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Part III

S C R E E N I N G M E C H A N I S M S I N M O D I F I E D G R AV I T Y





5
S P L A S H B A C K R A D I U S I N S Y M M E T R O N G R AV I T Y

In this final chapter we have studied the effects of screening mechanisms in
modified gravity on the dynamics of the spherical collapse of dark matter. In
particular, we investigate the splashback scale in symmetron modified gravity.
The splashback radius rsp has been identified in cosmological N-body simu-
lations as an important scale associated with gravitational collapse and the
phase-space distribution of recently accreted material. We employ a semi-
analytical approach, namely the self-similar spherical collapse framework,
to study the spherical collapse of dark matter haloes in symmetron gravity.
We provide, for the first time, insights into how the phenomenology of
splashback is affected by modified gravity. The symmetron is a scalar-tensor
theory which exhibits a screening mechanism whereby higher-density re-
gions are screened from the effects of a fifth force. In this model, we find
that, as over-densities grow over cosmic time, the inner region becomes
heavily screened. In particular, we identify a sector of the parameter space
for which material currently sitting at the splashback radius rsp, during its
collapse has followed the formation of this screened region. As a result,
we find that for this part of the parameter space the splashback radius
is maximally affected by the symmetron force and we predict changes in
rsp up to around 10% compared to its General Relativity value. Because
this margin is within the precision of present splashback experiments, we
expect this feature to soon provide constraints for Symmetron gravity on
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previously unexplored scales.

This chapter is based on: O. Contigiani, V. Vardanyan, A. Silvestri,
Splashback radius in symmetron gravity,
Phys. Rev. D 99 (2019) 064030 , arXiv:1812.05568.
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5.1 introduction

Gravity, one of the fundamental forces of nature, plays a crucial role in
inferring our model of the cosmos as well as all the precision constraints
placed on fundamental physics through cosmology. The theory of Gen-
eral Relativity (GR) introduced by Einstein a century ago [7], provided
a coherent theoretical framework within which to study all gravitational
phenomena. While it is arguably one of the most successful theories of mod-
ern physics, having passed a host of empirical phenomena, there remain
regimes of curvature and scale where GR has yet to be accurately tested. Its
theoretical and phenomenological limitations are being fully explored, with
an endeavour which is carried out at virtually all energy scales, ranging
from the ultraviolet properties of the theory, down to energy scale of H0,
associated to the present-day expansion rate of the Universe [1].

Upcoming large scale structure (LSS) surveys will provide unprecedented
constraints on gravity on cosmological scales, allowing to discriminate
among many theories alternative to GR. The phenomenology of theories
of modified gravity (MG) on linear cosmological scales is fairly well un-
derstood, and it is commonly characterized in terms of modifications in
the relation between matter density contrast and, respectively, the lensing
and Newtonian potential [234–236]. On the other hand, it is well known
that non-linear mechanisms in MG theories "screen away" the effects of
additional degrees of freedom in high-density regions. This ensures that
any fifth force is suppressed and MG reduces to GR in regions where it has
been tested with remarkable accuracy [55].

A natural regime of interest is the intermediate range, between the
screened and unscreened regimes, e.g. the regions of space at the boundaries
of dark matter haloes. To this extent, a feature that is gaining prominence
is the so-called splashback, which corresponds to an observable steepening
of dark matter halo density profile close to the boundary [237]. Locally,
the position of this steepening contains interesting information about the
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clustering of dark matter shells and it can be understood as the dividing
radius of single-stream and multistream sectors of the dark matter phase
space. This feature has already been noticed in the self-similar spherical
collapse framework developed and studied in [238, 239], and generalized
to 3D collapse in [240]. Self-similarity, however, is fully operational in a
universe without a characteristic scale, such as the Einstein-de Sitter (EdS)
universe with Wm = 1. Even though realistic applications of the same
principle to LCDM universe are possible [241], in this chapter we will focus
on the collapse in EdS scenario and will leave more realistic scenarios for
future work.

The profiles of the largest dark matter haloes in the Universe, where
galaxy clusters reside, can be mapped by measuring the deformation of
background sources [242, 243]. This technique, known as lensing, has been
used to measure the splashback feature around clusters [244, 245]. It should
be noted however that the most stringent constraints are obtained using the
distribution of subhaloes traced by the cluster galaxy members [246–249].
In this case, the interpretation is nevertheless not straightforward and an
accurate comparison with N-body LCDM simulations is required.

