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4
M I M E T I C M A S S I V E C O S M O L O G Y

In this chapter we study the first cosmological implications of a novel
massive gravity theory, recently proposed by Chamseddine and Mukhanov,
known as the mimetic theory of massive gravity. This is a theory of ghost-free
massive gravity, which additionally contains a so-called mimetic dark matter
component. In an echo of other modified gravity theories, there are self-
accelerating solutions which contain a ghost instability. In the ghost-free
region of parameter space, the effect of the graviton mass on the cosmic
expansion history amounts to an effective negative cosmological constant, a
radiation component, and a negative curvature term. This allows us to place
constraints on the model parameters—particularly the graviton mass—by
insisting that the effective radiation and curvature terms be within obser-
vational bounds. The late-time acceleration must be accounted for by a
separate positive cosmological constant or other dark energy sector. We
impose further constraints at the level of perturbations by demanding linear
stability. We comment on the possibility of distinguishing this theory from
LCDM with current and future large-scale structure surveys.

This chapter is based on: A. Solomon, V. Vardanyan, Y. Akrami,
Massive mimetic cosmology,
Phys. Lett. B 794 (2019) 135, arXiv:1902.08533.
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172 mimetic massive cosmology

4.1 introduction

Chamseddine and Mukhanov have recently proposed [207, 208] a novel
ghost-free theory of massive gravity in which one of the four Stückelberg
scalars is constrained in the same way as in the mimetic theory of dark
matter [209], spontaneously breaking Lorentz invariance. In this chapter,
we study the immediate implications of this mimetic massive gravity for
cosmological theory and observation.

From a field-theoretic perspective, general relativity is the unique theory
(in four spacetime dimensions) of a massless spin-2 particle, or graviton.
It is therefore natural to ask whether it is possible to endow the graviton
with a non-zero mass, and what sort of theoretical structures would result
[36]. A closely related line of inquiry asks whether it is possible for two
or more gravitons to interact [210]. Most nonlinear realizations of such
theories suffer from the so-called Boulware-Deser ghost instability [195].
As we have discussed earlier, the past decade has seen the construction
of models which avoid this instability, allowing for the construction of
ghost-free theories of massive gravity [37, 38, 40, 43–45, 211] and bimetric
and multimetric gravity [44, 46, 47]. We refer the reader to the reviews
[48, 49] on massive gravity and [51, 52] on bimetric gravity. The theory of
mimetic massive gravity proposed in [207, 208] takes a new and alternative
path to a ghost-free nonlinear theory of massive gravity.

A generic theory of massive gravity propagates six degrees of freedom,
which should be thought of as the five helicity states of a massive gravi-
ton plus an additional, ghostly scalar. The easiest way to understand the
degrees-of-freedom counting is to observe that a graviton mass breaks dif-
feomorphism invariance. This is a gauge symmetry and so can be restored
by the addition of four Stückelberg scalars FA, which propagate in addition
to the two (now potentially massive) tensor modes of general relativity.

As an illustration, consider a Lorentz-invariant theory of massive gravity.
In order to construct non-trivial, non-derivative interactions for the metric,
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one requires a second "reference" metric. The simplest choice for this metric
is that of flat space, hµn, but the addition of this prior geometry breaks
diffeomorphism invariance; for instance, there are preferred coordinate
systems in which hµn = diag(�1, 1, 1, 1). But diffeomorphism invariance is
simply a redundancy in description, and can be restored by the addition
of redundant variables, i.e., replacing hµn ! hAB∂µFA∂nFB, where hAB =
diag(�1, 1, 1, 1) and the four fields FA transform as spacetime scalars. One
can always, by means of a diffeomorphism, choose the unitary gauge in
which FA = xA, and we recover the original description of the theory in
terms of a symmetry-breaking reference metric. Generic interaction terms
for the graviton, e.g., generic functions of gµahAB∂aFA∂nFB, will lead to
dynamics for each of these four scalars, in addition to the two modes of
general relativity, for a total of six degrees of freedom.

At the linear level, i.e., linearizing the metric about flat space in unitary
gauge, gµn = hµn + hµn and FA = xA, we find that one of the six degrees
of freedom leads to a ghost instability unless we specifically arrange the
mass term into the Fierz-Pauli form, Lmass ⇠ h2

µn � h2, in which case the
dynamics of the ghostly mode take the form of a total derivative. Continuing
this procedure at higher orders in perturbation theory—i.e., continually
packaging ghostly operators into total derivative structures—leads uniquely
to the non-linear massive gravity theory of de Rham, Gabadadze, and Tolley
(dRGT) [37, 38].

