performed receiver operating char-

acteristic (ROC) analyses on the estimated outcomes between 0 and 1 from the

elastic net regression. We calculated the ROC curve by shifting the threshold

for classifying an individual as AD from 0 to 1, and plotted the true posi-

tive rate (sensitivity) versus the false positive rate (1 − specificity) for each

intermediate point. The area under this ROC curve (AUC) is a measure of

classification performance that is insensitive to the distribution between con-

trols and AD patients (Fawcett, 2006), so that we can take full advantage of the

larger number of controls than AD patients in our dataset. We also reported

the sensitivity, and specificity values corresponding to the optimal point in the

ROC curve, given an equal penalty for a false positive and a false negative

prediction, and the class distribution equal to that in our sample. Because we

repeated the procedure 50 times, the reported AUCs, sensitivity, and specificity

values are the average over the 50 repetitions of the cross-validation procedure.

Additionally, we investigated how well the predicted outcomes were able

to separate mild AD from controls, and moderate AD from controls. For this

purpose we also assessed the ROC curves for the mild and moderate subgroups

versus controls separately.

2.2.10 Combining modalities

After assessing the performance for each individual modality we combined dif-

ferent modalities in order to study possible improvements in classification per-

formance. We took a forward stepwise approach using feature concatenation

to combine information from different modalities. We started with the best

performing single modality feature. For each step we added each of the re-

maining modalities to the winning combination from the previous step. We

assessed the classification performance for the combined modalities by deter-

mining the AUC. We continued the procedure until each of the modalities that

we considered had been added.

2.3 Results and discussion

The classification results are summarised in tables 2.2 and 2.3 for the unimodal

and stepwise multimodal procedures respectively. The AUC curves for the
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Table 2.2: Alzheimer’s patients versus controls classification. The mean, mini-
mum and maximum area under the ROC curve over 50 repetitions are reported,
as well as the sensitivity, specificity, and classification accuracy for the optimal
point in the ROC. Results are shown for grey matter density (GMD), white
matter density (WMD), fractional anisotropy (FA), mean diffusivity (MD), full
correlations between ICA components (FC), and regularised partial correlations
between ICA components (PC). Multimodal represents the best combination
from step 5 of our stepwise multimodal procedure (GMD, WMD, FA, MD, and
SPC).

Modality AUC min - max Sensitivity Specificity Accuracy

GMD 0.909 (0.901 - 0.915) 0.818 0.899 0.874
WMD 0.850 (0.845 - 0.858) 0.623 0.902 0.816
FA 0.789 (0.784 - 0.796) 0.547 0.885 0.781
MD 0.832 (0.823 - 0.840) 0.537 0.941 0.816
FC 0.760 (0.743 - 0.772) 0.422 0.921 0.767
PC 0.791 (0.778 - 0.803) 0.529 0.859 0.758

Multimodal 0.952 (0.946 - 0.959) 0.826 0.927 0.896
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Figure 2.2: Receiver operating characteristic plot for all Alzheimer’s disease
patients, mild AD, and moderate AD versus control for elastic net classifica-
tion with nested cross-validation, for grey matter density (GMD), white matter
density (WMD), fractional anisotropy (FA), mean diffusivity (MD), full correla-
tion between independent components (FC), and regularised partial correlation
between independent components (PC). Multimodal represents the best com-
bination from step 5 of our stepwise multimodal procedure (GMD, WMD, FA,
MD, and PC). The diagonal line represents random classification performance.

unimodal results and the best performing step of the multimodal procedure is

depicted in figure 2.2.
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2.3.1 Anatomical MRI

The measures derived from the anatomical MRI scan, grey matter density aver-

age of Harvard-Oxford regions, and white matter density of JHU tractography

regions resulted in an excellent AUC of 0.909 and 0.850 respectively (Table

2.2). The good classification performance for GMD was expected, as AD has

traditionally been seen as a grey matter atrophy disease (Frisoni et al., 2010).

The classification performance with GMD that we found compares favourably

to a recent similar study by Dyrba et al. (2015), who found an AUC of 0.86.

While our methods were very similar, we used the Harvard-Oxford atlas to

segment our data, and Dyrba et al. (2015) used the AAL atlas. The differ-

ence in atlases for segmentation, and our larger sample size might explain the

difference in classification performance.

2.3.2 Diffusion weighted MRI

The measures derived from diffusion weighted MRI, fractional anisotropy and

mean diffusivity of JHU tractography regions performed very reasonable with

an AUC of 0.789 and 0.832 respectively (Table 2.2). This performance was

much higher than the AUC between 0.652 and 0.720 that Mesrob et al. (2012)

found with combined FA and MD measures, but lower than the 0.86 that Dyrba

et al. (2015) found. While Mesrob et al. (2012) examined the DTI measures

in grey matter areas, Dyrba et al. (2015) and our study examined the DTI

measures in white matter regions, which possibly explains the differences in

classification performance.