In this chapter we consider the splashback radius in MG scenarios,
investigating the microscopic effects of alternative theories of gravity on
the dark matter shells accreting into the halo. Since we aim at gaining
insight on the physical details, we do not resort to numerical simulations,
but rather employ a semi-analytical method based on the framework of
self-similar spherical collapse of [238]. We focus on the class of theories
of gravity that display the Symmetron screening mechanism [250]. While
we present an overview of the Symmetron gravity in the main text, let
us mention here that our analysis can be easily extended to other types
of screening mechanisms, e.g. to Chameleon screening exhibited by f (R)
models [251, 252], where the density dependence is explicitly in the scalar
field mass, rather than the field couplings.
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We have organized our presentation as follows. In section 5.2 we have
presented the basics of the standard spherical collapse framework. In sec-
tion 5.3 have brought necessary details about the self-similar solutions and
have presented the relevant equations of motion for the collapsing shells.
We have additionally obtained the self-similar density profile used later
in the chapter. In section 5.3 we discuss the basics of Symmetron gravity
and present the relvant equation. In section 5.5 we present our numerical
methods and demonstrate the effect of the Symmetron force on the phase
space of the dark matter halo and the shift in the splashback radius. Finally,
we discuss the implications of our findings and suggest potential further
studies in section 5.6.

5.2 spherical collapse

In the introduction of this thesis we have presented the basics of the cos-
mological perturbation theory in the linear regime. This framework already
predicts the overall large scale structure of the universe. However, the
gravitational interactions force the small overdensities to decouple from
the Hubble expansion and form higher density structures, known as dark
matter halos. Here the density contrast (our small perturbation variable in
the linear perturbation theory) is not in the perturbative regime anymore.
Much of the progress in understanding these structures has been achieved
through numerical simulations. Interestingly, it is now acknowledged that
dark matter halos have quite universal properties. They are phenomenolog-
ically very rich structures and are supposed to be sensitive to the various
aspects of the cosmological model, and, particularly, to the underlying the-
ory of gravity. Given our overall motivation in this thesis, namely exploring
various observables in the universe which can be used to constrain the
fundamental properties of the cosmological theories, it would have been
rather unfair to dismiss the possibility of exploiting the collapsed non-linear
structure in the universe for our purposes.
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With this motivation in mind, let us try to understand the basic properties
of the collapse in a simple approximation of spherical symmetry. Let us
start with a discussion in Einstein-de-Sitter universe, which is a flat model
with Wm = 1. Consider a small tophat overdensity of mass M(tin) at some
high redshift zin. The outer shells of matter evolve following their equations
of motion

r̈ = �GNM(r; ti)
r2 , (5.1)

where the left-hand side is the Newtonian force FN(r) proportional to
Newton’s gravitational constant GN.

It is useful to define the density contrast as d ⌘ (ar0/r)3 � 1, where r0
is the initial radius of the considered shell. Inverting this and plugging in
Eq. (5.1) we will obtain a differential equation for d, which will be useful
for obtaining the linear solution. However, the point of considering the
spherical collapse is to explore the situations where the density contrast is
not very small and is governed by the non-linear dynamics of the collapse.
For that purpose it is more convenient to work directly with Eq. (5.1), which
can be easily integrated once to yield

ṙ2 = 2
GNM(r; ti)

r
� C. (5.2)

Here C is a positive integration constant given by C = 8pGNr̄inr2
inDin/3,

with the index "in" denoting the quantities at the initial time tin, and D being
the fractional mass contrast (compared to the homogeneous background)
within the shell, at the given time.

We can present the solution of this equation in a parametric form as
r = GNM(1 � cos q)/C and t = GNM(q � sin q)/C3/2, with q being an
angle in the range [0, 2p]. The radius of the shell reaches its maximum
when q = p, and is known as the "turn-around radius". For our case of
Einstein-de-Sitter universe we obtain

dtotal =
9
2

(q � sin q)2

(1 � cos q)3 . (5.3)
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Additionally, in the linear regime we have

dlin =
3
5

✓
3
4
(q � sin q)

◆2/3
. (5.4)

At the turn-around, dtotal = (3p/4)2 ⇡ 4.6 and dlin ⇡ 1.063. Additionally,
when q = 2p, the full density contrast becomes singular, while the linear
one is dlin ⇡ 1.686. Of course, for a realistic collapse the shells will virialize
at some point, and the collapse will not be singular. We will not go to all
these complications here, but let us just note that as the velocities of the
shells are the smallest at their turn-around, they are supposed to spend most
of the evolution near the turn-around radius. It is therefore a reasonable
first approximation to assume that the mass enclosed within the radius
at a fixed fraction of the turnaround scale is the same as the initial mass
enclosed within that shell. This is what is assumed in the seminal paper
Ref. [253]. Particularly, let as assume that the initial overdensity scales with
radius as din ⇠ r�3e

in ⇠ M�e (the case of the top-hat overdensity considered
above is given by e = 0). The given shell is at turn-around at the epoch
given by tta ⇠ d3/2

in (this follows from the parametric solutions found above).
Therefore the mass growth of the halo scales as M ⇠ t2/3e ⇠ a1/e.