The recent proposal of Chamseddine and Mukhanov takes a novel al-
ternative approach to eliminating the dangerous ghostly mode [207, 208].
Noticing that the ghost can be associated to the F0 Stückelberg mode, they
propose imposing the constraint gµn∂µF0∂nF0 = �1. This is motivated
by a similar construction known as mimetic gravity [209], in which the
constrained scalar winds up behaving like dark matter.1 Mimetic massive
gravity takes this constrained scalar to be one of the Stückelberg modes

1 For an earlier construction in which a constrained scalar mimics dark matter and dark
energy, see [212].
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of a massive graviton, eliminating the ghost. They propose the following
action, designed to ensure stability at the linear level (notice that the mass
term is not of the Fierz-Pauli form),

S =
Z

d4x
p

�g
M2

pl

2
R +

m2M2
pl

8

✓
1
2

h̄2 � h̄2
AB

◆
+ l(X + 1)

�
+ Smatter, (4.1)

with X ⌘ gµn∂µF0∂nF0, and

h̄AB ⌘ gµn∂µFA∂nFB � hAB. (4.2)

Internal indices (given by capital Roman letters) are raised and lowered
with the Minkowski metric. The field equations are2

Gµn =
1

M2
pl

Tµn � 2l

M2
pl

∂µF0∂nF0

+
m2

2

✓
h̄AB � 1

2
h̄hAB

◆✓
∂µFA∂nFB � 1

4
h̄ABgµn

◆
, (4.3)

0 = rµ

"
2l

M2
pl

∂µF0d0
A � m2

2

✓
h̄AB � 1

2
h̄hAB

◆
∂µFB

#
, (4.4)

X = �1. (4.5)

The last of these aligns Ḟ0 with the lapse of gµn. An upshot of this construc-
tion is that the constrained mode behaves as a pressureless fluid, i.e., this
theory provides a natural (mimetic) dark matter candidate [207, 208].3

2 Note the sign differences between the right-hand side of the Einstein equations and the
corresponding equation in [207], which is due to the mostly positive metric convention we
employ.

3 One should note that the phenomenology of mimetic dark matter is still in the early
stages of development compared to traditional particle dark matter models such as weakly
interacting massive particles (WIMPs) or axions, and it is premature to consider mimetic
gravity as a serious alternative to those models. For example, since the mimetic dark matter
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We end this section by making a connection with the existing literature on
Lorentz-violating massive gravity and demonstrating the absence of certain
well-known features of Lorentz-invariant massive gravity, namely the van
Dam-Veltman-Zakharov (vDVZ) discontinuity [214, 215] and the Higuchi
bound [216]. The vDVZ discontinuity refers to the failure of linearized
Lorentz-invariant massive gravity to reduce to general relativity in the
massless limit; this requires nonlinear effects in order to restore general
relativity in the Newtonian limit [58, 59]. The Higuchi bound is a stability
bound for massive gravity on de Sitter space, placing a lower bound on the
graviton mass, m2 � 2H2, with H the Hubble rate. It is well-known that
breaking Lorentz invariance changes both of these conclusions dramatically
[217, 218].

At the level of linear perturbations around flat space, the general SO(3)-
invariant mass term in unitary gauge (FA = xA) can be written as [217]

Lmass =
1
8

M2
pl

⇣
m2

0h2
00 + 2m2

1h2
0i � m2

2h2
ij + m2

3h2
ii � 2m2

4h00hii

⌘
. (4.6)

The linearized mass term in (4.1) in unitary gauge is (treating l as first-
order)

Lmass =
m2M2

pl

8

✓
�1

2
h2

00 + 2h2
0i � h2

ij +
1
2

h2
ii � h00hii

◆
+ lh00. (4.7)

only interacts gravitationally with the Standard Model, we do not expect to have a thermal
production mechanism, in contrast to many traditional dark matter scenarios such as WIMPs.
Indeed, when the theory is shift-symmetric in F0, the energy density of this component is
set entirely by an integration constant and so is determined by initial conditions. It may
also be necessary to tune the parameters of the model in order to obtain the right values
of the dark matter density over the entire cosmic history, and higher-derivative effective
field theory corrections play an important role [213]. We refer the reader to, e.g., [213] for
discussions of the constraints that early-universe considerations place on the properties and
evolution of mimetic dark matter throughout cosmic history.
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The l equation of motion sets h00 = 0, which we can impose in the action4

to find

m2
0 = m2

4 = 0, m2
1 = m2

2 = 2m2
3 = 1. (4.8)

This allows us to easily make contact with the existing literature on Lorentz-
violating massive gravity. The analysis of [217] shows that for these mi
parameters, the Newtonian limit is the usual one, while the vDVZ disconti-
nuity is absent. The analogue of the Higuchi bound in Lorentz-violating
massive gravity was derived in [218], and for our values of the mi parame-
ters, it reduces simply to H2 > 0, which is trivially satisfied.