2.3.3 Functional connectivity

The measures derived from resting state functional MRI resulted in an AUC

of 0.760 and 0.791 for full correlations and regularised partial correlations be-

tween ICA components respectively (Table 2.2). The higher performance of

the regularised partial correlations compared to the full correlations is in line

with the simulation study by Smith et al. (2011). Still, this classification per-

formance was relatively poor compared to 0.848 found by Koch et al. (2012),

and 0.80 found by Dyrba et al. (2015). Koch et al. (2012) found their result by

examining the correlation between ICA components that resulted in the highest

discriminative power. Because selecting this best performing correlation was

not part of the cross-validation loop, their finding is likely an overestimation of
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the out-of-sample generalisability. Dyrba et al. (2015) used predefined compo-

nents to study the correlations between functional regions, while we used ICA

on our own dataset to acquire the components, which might partly explain

differences from our findings.

2.3.4 Multimodal

The stepwise procedure that we used to concatenate features from different

modalities resulted in an AUC of up to 0.952 (Table 2.3). This result was

achieved by starting the procedure with the best performing single modality,

GMD. Classification performance improved the most when adding FA (from

0.909 to 0.933 AUC). After that, the best improvement resulted from adding

WMD (0.933 to 0.949 AUC). Then, adding PC further improved classification

performance marginally (0.949 to 0.951 AUC), which was subsequently im-

proved marginally again by adding MD (from 0.951 to 0.952). Adding the FC

to the previous combination decreased the classification performance compared

to the previous step (from 0.952 to 0.930 AUC). The resulting best multimodal

model containing GMD, FA, WMD, PC, and MD performed well above any of

the modalities separately (Figure 2.2).

Our findings are in contrast with the study of Dyrba et al. (2015), who

did not find any improved performance by combining similar measures de-

rived from the same MRI modalities. This difference is possibly explained by

our larger sample size, allowing many more training examples in each cross-

validation fold. Additionally, they used a multi-kernel support vector machine

to combine information from different modalities, while we used feature con-

catenation. Apparently the elastic net classifier that we used in this study

is suited to select relevant predictors, even when the feature space increases

through concatenation. Still, more advanced methods to combine information

from multiple modalities, such as linked ICA (Groves et al., 2011), may benefit

even more from the additional information from multiple modalities.

2.3.5 Mild Alzheimer’s disease and moderate Alzheimer’s

disease classification

To investigate the results of our classification methods further we assessed the

classification performance for mild AD and moderate AD separately. The clas-

sification results for mild AD versus controls and moderate AD versus controls

20



22

Multimodal classification of AD

Table 2.3: Multimodal classification performance for the stepwise concatena-
tion procedure. Each step combines the best combination from the previous
step with the remaining modalities. The best result occurs with the combina-
tion of GMD, FA, WMD, PC, and MD in step 5.

Step\combined with: GMD FA WMD PC MD FC

1: - 0.909 0.789 0.850 0.791 0.832 0.760
2: GMD - 0.933 0.930 0.926 0.932 0.922
3: GMD+FA - - 0.949 0.927 0.934 0.930
4: GMD+FA+WMD - - - 0.951 0.941 0.938
5: GMD+FA+WMD+PC - - - - 0.952 0.939

6: GMD+FA+WMD+PC+MD - - - - - 0.930

can be found in tables 2.4 and 2.5 respectively.

The single modality classification performance for moderate AD (up to 0.933

for GMD) is substantially higher than it is for mild AD (up to 0.886 for GMD).

The combination of GMD, FA, WMD, PC, and MD improves the classification

performance for both mild AD (from 0.886 for GMD to 0.934 for multimodal)

and moderate AD (from 0.933 for GMD to 0.971 for multimodal). This im-

provement is mainly due to an improved sensitivity, from 0.665 to 0.721 in mild

AD, and from 0.777 to 0.813 in moderate AD. At the same time the specificity

also marginally improves from 0.920 to 0.935 in mild AD, and from 0.941 to

0.956 in moderate AD.

2.3.6 General discussion

In our method we took much care in the generalisability of our findings by

employing a nested cross-validation approach. This approach assured that the

class outcomes of the predicted subject was not required to be known when

training the model, nor to estimate the model’s penalty parameters. Further-

more, none of the feature reduction that we performed relied on observed class

difference in our sample, which would result in overestimation of classifica-

tion performance. Instead we reduced dimensionality by relying on anatomical

atlases for the anatomical and diffusion features, and on data-driven unsuper-

vised learning of independent components for the functional features. Further

feature reduction was conducted in the model training phase by the elastic

net classifier. Again the feature reduction in this phase did not rely on class

differences in the test subjects, but only in the training subjects. Additionally,
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Table 2.4: Mild AD versus controls classification. Multimodal represents the best
combination from step 5 of our stepwise multimodal procedure (GMD, FA, WMD,
PC, and MD).