If we could work out how the turn-around radius depends on the mass
enclosed in it, i.e. finding the functional form of rta(M), we could deduce
the shape of the density profile. This is possible to do by comparing the
total energies at the initial time and at turnaround. The result is that
rta ⇡ rin/din ⇠ r1+3e

in ⇠ M(3e+1)/3. From here we then immediately obtain
the mass profile as M(r) ⇠ r3/(3e+1) and the density profile as

r(r) ⇠ r� 9e
3e+1 . (5.5)

The crucial assumption here was the conservation of mass within a
particular spherical shell. This is assumption is known to fail - the shells
cross each other and the mass within them is dynamically changing during
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the collapse. To take into account the shell crossing phenomenon one needs
to either rely on more advanced analytical modelling, or on numerical
simulations. We are going to discuss an elegant approach in the next
section, where we will be able to gain important insights on the collapse
phenomenon with shell-crossing.

5.3 self-similar spherical collapse

Here we are going to discuss the self-similar solutions in the problem of
spherical collapse. In this context, the idea of self-similarity was introduced
for the first time in [238], where it was shown that around EdS backgrounds,
where the scale factor scales as a power-law of cosmic time, a(t) µ t2/3, the
spherical collapse equations admit self-similar and self-consistent solutions.
The basic idea is that when written in an appropriately rescaled coordinates,
the trajectories of different dark matter shells can be shown to be identical.
For our spherically symmetric problem our aim will be to rewrite all the
observable quantities as

q(r, t) = Q(t)Q(r(t)/R(t)), (5.6)

where the functions Q(t) and R(t) should be power-laws on t (see e.g.
Ref. [254]).

The material surrounding a scale-free perturbation initially coupled to the
Hubble flow eventually reaches turn-around and collapses onto a central
overdensity. We denote by R(t) and M(r, t) the position of the turn-around
radius at a time t and the mass contained within the radius r, respectively.
The mass within the turn-around radius can be written as a function of
scale factor as:

M(R, t) µ a(t)s, (5.7)
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where the parameter s ⌘ 1/e is referred to as the accretion rate. In this
model, M(R, t) and R(t) are related to each other through

4p

3
R(t)3rb(t) =

✓
4

3p

◆2
M(R, t), (5.8)

where rb(t) is the EdS background density at time t. This additionally
implies that the position R as a function of time also depends on s:

R(t) µ a(t)1+s/3. (5.9)

Notice that s and the mass of the present-day perturbation are the only free
parameters of this model. In this work, we choose a fixed value of s = 1.5 for
the accretion rate, known to be representative for the low-redshift Universe
in numerical simulations [237, 255].

While before the turn-around the mass within a shell is manifestly con-
stant, afterwards this is not true. Indeed, as multiple shells start orbiting
the halo, their trajectories start intersecting. This phenomenon is known as
shell-crossing and it is the principal reason why integrating Eq. (5.1) is not
straightforward.

If we label each shell of material by its turn-around time t⇤ and radius r⇤,
such that R(t⇤) = r⇤, the trajectory for each shell is found to be independent
of these quantities when self-similarity is satisfied. This can be verified by
rewriting the equation of motion for the given shell in terms of the rescaled
variables

l =
r
r⇤

, t =
t
t⇤

; (5.10)

and by enforcing the mass profile M(r) to be of the form:

M(r, t) = M(R, t)M(r/R). (5.11)

Notice that, from Eq. (5.9) it follows that the rescaling of the local turn-
around radius L = R(t)

r⇤
can be also written as a function of t alone:

L(t) = t2/3+2s/9. (5.12)
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The system is then evolved through the following self-similarity equations
for l(t) and M (l/L):

d2l

dt2 = �p2

8
t2s/3

l2 M
✓

l

L(t)

◆
, (5.13)

M(y) =
2s
3

Z •

1

dt

t1+2s/3 H
✓

y � l(t)
L(t)

◆
, (5.14)

where H is the Heaviside step function. The turn-around initial conditions
for l(t) are l(t = 1) = 1, dl/dt(t = 1) = 0. Notice that because these
two equations are coupled to each other, they should be solved jointly to
obtain self-consistent solutions for the orbits and the mass profile. This
is done by starting from an initial guess for M(y) and then evaluating
numerically the trajectories l(t) using Eq. (5.13). The corresponding M(y),
evaluated using Eq. (5.14), is then taken as an initial guess for the next
iteration. This is repeated until convergence is reached and a final result for
M(r, t) is obtained. The corresponding density profile is then simply

r(r, t) =
1

4pr2
dM
dr

(r, t). (5.15)

Notice in particular that its time-dependence is completely described by
rb(t) and R(t).

In Fig. 5.1 we show the trajectories of the rescaled shells for different
values of e, obtained through the integration of Eq. (5.13).