4.2 flat-space perturbations

In this section, we briefly review the behavior of perturbations about flat
space in mimetic massive gravity, as discussed in [207, 208]. This will place
stability conditions on the theory which will be relevant when we move to
cosmological solutions.

The equations of motion (4.3)–(4.5) in vacuum are solved by5

gµn = hµn, FA = xA, l = 0. (4.9)

4 This is justified because, on shell, the h00 equation of motion simply sets the value of l,
while h00 drops out of the hij equations of motion. The dynamics are therefore equivalent.

5 This is the only solution that is manifestly invariant under rotations, i.e., with gµn =

diag(�1, 1, 1, 1) and FA =
n

j(t), bxi
o

. A priori it may be possible to have flat solutions with

inhomogeneous Stückelbergs FA, or equivalently solutions with FA = xA and gµn = hµn

with hµn written in a nonstandard coordinate system, but we do not consider these here.
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We expand the action (4.1) to quadratic order around the Minkowski solu-
tion, focusing on scalar modes,

g00 = �(1 + 2f), (4.10)
g0i = ∂iB, (4.11)
gij = (1 � 2y)dij + 2∂i∂jE, (4.12)

FA = xA +
n

p0, ∂ip
o

, (4.13)

l = dl. (4.14)

Three of these fields—f, B, and dl—are auxiliary, as they appear without
time derivatives in the action, and so can be integrated out using their
equations of motion. Note that the auxiliary structure is precisely the same
as in general relativity, since the mass term and Lagrange multiplier do not
introduce any derivatives of the metric.

We can use diffeomorphism invariance to remove a further two modes.
When gauge fixing at the level of the action, one must take care to only elim-
inate variables whose equations of motion are contained in the equations of
motion of the remaining variables, otherwise we will lose information after
picking a gauge. Following the procedure of [219], we see that we can safely
take p0 and one of (E, p) to vanish. Picking unitary gauge, p0 = p = 0, we
obtain the flat-space quadratic action (in Fourier space),

d2S =
Z

dtM2
pl

⇣
� ~̇X TK ~̇X + ~X T �k2G + m2M

�
~X
⌘

, (4.15)
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where ~X ⌘ (y, k2E) and the matrices K, G, and M are given by

K =

 
3 + 4k2

m2 1
1 0

!
, (4.16)

G =

 
1 0
0 0

!
, (4.17)

M =
1
4

 
3 1
1 �1

!
. (4.18)

As described in [208], this system can be diagonalized by replacing y
with the Lagrange multiplier dl, which we had previously integrated out
using

dl =
M2

pl

4
⇥
(4k2 + 3m2)y + k2m2E

⇤
, (4.19)

to find

d2S =
Z

dt
1

4k2 + 3m2


k4m2M2

pl
�
Ė2 � (k2 + m2)E2�

� 1
M2

pl

✓
16
m2

˙dl
2 � 4dl2

◆ �
. (4.20)

If we take m2 > 0, we can canonically normalize,

dlc ⌘ 4

mMpl

q
2k2 + 3

2 m2
dl, (4.21)

Ec ⌘
mMplk2

q
2k2 + 3

2 m2
E, (4.22)
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to obtain the final action,

d2S =
Z

dt


1
2

Ė2
c � 1

2
(k2 + m2)E2

c � 1
2

˙dl
2
c +

1
8

m2dl2
c

�
. (4.23)

The only dynamical degree of freedom here is Ec, which is healthy and
has mass m. The field dlc has the wrong sign on both its kinetic and mass
terms, but does not propagate due to the absence of a gradient term; its
equation of motion,

d̈lc +
m2

4
dlc = 0, (4.24)

leads to a dispersion relation w2 = m2/4 and is solved simply by [208]

dlc = C(~x) sin
✓

mt
2

◆
+ D(~x) cos

✓
mt
2

◆
, (4.25)

where C and D are space-dependent constants of integration. The authors
of [208] identify this mode with the mimetic dark matter.6

When we discuss cosmology in the next section, we will find ourselves
tempted by the possibility of taking m2 < 0. A priori this is merely a
parameter choice, but the flat-space analysis shows why this would be a
poor decision. By looking at the action (4.20), we see that, for negative
m2, the overall sign in front of the action flips depending on whether
k2 > 3|m2|/4 or k2 < 3|m2|/4, a sign of pathological behavior. In particular,
for scales k2 > 3|m2|/4, upon canonically normalizing we find the action
(4.23) with an overall minus sign, so that the dynamical mode Ec is a ghost.