Modality AUC min - max Sensitivity Specificity Accuracy

GMD 0.886 (0.878 - 0.897) 0.665 0.920 0.873
WMD 0.841 (0.829 - 0.851) 0.564 0.926 0.859
FA 0.783 (0.779 - 0.790) 0.287 0.974 0.848
MD 0.838 (0.832 - 0.844) 0.369 0.993 0.878
COR 0.728 (0.706 - 0.751) 0.183 0.966 0.822
SPC 0.770 (0.737 - 0.796) 0.176 0.969 0.823

Multimodal 0.934 (0.927 - 0.944) 0.721 0.935 0.896

Table 2.5: Moderate AD versus controls classification. Multimodal represents the
best combination from step 5 of our stepwise multimodal procedure (GMD, FA,
WMD, PC, and MD).

Modality AUC min - max Sensitivity Specificity Accuracy

GMD 0.933 (0.924 - 0.942) 0.777 0.941 0.912
WMD 0.860 (0.853 - 0.866) 0.515 0.936 0.860
FA 0.794 (0.787 - 0.804) 0.361 0.978 0.867
MD 0.826 (0.811 - 0.839) 0.447 0.974 0.879
COR 0.793 (0.769 - 0.823) 0.465 0.944 0.858
SPC 0.812 (0.795 - 0.829) 0.349 0.956 0.847

Multimodal 0.971 (0.964 - 0.975) 0.813 0.956 0.930

because of the relatively large sample size that we used the results were very

reliable over different iterations of the cross-validation procedure, increasing

our confidence that the results of the procedure generalise well.

Interestingly, the multimodal procedure resulted in the best classification

performance when all modalities were combined, except for the full correlation

between ICA components. The partial correlations, which were based off of the

same components’ time-courses, were part of the best multimodal combination.

Apparently, the full correlations did not add information to the classification

model over what the partial correlations did.

The improvement in classification performance in the multimodal case over

the best single modality measure was substantial, especially given the relatively

good performance for grey matter density. We found this multimodal improve-

ment in both the mild AD as well as the moderate AD group. Therefore we

are optimistic that these findings will apply to even earlier stages of dementia

22



22

Multimodal classification of AD

as well.

2.3.7 Limitations

While we expect that our cross-validation procedure ensured good generalis-

ability of the classification performance, the models that were trained to predict

each subject rely heavily on both random and non-random class differences in

the training sample. Therefore we cannot reliably differentiate between real

and random class differences in the trained models, which is the reason that

we have refrained from biological interpretation of model parameters.

Furthermore, even though the general trend in our multimodal procedure

suggests that there is added information gained from combining multiple modal-

ities, it is sometimes difficult to draw hard conclusions about which modal-

ity improves the classification the most. For example, the improvement from

adding FA to GMD resulted in an AUC of 0.933, but adding MD instead re-

sulted in an AUC of 0.932. It would be naive to conclude that the combination

of GMD and FA performs better than the combination of GMD and MD. Still,

the general finding is that combining modalities with decent individual clas-

sification performance improves the classification. More findings from similar

research should shed light on what measures result in the most powerful com-

bination to classify AD. Overall the elastic net classification model is very well

suitable to build a good model when many features from different modalities

are added, which is why the combination of all features, except full correlations,

resulted in optimal classification.

In our procedure we have made some choices that could effect the results.

We chose the Harvard Oxford atlas to parcellate GMD, and the JHU tracts

to parcellate WMD and diffusion measures. Different atlases for parcellation

might have produced slightly different results. The 70-dimensionality ICA from

which we derived areas for functional connectivity was chosen because they pro-

duce a more fine grained representation of functional areas than lower dimen-

sionality ICA. However, the dimensionality of the ICA is a trade-off between

detail in the functional areas and the number of correlations, and it is not

known what dimensionality is optimal in this trade-off.

The question remains how well our results generalise to cases where the

patients’ symptoms are less severe, such as in mild cognitive impairment, as

well as to early AD diagnosis. The procedures used in this research could serve

as a starting point to answer these questions.

23



Chapter 2

2.4 Conclusion

In our study we found that combining information from anatomical MRI, diffu-

sion weighted MRI, and resting state functional MRI can improve AD classifi-

cation performance for both mild AD and moderate AD. The best combination

in our study consisted of the average grey matter density over anatomical re-

gions, fractional anisotropy, mean diffusivity, and white matter density over

white matter tracts, and regularised partial correlations between ICA com-

ponents. When only a single modality can be considered for classification,

grey matter density consistently results in the best classification performance.

However, when available there is a clear benefit from incorporating anatomical

MRI, diffusion weighted MRI, and resting state functional MRI for diagnos-

tic purposes. Therefore, we recommend that MRI scanning protocols designed

for diagnosis of Alzheimer’s disease collect structural, diffusion, and functional

MRI. Furthermore, we found that an elastic net classifier is well suited to esti-

mate a predictive model when features from different modalities are combined

by simple concatenation.
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