This figure particularly demonstrates the fact that as time passes the shells
get buried deeper and deeper into the halo and their oscillation amplitudes
decay with time. Note particularly that as expected qualitatively, this decay
is more pronounced for larger values of the accretion rate.

Given the time evolution of the shells, it is now useful to look at the
corresponding phase space snapshots of all the shells. In Fig. 5.2 we have
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Figure 5.1: The evolution of the shell positions in the rescaled coordinates. We
present the evolution for two values of accretion rate s.

computed the present-day phase-space positions of the shells for the same
two values of the accretion rate as in Fig. 5.1. The colorbar indicates the
redshift when the given shell has been at turnaround. It is particularly note-
worthy that the radius separating the multi-stream/single-stream region
(two dashed, vertical lines in both of the panels), also referred to as the
splashback radius rsp of the halo, is smaller in the case of the larger accre-
tion rate. The corresponding values in the units of present-day turn-around
radius are re=0.2

sp /R(t0) = 0.12 and re=2/3
sp /R(t0) = 0.31.

Finally, as mentioned above, an important outcome of this analysis is
the matter density profile of the halo, which we present in Fig. 5.3. Note
particularly the presence of the non-physical sharp caustic peak, which
in a more realistic scenario would have been smoothed out by additional
physical phenomena, such as matter inhomogeneities and non-radial orbits
of the shells, not considered here.
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Figure 5.2: The snapshots of the shell phase spaces for the same values of the
accretion rates as in Fig. 5.1. The snapshots are taken at the present time.
The colorbar indicates the redshift when the given shell has been at
turnaround. It is particularly noteworthy that the radius separating the
multi-stream/single-stream region (two dashed, vertical lines in both of
the panels), also referred to as the splashback radius rsp of the halo, is
smaller in the case of the larger accretion rate. The corresponding values
in the units of present-day turn-around radius are re=0.2

sp /R(t0) = 0.12
and re=2/3

sp /R(t0) = 0.31.
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Figure 5.3: Prescription for the spherical halo density profile. The red dotted line
is a smoothed version of the self-consistent profile which removes the
non-physical sharp caustic.
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It can be useful to note that the framework considered here can be applied
in other configurations. Particularly, it can be applied to other 1-dimensional
configurations, such as planar and cylindrical collapse. Additionally, in
Ref. [240] the problem of tri-axial self-similar collapse is considered. For the
sake of interest let us present the results for the case of self-similar planar
collapse. The correspodning equation of motion in this case is (see [238])

d2l

dt2 =
4
9

l

t2 � 4
3

t2s/3�4/3M
✓

l

L(t)

◆
, (5.16)

with

L(t) = t2/3+2s/3. (5.17)

Fig. 5.4 demonstrates the shell trajectory for the case of e = 0.6. Note the
qualitative difference compared to the spherical trajectories.

Analogously to the spherical case, in Fig. 5.5 we present the correspond-
ing phase space snapshot of the shells for the same value of the accretion
rate as in Fig. 5.4. Here z is the relevant coordinate, i.e. the distance from
the plane of symmetry. The distance from the plane of symmetry separating
the multi-streaming region from the single-streaming one is given by two
dashed, vertical lines. The corresponding values in the units of present-day
turn-around distance are ze=0.2

sp /Z(t0) = 0.08.

5.4 symmetron gravity

In this section, we provide a brief overview of Symmetron gravity and
introduce the framework needed to study its effects on spherical collapse.

We consider a scalar-tensor theory of the form

S = Sj + SM
�

g̃µn, Y
�

, (5.18)
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Figure 5.4: The evolution of the shell positions in the rescaled coordinates in the
case of planar collapse.

with

Sj =
Z p

�g d4x

"
M2

Pl
2

R � 1
2
rµ jrµ j � V(j)

#
, (5.19)

MPl being the Planck mass, and SM the action for the matter fields. The
scalar field j couples to the Einstein frame metric gµn with Ricci scalar
R, while matter fields (collectively represented by Y) couple to the Jor-
dan frame metric g̃µn. The two metrics are assumed to be related by the
transformation

g̃µn = A2(j)gµn. (5.20)

Notice that such model is fully specified by the functions A(j) and V(j).
Varying the action with respect to j gives us the equation of motion:

⇤j = V,j � A3(j)A,j(j)r ⌘ Ṽ,j(j), (5.21)
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Figure 5.5: The phase space snapshot of the shells for the same value of the accre-
tion rate as in Fig. 5.4. The snapshot is taken at the present time. The
distance from the plane of symmetry separating the multi-streaming
region from the single-streaming one is given by two dashed, vertical
lines. The corresponding values in the units of present-day turn-around
distance are ze=0.2

sp /Z(t0) = ±0.08.
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where r is the trace of the matter stress-energy tensor, equal to the local
matter density, and Ṽ(j) is an effective potential. The fifth force per unit
mass exerted by the field j and experienced by a matter test particle can
then be written as:

Fj = �r log A(j). (5.22)

In this chapter we will focus on a realization of such a theory, namely the
Symmetron model specified by the functions:

V(j) = �1
2

µj2 +
1
4

lj4, (5.23)

A(j) = 1 +
1
2

j2

M2 , (5.24)

and effective potential:

Ṽ(j) =
1
2

⇣ r

M2 � µ2
⌘

j2 +
1
4

lj4. (5.25)

In this parametrization, the Symmetron naturally assumes the form of an
Effective Field Theory with j ! �j symmetry.