6 See [208] for an argument for why this mode is not a ghost, despite having an overall
wrong-sign action. In principle, one might worry that when quantizing or considering
nonlinearities, a coupling will be induced between dlc and other fields which will lead to
an Ostrogradski instability. On the other hand, due to the lack of a gradient term this mode
is not a propagating degree of freedom in the usual sense. We will remain agnostic about
this question and limit ourselves to considerations of classical, linear stability, which this
system clearly satisfies for m2 > 0. See, e.g., [220, 221] for detailed discussions of classical
and quantum properties of modes lacking a gradient term.
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4.3 cosmological solutions

In this section we investigate the FLRW cosmological solutions of mimetic
massive gravity. Consider the homogeneous and isotropic ansatz

gµn = diag(�1, a(t)2dij), (4.26)

FA =
n

j(t), bxi
o

. (4.27)

In principle one could allow b to depend on time, but this breaks homo-
geneity and isotropy as it induces ~x-dependent terms in the stress-energy
tensor of the Stückelberg fields. Note that on-shell, the Lagrange multiplier
enforces j = t (up to a constant). We will include a general matter sector
with density r and pressure p. We will find this sector needs to contain a
cosmological constant, much like in general relativity, but does not need to
include dark matter, as this role can be played by the mimetic dark matter
(which is an exactly pressureless perfect fluid).

The Einstein and scalar equations of motion are

3H2 =
r

M2
pl

� 2l

M2
pl

� 3m2

16

✓
b4

a4 � 6
b2

a2 + 5
◆

, (4.28)

2Ḣ + 3H2 = � p
M2

pl
� m2

16

✓
3 � b4

a4 � 2
b2

a2

◆
, (4.29)

0 =
d
dt

(
a3

"
3m2

4

✓
1 � b2

a2

◆
+

2l

M2
pl

#)
. (4.30)

We can solve for l by integrating the F0 equation of motion (4.30), finding

� 2l

M2
pl

=
C
a3 +

3m2

4

✓
1 � b2

a2

◆
, (4.31)
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where C is an integration constant. Plugging this into the Friedmann equa-
tion (4.28), we obtain

3H2 =
r

M2
pl

+
C
a3 � 3m2

16

✓
1 � b2

a2

◆2

. (4.32)

Note that the contribution from l exactly cancels out that from the last
term of the Einstein equation (4.3), so the very simple form for rj ⌘
�3m2M2

pl(1 � b2/a2)2/16 is entirely due to the term proportional to gµn in
the stress tensor. The integration constant provides a dust-like contribution
to the Friedmann equation, which is to be expected as this is a theory of
mimetic dark matter.

We can get a better sense of the physical picture by expanding out
the Friedmann equation and absorbing the mimetic dark matter C into r,
finding

3H2 =
r

M2
pl

� 3m2

16

✓
b4

a4 � 2b2

a2 + 1
◆

. (4.33)

For m2 > 0 (m2 < 0), we see that the mass term generates an effective
negative (positive) cosmological constant, an effective negative (positive)
curvature, and an effective radiation component with negative (positive)
energy density. Note that these add on to any cosmological constant, ra-
diation, and curvature already present cosmologically; for example, while
we have assumed a flat cosmology as our ansatz, observational bounds on
spatial curvature will constrain the sum of any pre-existing curvature and
the curvature-like term generated by the graviton mass.

Note that for m2 < 0 we have late-time acceleration, with Leff = 3|m2|/16.
However, as discussed in the previous section, we need m2 > 0 in order to
avoid a ghost around flat space. This is reminiscent of the situation in the
Dvali-Gabadadze-Porrati (DGP) model [222], where one branch of solutions
has self-accelerating cosmological expansion [223, 224] but is plagued by a
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ghost [225, 226], while the other branch is healthy but cannot account for
cosmic acceleration.

Let us assume that the energy density r in (4.33) contains dust (including
the mimetic dark matter), radiation, and dark energy components. Then, in
terms of the density parameters,

Wi,0 =
ri,0

3M2
plH

2
0

, (4.34)

the components of the Friedmann equation which are modified by mimetic
massive gravity are

WL,0 = W̄L,0 � m2

16H2
0

(4.35)

WK,0 =
m2

8H2
0

b2, (4.36)

Wr,0 = W̄r,0 � m2

16H2
0

b4, (4.37)

where W̄L,0 and W̄r,0 are the densities associated to dark energy and Stan-
dard Model radiation. Using observational bounds on the curvature and
radiation densities, we can place constraints on the model parameters m2

and b. We will not consider any bounds coming from the presence of the
effective cosmological constant, even though it contributes a negative and
potentially large (if m2 � H0) amount to WL,0. Particle physics also predicts
a large (and potentially negative) vacuum energy, and since we are not
worrying about that, it seems inconsistent to worry about the contribution
from mimetic massive gravity. One might expect that whatever solves the
former problem will also solve the latter.7

7 See [227] for a proposed solution to the cosmological constant problem in the context of
Lorentz-violating massive gravity, which is closely related to mimetic massive gravity.
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We will use observational constraints on WK,0 and Wr,0 to bound our two
free parameters, m2 and b. Planck 2018 constrains WK,0 = 0.0007 ± 0.0019,
which we parametrize as |WK,0| < dK, with dK ⇠ 0.003 [8]. We will take this
to be a constraint on the contribution from mimetic massive gravity alone,

m2

8H2
0

b2 < dK. (4.38)

We remind the reader that what we are really bounding is the sum of the
mimetic massive gravity contribution and any “bare" curvature, but unless
there is significant tuning between these two, we can simply take this as a
constraint on the mimetic massive gravity piece alone.