In high-density regions, where the condition

r > rssb ⌘ M2µ2 (5.26)

is satisfied, the effective potential Ṽ(j) has only one minimum in j = 0
and the field is driven towards it, resulting in a null fifth force. In other
words, high-density regions are screened. In low-density environments, on
the other hand, the minimum is not located at zero. For example, for r = 0
the vacuum expectation value is given by j0 = µ/

p
l.

The fifth force can be constrained by local tests of gravity; to see in detail
how local limits translate into bounds on the mass scale M and the Mexican
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hat parameters µ, l we refer the reader to [250], for a general overview, and
to the introduction of [256], for a more recent analysis.

In an EdS background, the average matter density as a function of redshift
z is

rb =
1

6pGt2 µ (1 + z)3. (5.27)

As the Universe expands, the Symmetron can undergo spontaneous sym-
metry breaking (SSB) when rb(zssb) = rssb. For more details about the
cosmological evolution of the Symmetron field and the allowed expansion
histories, we refer the reader to [57, 257]. Let us stress however that we are
not interested in the possibility of using the field j to drive the late-time
expansion of the Universe, but we are only interested in the additional fifth
force and its effects on spherical collapse.

In this paper we will work in terms of the dimensionless field c = j/j0
and Symmetron parameters composed by the average matter density at
symmetry breaking rssb, the vacuum Compton wavelength

l0 =
1p
2µ

, (5.28)

and the dimensionless coupling

b =
j0MPl

M2 . (5.29)

Using these parameters, the fifth force sourced by the Symmetron field can
be written as:

Fj = �16pGb2l2
0rssb crc. (5.30)

5.5 spherical collapse with the symmetron

Having introduced the Symmetron, let us now go back to the original goal
of this chapter, i.e. study spherical collapse in Symmetron gravity with a
particular focus on splashback.
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The splashback radius is commonly defined as the point where the
density profile r(r) is at its steepest. While this steepening is noteworthy
because it can be detected as a departure from an equilibrium profile, this
definition is clearly not suited for our study, where we assume a predefined
density profile. Fortunately, the splashback radius is also known to be
connected to the apocenter of recently accreted material and the location of
the latest caustic visible in the density profile. Here we study the effects of
the Symmetron force on splashback by using this latter definition.

Our simulation is based on a system of equations that includes the spher-
ical collapse equations, as discussed in Sec. 5.3, coupled to the equation for
the Symmetron field profile, discussed in Sec. 5.4. We start by presenting
our numerical method to compute both the Symmetron field profile and the
additional fifth force for the assumed density profile. We then proceed to in-
tegrate the shell equation to predict the fractional change in the splashback
position in the presence of the Symmetron force.

5.5.1 Field profile

Assuming the temporal evolution of the field to be very fast compared to
the other time-scales of the problem, i.e. the Hubble timescale and that of
the clustering of matter, the dimensionless field profile c(r) sourced by a
density profile r(r, t) satisfies the following equation:

d2c

dr2 +
2
r

dc

dr
=

1
2l2

0

✓
r(r, t)

rssb
� 1
◆

c + c3
�

. (5.31)

This quasi-static approximation is common in the literature [258–260] and
has been tested in the context of N-body simulations [261, 262]. In order
to provide a rough, order of magnitude justification for this assumption,
let us just mention that the timescale associated with the field dynamics in
vacuum is given by ⇠ l0/c. It is clear that in order for the Symmetron field
to be relevant for the dynamics of the spherical collapse, this l0 should be
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of the same order of magnitude as the scale of the cluster itself. The latter,
of course, is several orders of magnitude smaller than c/H0.

The static Symmetron equation of motion (5.31) is a non-linear elliptical
boundary value problem, for which we set the standard boundary condi-
tions of vanishing spatial gradient of the field at r = 0 and r ! •. We use
a one-dimensional version of the Newton-Gauss-Seidel relaxation method
for the numerical integration of the equation. This is a standard method
used for obtaining the scalar field profiles in N-body simulations with
modifications of gravity mentioned above.

In practice, we discretize our 1D static Symmetron equation of motion
on a regular grid of size h and use a second order discretization scheme for
all the derivatives.1 The resulting equation takes the form

L[ci+1, ci�1; ci] = 0, (5.32)

where

L[ci+1, ci�1; ci] ⌘ DK[ci+1, ci�1; ci] � DP[ci, ri] (5.33)

contains the discretization of the Laplace operator

DK ⌘ ci+1 + ci�1 � 2ci
h2 +

2
ri

ci+1 � ci�1

2h
(5.34)

and the effective potential:

DP =
1

l2
0

✓✓
ri

rssb
� 1
◆

ci + c3
i

◆
. (5.35)

The basic idea of the relaxation methods is to find a field profile from
this equation which is closer to the real solution than a randomly chosen

1 We have tested some outputs of our integrator against the results of version where higher
order discretization schemes are employed. For our particular problem we did not encounter
significant differences in performance of the integrator and performed the main analysis
with the version which employs the second order scheme.
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initial guess. This step is iterated over multiple (improved) guesses labelled
cn(i) until convergence is reached.

At a given step we define an improved (new) field profile:

cnew(i) = cn(i) � L(c(i))
∂L(c(i))/∂c(i)

����
c(i)=cn(i)

. (5.36)

Then we use a part of this new c as the field profile for our next relaxation
iteration:

cn+1(i) = wcnew + (1 � w)cn, (5.37)

where 0 < w 6 1 is a weight parameter with, in principle, a problem-
dependent optimal value.

We employ two intuitive convergence diagnostics, where at each step
we terminate the iteration if a certain parameter is within a predefined
threshold. The first parameter is the residual function:

R1 ⌘
r

Â
i

L[c(i + 1), c(i � 1); c(i)]2, (5.38)

and the second one is the all-mesh average of the fractional change in the
field profile.

R2 ⌘
r

Â
i
(cnew(i) � cold(i))2. (5.39)

To validate our integrator and convergence thresholds we compare the
numerical solution to a known analytic solution. Below we present two
different configurations.

For the first example let’s first note that we can always plug a non-zero
field profile in Eq. (5.31) and reconstruct a unique density profile which
serves as a source for the mentioned field profile. As an example, we can
choose a particular c ⇠ tanh(r) field profile. The gray line in the left panel
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Figure 5.6: The gray line in the left panel is a chosen, non-zero field profile. The
right panel demonstrates the corresponding reconstruction obtained by
plugging the gray line from the left panel into Eq. (5.31). The red dots
in the left panel are the result of the numerical integration using the
density profile from the right panel as an input source.

of Fig. 5.6 is the chosen field profile. Thr right panel of the same figure
demonstrates the corresponding reconstruction obtained by plugging the
gray line from the left panel into Eq. (5.31). The red dots in the left panel
are the result of the numerical integration using the density profile from the
right panel as an input source. As one can see, the numerical integration
successfully matches the expected analytical field configuration.

As our second example we consider the configuration of two parallel
plates with infinitely high density, separated by a vacuum gap. Let the
coordinate perpendicular to the plates be z with the gap width being
Dz and the plate surfaces being placed at �Dz/2 and +Dz/2. The field
equation of motion in this setup is given by

d2c

dẑ2 =
1

2l2
0

⇥
(r̃(ẑ) � 1) c + c3⇤ , (5.40)
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where we have additionally defined ẑ ⌘
p

2zl0 and r̃(ẑ) ⌘ r(ẑ)/M2µ2.
We can integrate this equation once in a z-interval where the density is
constant. Choosing two subsequent intervals being (0, Dẑ/2) and (Dẑ/2, •)
we can show that the value of the field on the plate surface cs is zero up to
negligible corrections of order of the ratio of the vacuum matter density to
the plate density. Then, choosing an interval (0, ẑ) with ẑ < Dẑ/2 we obtain

ẑ =
1q

1 � c2
g

2

"
F

 
p/2,

s
c2

g

2 � c2
g

!
� F

 
sin�1 c

cg
,

s
c2

g

2 � c2
g

!#
, (5.41)

where F is the elliptic integral of the first kind, and cg is the field value
in the middle of the gap. Fixing ẑ to Dẑ/2 and setting c = 0 we can
numerically solve for cg. Having the latter we will then have c as a function
of ẑ in the gap (written in terms of the Jacobi elliptic function).

We solve the Symmetron equation of motion Eq. (5.40) in the gap subject
to boundary conditions c(�Dẑ/2) = 0 = c(+Dẑ/2). In Fig. 5.7 we compare
this with the numerical solution of Eq. (5.41).

For both of the considered examples the solver has been demonstrated to
be able to converge to the correct solution with sub-percent level accuracy.
The convergence has been checked to be robust against several numerical
details, such as the grid resolution.