To bound the mimetic contribution to the radiation density, we will use
constraints from big bang nucleosynthesis (BBN). At the time of BBN,
radiation dominates. The exact value of the Hubble rate at the time of
nucleosynthesis, which depends on the radiation density, determines the
freeze-out abundance of neutrons and therefore the primordial abundance
of helium-4, which is subject to tight observational bounds. The constraints
are conveniently phrased in terms of the "speed-up factor" z ⌘ H/H̄, where
H and H̄ are the Hubble rate and its expected value, respectively, at the
time of BBN. The difference between the observed and predicted helium-4
abundance, |DYP|, is related to the speed-up factor by [228]

DYP = 0.08(z2 � 1). (4.39)

Current observational bounds imply [229]

|DYP| . 0.01. (4.40)

Comparing the Friedmann equation (4.33) with and without the mimetic
radiation contribution, and focusing on radiation domination, we find

z2 � 1 = � m2b4

16W̄r,0H2
0

, (4.41)
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where the value for the present-day radiation density associated to photons
and neutrinos, W̄r,0 ⇠ 10�4, is determined entirely by the CMB temperature
and the effective number of neutrino species and is therefore not dependent
on our modification of gravity.8 Combining this with (4.40) we arrive at the
constraint

m2

16H2
0

b4 < dr, (4.42)

where

dr ⌘ max(|DYP|)W̄r,0

0.08
⇡ O(10�5). (4.43)

We can rewrite our constraints (4.38) and (4.42) as inequalities for m/H0
and b alone in two different régimes,

m
H0

<

8
><

>:

p
8dK
b , b <

q
2dr
dK

4
p

dr
b2 , b >

q
2dr
dK

.
(4.44)

These are plotted in 4.1.
Finally, we note that the strong-coupling scale for this theory is of order

L2 =
p

mMpl [208]. If m is of order the present-day Hubble scale, m ⇠
10�33 eV, then the strong coupling scale is L2 ⇠ meV, i.e., the theory
breaks down slightly below the millimeter scale. As we see from (4.44), for
sufficiently small b, m could potentially be much larger than H0, leading to
a correspondingly larger strong-coupling scale.

4.4 cosmological perturbations

As we have seen, at the background level, cosmological solutions in mimetic
massive gravity do not differ appreciably from LCDM. We therefore pro-
ceed to study cosmological perturbations around the FLRW background.

8 See [230] for a measurement of the CMB temperature.
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Figure 4.1: Upper limits on m/H0 and b for (dK, dr) = (0.003, 10�5).

This will tell us how cosmological large-scale structure (LSS) evolves in
this theory in comparison to LCDM. Since mimetic massive gravity differs
from general relativity, we would expect modifications to the gravitational
Poisson equation and the slip relation, which could in principle allow for
observational tests of this alternative model against LCDM and distinguish
the two using the current and future LSS surveys. However, as we will
see, stability of cosmological perturbations and the bounds (4.44) place
strong constraints on the model which suggest that this theory should be
observationally indistinguishable from GR in the linear regime.

4.4.1 Stability bound

We begin by studying the stability of cosmological perturbations using the
second-order action formalism. Since, as discussed in 4.3, this theory does
not possess ghost-free self-accelerating solutions, we include a cosmological
constant, although it will not affect any of the results in this section. Since
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the theory already contains a pressureless fluid, namely the mimetic dark
matter, we need not introduce an additional matter field. Our analysis is
therefore valid for all times after matter-radiation equality.

We define the linearized metric, Stückelberg fields, and Lagrange multi-
plier as

ds2 = �(1 + 2f)dt2 + 2a∂iBdtdxi

+ a2 ⇥(1 � 2y)dij + 2∂i∂jE
⇤

dxidxj, (4.45)
F0 = t + p0, (4.46)