When solving for the density profile plotted in Fig. 5.3, we numerically
evaluate the equation of motion in the range [0, 2] for r/R(t), where the
density profile for r � R(t) is assumed to be constant. We make sure that
the arbitrary choice of the upper limit has no effect on our results by testing
larger values.

5.5.2 Splashback

Once the Symmetron field profiles are found as a function of time, the
present-day phase-space distribution of recently accreted material can be
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Figure 5.7: The field profile in the vacuum region between two infinitely dense par-
allel plates. The gray line is obtained by numerically solving Eq. (5.41).
The red dots are the numerical solutions of the Symmetron equation of
motion Eq. (5.40).
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Figure 5.8: Effects of the Symmetron force on the splashback location for b =
3, zssb = 2 and l0/R(t0) = 0.05. On the left panel we show the phase-
space distribution of shells around a spherically symmetric halo, where
the shells are color-coded by their turn-around redshift. The dotted
line shows how this distribution is affected by the presence of the
Symmetron force. The arrows on the bottom point to the inferred
splashback radius in the two cases. On the right panel we display the
ratio between the Symmetron and the Newtonian force profiles, FS

FN
,

for different instants in time. At high redshifts, when the innermost
material is accreted, the Symmetron force is ten times smaller than its
peak value today.
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obtained by integrating numerically the equation of motion (5.1) with added
fifth force (5.30) for different collapse times.

We find that after imposing self-similarity, the collapse equations can be
written only as a function of three dimensionless Symmetron parameters:
the redshift of symmetry breaking zssb, the dimensionless coupling b, and
the ratio l0/R(t0) between the vacuum Compton wavelength l0 and the
present-day turn-around radius R(t0). An important combination of these
parameters is

f = (1 + zssb)
3b2 l2

0
R2(t0)

, (5.42)

which explicitly sets the strength of the Symmetron force according to
Eq. (5.30).

From our testing, we found that values l0/R(t0) 2 [0.02, 0.1] offer non-
trivial cases. For l0 ⇠ R(t0) we always obtain thin-shell-like solutions, while
for l0 ⌧ R(t0) the field is heavy and simply relaxes onto the minimum of
the potential Ṽ(c) in Eq. (5.25).

In Fig. 5.8 we illustrate our method and show how the Symmetron force
modifies the phase-space configuration of the latest accreted orbits (left
panel). We find that the splashback position is significantly affected for
parameter values f ⇠ 1, zssb ⇠ 2 and l0/R(t0) ⇠ 0.1. These values imply
M . 10�3MPl, which is in agreement with local tests of gravity [250].

From the same figure (right panel), it is clear that the innermost regions
of the overdensity are screened from the effects of the fifth force at all times
and this becomes relevant in the outer regions only for z ⌧ zssb. Past this
point, the force profile slowly transitions from a thick-shell to a thin-shell
like behaviour, where the force gets progressively concentrated around the
surface of the screened region [263]. Due to the sudden drop in density
associated with splashback, this surface is delimited by the splashback
radius.
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A systematic exploration of the Symmetron effects on this feature as a
function of all parameters is presented in Fig. 5.9, which represents our
main result. A clear trend with zssb is visible. Notice that the fractional
change on the splashback position has an optimal peak as a function of
zssb that is independent of f . If we call zsp the accretion redshift of the
shell currently sitting at the splashback position after its first pericenter,
i.e. the splashback shell, we see that the effect is maximized when zsp ' zssb.
This is easily explained by studying the profile of the fifth force over time.
For zsp � zssb, the selected shell collapses when the Symmetron is in its
symmetric phase and the material spends the rest of its trajectory in a
screened region, away from the effects of the fifth-force; for zsp ⌧ zssb, the
thin shell has had time to form before zsp and the shell feels the effects
of the fifth force only during a small fraction of its trajectory. Between
these two limiting cases there is an efficient zssb for which the splashback
shell has time to follow the formation of the thin shell and it is optimally
positioned near the peak of the force profile for most of its trajectory. In our
figure, we show how this peak still has a dependence on l0, introduced by
the presence of this factor on the Symmetron equation of motion (5.31).

To conclude this section, we point out that the smoothness of the density
profile as plotted in Fig. 5.3 has little impact on our results and no impact on
the trends discussed above. Differences between the two prescriptions exist
only for l0 ⌧ R(t0), when the field profile becomes susceptible to the small-
scale features of the profile. However, since we expect the sharp caustic to
be smoothed by gravitational instabilities, for the main results we chose
not to use the discontinuous profile and assumed instead its smoothed
version. Notice also that considering such high-resolution scenarios would
introduce additional caveats (e.g. the presence of sub-structure) that are not
the focus of this chapter.



226 splashback radius in symmetron gravity

Figure 5.9: Percentage change in the splashback position in Symmetron gravity as
a function of Symmetron parameters: the dimensionless force strength
f and the SSB redshift zssb. The spread of the different curves is given
by variations of the third parameter, the vacuum Compton wavelength
of the field l0. We emphasize in particular the cases l0/R(t0) = 0.1
(dashed line) and l0/R(t0) = 0.02 (solid line), where R(t0) is the
present-day turn-around radius.
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5.6 discussion and conclusion

In this chapter, we have explored how Symmetron gravity affects the splash-
back feature at the edges of cosmological haloes. In our approach, we
assume a self-similar mass distribution motivated by spherical collapse
in an EdS Universe, where the shape of the spherically symmetric matter
distribution is assumed to be only a function of r/R(t). This allows us
to easily solve for the corresponding Symmetron fifth force and estimate
its effects on the splashback feature by studying the changed phase-space
distribution of recently accreted shells.

The main limitation of our study is the lack of a fully consistent frame-
work where the density profile, the turn-around physics and the phase-
space distribution are solved for in conjunction with the newly introduced
Symmetron equation of motion. As an example, we would expect a consis-
tent framework to take into account the back-reaction of the scalar field on
the density profile.

While deriving self-consistent solutions is outside the scope of this paper
and more suited to N-body simulation studies, we find it useful to discuss
the impact of our assumptions on the results. Changes to the turn-around
physics are commonly studied through the use of different approximations,
like a scale-dependent Newton’s constant [264–268]. In our case, if we
maintain the assumptions of self-similarity and power-law accretion in
Eq. (5.7), the main change to our formalism will come in the form of
upgrading the numerical constant appearing in Eq. (5.8) to a function of
the perturbation scale and cosmic time.

Previous works have estimated these corrections to be of the order of a
few percentage points at z ' 0; see [263] for results in Symmetron gravity
and [268] for similar results in f (R) theory. In particular, we expect our as-
sumption to first break at a redshift z such that the condition Fj(r) ⇠ FN(r)
is satisfied at the turnaround radius r = R(t). In our analysis, however, we
have seen that the effects on splashback are maximized when the collapse
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redshift of the splashback shell zsp is equivalent to this transition redshift.
After this point, the splashback shell is confined in the inner region and we
expect its trajectory to be unaffected by the turn-around physics. Therefore,
we consider our results around the peak of Fig. 5.9 to be robust against this
assumption. For the same reason, however, we expect to lose predictability
for higher values of zssb, since the initial condition of the splashback shell
will differ from what we have assumed.

Notice that the argument presented above also implies that our results
can be extended to a standard LCDM scenario. The present-day splashback
shell is expected to have collapsed in the matter-dominated era and to
have followed a trajectory mostly unaffected by the late-time expansion,
especially for low values of the accretion rate s like the one considered here
[241].

Effects of modified gravity on the structure of dark matter halos are
usually presented in the form of changes in the small-scale power spectra
[258, 260, 269, 270] and two-point correlation functions [271] or the whole
phase-space distribution [272, 273]. In this analysis, we focused instead on a
particular scale, the splashback radius, and showed that up to a 10% change
can be induced (Fig. 5.9). It should be pointed out that [274] was the first
work to explore how modified gravity affects the splashback position. We
stress, however, that our work differs from theirs in three major aspects.
First, here we focus on Symmetron gravity which displays a different
screening mechanism from the chameleon or k-mouflage explored in [274] .
Second, while their results based on N-body simulations represent more
realistic predictions, they do not allow for a simple exploration of the theory
parameter space. Third, with our semi-analytical approach, we are able
to gain insight by obtaining quantitative results as a function of multiple
theory parameters and provide an explanation for the visible trends. All
this said, it also should be mentioned that the quantitative estimation of
the modelling uncertainties will still resort on N-body simulations. This is
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an interesting aspect and we leave its systematic investigation to a future
work.

Observationally, splashback can be measured predominantly around
galaxy clusters, for which the present-day turn-around radius R(t0) is of
the order of a few Mpc. Our results, therefore, imply that this feature can
be used to constrain fifth forces with vacuum Compton wavelength l0 just
below the Mpc scale. Because the measurements of splashback in the galaxy
distributions around clusters have already achieved a precision below the
size of our predicted effect [246–249], we expect to soon be able to constrain
not only the Symmetron, but other fifth force models on similar scales.

Note in particular that, while other works have explored the possibility
of constraining Symmetron gravity on Mpc scales [275, 276], the range
considered here for l0 is unconstrained for this model. Thus we expect a
measurement based on splashback to naturally complement other results
based on laboratory experiments [277, 278], stellar and compact astrophysi-
cal objects [279, 280] or galactic disks and stellar clusters [256, 281, 282].

As the physics of splashback matures into a new cosmological observ-
able, we expect it to play a powerful role in testing modifications of gravity,
complementary to already established techniques such as those for large
scale structure.
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