Fi = b
⇣

xi + ∂ip
⌘

, (4.47)

l = l̄ + dl, (4.48)

where we are restricting ourselves to scalar perturbations, and l̄ is the
background value given in (4.31). The calculation of the quadratic action
proceeds analogously to the flat-space case discussed in section 4.2. Ex-
panding the action (4.1) (with a cosmological constant) to quadratic order
in perturbations, we find that the variables f, B, and dl are auxiliary—that
is, they appear without time derivatives—and can therefore be integrated
out using their equations of motion. To safely fix a gauge at the level of
the action, we again follow the procedure of [219], finding that we can
eliminate one each of (y,p0) and (E,p). We will choose to work in unitary
gauge, p0 = p = 0, so that FA = (t, bxi) is unperturbed. The final action,
in Fourier space and after integrations by parts, is

d2S =
Z

dtM2
pla

3
✓

� ~̇X TK ~̇X + ~X T
✓

k2

a2 G + m2M

◆
~X
◆

, (4.49)
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where ~X ⌘ (y, k2E) and the matrices K, G, and M are given by

K =

0

@3 � 8a2

b2�3a2
k2

m2b2 1

1 0

1

A (4.50)

G =

 
1 0
0 0

!
(4.51)

M =
1
8

b2

a2

✓
1 +

b2

a2

◆ 
3 1
1 �1

!
(4.52)

Since we are interested in the implications of mimetic massive gravity for
the growth and properties of large-scale structure in the late Universe, let
us focus on subhorizon scales (i.e., k2 � a2H2) and assume the quasi-static
(QS) approximation. In order to use this approximation, we first need to
ensure that fluctuations in this regime are stable. Ignoring time variation
in a(t), which will be subdominant in the limit k2 � a2H2, and assuming
solutions of the form ~X = ~X0eiwt, the equations of motion following from
the action (4.49) are

✓
�w2K +

k2

a2 G + m2M

◆
~X = 0. (4.53)

We can then derive stability conditions from the dispersion relations, ob-
tained by solving

0 = det
✓

�w2K +
k2

a2 G + m2M

◆

=
w4

a2 + b2 � w2k2

a2(3a2 � b2)
� 5w2m2b2

8a4 +
k2m2b2

8a6 +
m4b4(a2 + b2)

16a8

(4.54)

for w2.
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The dispersion relations arising from (4.54) are complicated, but simplify
significantly in the limit k � aH when we take into account the constraints
(4.44) on m/H0, which we obtained by requiring that the radiation and
curvature densities generated by the mass term not exceed observational
bounds. Consider replacing m and b in (4.54) with the following two
parameters,9

e1 ⌘
✓

mb

k

◆2
, e2 ⌘

✓
mb2

ka

◆2

. (4.55)

We proceed to show that the bounds (4.44) imply that each of these is much
smaller than unity on subhorizon scales for all times after matter-radiation
equality.

For both e1 and e2 we can put upper bounds on the numerators and
lower bounds on the denominators. Let us start with the numerators. For
e1, multiply each side of (4.44) by b. We see there is a strict upper bound
on the combination mb,

mb 
p

8dK H0 ⇡ 0.15H0 (4.56)

where we have taken dK ⇠ 0.003 as a representative value. We can similarly
find a bound on the numerator of e2 by multiplying both sides of (4.44) by
b2, finding

mb2  4
p

dr H0 ⇡ 10�2H0 (4.57)

for dr ⇠ 10�5.
Now we move on to the denominators. The subhorizon limit is given

by k � aH. For the sake of argument let us be conservative and assume
that k is only slightly subhorizon, k/a ⇡ O(1)H.10 At any given time

9 To do this replacement, first replace m ! p
e1b/k, and then replace any remaining factors

of b with b !
p

e2/e1a.
10 Of course, the deeper in the subhorizon regime k is, the smaller e1 and e2 become.
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from matter-radiation equality to the present, where we can trust our
analysis, the Hubble rate H is related to its present-day value H0 by H =
H0
p

WL,0 + Wm,0a�3. Putting this together with the bounds we have derived
on mb and mb2, we find

e1 .
0.02

WL,0a2 + Wm,0a�1 ⌧ 1, (4.58)

e2 .
10�4

WL,0a4 + Wm,0a
⌧ 1 for z . 3000. (4.59)

Note that while the upper bound on e1 is always much smaller than unity
for 0 < a  1, the upper bound on e2 in fact grows as a�1 at early times.
However, it grows slowly and has a factor of 10�4 to compete with, so that
max(e2) does not reach unity until z ⇠ 3000, right around matter-radiation
equality. Therefore in principle there might be a handful of modes—right
around the horizon scale and at the earliest moments of matter domination—
for which terms going as e2 affect the subhorizon dispersion relation, if
mb2 takes the largest value allowed by the constraints. We will continue
to take e2 ⌧ 1, with the understanding that if this particular situation is
realized, then at those very early times we are only considering modes with
k & 10aH, for which e2 is certainly smaller than unity.

Dropping terms subdominant in e1 and e2, the dispersion relation (4.54)
becomes

0 ⇡ w4

a2 + b2 � w2k2

a2(3a2 � b2)
+

k2m2b2

8a6 . (4.60)

Solving for w2, and again dropping terms subleading in e1 = (mb/k)2, we
find the dispersion relations for our two modes,

w2 ⇡ k2

a2
a2 + b2

3a2 � b2 , (4.61)

w2 ⇡ m2b2

8a2

✓
3 � b2

a2

◆
. (4.62)
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Each of these implies the same stability condition,

b2

a2 < 3. (4.63)

This tells us that no matter what the value of b is, our cosmological solutions
are unstable at sufficiently high redshifts,

z >
p

3b�1 � 1. (4.64)

This early time instability can however be safely pushed back to unob-
servably early times by taking the parameter b to be sufficiently small.11

Because we are assuming matter and dark energy domination, we can trust
our stability condition as far back as matter-radiation equality at zeq ⇡ 3400.
Demanding stability from zeq onward, we find a constraint on b,12

b . 5 ⇥ 10�4. (4.65)

4.4.2 Cosmological tensor mass

Another possible cosmological bound on the parameters m and b comes
from constraints on the graviton mass. The tightest bounds currently come
from LIGO, mT  7.7 ⇥ 10�23 eV [231].13 To compute the mass of tensor

11 This is similar to massive bimetric gravity, which possesses an early-time instability that can
be rendered safe in the limit where the ratio of the two Planck masses becomes small [53].

12 It is plausible that the result (4.63) holds, at least on an order-of-magnitude basis, through
radiation domination as well (see, again, the example of bigravity [53]). In this case, we
should demand that the instability be pushed back to before big bang nucleosynthesis, with
zBBN ⇡ 3 ⇥ 108, which would imply a stronger constraint of b . 10�8. We do not have
much observational handle on the presumably radiation-dominated era before BBN, and
therefore should not demand that the instability be absent then; indeed, a mild enough
instability might have interesting consequences, such as the formation of primordial black
holes.

13 See [232] for a helpful summary of bounds on the graviton mass from a variety of experi-
ments and observations.
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fluctuations on a cosmological background, we linearize the Einstein equa-
tion (4.3) around gµn = ḡµn + hµn, with ḡµn = diag(�1, a2dij), h00 = 0, and
hij transverse and traceless, i.e., hii = ∂ihij = 0. The Einstein equation is

ḧij + 3Hḣij �
r2

a2 hij + m2
Thij = 0 (4.66)

with the tensor mass given by

m2
T ⌘ m2

2
b2

a2

✓
1 +

b2

a2

◆
(4.67)

The structure of the Einstein equation is such that m2
T/m2 has to be a

(quadratic) polynomial in b2/a2. What is non-trivial is that the degree-
zero term in that polynomial cancels out, i.e., the expression for m2

T/m2

starts at order b2/a2. This means that gravitational waves propagating over
cosmological distances (at low redshift, i.e., a ⇠ O(1)) do not depend on
m alone; instead they involve the combinations mb and mb2 which, as we
have seen, are strongly constrained by the cosmological background. In
particular, recalling that m2b2 . 10�2H2

0 and m2b4 . 10�4H2
0 , we see that

mT at the present era is at most of order 10�1H0 ⇠ 10�34 eV, far below the
LIGO bounds. Moreover, our stability condition (4.65) has no bearing on
mT. No matter how tiny b is, the constraints (4.44) place a constant upper
bound on mb, so that the smaller b is, the larger m is allowed to be, leaving
mT ⇡ mb/(

p
2a) fixed. It is interesting to note that, without demanding

that this model provide cosmic acceleration, the tensor mass is nevertheless
forced to be smaller than the Hubble scale. Finally, we note that around a
flat background, the tensor mass is simply m, so local tests of gravity might
be able to place constraints on m that are not possible with gravitational
waves that propagate over cosmological distances.
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4.4.3 Quasistatic limit

Finally, let us comment on the testability of mimetic massive gravity using
near-future LSS surveys. We will find it convenient to work in Newtonian
gauge, B = E = 0. Linearizing the Einstein equations (4.3), and leaving in a
generic stress-energy tensor Tµn for completeness, we obtain

6H2f � 2
a2 ∂i∂iy + 6Hẏ =

1
M2

pl
dT0

0 + 2
dl

M2
pl

� m2

4
b2

a2 Q1

⇣
3y + ∂i∂ip

⌘
, (4.68)

� 2∂i (ẏ + Hf) =
dT0

i
M2

pl
+

2l̄

M2
pl

∂ip
0 +

m2

4
Q1
�
∂ip

0 � b2∂iṗ
�

, (4.69)

6
⇥
ÿ + 3Hẏ + Hḟ + (3H2 + 2Ḣ)f

⇤
+

2
a2 ∂i∂i (f � y) =

1
M2

pl
dTi

i �
m2

4
b2

a2 Q2

⇣
3y + ∂i∂ip

⌘
, (4.70)

1
a2 ∂i∂j (y � f) =

1
M2

pl
dTi

j +
m2

2
b2

a2 Q2∂i∂jp, i 6= j, (4.71)

where Q1 ⌘
⇣

3 � b2

a2

⌘
and Q2 ⌘

⇣
1 + b2

a2

⌘
.

Moving to Fourier space, specializing to a pressureless fluid without
anisotropic stress, and taking the quasistatic limit, Ẍ ⇠ HẊ ⇠ H2X ⌧ k2X
for any perturbation X, Eqs. (4.68), (4.70) and (4.71) become

2k2

a2 y =
1

M2
pl

(2dl � r̄d) � m2

4
b2

a2 Q1
�
3y � k2p

�
, (4.72)

2k2

a2 (f � y) =
m2

4
b2

a2 Q2
�
3y � k2p

�
, (4.73)

1
a2 (f � y) = �m2

2
b2

a2 Q2p, (4.74)
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where r̄ and d are the background density and overdensity of the dust
component. Note that these are degenerate with the mimetic dark matter,
as expected.

Combining these equations, we obtain the modified Poisson equation
and the slip relation,

�k2y = 4pGµ(a, k)a2(dr � 2dl), (4.75)
y = h(a, k)f, (4.76)

where the modified-gravity parameters µ and h are given by

µ(a, k) =
1

1 + 1
2

m2b2

k2

⇣
3 � b2

a2

⌘ , (4.77)

h(a, k) =
1

1 + 1
2

m2b2

k2

⇣
1 + b2

a2

⌘ . (4.78)

These parametrize observable deviations from general relativity, in which
µ = h = 1.

The constraints we have already derived on m and b preclude µ and h
from deviating from unity at a level accessible to near-future observations.
The stability constraint (4.63) requires the terms in parentheses to be O(1),
while the background constraint (4.56) sets m2b2 . 0.02H2

0 , so that

µ � 1 ⇠ h � 1 ⇠ O
✓

m2b2

k2

◆
. 10�2

✓
H0

k

◆2
. (4.79)

It is therefore highly unlikely that cosmological observations will be able to
test this model against LCDM in the linear and subhorizon regime.

4.5 conclusions

In this chapter we have studied the first cosmological implications of the
recently-proposed theory of mimetic massive gravity. We find that the
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theory is unable to self-accelerate without introducing a ghost. Its effects on
Friedmann-Lemaître-Robertson-Walker cosmological backgrounds are to
introduce effective radiation, curvature, and cosmological constant terms,
as well as a dust-like mimetic dark matter component. We place constraints
(4.44) on the theory parameters by demanding that the effective radiation
and curvature terms be within observational bounds. In the ghost-free
region of parameter space, m2 > 0, the effective cosmological constant
is negative-definite, so a separate dark energy sector, which we take to
be a positive cosmological constant, is required to explain the late-time
acceleration of the Universe.

We further studied the behavior of cosmological perturbations in the sub-
horizon, quasistatic limit. The model generically suffers from an instability
at early times. However, since our analysis only included a pressureless
dust component (in addition to a cosmological constant), the calculation
can only be trusted as far back as matter-radiation equality. This allowed us
to place a further constraint on the theory parameters by insisting that the
instability be absent throughout matter domination. With these constraints,
the deviations from LCDM in the linear, subhorizon regime are likely too
small to be observable.

Not surprisingly, since this is a theory of massive gravity, it predicts mas-
sive tensor modes. We have calculated the tensor mass around cosmological
backgrounds and found that, taking into account the constraints imposed
by the cosmological background, this mass must be at least an order of
magnitude below the Hubble scale, far outside the currently-available con-
straints on the graviton mass. Unlike other theories of massive gravity, in
which the graviton mass is comparable to the Hubble scale in order to
provide late-time acceleration, this bound on the graviton mass is solely
due to the requirement that the effective radiation and curvature terms in
the Friedmann equation not be too large.

What are the remaining prospects for cosmological tests of mimetic
massive gravity? We emphasize that our analysis does not apply in two
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important regimes: horizon-size scales and nonlinear scales. One or both of
these may possess signatures which could be used to distinguish mimetic
massive gravity from LCDM, or otherwise to rule out additional regions
of parameter space. One expects that nonlinear scales will require N-body
simulations, while at horizon-size scales we cannot apply the quasistatic
approximation and would need to solve the perturbation equations nu-
merically, as in other theories of modified gravity [233]. For the latter, we
note that the mass scales appearing in the action (4.49) for cosmological
perturbations are not simply m, which can be arbitrarily large (in the limit
of small b), but rather mb and mb2, which we have shown must both be
at least an order of magnitude smaller than the Hubble scale. It therefore
might be difficult for this theory to produce effects at horizon scales that
are larger than cosmic variance. Note that scales k ⇠ mb and k ⇠ mb2 are
super-horizon and therefore not observable.
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